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Abstract

Chemical shifts are a readily obtainable NMR observable that can be measured with high 

accuracy, and because they are sensitive to conformational averages and local molecular 

environment, they yield detailed information about protein structure in solution. To predict 

chemical shifts of protein structures, we introduced the UCBShift method that uniquely fuses 

a transfer prediction module, which employs sequence and structure alignments to select reference 

chemical shifts from an experimental database, with a machine learning model that uses carefully 

curated and physics-inspired features derived from X-ray crystal structures, to predict backbone 

chemical shifts for proteins. In this work we extend the UCBShift 1.0 method to side chain 

chemical shift prediction to perform whole protein analysis, that when validated against well-

defined test data shows higher accuracy and better reliability compared to the popular SHIFTX2 

method. With the greater abundance of cleaned protein shift-structure data, and modularity of the 

general UCBShift algorithms, users can gain insight into different features important for residue-

specific stabilizing interactions for protein backbone and side chain chemical shift prediction. 

We suggest several backward and forward applications of UCBShift 2.0 that can help validate 

AlphaFold structures and probe protein dynamics.
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Introduction

Nuclear magnetic resonance (NMR) spectroscopy is a primary experimental tool for 

characterizing dynamics and the solution structure of biomolecules. NMR chemical shifts 

for organic systems containing 1H, 13C, and 15N nuclei can provide detailed descriptions 

of the structure of drug molecules,1,2 proteins and their complexes,3-5 and disordered 

protein states.6-8 NMR chemical shifts in particular are sensitive not only to changes in 

local structure, but particularly to conformational changes that depend on sequence context 

and peptide length, solvent exposure or protein hydrogen-bonding environments, and even 

vibrational averaging. While quantum chemical calculations of magnetic properties are often 

powerful, the computational requirements associated with high level quantum mechanical 

(QM) chemical shift predictions are far too demanding for “on the fly” evaluation9, although 

QM calculated chemical shifts have been used in machine learning training for chemical 

shift predictions.1,2,10,11

Therefore it is common practice to develop a database-trained expert system that can 

produce “predicted” chemical shifts by eliminating QM calculations altogether and instead 

predict the experimental observable directly. These heuristic calculators have been primarily 

focused on backbone chemical shifts, and must be trained to account for how NMR 

observables depend not only on backbone dihedral angles, but other features such as 

bond angles, deviations from planarity of the peptide bond, and hydrogen-bonding with 

the surrounding protein or solvent. Meiler and co-workers12 and later Shen and Bax13 

showed that Artificial Neural Networks (ANNs) are well suited to utilize such features 

for protein backbone chemical shift prediction. The single-layer feed-forward network 

developed and packaged as SPARTA+13 is a popular such example, with other feature-based 

methods including SHIFTCALC, 14 SHIFTX,15 PROSHIFT12, CamShift16, and PPM17,18 

also showing comparable quality predictions. It is also worth distinguishing the SHIFTX+ 

component of SHIFTX219 as it uses not only backbone geometric features but also residue 

biological similarity properties like block substitution matrix (BLOSUM) numbers to predict 

chemical shifts using either ANNs or Bagging and Boosting ensemble models. Even so, 

these models still suffer from inaccuracies - presumably because the features drawn from 
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X-ray crystal structures are incomplete or unrepresentative- such that a pragmatic solution 

is to substitute known experimental chemical shift values of another protein that has 

high sequence homology to the target protein of interest. For example, SHIFTX2 also 

takes advantage of existing databases through the SHIFTY+ component that introduces an 

alignment-and-transfer technique to fully exploit sequence homology in order to make more 

accurate predictions.

