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Neurodevelopmental Outcomes After
Cardiac Surgery in Infancy
J. William Gaynor, MDa, Christian Stopp, MSb, David Wypij, PhDb, Dean B. Andropoulos, MDc, Joseph Atallah, MD, CM, SM, FRCPCd,
Andrew M. Atz, MDe, John Beca, MDf, Mary T. Donofrio, MDg, Kim Duncan, MDh, Nancy S. Ghanayem, MDi, Caren S. Goldberg, MDj,
Hedwig Hövels-Gürich, MDk, Fukiko Ichida, MDl, Jeffrey P. Jacobs, MDm, Robert Justo, MDn, Beatrice Latal, MDo, Jennifer S. Li, MDp,
William T. Mahle, MDq, Patrick S. McQuillen, MDr, Shaji C. Menon, MDs, Victoria L. Pemberton, RNC, MS, CCRCt, Nancy A. Pike, RN, PhDu,
Christian Pizarro, MDv, Lara S. Shekerdemian, MDw, Anne Synnes, MDCMx, Ismee Williams, MDy, David C. Bellinger, PhDb,
Jane W. Newburger, MD, MPHb, for the International Cardiac Collaborative on Neurodevelopment (ICCON) Investigators

abstract BACKGROUND: Neurodevelopmental disability is the most common complication for survivors of surgery
for congenital heart disease (CHD).

METHODS:We analyzed individual participant data from studies of children evaluated with the Bayley Scales of
Infant Development, second edition, after cardiac surgery between 1996 and 2009. The primary outcome was
Psychomotor Development Index (PDI), and the secondary outcome was Mental Development Index (MDI).

RESULTS: Among 1770 subjects from 22 institutions, assessed at age 14.5 6 3.7 months, PDIs and
MDIs (77.6 6 18.8 and 88.2 6 16.7, respectively) were lower than normative means (each P , .001).
Later calendar year of birth was associated with an increased proportion of high-risk infants
(complexity of CHD and prevalence of genetic/extracardiac anomalies). After adjustment for center
and type of CHD, later year of birth was not significantly associated with better PDI or MDI. Risk factors
for lower PDI were lower birth weight, white race, and presence of a genetic/extracardiac anomaly
(all P # .01). After adjustment for these factors, PDIs improved over time (0.39 points/year, 95%
confidence interval 0.01 to 0.78; P = .045). Risk factors for lower MDI were lower birth weight,
male gender, less maternal education, and presence of a genetic/extracardiac anomaly (all P , .001).
After adjustment for these factors, MDIs improved over time (0.38 points/year, 95% confidence interval
0.05 to 0.71; P = .02).

CONCLUSIONS: Early neurodevelopmental outcomes for survivors of cardiac surgery in infancy have improved
modestly over time, but only after adjustment for innate patient risk factors. As more high-risk CHD infants
undergo cardiac surgery and survive, a growing population will require significant societal resources.

WHAT’S KNOWN ON THIS SUBJECT:
Neurodevelopmental disabilities are the most
common, and potentially the most damaging,
sequelae of congenital heart defects. Children with
congenital heart defects undergoing surgery in
infancy have problems with reasoning, learning,
executive function, inattention and impulsive
behavior, language skills, and social skills.

WHAT THIS STUDY ADDS: Early
neurodevelopmental outcomes for survivors of
cardiac surgery in infancy have improved modestly
over time, but only after adjustment for innate patient
risk factors. As more high-risk infants with congenital
heart defects survive cardiac surgery, a growing
population will require significant societal resources.
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Neurodevelopmental disabilities are
the most common, and potentially the
most damaging, sequelae of
complicated childhood diseases.
Although many studies have
evaluated the cognitive and
behavioral status of children who
were born prematurely, few have
been performed in children suffering
from rare conditions including
complex congenital heart disease
(CHD).1 Small studies at individual
institutions have shown that children
with CHD undergoing surgery in
infancy have more problems with
reasoning, learning, executive
function, inattention and impulsive
behavior, language skills, and social
skills compared with peers without
CHD.2–5 Lower abilities in these areas
may lead to poor school performance,
strained interpersonal relationships,
and behavior problems. Survivors of
cardiac surgery in infancy are more
likely than the general population to
require remedial services, including
tutoring and special education, as
well as physical, occupational, and
speech therapy.2,6 As these children
reach adulthood, neurodevelopmental
disabilities can limit educational
achievements, employability,
insurability, and quality of life.
Currently known risk factors explain
only ∼30% of the observed variation
in neurodevelopmental outcome after
cardiac surgery in infancy.7

Importantly, these studies have
identified few modifiable risk factors
for adverse neurodevelopmental
outcomes.7–9 In addition, these
studies usually derive from single
centers and are limited by small
sample size.

