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ABSTRACT

Background

Tobacco cigarettes (TC) increase oxidative stress and inflammation, both 

instigators of atherosclerotic cardiac disease. It is unknown if electronic-

cigarettes (ECs) also increase immune cell oxidative stress. We hypothesized

an ordered, “dose-response” relationship, with tobacco-product type as 

“dose”: lowest in non-smokers, intermediate in EC vapers, and highest in TC 

smokers, and the “response” being cellular oxidative stress in immune cell 

subtypes, in otherwise, healthy young people. 

Methods and Results

Using flow cytometry and fluorescent probes, cellular oxidative stress was 

determined in in immune cell subtypes in 33 otherwise healthy young 

people: non-smokers (n=12), EC vapers (n=12), and TC smokers (n=9). 

Study groups had similar baseline characteristics, including age, sex, race 

and education level. A dose-response increase in pro-inflammatory 

monocytes and lymphocytes, and their cellular oxidative stress content 

amongst the three study groups was found: lowest in non-smokers, 

intermediate in EC vapers, and highest in TC smokers. These findings were 

most striking in CD14dimCD16+ and CD14++CD16+ pro-inflammatory 

monocytes and were reproduced with two independent fluorescent probes of

cellular oxidative stress.

Conclusions
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These findings portend the development of premature cardiovascular 

disease in otherwise healthy young people who chronically vape ECs. On the 

other hand, that the cellular oxidative stress is lower in EC-vapers compared 

to TC-smokers warrants additional investigation to determine if switching to 

ECs may form part of a harm-reduction strategy.

Registration Information: ClinicalTrials.gov (NCT03823885).

Key words: electronic cigarettes, tobacco cigarettes, nicotine, monocytes, 

reactive oxidative species
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Non-Standard Abbreviations and Acronyms

COS = cellular oxidative stress

EC = electronic cigarette

NK = natural killer

ROS = reactive oxygen species

TC = tobacco cigarette
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Clinical Perspective

What is new?

 Electronic cigarette (EC) vaping, which has grown to epidemic 

proportions among young people, is perceived as safer than tobacco 

cigarette (TC) smoking, but it remains unknown if otherwise healthy 

young EC vapers, like TC smokers, have increased oxidative stress and

inflammation compared to non-smokers. 

 A dose-response increase in pro-inflammatory monocytes and 

lymphocytes, and their cellular oxidative stress content was found: 

lowest in non-smokers, intermediate in EC vapers, and highest in TC 

smokers. 

What are the clinical implications? 

 These findings portend the development of premature cardiovascular 

disease in otherwise healthy young people who chronically vape ECs. 

 On the other hand, that the cellular oxidative stress is lower in EC-

vapers compared to TC-smokers warrants additional investigation to 

determine if switching to ECs may form part of a harm-reduction 

strategy.
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Introduction

Oxidative stress and inflammation are implicated in the pathogenesis of 

most human diseases, including cardiovascular diseases1. Chronic exposure 

to excessive levels of reactive oxygen species (ROS) introduced through 

environmental exposures or through dysfunctional endogenous enzymatic 

systems overwhelm anti-oxidant defense systems, resulting in cellular 

damage and activation of circulating immune cells1, 2. Activated immune 

cells, in turn, generate additional ROS, driving oxidation of lipoproteins and 

further recruitment of monocytes and macrophages, which then enter the 

vascular wall. Thus, ongoing oxidative stress and inflammation contribute to 

the initiation and progression of atherosclerotic vascular disease that may 

present decades later.

Tobacco cigarette (TC) smoking is the most prevalent modifiable risk 

factor for numerous human diseases, including atherosclerosis, in which 

oxidative stress and inflammation are known to play a critical role2, 3. Over 

90% of TC smokers begin smoking in their teens4, but TC-related diseases 

are insidious, presenting only after decades of TC smoking. Each puff of TC 

smoke contains 1015 free radicals5 and over 7000 different chemicals6, 

several of which are known toxicants or even carcinogens. Major pro-oxidant 

constituents in TC smoke generate cellular production of ROS when they 

interact with cellular enzymatic systems2. Innate and adaptive immune cells 

such as myeloid cells (monocytes, macrophages, dendritic cells), NK cells 

and lymphocytes (B and T cells) are activated by TC smoking7, and are also 
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major sources of systemic oxidative stress8. Cigarette smoke activates 

leukocytes to release reactive oxygen and nitrogen species and contributes 

to development and progression of atherosclerotic cardiovascular disease 

through several mechanisms such as secretion of pro-inflammatory 

cytokines and increased adherence of monocytes to the endothelium2, 3. 