We recently introduced the UCBShift 1.0 method20 that offers several advancements on 

these early foundational models for chemical shift prediction of backbone atoms. The first 

improvement is to modernize the machine learning to utilize a random forest regression 

model with a greatly expanded X-ray data set and feature extraction and transformations, 

and is referred to as the UCBShift-X predictor. We also qualitatively change the nature of 

homology to not only include high sequence homology but also to introduce proteins with 

low sequence but high structural homology, that comprises the UCBShift-Y module. A final 

random forest regression step combines the two modules to make chemical shift predictions 

if homology to the target protein is available, otherwise shift predictions are made with only 

the UCBShift-X module. The mean absolute error (MAE) of UCBShift 1.0 for backbone 

atoms of proteins is 0.31 ppm for amide hydrogens, 0.19 ppm for Hα, 0.84 ppm for C’, 0.81 

ppm for Cα, 1.00 ppm for Cβ, and 1.81 ppm for N.

In this work we seek to improve accuracy and robustness, as well as to gain insight, for 

chemical shift calculations for the carbon, hydrogen, and nitrogen atoms of side chains 

of aqueous proteins by retraining the UCBShift 1.0 model over an expanded data set. 

Most existing chemical shift predictors like SPARTA+ are restricted to backbone atoms 

but the SHIFTX2 algorithm also considers side chains and is a comparative method we 

will consider in this work. Because both models extract engineered features from high 

quality protein X-ray crystal structures that are insensitive to alternate conformations of a 

protein in the thermalized ensemble, we test under what circumstances the −X modules 

provide good discriminative power for side chain C, H, and N chemical shifts in different 

atomic environments. The primary importance of sequence and structural homology based 

alignment in the −Y component is designed to overcome the limitations of extracting static 

features from crystal structures that undoubtedly miss the underlying dynamics that is 

inherent in the substitution with an experimental chemical shift from solution-based NMR.

The resulting UCBShift-2.0 algorithm achieves significantly lower mean absolute error 

(MAE) and lower root-mean-square-error (RMSE) compared to SHIFTX2 (which does not 

predict on some of the atom types at all) when evaluated on an independently generated test 

dataset for side chains, with average MAEs of 0.80 ppm for C, 0.16 ppm for H, and 0.99 

ppm for N chemical shifts. Overall the performance enhancement of UCBShift-2.0 arises 

from having more training data relative to the original SHIFTX2 study,19 and more capacity 

and better exploitation of features and homology in the overall machine learning model. 

More specifically, UCBShift-2.0 can better predict the observed variations in chemical shift 

values for each amino acid, whereas SHIFTX2 mostly classifies shift predictions by residue 

type with little variation from random coil values. Furthermore we find that while the 

Y-module is responsible for ~50-60% of the performance enhancement of UCBShift-2.0 

over SHIFTX2, side chain features such as ring currents and χ2 rotamer states found through 
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the X-module are also critically important for sidechain H and C chemical shifts, which are 

dominated by C-H groups. By providing both source code and cleaned data sets available 

from an open source github, we recommend that UCBShift-1.0 and UCBShift-2.0, and their 

UCBShift-X and UCBShift-Y modules, can each offer a current state-of-the-art side chain 

chemical shift prediction algorithm that can be tailored to desired applications for protein 

backbone and side chain chemical shift prediction.

Methods and Models

Preparation of enhanced datasets

The training set of the original UCBShift-1.020 was constructed by consolidating the 

training and testing sets SPARTA+ and SHIFTX+ into one comprehensive dataset. For 

predicting protein side chain chemical shifts, we enriched this dataset with chemical 

shifts available in the BMRB21. Chemical shift data obtained from the BMRB were re-

referenced to high-resolution X-ray structures using Re-referenced Protein Chemical shift 

Database (RefDB)22. The final number of experimental chemical shifts for training and 

testing are provided in Table 1, and broken down further in Supplementary Table S1 and 

Supplementary Table S2. The PDB IDs with corresponding BMRBs of the 851 protein 

structures are provided in Supplementary Table S3. The test set consists of 200 structures 

that were prepared in the previous release of the UCBShift-1.0, with details provided in 

Supplementary Table S4.20

The structures from training and test sets were downloaded from RCSB and protonated 

using the PDB2PQR software.23,24 We chose this algorithm because it allows for Propka-

based protonation of ionizable residues based on the pH value. The PDB2PQR protonation 

was preceded by the optimization of adjustable protons (OH, SH, NH3
+, Met-CH3) and 

ambiguous Asn, Gln and His sidechain orientation with the REDUCE software.25 Zhang 

et al. point out the existence of assignment errors present in the BMRB database.22 The 

training and test sets filtered out outliers that were 6 and 12 ppm bigger or smaller than 

the average value for the particular residue for hydrogens and carbon atoms, respectively. 