Many centers caring for children with
CHD have measured and reported
neurodevelopmental outcomes, often
using standardized instruments and
collecting similar data on potential
covariates and confounders. The use
of individual participant data from
multiple studies has been
championed as the gold standard for
synthesizing prognostic risk factors in
clinical prediction models.10–12

Nevertheless, no studies using this
approach have been performed in
children with CHD or have evaluated
neurodevelopmental outcomes. In
this study, we pooled and analyzed
such data from earlier studies to
describe neurodevelopmental
outcomes of infants after open
cardiac surgery with regard to
temporal trends over a 14-year
interval.

METHODS

Identification of Participating
Institutions

Participating institutions were
selected based on a literature search
to identify studies reporting
neurodevelopmental outcomes after
cardiac surgery in infancy
(Supplemental Table 4). The inclusion
criteria were (1) cardiac surgery
using cardiopulmonary bypass at age
#9 months; (2) enrollment in
a clinical trial or observational cohort
study with date of surgery between
January 1, 1988, and December 31,
2009; (3) neurodevelopmental
evaluation between 6 and 30 months
of age using the Bayley Scales of
Infant Development, first edition
(BSID-I), BSID-II, or the Bayley Scales
of Infant and Toddler Development,
third edition13,14; and (4) data
available on patient and operative
management variables. Children
treated with a primary strategy of
cardiac transplantation were not
eligible. Investigators identified by
the initial literature search were
contacted and invited to participate.
Additional centers with eligible
subjects but previously unpublished
data were identified and invited to
contribute. All invited investigators
agreed to submit data for this
analysis.8,9,15–24

Preparation of the Analysis Data Set

Participating institutions reviewed
their databases to select appropriate
subjects for analysis. Each institution
obtained approval or exemption from
their institutional review board.

Center investigators submitted
a limited, deidentified standardized
dataset, including
neurodevelopmental outcome
measures and demographic,
preoperative, perioperative, and
postoperative variables
(Supplemental Table 5). Investigators
were asked to code their subjects
according to cardiac diagnosis into 1
of 4 previously described categories
that have been shown to predict
perioperative mortality: Class I, 2
ventricles with no aortic arch
obstruction; Class II, 2 ventricles with
aortic arch obstruction; Class III,
single ventricle without arch
obstruction; and Class IV, single
ventricle with arch obstruction.25

Subjects with d-transposition of the
great arteries (TGA) or tetralogy of
Fallot (TOF) are generally in Class I,
whereas subjects with hypoplastic
left heart syndrome (HLHS) are in
Class IV. Subgroup analyses were
performed based on 3 common types
of CHD: TGA with intact ventricular
septum (IVS) or ventricular septal
defect (VSD) (Class I only), TOF with
or without pulmonary atresia (PA),
and HLHS. Anomalies were classified
as definite genetic anomalies,
suspected genetic anomalies or major
extracardiac anomalies, or absent
(normal). Subjects in whom the
presence or absence of an anomaly
had not been specifically noted were
classified as being normal.

The sample was restricted to subjects
assessed using BSID-II, which was the
most commonly used instrument.
Although the sample would have
been larger had other versions of the
Bayley scales been included, no
standardized methodology exists by
which scores from different versions
of the Bayley scales can be combined.
BSID-II offers a standardized
assessment of cognitive and motor
development for children aged 1
through 42 months. It yields 2 scores:
the Psychomotor Development Index
(PDI) and the Mental Development
Index (MDI). The PDI assesses control
of gross muscle function, including
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crawling and walking, as well as fine
muscle skills necessary for
prehension, use of writing
instruments, and imitation of hand
movements. The MDI assesses
memory, problem solving, early
number concepts, generalization,
vocalizations, and language and social
skills. The mean 6 SD is 100 6 15 in
the normative population for both
scores. Motor skills (PDI) are usually
more severely affected in infant
survivors of cardiac surgery than are
cognitive abilities (MDI).15,21