Although cellular oxidative stress (COS) has been studied in the setting of 

tobacco smoking and atherosclerosis, there is limited evidence regarding 

COS among  electronic-cigarette vapers. 

Electronic-cigarettes (ECs) are the most rapidly rising tobacco product 

used in the US today. EC aerosol, generated from heating - without 

combustion - solvents, flavors, and usually nicotine, contains significantly 

lower levels of toxicants compared to TC smoke9. Due to the long lag time for

disease presentation, the health risks of ECs relative to TCs are unknown, yet

ECs have been promoted as a smoking cessation, harm reduction, strategy. 

Alarmingly, largely due to the perceptions that ECs are safe, EC vaping has 

reached epidemic levels in never-smoking middle and high school students, 

with 30% of high school seniors (typically 17-18 years old) reporting EC 

vaping in the previous month10. 

Although an urgent public health issue, the health risks associated with

EC vaping, especially relative to TC smoking, remain unknown. The purpose 

of the current study was to pair sensitive flow cytometry with fluorescent 

probes to quantify the relative immune cell-type populations and their intra-

cellular content of ROS in otherwise healthy young EC-vapers compared to 
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TC-smokers, and non-smokers. We hypothesized a continuum of oxidative 

stress and immune cell activation - essentially a “dose-response” 

relationship, with the “dose” defined as tobacco-product type: lowest in the 

non-smokers, intermediate in the chronic EC-vapers and highest in the 

chronic TC-smokers, and the “response” defined as measures of immune cell

subtypes and their cellular oxidative stress.  
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MATERIALS AND METHODS

Data availability 

The data that support the findings of this study are available from the 

corresponding author upon reasonable request. HRM and TK had full access 

to all the data in the study and take responsibility for its integrity and the 

data analysis.

Materials

Flow cytometry reagents including flow cytometry staining buffers and 

antibodies were purchased from Biolegend. CellROX Green (catalog # 

C10444) and CellROX Deep Red (catalog # C10442) were obtained from 

Thermo Scientific. 

Study Population

Healthy male and female volunteers between the ages of 21 and 45 years 

were eligible for enrollment if they were chronic (> 1 year) 1) TC-smokers, or

2) EC-vapers (no dual users), or 3) non-smokers. Former TC-smokers were 

eligible if greater than 1 year had elapsed since quitting. End-tidal CO, 

elevated above 10 ppm in smokers, was measured in EC-vapers and non-

smokers to confirm none were surreptitiously smoking TCs. All participants 

were required to meet the following criteria: (1) non-obese (≤30 kg/m2 body 

mass index); (2) no known health problems; (3) alcoholic intake ≤2 drinks 

per day and no regular illicit drug use, including marijuana, determined 

through screening questionnaire and urine toxicology testing; (4) no 

prescription medications (oral contraceptives allowed), (5) not exposed to 
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second hand smoke, or using licensed nicotine replacement therapies. The 

experimental protocol was approved by the Institutional Review Board at the 

University of California, Los Angeles and written, informed consent was 

obtained from each participant. 

Experimental Protocol

After abstaining from caffeine, tobacco product use and exercise for at least 

12 hours, fasting participants reported to the UCLA Clinical Translational 

Research Center at the same time of day, approximately 8AM. Blood was 

drawn by trained medical assistants and prepared for flow cytometry and 

measurement of cotinine levels.