This high threshold allowed us to filter out only missassigned shifts following the original 

UCBShift-1.0 idea of the ”real world” data.20,26

Harsch et al. have noted substantial misassignments of asparagine and glutamine side chain 

amide hydrogens within the BMRB.27,28 According to their analysis, when the chemical 

shift differences between the two hydrogens are ⩾0.40 ppm for Asn and ⩾0.42 ppm for 

Gln, the resonance signal at the higher chemical shift (referred to as ”downfield shifted”) 

should be assigned to HD21 for Asn and HE21 for Gln, while the signal at the lower 

chemical shift (”upfield shifted”) should be assigned to HD22 and HE22, respectively. We 

corrected the assignments in our training and test sets based on this rule. Specifically, 

we swapped the assignments of HD21/HD22 or HE21/HE22 when δ(HD21) < δ(HD22) or 

δ(HE21) < δ(HE22), and the difference between them was ⩾0.40 ppm for Asn or ⩾0.42 ppm 

for Gln. The resulting distributions of chemical shifts before and after correction are shown 

in Supplementary Figure S1.
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Machine learning workflow

The overall design of the UCBShift-1.0 and -2.0 chemical shift prediction algorithm is based 

on a random forest machine learning model, and consists of two modules, UCBShift-Y and 

UCBShift-X as shown in Figure 1. We used an Extra Tree Regressor and Random Forest 

Regressor as implemented in the scikit-learn package.29 The hyperparameters were initially 

optimized with TPOT30 using 3-fold cross-validation on the training set, then fine-tuned 

with a temporal validation set of 50 randomly selected structures. From here on out we refer 

to UCBShift-2.0 as UCBShift unless otherwise noted.

The UCBShift-Y component (blue path in Figure 1) transfers experimental chemical shifts 

from a reference database to a query protein based on sequence and structural similarity. The 

idea is similar to the SHIFTY+ module of SHIFTX2 predictor that utilizes the transfer of 

experimental chemical shifts from the protein database if the sequence is identical or closely 

matches the sequence of the query protein. UCBShift-Y also takes advantage of structural 

similarity in that it filters out mismatching chemical shifts of proteins with high sequence 

similarity but significantly different structure or when there is poor sequence alignment but 

significant structural similarity.

The UCBShift-X prediction algorithm (purple path in Figure 1) uses a feature vector and 

employs an extra tree regressor (R0) followed by a random forest regressor (R1).31,32 The 

second Random Forest regressor (R2) incorporates the feature vector, the R1 regressor, and 

the secondary shift output from UCBShift-Y, along with additional scores and coverage 

metrics that indicate the quality of the alignments. The final chemical shift prediction is 

generated by either R1 (if UCBShift-Y predictions are unavailable) or R2 (if UCBShift-Y 

predictions are available). In the last step of the chemical shifts prediction, the random coil 

values are added back to the secondary shift predictions. Every type of atom chemical shift 

is trained individually. Some important details of the two components are described here for 

the readers benefit, but additional detail can be found in reference [20].

UCBShift-Y module.—The algorithm begins by aligning the target sequence with all 

sequences available in the RefDB database22 and selecting significant matches using the 

BLAST algorithm.33 Subsequently, the PDB files of identified sequences undergo structural 

alignment with the query protein via the mTM-align algorithm.34 Only the alignments with a 

TM score exceeding 0.8 and an RMSD with a target below 1.75 Å are retained. Afterwards, 

the Needleman–Wunsch algorithm is used to determine the optimal alignment of each of the 

PDB sequences with the RefDB sequence.35 Supplementary Figure S2 shows the calculated 

TM scores between each test sequence and the best-aligned sequence in the UCBShift and 

ShiftX2 training sets. Even for cases exhibiting full sequence homology with the training 

set, the chemical shifts sourced from the BMRB database do not coincide between the 

training and test sets, since they correspond to different types of atoms.