Dataset Preparation and Statistical
Analysis

Center investigators reviewed their
data for deidentification, data
accuracy, data completeness, and
outlying observations before
submission to the Data Coordination
Center (DCC) at Boston Children’s
Hospital. The DCC performed
a standardized integrity examination
of the data to identify inconsistencies,
missing data, and outliers across
institutions. Communications were
exchanged with centers until all
issues were resolved. Collaborative
decisions between the lead
investigators (Drs Gaynor and
Newburger) were made with respect
to group assignment for cardiac class,
cardiac diagnosis, race, and genetic
anomaly when collapsing across
categories of a variable or handling
unique cases. Analyses included only
data for which all queries had been
resolved. The DCC merged the data
across institutions into a final
analysis data set.

Group differences by cardiac class
were assessed by using x2 tests for
categorical variables and analysis of
variance or Kruskal–Wallis tests for
continuous variables. Comparisons of
PDI and MDI with normative means
were made using 1-sample t tests.
Primary analyses examined the
relationships of PDI and MDI from
BSID-II with year of birth. Pearson
correlations were used to examine
these relationships in the full cohort
as well as in homogeneous diagnostic

subgroups (ie, TGA, TOF, and HLHS).
The types of CHD included in clinical
studies changed over time. Therefore,
linear regression analyses using
continuous year of birth and
adjusting for center and cardiac class
served as foundation models for
predicting PDI and MDI. Candidate
predictors in multivariable analyses
were preoperative measures and
patient factors, including birth
weight, gestational age, race, ethnicity
(Hispanic versus not Hispanic),
gender, maternal education, genetic
or extracardiac anomalies, prenatal
diagnosis, preoperative mechanical
ventilation, and neonatal status (age
at first surgery #30 days). Factors
relating to operative management or
postoperative course were not
included. Predictors were screened to
identify associations with
a neurodevelopmental score at the
P , .25 level after adjusting for
center, cardiac class, and year of birth.
Predictors meeting this criterion were
included in stepwise backward
analysis in which P , .05 served as
the criterion for retention into the full
model. Center, cardiac class, and year
of birth were retained in all models
regardless of P value. Standardized
mean scores present the predicted
PDIs and MDIs adjusting for center,
cardiac class, and other statistically
significant predictors at the mean
value of the covariates. Analyses were
performed using SAS 9.3 (SAS
Institute, Cary, NC).

RESULTS

Of the 2501 subjects submitted from
26 institutions in 6 countries, 1770
subjects born between 1996 and
2009 from 22 institutions were
evaluated with BSID-II and form the
cohort for this report. The cohort was
predominantly male (61.5%), white
(84.0%), and non-Hispanic (92.3%).
Cardiac diagnoses and preoperative
characteristics are shown in Table 1
for the overall cohort and each class
of CHD. Because of changes in
eligibility criteria across studies, the

majority of subjects in the early years
were in Class I, whereas in later years,
the percentage of subjects in Class IV
surpassed that in Class I (Fig 1A). The
most common cardiac defects were
HLHS (n = 549, 31.0%), followed by
TGA with IVS (n = 235, 13.3%), other
single ventricle (n = 203, 11.5%), TOF
without PA (n = 166, 9.4%), VSD (n =
148, 8.4%), and TGA with VSD (n =
121, 6.8%). Figure 1B shows
variation over time in the percentage
of subjects with a definite or
suspected genetic or major
extracardiac anomaly.

Subjects were assessed at age 14.5 6
3.7 months. Compared with
normative means, CHD subjects had
significantly lower PDIs (77.6 6 18.8)
and MDIs (88.2 6 16.7) (each P ,
.001). PDIs and MDIs were $1 SD
below the population mean for
63.5% and 36.1% of subjects,
respectively, and $2 SD below the
mean for 36.8% and 15.3% of
subjects. Higher cardiac class,
reflecting more serious heart disease,
was significantly associated with lower
PDI, but not with lower MDI (Table 1).

Univariate analyses

For the entire cohort, later year of
birth was not associated with better
PDI or MDI. Over the study period,
unadjusted mean PDIs declined (r =
20.17, P , .001), as did unadjusted
MDIs (r =20.05, P = .03). Similarly, in
diagnostic subgroup analysis (TGA
with IVS or VSD [Class I only], TOF
with or without PA, and HLHS),
unadjusted scores did not improve
over time in any subgroup. PDIs
declined over time for subjects with
TGA (r = 20.18, P = .001) and TOF
(r =20.16, P = .03) but were stable for
subjects with HLHS (r = 0.03, P = .44).
MDIs decreased for the TOF group
(r =20.16, P = .03) but did not change
significantly over time among those
with TGA or HLHS (TGA: r = 20.02,
P = .68; HLHS: r = 0.005, P = .91).