Flow cytometry 

Freshly isolated whole blood was immediately processed for flow cytometric 

determination of cellular ROS. Cellular oxidative stress was determined by 

the use of the CellROX® Green Reagent, a measure of total (cytoplasmic and

nuclear) cellular ROS11-13 and the use of the CellROX® Deep Red Reagent, a 

measure of cytoplasmic cellular ROS14-16. The efficiency of CellROX Green to 

determine COS has previously been validated in several cells including 

sperm, epithelial and melanoma cells, neurons, bacteria and immune cells 

such as macrophages17. The efficiency of CellROX Deep Red to assess COS 

has previously been validated in several cells including sperm, endothelial 

and epithelial cells, hepatocytes, neurons, cardiomyocytes and immune 

cells15. The CellROX deep Red has been previously used to detect the ex vivo
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impact of cigarette smoke on cellular ROS by flow cytometry in 

spermatocytes16. 

See Supplemental Materials for detailed methods. 

Determination of plasma cotinine levels

The assay for plasma cotinine, using the methodology of 

chromatography/mass spectrometry, was run by the commercial laboratory, 

Quest Laboratories (Quest Diagnostics incorporated, Madison, NJ), with a 

limit of quantitation of 2 ng/mL and a reference range in smokers of 16-145 

ng/mL.

Statistical analysis

We hypothesized an ordered, dose-response relationship of oxidative stress 

across the 3 study groups: lowest in non-smokers, intermediate in chronic 

EC-vapers, and highest in chronic TC-smokers. We considered the “dose” to 

be the type of tobacco product used, and the “response” to be the immune 

cell subtype and its cellular oxidative stress. In order to test this hypothesis, 

the ordered trend (F) test across the 3 ordered groups (non-smokers, EC-

vapers, TC-smokers) was computed under an analysis of variance (ANOVA) 

model18. Means ± SEM are reported. If the overall trend p value or the overall

ANOVA p value was <0.05, then the pairwise post hoc t tests p values are 

reported between 2 groups (Fisher LSD criterion). The ordered trend test was

considered statistically significant when p <0.05. For continuous outcomes, 

examination of normal quantile plots and the Shapiro-Wilks statistic 

confirmed that the distributions followed the normal distribution. Overall and 
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pairwise p values for comparing categorical covariates (gender, race, 

education) across the 3 study groups were computed using the Fisher’s 

exact test.

Sample size calculation

Our primary outcomes are COS in proinflammatory monocytes, given their 

role in cardiovascular disease19. Given absence of data regarding monocyte 

frequencies or COS in immune cells in EC-vapers, and based on data on 

frequencies of proinflammatory monocytes in otherwise healthy persons 

without clinical disease20, a sample size of 9 participants per group (non-

smokers, EC-vapers, and TC-smokers) was sufficient to permit detection of a 

delta of 2.9% with 80% power and two-sided alpha=0.05. Nine to twelve 

participants were included in each study group. This study, largely 

exploratory, is not powered to detect effect sizes with adjustments for 

multiple comparisons21, 22. It should be noted that this is an interim report of 

our study registered at ClinicalTrials.gov (NCT03823885), which is an acute 

exposure, crossover study.
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RESULTS

Baseline Characteristics

A total of 33 participants, including 12 non-smokers (age 24.3±2.2 years, 5 

female), 12 chronic EC-vapers (age 24.1±4.3 years, 4 female), and 9 chronic 

TC-smokers (age 24.9±4.1 years, 5 female) participated in the study. 

Baseline characteristics of the 3 groups are shown in Table 1. There were no 

differences among the groups in any variable, including age, sex, race, body 

mass index, or education level. All smokers and vapers used their tobacco 

product daily. Ten EC vapers reported using a “pod” device (e.g. JUUL), and 

one each used a “mod” or a “cigalike” device; all EC vapers used flavored, 

nicotine-containing liquid. Plasma cotinine levels were not significantly 

different in TC-smokers and EC-vapers (58 ng/ml vs 85 ng/ml respectively, 

p=0.34) consistent with similar, and relatively light, smoking burden.