In case of identical residues, the chemical shifts from RefDB are directly assigned to the 

query protein. Otherwise, the target shift for atom A in residue I is calculated from the 

matching residue J according to the equation:
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δI, A = δrc, I, A + (δJ, A − δrc, J, A)

(1)

where δJ, A is the chemical shift of the matching residue, and δrc, and δrc, I ∕ J, A are the random 

coil chemical shifts in residues I and J for atom type A. When there is more than one aligned 

structure the chemical shift is calculated as the weighted average with weights wI given by:

wI = e5(SNA × STM) + BIJ × 1(BIJ ≥ 0)

(2)

where SNA = Sblast ∕ max(Sblast) is the sequence alignment blast score normalized by the 

maximum blast score; STM is the structure alignment TM score; BIJ represents the 

substitution score between the amino acid at position I in the target sequence and the amino 

acid at position J in the matching sequence, based on the BLOSUM62 matrix.36 Weights are 

set to zero when the substitution scores are negative, usually indicating the substitutions in 

the target sequence are dissimilar residues.

UCBShift-X module.—UCBShift-X is a decision tree-based machine learning module, 

which extracts structural features from a PDB file or property calculations that depend on 

the coordinates for each atom type. These residue- and atom type-specific features extracted 

from the protonated PDB structures include the following:

• BLOSUM62 numbers: Substitution scores derived from the BLOSUM62 matrix, 

indicating the probability of replacing the query residue with any other amino 

acid.37

• Backbone dihedral Angles: Sine and cosine values of the ϕ and ψ torsion angles 

of the query residue, as well as for the preceding and following residues.

• Side-Chain Dihedral Angles: Binary indicators for the existence of χ1, χ2, χ3, χ4

and χ5 side-chain dihedral angles, and their corresponding sine and cosine values. 

They are considered for the query residue and the adjacent residues.

• Hydrogen Bonds: For every side chain hydrogen, hydrogen bond’s features are 

described by five numbers: existence (boolean), distance between donor-acceptor 

pairs, cosine values of the angles at the donor hydrogen and acceptor atom, 

and hydrogen bond energy calculated via the DSSP model.38 A hydrogen bond 

acceptor can be any oxygen or nitrogen atom in the protein.

In addition, for each atom type, the backbone hydrogen bond descriptors related 

to the query residue are considered. These include the hydrogen bond between 

the amide hydrogen and carboxyl oxygen, and between the Cα hydrogen and 

a carboxyl group. For the query residue all five hydrogen bond descriptors are 

included for: (1) amide hydrogen (2) carboxyl oxygen, (3) α hydrogen and 

additionally (4) carboxyl oxygen features for the previous residue and (5) the 
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amide hydrogen features for the next residue. This gives 25 backbone hydrogen 

bonding features for each atom type.

• Polynomial Transformations: Squared and inverse polynomial transformations of 

hydrogen bond distances and squares of dihedral angle cosine values, which are 

included in several empirical chemical shift calculation formulas.39,40

• S2 order Parameters: NMR S2 order parameters of N-H bond calculated using the 

contact model.41

• Accessible Surface Area (ASA): Absolute and relative accessible surface areas 

determined by the DSSP program.

• Secondary Structure: One-hot encoded secondary structure representation in 8 

categories from the DSSP program.

• B Factor: Average B factor of the residue, extracted from the PDB file.

• Half Surface Exposure (HSE): A measure of the residue’s exposure in the protein 

structure.42

• Hydrophobicity: Hydrophobicity values from the Wimley–White whole residue 

hydrophobicity scales.43

• Ring Current Effect: Calculated using the Haigh–Mallion model, including the 

ring current for the specific atom type in the training model.44

• pH value of the NMR experiment.