Multivariable analyses

Multivariable analyses adjusting for
center, cardiac class, and year of birth
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(foundation models; see Table 2)
were performed to determine
additional independent predictors of
neurodevelopmental outcome, as well
as to examine temporal trends when
considering all measured potential
risk factors. Later year of birth was
not significantly associated with
better PDI or MDI when adjusting for
center and cardiac class.

Independent predictors of lower PDI
included lower birth weight, white

race, and presence of a definite or
suspected genetic or extracardiac
anomaly (full model in Table 2). The
final model for PDI included 1675
subjects from 22 centers with an
adjusted R2 of 24.3% and root mean
square error of 16.2. A statistically
significant annual improvement in
PDI (0.39 points/year, 95%
confidence interval [CI] 0.01 to 0.78;
P = .045) was observed in the fully
adjusted model.

Independent predictors of lower MDI
included lower birth weight, male
gender, less maternal education, and
presence of a definite or suspected
genetic or extracardiac anomaly (full
model in Table 2). The final model for
MDI included 1717 subjects from
22 centers with an adjusted R2 of
27.7% and root mean square error
of 14.2. A statistically significant
annual improvement in MDI
(0.38 points/year, 95% confidence

TABLE 1 Demographic and Preoperative Characteristics and Neurodevelopmental Outcomes by Cardiac Class

Variable Overall (n = 1770) Class I (n = 878) Class II (n = 114) Class III (n = 106) Class IV (n = 672) P

Demographic and preoperative characteristics
Cardiac diagnosis —

TGA/IVS 13.3 26.5 1.8 0 0 —

TGA/VSD 6.8 13.3 3.5 0 0 —

TOF 9.4 18.7 0 1.9 0 —

TOF/PA 1.3 1.8 0 6.6 0 —

TAPVC 3.2 6.3 0 0.9 0 —

VSD without IAA/coarctation 8.4 16.9 0 0 0 —

VSD with IAA/coarctation 3.1 0 47.4 0 0.2 —

AVC defects 3.1 5.4 5.3 0.9 0 —

HLHS 31.0 0 0 0 81.7 —

Other functional single ventricle anomaly 11.5 0 0 76.4 18.2 —

Other 9.0 11.2 42.1 13.2 0 —

Birth weight (kg) 3.2 (0.6) 3.2 (0.7) 3.2 (0.6) 3.1 (0.6) 3.3 (0.5) .10
Gestational age (wk) 38.7 (1.9) 38.8 (2.1) 38.9 (1.8) 38.4 (1.7) 38.5 (1.5) ,.001
Race ,.001
White 84.0 83.7 82.5 76.4 85.9 —

Black 7.6 5.6 9.6 13.2 9.1 —

Other 8.4 10.7 7.9 10.4 5.1 —

Hispanic ethnicity 7.7 4.9 2.6 10.5 11.9 ,.001
Female gender 38.5 40.1 44.7 36.8 35.6 .15
Maternal education ,.001
Graduate school 11.3 11.9 11.4 9.4 10.9 —

Completed college 24.4 26.3 28.9 5.7 24.1 —

High school and/or some college 38.8 38.7 33.3 34.0 40.5 —

Less than high school 8.3 8.5 9.6 3.8 8.5 —

Missing or not specified 17.2 14.6 16.7 47.2 16.1 —

Genetic anomaly ,.001
Normal or not specified 85.1 86.9 69.3 93.4 84.2 —

Suspected genetic or major extracardiac 6.6 2.9 6.1 1.9 12.2 —

Definite genetic 8.3 10.3 24.6 4.7 3.6 —

Prenatal diagnosis 38.5 16.1 28.4 49.2 70.0 ,.001
Preoperative mechanical ventilation 35.2 28.6 39.5 41.4 55.1 ,.001
Neonate (age #30 d) at time of surgery 71.9 53.1 80.7 53.8 97.8 ,.001