Immune Cell Subtypes

To assess the impact of chronic smoking on immune cells, we first 

determined the frequency of immune cell subtypes among smoking groups 

(Figure 1A-J). Gating strategies for viability dye and antibody staining are 

shown in Supplemental Figure 1. Neutrophils, CD14dimCD16+ monocytes, 

natural killer (NK), T and B cells were found in the lowest proportion in the 

non-smokers, intermediate in the EC vapers, and in the greatest proportion 

in TC smokers and were lower in non-smokers compared to TC smokers 

(Figure 1 A-J).
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Cellular Oxidative Stress in CD45+ Immune Cells

Given the lack of data on the impact of EC vaping on cellular oxidative stress

(COS), we then determined the relative impact of chronic TC smoking or EC 

vaping on COS as measured by flow cytometry using the fluorescent probes 

CellROX Green, a measure of total (cytoplasmic and nuclear) cellular ROS, 

and CellROX Deep Red, a measure of cytoplasmic cellular ROS. There was a 

dose-response relationship among the three study groups for the percentage

of CD45+ immune cells that were positive for total (Figure 2A, B) and 

cytoplasmic (Figure 2C, D) ROS (lowest in non-smokers, intermediate in EC-

vapers, and greatest in TC-smokers). Additionally, the mean fluorescence 

intensity (MFI) of total (Figure 2E, F) and cytoplasmic (Figure 2 G, H) ROS in 

CD45+ immune cells also demonstrated this same, consistent dose-response 

relationship. Between group comparisons consistently showed significantly 

greater COS in TC-smokers compared to non-smokers (Figure 2A-H). 

Cytoplasmic ROS was greater in TC-smokers compared to EC-vapers as well 

(Figure 2C, D).

Cellular Oxidative Stress in Specific Immune Cell Types

We then determined the impact of smoking exposures on COS among 

immune cell types (Figures 3, 4, 5). Group comparisons between TC smokers

and EC vapers showed that there were no differences in ROS in neutrophils 

(Figure 3 A-D). The proportion of B cells that had detectable total ROS 
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(Figure 3I) and the proportion of NK (Figure 3G), B (Figure 3K) and total 

CD3+, CD4+ and CD8+ T cells (Figure 4C, G, K) that had detectable 

cytoplasmic ROS was greater in TC smokers compared to EC vapers. Similar 

data were seen for the mean content for cytoplasmic ROS in NK cells (Figure 

3H) and for the mean content for total (Figure 4J, Figure 5J) and cytoplasmic 

(Figure 4L, Figure 5H, L, P) ROS in CD8+ T cells (Figure 4 J, L) and 

proinflammatory monocytes (Figure 5 H, J, L, P). There were no differences in

total ROS (Figure 3E, F), the mean content for total (Figure 3J; 4B, F) and 

cytoplasmic (Figure 3L) ROS in NK (Figure 3E, F) and B cells (Figure 3L) in TC 

smokers compared to EC vapers.

Group comparisons between TC smokers and non-smokers showed that the 

proportion of B cells (Figure 3I, K) and proinflammatory monocytes (Figure 5 

C, E, G, K, L, M, O) that had detectable cellular total (Figures 3I, 5E, L, M) and

cytoplasmic (Figures 3K, 5 C, G, K, O) ROS was greater in TC smokers 

compared to non-smokers. Similar results were seen for cytoplasmic ROS in 

NK (Figure 3G), B (Figure 3K), T cells (Figure 4C), T cell (Figure 4 G, K) and 

monocyte (Figure 5 C, G, K, O) subsets. The mean cellular content for total 

(Figure 4 J, Figure 5 F, J) and cytoplasmic (Figure 4 L, Figure 5H, L, P) ROS 

was higher in CD8+ T cells (Figure 4 J, L) and proinflammatory monocytes 

(Figure 5 F, H, J, L, P) in TC smokers compared to non-smokers. Similar 

trends (0.05<p<0.10) were observed in neutrophils (Figure 3D), NK (Figure 

3F), T cells (Figure 4D) and monocyte subsets (Figure 5D, N) but were not 
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consistent among independent readouts of COS. There were no other 

consistent differences in measures of COS in immune cell types between TC 

smokers and non-smokers (Figures 3A-F, H, J, L; 4 A, B, D, F, I; 5 A, B, D, N).

Group comparisons between EC vapers and non-smokers showed that EC 

vapers had higher proportion of monocyte subsets (Figure 5C, G, K, O) that 

had detectable total (Figure 5 E, I, M) and cytoplasmic (Figure 5C, G, K, O) 

ROS compared to non-smokers. Similar results were seen for cytoplasmic 

ROS in NK (Figure 3G) and CD4+ T cells (Figure 4G) and the mean cellular 

content for total (Figure 5J) and cytoplasmic (Figure 5H, L) ROS in 

proinflammatory monocytes. There were no differences in other measures of 

COS in other immune cell types between compared groups (Figures 3A-F, H-

L; 4, 5A, B, D, F). 