• Electric Field: Electric field effect calculated using the formula:

δEF = ∑
i

qiε cos θi

di
2

(3)

for hydrogen and nitrogen atoms. In the equation, qi is the charge of the 

interacting atom i, θ is the i-H-X angle (where X is a heavy atom bound to 

the target hydrogen) and di is the distance between the hydrogen i and the 

target hydrogen. Interacting atom charges are derived from the Amber force field 

parameters45.

• Protonation Indicator: This binary feature indicates the presence (1) or absence 

(0) of atoms corresponding to ionizable residues, as determined by protonation 

state prediction software. This indicator relies on whether specific atoms, 

associated with protonation states, are present in the protonated PDB structure of 

the protein, reflecting significant shifts due to protonation changes.

Results

Table 2 displays the MAE, root mean square error (RMSE), Pearson’s correlation 

coefficients (R), and improvement factors computed using the UCBShift and SHIFTX2 
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models for chemical shift prediction by side chain atom type. The data reveals that 

UCBShift consistently outperforms SHIFTX2 across all side chain atom types, on average 

by ~0.28 ppm and ~0.03 ppm for carbons and hydrogens, respectively. Nitrogen chemical 

shifts are predicted by UCBShift, unlike SHIFTX2, with an average MAE of 0.99 ppm. The 

more detailed results, which distinguish between individual amino acids, also demonstrate 

improvement over SHIFTX2 in all types of nuclei (Table S5). It is also important to note 

that we utilized a “test mode” criteria for UCBShift predictions that excludes sequences with 

more than 99% similarity to the query sequence, while SHIFTX2 testing data may include 

100% similarity cases. Overall UCBShift is a more consistent performing model for side 

chain chemical shift prediction despite this small handicap.

Protein side chains exhibit greater flexibility compared to the backbone dihedral angles, 

which are usually determined by the secondary structure. This higher flexibility leads to the 

presence of multiple rotameric states that makes accurate prediction of side chain chemical 

shifts more challenging.46-48 In Figure 2 we provide a more detailed comparison of chemical 

shift accuracy using UCBShift versus SHIFTX2 illustrated with the CG and CD1 side 

chain atoms, which possess the largest amount of testing data as indicated in Table 1 and 

is present in many of the amino acid side chains. As seen in Figure 2a, the SHIFTX2 

predictions exhibit a tendency to cluster around the amino acid random coil values, rather 

than accurately representing the experimental spread of chemical shift values that vary by 

each type of amino acid and ranges of environment. The UCBShift model, however, appears 

to better account for the shift variations within each amino acid type, providing predictions 

that are more finely tuned to the actual spread of observed shifts of CG as seen in Figure 2b.

As another example, we identify three conformational clusters of the experimental CD1 

chemical shift for the isoleucine residue based on the χ2 dihedral angle as seen in Figure 

2c-e, in which the conformation with χ2 = − 60° has been reported to correspond to the 

chemical shift value of ~11.4 ppm.47 However, the broad experimental CD1 chemical shift 

distribution in each of the χ2 = − 60° as well as χ2 = − 180° clusters suggests that many 

conformational states can be present in solution, Figure 2c. We observe that the UCBShift 

predictor better captures the large spread of chemical shifts within each geometrical cluster, 

while SHIFTX2 does not predict the same spread of CD1 shifts within clusters observed in 

the experimental data. UCBShift additionally reveals a more favourable correlation between 

the predicted and experimental chemical shifts for the CD1 shifts of isoleucine, Figure 2f,g. 

Similar trends are observed for other atom types such as CG2 and including nitrogen which 

is only predicted by UCBShift, as summarized in Figures S3-S10.