Neurodevelopmental outcomes
Age at assessment (mo) 14.5 (3.7) 14.4 (3.9) 15.6 (5.2) 14.3 (4.0) 14.6 (3.1) ,.001
BSID-II
PDI 77.6 (18.8) 80.6 (18.3) 79.2 (20.3) 76.3 (17.8) 73.7 (18.7) ,.001
#85 63.5 57.7 62.9 73.8 69.4 ,.001
#70 36.8 30.0 31.4 36.9 46.4 ,.001

MDI 88.2 (16.7) 88.3 (16.1) 86.0 (17.3) 90.5 (14.8) 88.0 (17.6) .24
#85 36.1 34.8 40.4 26.4 38.7 .05
#70 15.3 13.8 20.2 12.3 17.0 .12

Values are expressed as % or mean (SD). Missing,10% of sample except prenatal diagnosis (n = 1541) and preoperative mechanical ventilation (n = 1305). P values were determined by
x2 tests for categorical variables and Kruskal–Wallis tests for continuous variables except the BSID measures, for which analysis of variance was used. Class I, 2 ventricles with no aortic
arch obstruction; Class II, 2 ventricles with aortic arch obstruction; Class III, single ventricle with no arch obstruction; and Class IV, single ventricle with arch obstruction. AVC,
atrioventricular canal; IAA, interrupted aortic arch; TAPVC, total anomalous pulmonary venous connection.
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interval 0.05 to 0.71; P = .02) was
observed in the fully adjusted model.
Interestingly, gestational age, prenatal
diagnosis, and neonatal status were
not significantly associated with
PDI or MDI after adjustment for the
other variables in the full models.

A graphical presentation of the
standardized mean PDIs and MDIs
based on a model using year of birth
categories and continuous year of
birth with the corresponding final set
of independent predictors is provided
in Fig 2. In addition, relationships of
PDIs and MDIs with the corresponding
final set of independent predictors
were examined for the homogeneous
diagnostic subgroups (Table 3),
including adjustment for VSD in TGA
patients and adjustment for PA in TOF
patients. After adjustment for patient
factors, an annual improvement in
scores was identified only in the TOF
group.

DISCUSSION

The past 2 decades have seen
dramatic improvements in survival of
infants with complex CHD due to
advances in surgical and
perioperative care and
management.26 Concomitant with
diminishing early mortality rates,
neurodevelopmental disabilities have
been increasingly recognized in
a substantial proportion of survivors.
In this project, we aggregated
individual participant patient factors
and neurodevelopmental outcome
data, measured with the same
instrument, from existing studies to
create the largest cohort (.1700
subjects) reported to date. The use of
individual participant data provides
the opportunity for extensive data
review, allows the inclusion of
unpublished data to reduce
publication bias, and enables further
subgroup analyses.12 We sought to

use this unique dataset to determine
whether improvements in
neurodevelopmental performance
mirrored those of survival.

Mean PDIs and MDIs were lower than
expected compared with the general
population. In unadjusted analyses,
improvements over time were not
evident in either motor function (PDI)
or cognitive function (MDI). The
composition of the cohort changed
over the study, with an increasing
number of patients with more
complex CHD in the later years, likely
affecting temporal trends.
Nonetheless, we could not identify
significant improvements in outcomes
over time, even when restricting
unadjusted analyses to homogeneous
diagnostic subgroups of TGA, TOF, and
HLHS. Similarly, in analyses adjusting
for center and complexity of CHD
(ie, foundation models), we did not
find improvement in either PDI or MDI
over the study period. In contrast, in
multivariable analyses for the whole
cohort, incorporating patient and
preoperative medical risk factors,
performance for both PDI and MDI
showed statistically significant
improvements, albeit of modest
magnitude. Interestingly, in
multivariable analyses for the
diagnostic subgroups, performance
improved only for the TOF patients,
but not for the TGA or HLHS groups.
The absence of improved scores over
time in unadjusted analyses or
foundation models, but increasing
scores in multivariable analyses,
suggests that more patients at greater
risk for adverse neurodevelopmental
outcomes are undergoing congenital
heart surgery and/or that high-risk
patients are more often surviving.