There was a dose-response relationship among the three study groups for 

the mean percent of NK (Figure 3G), B (Figure 3K), T cells (Figure 4) and 

monocyte (Figure 5 C, G, K, O) subtypes with cytoplasmic ROS; lowest in the 

non-smokers, intermediate in EC vapers, and greatest in TC-smokers.  The 

mean percentage of proinflammatory monocytes positive for total ROS 

(Figure 5E, I, M), the mean cellular content for total (Figure 5 F, J, N) and 

cytoplasmic ROS in proinflammatory monocytes (Figure 5 H, L, P) and T cell 

subtypes (Figure 4 G, K) also followed this same pattern. The COS findings in 
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different immune cell subpopulations and whether or not the dose-response 

relationship was observed are summarized in Figure 6. 
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DISCUSSION 

To our knowledge, this is the first study to report alterations in the proportion

of circulating innate and adaptive immune cells, as well as their cellular 

oxidative stress (COS) content, in otherwise healthy young people who are 

chronic EC-vapers or TC-smokers compared to non-smokers. Overall, we 

found a marked and consistent dose-response increase in pro-inflammatory 

monocytes and lymphocytes, and their total cellular and cytoplasmic ROS 

content amongst the three study groups: lowest in the non-smokers, 

intermediate in EC-vapers, and highest in TC-smokers. These findings were 

most striking in CD14dimCD16+ and intermediate CD14++CD16+ pro-

inflammatory monocytes and were reproduced with 2 independent 

fluorescent probes that determine total (CellROX Green) and cytoplasmic 

(CellROX Deep Red) cellular ROS.

Oxidative stress plays a major role in inflammation and cellular 

activation and is a major contributor to atherosclerotic cardiovascular 

disease1-3. The presence of excessive ROS has been termed the “convergent 

signaling hub” that underlies inflammatory diseases- including smoking-

related atherosclerotic disease23. These findings of increased COS in key 

innate and adaptive immune cell sub-types portend the future development 

of premature atherosclerosis in otherwise healthy young people who 

chronically vape ECs. 

TC smoking is a significant independent risk factor for many chronic 

and lethal diseases in humans1, 2. Given the powerfully addictive nature of 
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nicotine and the low rate of successful smoking cessation, ECs have been 

proposed as a potential harm-reduction strategy, with the ultimate goal of 

reducing morbidity and mortality while satisfying nicotine addiction24. ECs 

may emit fewer toxicants and carcinogens compared to TCs, but our findings

confirm that their chronic use is associated with increased innate and 

adaptive immunity with increased COS. Although the proportion of immune 

cells subtypes, and their burden of COS, may be less in chronic EC-vapers 

compared to TC-smokers, it remains unproven and unknown if there is a 

“safe” level of chronic oxidative stress and inflammation. 

Previous attempts to predict the adverse future health effects of ECs 

have been hampered by methodological limitations, such as relying on in-

vitro model systems or focusing on acute, not chronic, EC exposure; 

additionally, most studies have been significantly underpowered25-29. In one 

of the few studies of health effects in chronic EC-vapers, we reported an 

increased susceptibility to, but not actual presence of, chronic oxidative 

stress, estimated by LDL oxidizability, compared to healthy non-smoking 

controls30. Traditional, clinical biomarkers of inflammation, including 

fibrinogen and C-reactive protein, were not elevated30. Admittedly, 

measurements of biomarkers in plasma lack sensitivity to elucidate the 

effects of ECs on oxidative stress and immune cell activation.

We found that COS was consistently elevated in CD14dimCD16+ and 

intermediate CD14++CD16+ pro-inflammatory monocytes of TC smokers and 

EC vapers compared to non-smokers. CD14+CD16+ monocytes are known 
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contributors to atherosclerotic cardiovascular disease31-33, have increased 

chemotactic properties and are potent secretors of IL-1, IL-6 and TNF-α34. 