The bar plots depicted in Figure 3 summarize the enhancement of UCBShift shift prediction 

for carbon and hydrogen side chain atoms in comparison to SHIFTX2 across various amino 

acid types. The overall RMSE using UCBShift systematically improves over SHIFTX2 for 

all amino acids. Histidine demonstrates a particularly pronounced enhancement in carbon 

chemical shifts prediction, which we attribute to the effective handling of protonation states 

by UCBShift.26 Tyrosine also displays a notable decrease in errors. Looking at the details 

in Table S5, we identify the most significant discrepancies for CG and CZ. Reported 

experimental data for these nuclei is very limited (Table S1), for reasons discussed in later 
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section. The improved performance of UCBShift for cases with little training data can be 

attributed to the extensive training set employed during its development, consisting of 851 

structures compared to the 197 structures incorporated in SHIFTX2.

Next we consider why there are performance enhancements for UCBShift relative to 

SHIFTX2. Table S6 makes clear that the X-module of UCBShift shows small performance 

enhancements relative to SHIFTX2 over most of the C and H side chain chemical shift test 

data, although there are some exceptions as well. However, the more notable component 

of success for UCBShift appears to be in the Y-module predictions as reported in Table 

S6. Hence when any type of homology is available, along with an assigned experimental 

chemical shift, it improves average chemical shift MAES by 0.5 ppm for side chain carbons 

and 0.2 ppm for side chain hydrogens compared to the standalone UCBShift-X component.

We believe there are several contributing factors to this overall improvement through the 

Y-module. First is that we have more training data than the much earlier SHIFTX2 study, 

and in particular more sequence/structural homology data, that can be exploited better by the 

more sophisticated R2 regressor (see Figure 1). But to test this possibility, we also retrained 

the UCBShift model on the original SHIFTX2 data set as seen in Supplementary Table S7. 

This demonstrates that the UCBShift algorithm is not solely benefitting from an expanded 

data set but a better algorithm as well. In addition, it appears that, on average, feature 

extraction using static crystal structures can’t represent the solution NMR experiment, in 

which the substituted experimental chemical shift better represents the thermal fluctuations 

and time averaging over variable chemical environments not available in the X-module. 

Finally, given that ~75% of the data has available homology, UCBShift is trained to rely 

more heavily on this component of the machine learning algorithm.

This is not to say that feature extraction data is not important, since the R2 regressor 

takes into account not only the alignment, but direct feature data as well as the extra tree 

regressor R0 (see Figure 1). In Table S6 we see that the R2 regressor performs better 

than UCBShift-Y in regards MAE for CG, HB, HB2/HB3, HD21/22, HE21/22 atom types, 

and often eliminating outliers for many atoms by reducing the RMSE. The enhancement 

of the R2 regressor for hydrogens HD21/22, HE21/22 is especially noteworthy, as the 

underperformance of module Y may stem from the previously discussed misassignments of 

these hydrogens in asparagine and glutamine. We also constructed a low-homology test set 

of 59 proteins with a sequence identity of 50% or less to those in the training set. Table S8 

shows that UCBShift outperforms SHIFTX2 on this more restrictive low homology test set 

that also demonstrates that the X-module is critically important as well.

Finally, we examine the various features used in the UCBShift model for predicting 

chemical shifts for each atom type in backbone and side chains, summarized in Tables S9-

S11. Unsurprisingly, the UCBShift-Y prediction dominates the R2 regressor, with influence 

of features through the unoptimized node splits of the R0 regressor, for reasons explained 

above. Hence we analyze the test examples for the features that are important for the 

unoptimized node splits of the R0 regressor, and then corrected by the optimized R1 random 

forest regressor and displayed graphically in Figure 4.
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Our previous investigation using UCBShift-1.0 for backbone atoms revealed that for carbon 

and nitrogen chemical shifts the backbone dihedral angle features are most important (Tables 

S9 and S11.). Additionally for backbone carbons the secondary structure classification 

dominates the R0/R1 regressor as seen in Figure 4 and Table S9. For backbone hydrogen 

atoms the same geometric features are important as well, but with the added component 

of untransformed and transformed hydrogen-bonding together with the stability and 

conservation of those structural features as determined by the BLOSUM number (Figure 