There are several potential
explanations for this finding. Patient
and environmental factors, such as
prematurity, genetic syndromes, and
socioeconomic status, may be more
important determinants of
neurodevelopmental outcomes than
are operative management
strategies.7,9,24 Brain development is

FIGURE 1
A, Distribution of cardiac class in study cohort by year of birth. Class I, 2 ventricles with no aortic
arch obstruction; Class II, 2 ventricles with aortic arch obstruction; Class III, single ventricle with no
arch obstruction; and Class IV, single ventricle with arch obstruction. B, Distribution of definite or
suspected genetic or major extracardiac anomalies by year of birth.
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abnormal in children with CHD.
Magnetic resonance imaging (MRI)
studies in CHD fetuses show smaller
total brain volumes (adjusted for

gestational age and weight) and
abnormal brain metabolism, as well
as delayed cortical development and
folding.27–31 At birth, brain

maturation in neonates with HLHS or
TGA is delayed by ∼1 month
compared with a normative sample.29

Postnatal MRI studies have shown

TABLE 2 Multivariable Linear Regression of Psychomotor and Mental Development Index With Patient Risk Factors

Variable PDI MDI

Foundation Model Full Model Foundation Model Full Model

Patients (centers), n 1725 (23) 1675 (22) 1768 (23) 1717 (22)
Adjusted R2, % 13.3 24.3 10.0 27.7
Root MSE 17.5 16.2 15.8 14.2
Year of birth
b-estimate (P) 0.31 (.14) 0.39 (.045) 0.27 (.15) 0.38 (.02)
95% CI 20.10 to 0.72 0.01 to 0.78 20.10 to 0.63 0.05 to 0.71

Center, P ,.001 ,.001 ,.001 ,.001
Cardiac class, P ,.001 ,.001 .002 ,.001
I Reference Reference Reference Reference
II
b-estimate (P) 20.6 (.77) 1.5 (.39) 20.9 (.58) 1.3 (.39)
95% CI 24.2 to 3.1 21.9 to 5.0 24.1 to 2.3 21.6 to 4.2

III
b-estimate (P) 25.3 (.006) 26.1 (.001) 20.2 (.90) 0.03 (.99)
95% CI 29.1 to 21.5 29.7 to 22.4 23.6 to 3.2 23.1 to 3.2

IV
b-estimate (P) 210.7 (,.001) 211.4 (,.001) 24.1 (,.001) 24.9 (,.001)
95% CI 213.1 to 28.3 213.6 to 29.1 26.3 to 21.9 26.8 to 22.9

Birth weight (per kg)
b-estimate (P) — 3.21 (,.001) — 4.38 (,.001)
95% CI — 1.86 to 4.55 — 3.22 to 5.54

Race, P (.01)
White — Reference — —

Black
b-estimate (P) — 4.6 (.003) — —

95% CI — 1.5 to 7.7 — —

Other
b-estimate (P) — 1.4 (.36) — —

95% CI — 21.6 to 4.4 — —

Female gender
b-estimate (P) — — — 2.4 (,.001)
95% CI — — — 1.0 to 3.8

Maternal education, P ,.001
Graduate school — — — Reference
Completed college
b-estimate (P) — — — 21.4 (.26)
95% CI — — — 23.8 to 1.0

High school and/or some college
b-estimate (P) — — — 24.7 (,.001)
95% CI — — — 27.0 to 22.4

Less than high school
b-estimate (P) — — — 26.8 (,.001)
95% CI — — — 29.9 to 23.6

Missing or not specified
b-estimate (P) — — — 24.8 (.003)
95% CI — — — 27.9 to 21.6

Genetic anomaly, P — ,.001 — ,.001
Normal or not specified — Reference — Reference
Suspected genetic or major extracardiac
b-estimate (P) — 28.3 (,.001) — 28.3 (,.001)
95% CI — 211.5 to 25.1 — 211.1 to 25.4

Definite genetic
b-estimate (P) — 219.9 (,.001) — 220.8 (,.001)
95% CI — 222.9 to 216.9 — 223.4 to 218.2

All characteristics from Table 1 except preoperative mechanical ventilation were considered for inclusion in the models. Coefficients for intercepts and center indicator variables are not reported. MSE,
mean square error, with root MSE representing the sample SD of the differences between observed and predicted values. CI, confidence interval.—, variable not included in the corresponding model.
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that white matter injury is evident in 1
of 5 infants before cardiac
surgery.32–34 Andropoulos et al
showed that a lower brain maturity
score at birth by MRI is associated
with greater brain injury in both the
preoperative and postoperative
periods.33 Beca et al recently reported
that severity of brain immaturity at
birth predicts the severity of
neurodevelopmental impairment at
2 years of age after cardiac surgery in
infancy.34 In addition, von Rhein et al
showed that brain volumes remain
smaller into adolescence and that the
magnitude of reduction correlates
with neurodevelopmental outcomes.35

Thus, altered brain development due
to CHD may increase vulnerability to
perioperative hemodynamic instability
and intraoperative brain injury due to
hypoxia and ischemia. The lack of
greater improvement in early
neurodevelopmental outcomes over
the study period, despite
contemporaneous improvements in
survival, surgical strategies, and
perioperative care, thus may be due to
the greater effects of innate patient
factors and abnormal brain
maturation, which outweigh the
impact of modifiable management
factors in determining
neurodevelopmental outcomes of
children with CHD.