However, their specific roles in atherosclerosis progression, lesion stability 

and clinical events are uncertain. This monocyte subpopulation was also 

associated with increased vascular superoxide production in vascular 

dysfunction35. Consistent with our data, it has been shown that CD14+CD16+ 

monocytes have lower levels of anti-oxidant genes and increased aerobic 

respiration and ROS production capacities36. Given that oxidative stress is a 

known instigator of atherosclerosis2, 3, it remains to be shown whether 

increased prooxidant capacity of  CD14+CD16+ monocytes in the setting of 

EC vaping during lung chemotaxis may contribute to subsequent oxidative 

stress in arteries, portending the development of premature cardiovascular 

disease in otherwise healthy young people who chronically vape ECs. 

The direct quantification of ROS is a valuable and promising biomarker 

that can reflect the disease process. However, given the short half-life of 

these species, their measurement in biological systems is 

complex. Determination of ROS has several methodological concerns and 

global ROS measurements need to be avoided37. Identifying individual 

molecular targets of redox regulation is needed and the complexity of COS 

can be studied only at the single cell level12. Approaches, such as mass 

spectrometry, spectrophotometric or luminescence methods, have major 

methodological limitations38.  Although there is no single method that detects

ROS that does not have limitations, the relative differences among different 
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samples may be assessed reasonably and the bias of each method to detect 

ROS could be overcome by the evaluation of oxidative stress by using more 

than one criterion12. Flow cytometry is one of the most powerful tools for 

single-cell analysis of the immune system. Many fluorescent probes for the 

detection of reactive species have been developed in the last years, with a 

different degree of specificity and sensitivity12. 

The CellROX Deep Red has been previously used to detect the ex vivo 

impact of TC smoke on cellular ROS by flow cytometry in spermatocytes16. 

The use of these fluorochromes for determination of COS in immune cells has

previously been validated both in vitro17 and in vivo39. The CellROX  ROS 

detection reagents are bright and stable ROS sensors that offer significant 

advantages over existing ROS sensors because they are compatible with 

labeling in different media and can be used with fixatives40. This combined 

use has previously been described in non-immune cells41.  To the best of our 

knowledge, this study is pioneering in evaluating the efficiency of these 

probes in detecting ROS production among unique immune cell subsets.

Our study has limitations. Unlike animal studies, participants in human 

studies are heterogeneous. It is possible, but unlikely, that unmeasured, 

confounding differences exist among the three study groups, besides the 

obviously different smoking habits, to explain the marked and consistent 

differences in the proportion of immune cell subtypes and their oxidative 

stress. However, by any major demographic measure including age, sex, 

race, and education level, the three study groups were markedly similar 
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(Table 1). EC vaping is difficult to quantify objectively and then compare to 

commonly used measures of TC smoking (e.g. number of cigarettes per day).

Since all of our vapers used ECs with nicotine, plasma cotinine levels were 

used as an objective, quantifiable measure, common to both EC and TC 

users, that could be compared between groups to estimate relative tobacco 

product burden. Our study is a small single-center study, and not powered to

detect effect sizes with adjustment for multiple comparisons. Rather, 

consistency, direction, and magnitude of the effect in conjunction with the 

nominal p values were considered in order to help distinguish true and false-

positive findings21, 22. Accordingly, by leveraging the powerful technique of 

flow cytometry coupled to two different sensitive fluorescent probes, we 

were able to find a consistent dose-response relationship in COS among the 

three study groups that was repeated in both innate and adaptive immune 

cells. We acknowledge, however, that confirmation of these findings in 

additional participants is warranted. 