4 and Table S10). These dominant features are perhaps unsurprising but reassuring, 

and support the essential role that backbone chemical shifts provide in protein structure 

determination.49

Moreover, various studies have explored the utility of side chain chemical shifts in 

elucidating protein conformation and dynamics.47,48,50 It is notable that analysis of R0/R1 

reveals the predominant relevance of various forms of side-chain dihedral angles for carbon, 

nitrogen, and hydrogen chemical shifts, BLOSUM numbers, accessible surfaces, and various 

forms of hydrogen bond features as shown in Figure 4. Interestingly, B factors, S2 order 

parameters, hydrophobicity, pH values, and electric fields play more negligible roles for 

chemical shift predictions for any side chain C, H, or N atom.

Perhaps the most distinguishing feature of side chain hydrogen chemical shift predictions 

with UCBShift is the importance of ring currents as seen in Figure 4. When a hydrogen 

is surrounded by an aromatic ring, it undergoes a significant shielding due to the electric 

current induced by an external magnetic field. Hence hydrogen chemical shifts are highly 

sensitive reporters of weak CH⋯π interactions that play important role in the stabilization 

of protein structures51-54 and protein-ligand complexes52,55,56. For most of the hydrogen 

types including carbon bound hydrogens HB, HB2/3, HG2/3/12/13, HD2/3, and HE21 the 

ring current effect is a dominating feature with importance greater than 20% (Table S10). 

Interestingly, the carbon-bonded HA hydrogen reveals a significantly lower, 5.3%, ring 

current feature importance. The observation can be attributed to the analysis of protein PDB 

structures, which indicates that HA atoms, compared to the side-chain hydrogens, exhibit the 

least participation in CH⋯π interactions.57

Thus we further analyze UCBShift on a test subset containing hydrogen atoms that reveal 

notable shielding as a result of the ring current impact stemming from CH⋯π interactions in 

Figure 5. From the testing set, we select 20 chemical shifts below 1 ppm of HB atoms in 

Ile and Val, where the distance from the hydrogen to the centre of the aromatic ring ⩽3.7, 

Table S12. Figure 5 demonstrates that UCBShift surpasses SHIFTX2 in handling these 

extreme examples, and among all the sub-models, UCBShift-X exhibits the highest level 

of performance. In order to assess the impact of the ring current feature on the prediction 

outcome, we conduct a prediction with the UCBShift-X model while deactivating the ring 

current feature. Analysis of the last two rows of the heatmap in Figure 5 shows that the 

ring current feature decreases chemical shift values throughout the dataset. Additionally, it 

is observed that ShiftX+ and SHIFTX2 exhibit a lower accuracy in predicting the chemical 

shifts of hydrogens located in the most shielded positions on the left side. In contrast, the 

consistency of UBShift-X and UCBShift performance remains relatively stable throughout 

the dataset.
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Turning to the hydrogen types including N-bound hydrogens, eg. backbone amide hydrogen, 

HD21/22 (Asn), HE1 (Trp), HE (Arg) we observe that H-bond features may overcome the 

ring current effect, Table S10. This is caused by the ability of N-bound hydrogens to act 

as effective hydrogen bond donors. Strong hydrogen bonds in the form of N‐H⋯N ∕ O lead 

to a pronounced deshielding effect resulting in a large downfield shift of the interacting 

hydrogen.53 Due to the large difference in chemical shift between strong, weak and non-

hydrogen-bonded NH hydrogens the chemical shift range of these nuclei is broad and 

hence more difficult to properly assign.27,28 For those hydrogens the prediction is usually 

worse, RMSE ~0.5 pmm, than for carbon-bound hydrogens with only marginal improvement 

relative to SHIFTX2 as seen in Table S5. Additionally, there is highly limited experimental 

chemical shifts data for N-bound side chain hydrogens (Tables S1 and S2). Interestingly, 

the relevance of hydrogen bond features extends to the chemical shifts of carbon-bound 

hydrogens, which can be attributed to the occurrence of weak CH ⋯ O ∕ N hydrogen bonds 

in protein structures.58

Among ionizable residues, histidine is particularly noteworthy because its protonation state 

can vary within physiological pH ranges. Our analysis indicates that the protonation feature 

impacts the R0 regression for CD2 and HE1 atom types by 3.1% and 2.2% respectively, 