In the latter years of the study period,
a greater percentage of subjects had
definite genetic anomalies. Several
factors may explain this finding. Many
of the early developmental studies in
cardiac patients specifically excluded
those with identified genetic
syndromes. Additionally, genetic
testing has become more prevalent in
recent years and is a routine
component of clinical care of complex
CHD in many clinical centers. Finally,
methods of discerning genetic
anomalies have become increasingly
sensitive, improving the yield of
testing and potentially exposing
abnormal genetic underpinnings to
CHD that escape recognition on
physical examination by subspecialists
in genetics. For example, a recent
study showed pathogenic copy
number variants in $10% of children
with single ventricle lesions, only
a minority of whom were noted to be
dysmorphic on examination by
a clinical geneticist.36 If genetic
anomalies were ascertained more
frequently over time in our dataset,
adjustment for genetic anomalies may
have caused us to overestimate the
improvement in outcomes over time.

There are limitations to this analysis.
This study is not a formal
metaanalysis. To develop as large
a dataset as possible, investigators

were asked to submit both published
and unpublished data from their
institutions. We did not formally
assess the quality of study design and
execution for each study. The trends in
scores were examined over a relatively
brief time interval of 14 years, during
which the BSID-II was the
standardized neurodevelopment test
of choice at many centers. The earliest
enrolled patients in our study
postdated some important changes in
the management of cardiopulmonary
bypass for infants. Our analyses did
not consider subsequent changes in
intraoperative management strategies.
We cannot exclude the possibility
that improvement in MDI in the
multivariable analyses may be
the result of the Flynn effect, ie, the
finding that, in the general population,
cognitive function assessed by
neurodevelopmental test scores
improves over time by 0.3 to 0.5
points per year or ∼5 points per
decade.37 In addition, early
neurodevelopmental testing has
limited predictive value for later
neurodevelopmental outcomes.38,39

Finally, the data are assembled from
existing data sets of multiple studies.
Some studies were clinical trials and
others were observational studies. The
study designs and goals, inclusion and
exclusion criteria, and data collected
varied considerably. Furthermore,
characteristics of the subjects in the
combined dataset, such as diagnosis
and surgical class, changed over the
study period. Subjects in later years
had greater disease severity and were
more likely to have an identified
genetic syndrome. All of these factors
may limit generalizability of the study
inferences. However, the strengths of
this analysis relate to the substantial
sample size, and the findings
represent the consolidation of nearly
all published information concerning
early neurodevelopmental outcomes
in this population.

CONCLUSIONS

In this analysis of pooled individual
participant data, early

FIGURE 2
Standardized PDI and MDI means by year of birth. The standardized means plot the predicted PDIs
and MDIs and SE bars based on a model with year of birth category adjusting for center, cardiac
class, and other statistically significant predictors at the mean value of the covariates. Overlaid are
standardized means plots based on continuous year of birth. The horizontal dotted line represents
the normative mean of 100 for both PDI and MDI.

822 GAYNOR et al



neurodevelopmental outcomes after
cardiac surgery in newborns and
infants are below population means
and, even after adjustment for center

and class, have not significantly
improved in recent years. After
adjustment for patient and
preoperative medical factors,

however, both PDI and MDI improved
significantly by a modest degree
(∼5–6 points over 14 years).
Multivariable regression analyses

TABLE 3 Multivariable Linear Regression of Psychomotor and Mental Development Index With Patient Risk Factors for Select Homogeneous Diagnostic
Subgroups