In conclusion, our study is the first to report an increased proportion of 

pro-inflammatory monocytes/macrophages, natural killer, and T and B 

lymphocytes, in otherwise healthy young people who are chronic EC-vapers 

compared to non-smokers. This increased proportion of innate and adaptive 

immune cell subtypes is coupled with the finding that chronic EC-vapers 

have elevated cellular oxidative stress as well. Since low-grade oxidative 

stress and inflammation have been identified as the underlying mechanism 

that instigates and perpetuates atherosclerotic vascular disease that may 
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manifest only decades later, these findings have important future health 

implications for young people who vape. On the other hand, that the COS is 

lower in chronic EC-vapers compared to TC-smokers is intriguing and 

warrants additional investigation to determine if switching to ECs may 

indeed avoid activation of downstream detrimental cellular pathways, 

supporting their role as part of a harm-reduction strategy for cardiovascular 

disease. Future studies delineating the specific cellular pathways impacted in

humans who chronically use ECs compared to TCs may provide further 

insights into their relative health risks, and whether switching to ECs will 

result in harm reduction.
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Table 1

Baseline Characteristics

Non-Smokers EC-Vapers TC-Smokers
p value

N=12 n=12 n=9

Age (years) 24.3±2.15 24.1±4.34 24.9±4.08 0.54

Sex (M/F) 7/5 8/4 4/5 0.61

Race 0.65

White 4 6 2

Asian 4 5 3

Black 2 0 1

Hispanic 2 1 1

Unknown 0 0 2

BMI (kg/m2) 24±3.66 22.6±2.89 23.0±3.47 0.37

Plasma cotinine (ng/ml) 0 85.0±126.2 58.0±39.5*

Highest Level Education 1.0

< High school 0 0 0

> College 12 12 9

Values ± SD

*p=0.34, EC-vapers vs TC-smokers

BMI= body mass index, EC = electronic cigarette, TC = tobacco cigarette
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FIGURE LEGENDS

Figure 1. Frequency of immune cell types among smoker groups. Flow 

cytometry was used to determine the percent of different immune cell types 

in CD45+

immune cells (A–J). The compared groups were nonsmokers (NS, white), 

electronic cigarette vapers (EC vapers, light grey) and tobacco cigarette 

smokers (TC

smokers, dark grey).  Summary of data (% cellular marker+ of parent 

population) are shown for CD45+CD15+CD16+CD14-hi-SSC neutrophils (A), 

CD45+CD14++CD16- classical monocytes (B), CD45+CD14++CD16+ 

intermediate monocytes (C), CD45+CD14dimCD16+ non-classical (patrolling

or CD14+CD16++) monocytes (D), CD45+CD14+CD16+ total 

proinflammatory monocytes (intermediate and non-classical)(E), 

CD45+CD3+ T cells (F), CD45+CD3+CD4+ T cells  (G), CD45+CD3+CD8+ T

cells  (H), CD45+CD3-CD56+CD16+ NK cells (I), CD45+CD19+B cells (J). 

Data represent box and whisker boxes that display the minimum, mean and 

maximum (n = 9-12 participants per group). The Analysis of Variance 

(ANOVA) statistical test was used to compare 3 groups and the t- test was 

used to compare 2 groups. The trend p analysis tested the continuum of the 

difference in measures among groups in an ordered direction (NS→ EC 

vapers→ TC smokers) (*P < 0.05, **P < 0.01, ***P < 0.001).
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Figure 2: Cellular oxidative stress in CD45+ immune cells among 

smoker groups. Flow cytometry was used to determine total (nuclear and 

cytoplasmic) and cytoplasmic ROS. The compared groups were nonsmokers 

(NS, white), electronic cigarette vapers (EC vapers, light grey) and tobacco 

cigarette smokers (TC smokers, dark grey). Representative data of 

percentage of  immune (CD45+) cells that had positive staining for CELLROX

Green among compared groups are shown in A. Summary of data for A is 

shown in B. Representative data of percentage of CD45+ cells that had 

positive staining for CELLROX Deep Red among compared groups are shown 

in C. Summary of data for C is shown in D. Representative data of CellROX 

Green ∆MFI in CD45+ cells are shown in E. Fluorescence intensity of a 

positive cell population was compared to a negative cell population 

(fluorescence minus one negative control for staining) (∆MFI). Summary of 

data for E is shown in F. Representative data of CellROX Deep Red ∆MFI in 

CD45+ cells is shown in G. Summary of data for E is shown in H. Data 

represent box and whisker boxes that display the minimum, mean and 

maximum (n = 9-12 participants per group). The Analysis of Variance 

(ANOVA) statistical test was used to compare 3 groups and the t- test was 

used to compare 2 groups. The trend p analysis tested the continuum of the 

difference in measures among groups in an ordered direction (NS→ EC 

vapers→ TC smokers) (*P < 0.05, **P < 0.01, ***P < 0.001).
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Figure 3: Cellular oxidative stress in neutrophils, NK cells and B 