Variable TGA TOF HLHS

PDI MDI PDI MDI PDI MDI

Patients (centers), n 324 (9) 334 (9) 174 (8) 179 (8) 541 (20) 549 (20)
Adjusted R2, % 13.6 22.9 33.6 37.4 11.5 20.3
Root MSE 14.6 12.2 15.1 12.5 17.5 15.6
Year of birth
b-estimate (P) 0.07 (.87) 0.33 (.35) 1.43 (.04) 1.12 (.0497) 0.48 (.19) 20.11 (.73)
95% CI 20.76 to 0.90 20.36 to 1.03 0.07 to 2.79 0.002 to 2.25 20.23 to 1.20 20.74 to 0.51

Center, P ,.001 ,.001 .01 ,.001 ,.001 ,.001
Cardiac subclass
Intact ventricular septuma

b-estimate (P) 3.6 (.04) 20.8 (.59) — — — —

95% CI 0.1 to 7.1 23.7 to 2.1 — — — —

No pulmonary atresiab

b-estimate (P) — — 9.2 (.01) 3.5 (.24) — —

95% CI — — 2.1 to 16.4 22.4 to 9.4 — —

Birth weight (per kg)
b-estimate (P) 2.73 (.07) 3.30 (.007) 2.77 (.13) 4.24 (.006) 2.51 (.09) 4.64 (,.001)
95% CI 20.17 to 5.63 0.89 to 5.70 20.84 to 6.38 1.26 to 7.22 20.40 to 5.42 2.05 to 7.24

Race, P .37 — .35 — .03 —

White Reference Reference Reference
Black
b-estimate (P) 25.0 (.32) — 2.1 (.72) — 4.8 (.10) —

95% CI 214.8 to 4.9 — 29.6 to 13.7 — 20.9 to 10.5 —

Other
b-estimate (P) 2.6 (.34) — 5.9 (.15) — 27.3 (.05) —

95% CI 22.8 to 8.0 — 22.2 to 14.1 — 214.7 to 0.1 —

Female gender
b-estimate (P) — 6.4 (,.001) — 1.1 (.58) — 2.6 (.07)
95% CI — 3.5 to 9.3 — 22.9 to 5.1 — 25.5 to 0.2

Maternal education, P — ,.001 — .049 — .006
Graduate school — Reference — Reference — Reference
Completed college
b-estimate (P) — 23.4 (.19) — 6.0 (.03) — 21.7 (.48)
95% CI — 28.6 to 1.7 — 0.5 to 11.5 — 26.6 to 3.1

High school and/or some college
b-estimate (P) — 29.4 (,.001) — 3.0 (.27) — 26.2 (.007)
95% CI — 214.3 to 24.4 — 22.3 to 8.3 — 210.8 to 21.7

Less than high school
b-estimate (P) — 213.1 (,.001) — 2.3 (.61) — 27.9 (.02)
95% CI — 219.2 to 26.9 — 26.6 to 11.3 — 214.3 to 21.5

Missing or not specified
b-estimate (P) — 26.8 (.03) — 213.0 (.10) — 26.8 (.02)
95% CI — 213.0 to 20.5 — 228.5 to 2.5 — 212.5 to 21.1

Genetic anomaly, P .01 ,.001 ,.001 ,.001 ,.001 ,.001
Normal or not specified Reference Reference Reference Reference Reference Reference
Suspected genetic or major extracardiac
b-estimate (P) 216.8 (.03) 213.8 (.03) 218.6 (.005) 222.4 (,.001) 27.9 (,.001) 26.8 (.001)
95% CI 231.7 to 22.0 226.2 to 21.4 231.4 to 25.8 233.1 to 211.6 212.6 to 23.3 210.9 to 22.7

Definite genetic
b-estimate (P) 223.2 (.03) 228.3 (,.001) 222.6 (,.001) 220.3 (,.001) 218.5 (,.001) 221.5 (,.001)
95% CI 244.2 to 22.3 242.6 to 214.1 229.8 to 215.5 225.9 to 214.6 227.4 to 29.5 229.2 to 213.7

CI, confidence interval; MSE, mean square error, with root MSE representing the sample SD of the differences between observed and predicted values. —, variable not included in the
corresponding model.
a In comparison with ventricular septal defect.
b In comparison with pulmonary atresia.
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showed that patient factors (race,
gender, birth weight, genetic
anomalies, type of CHD, and maternal
education) are important

determinants of neurodevelopmental
outcomes. To the extent that subjects
in this study reflect true temporal
trends, these data suggest that more

high-risk CHD infants are undergoing
cardiac surgery and surviving, creating
a growing population that will require
significant societal resources.
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