cells among smoker groups. Flow cytometry was used to determine total

(nuclear and cytoplasmic) and cytoplasmic ROS. The compared groups were 

nonsmokers (NS, white), electronic cigarette vapers (EC vapers, light grey) 

and tobacco cigarette smokers (TC smokers, dark grey). Summary data of 

percentage of immune cells that had positive staining for CELLROX Green 

(A, E, I, M) and CELLROX Deep Red (C, G, K, O) and for ∆MFI CellROX 

Green (B, F, J, N) and ∆MFI CellROX Deep Red in cells (D, H, L, P) among 

compared groups are shown for CD45+CD15+CD16+CD14-hi-SSC 

neutrophils (A-D), CD45+CD3-CD56+CD16+ NK cells  (E-H), CD45+CD19+B

cells  (I-L) and CD45+CD3+ T cells (M-P). Data represent box and whisker 

boxes that display the minimum, mean and maximum (n = 9-12 participants

per group). The Analysis of Variance (ANOVA) statistical test was used to 

compare 3 groups and the t- test was used to compare 2 groups. The trend 

p analysis tested the continuum of the difference in measures among groups

in an ordered direction (NS→ EC vapers→ TC smokers) (*P < 0.05, **P < 

0.01, ***P < 0.001).

Figure 4: Cellular oxidative stress in T cell subsets among smoker 

groups. Flow cytometry was used to determine total (nuclear and 

cytoplasmic) and cytoplasmic ROS. The compared groups were nonsmokers 

(NS, white), electronic cigarette vapers (EC vapers, light grey) and tobacco 

cigarette smokers (TC smokers, dark grey). Summary data of percentage of 
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immune cells that had positive staining for CELLROX Green (A, E, I) and 

CELLROX Deep Red (C, G, K) and for ∆MFI CellROX Green (B, F, J) and

∆MFI CellROX Deep Red in cells (D, H, L) among compared groups are 

shown for CD45+CD3+ T cells (A-D), CD45+CD3+CD4+ T cells (E-H), and 

CD45+CD3+CD8+ T cells (I-L). Data represent box and whisker boxes that 

display the minimum, mean and maximum (n = 9-12 participants per 

group). The Analysis of Variance (ANOVA)statistical test was used to 

compare 3 groups and the t- test was used to compare 2 groups. The trend 

p analysis tested the continuum of the difference in measures among groups

in an ordered direction (NS→ EC vapers→ TC smokers) (*P < 0.05, **P < 

0.01, ***P < 0.001).

Figure 5: Cellular oxidative stress in monocyte subsets among 

smoker groups. Flow cytometry was used to determine total (nuclear and 

cytoplasmic) and cytoplasmic ROS. The compared groups were nonsmokers 

(NS, white), electronic cigarette vapers (EC vapers, light grey) and tobacco 

cigarette smokers (TC smokers, dark grey). Summary data of percentage of  

immune cells that had positive staining for CELLROX Green (A, E, I, M) and 

CELLROX Deep Red (C, G, K, O) and for ∆MFI CellROX Green (B, F, J, N) 

and ∆MFI CellROX Deep Red in cells (D, H, L, P) among compared groups 

are shown for CD45+CD15+CD16+CD14-hi-SSC neutrophils (A-D), 

CD45+CD3-CD56+CD16+ NK cells  (E-H), CD45+CD19+B cells  (I-L) and 

CD45+CD3+ T cells (M-P). Data represent box and whisker boxes that 
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display the minimum, mean and maximum (n = 9-12 participants per 

group). The Analysis of Variance (ANOVA) statistical test was used to 

compare 3 groups and the t- test was used to compare 2 groups. The trend 

p analysis tested the continuum of the difference in measures among groups

in an ordered direction (NS→ EC vapers→ TC

smokers) (*P < 0.05, **P < 0.01, ***P < 0.001).

Figure 6: Ordered, “dose-response” relationship in cellular oxidative stress 

among immune cell types and smoker groups, with tobacco-product type as 

“dose”.
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