Tables S9 and S10. This is in line with literature revealing a significant variation in histidine 

CD2 and HE1 chemical shifts upon ionization.26 Overall, both, various protonation states of 

the histidine as well as its ability to form hydrogen bonds lead to a broader distribution of 

reported chemical shifts, resulting in a higher prediction error for this residue type (Figure 3, 

Table S5).59

The UCBShift-2.0 algorithm covers all side chain carbon atom types, but there is still 

a shortage of experimentally determined chemical shifts for 5 types of hydrogen atoms, 

specifically the hydroxyl group hydrogen (HH) of tyrosine and the terminal NH hydrogen 

atoms (HH11/12/21/22) of the guanidinium group in arginine. There is also insufficient 

experimental data for five nitrogen atom types, namely NH1/2 and NE of the guanidinium 

group in arginine, NZ of lysine, and ND1 of histidine. In addition, there is a limited amount 

of experimental chemical shift data and therefore relatively poor prediction performance 

for O/S- and some of the N-bound hydrogens (HG of Ser and Cys, HG1 of Thr, HZ 

of Lys, and HD1 and HE2 of His), Tables S1 and S5. Acidic hydrogens are known 

to be particularly challenging to measure due to their rapid exchange with water.26,60-63 

Direct observation of these nuclei is limited to situations where they are protected from 

rapid solvent exchange, for example when buried within a folded protein structure (due to 

hydrogen bonds or steric hindrance) and/or under conditions of low temperature or low pH. 

The HH11/12/21/22 hydrogen peaks of arginine are even more difficult to detect as they not 

only undergo proton exchange but are also affected by the NE-CZ bond rotation resulting in 

a single broad signal for the four hydrogens.64 Additionally, the detection of O- and S-bound 

hydrogens (HG of Ser and Cys, HG1 of Thr, HH of Tyr), even under the rare slow exchange 

conditions, is hampered by the inapplicability of conventional 2D NMR methods.65-68 In 

their discussion, Takeda and co-authors pointed out that NMR signals of labile protons can 

often be misinterpreted due to the above-mentioned challenges.65
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When it comes to carbon side chain chemical shifts, there is a noticeable shortage of 

experimental chemical shifts available for quaternary carbon atoms in the dataset (CG 

chemical shifts of Phe, His, Trp, Tyr, CZ of Arg, Tyr, and CD2, CE2 of Trp), Table S1. The 

assignment of those nuclei is experimentally more challenging due to a lack of a directly 

attached hydrogen and requires more complex long-range NMR experiments explaining the 

sparse data in the BMRB.69 This is for most of the quaternary carbon atom types reflected in 

the somewhat subpar predictive performance shown in Table S5.

Discussion and Conclusions

In this work we build upon the UCBShift-1.0 model for backbone atoms by extending 

it to side chain chemical shift predictions. We have used numerical and categorical 

features derived from high quality but static crystal structures that are greatly expanded 

in terms of training and test data, and we have redesigned a structure based alignment 

module to directly transfer the chemical shifts from the experimental database to the query 

protein when not only sequence but when the structure homology is sufficiently high, all 

incorporated in a random forest regression model. Overall UCBShift-1.0 and -2.0 stands as a 

modernized and state-of-the-art predictor of both backbone and side chain carbon, hydrogen, 

and nitrogen chemical shifts.

UCBShift yields a far superior side chain chemical shift prediction than SHIFTX2 through 

small improvements to its X-module, but mostly through its Y-module which is largely 

responsible for raising overall UCBShift performance within and across all amino acids and 

their various atom types. This is because as NMR data accumulates over time, 75% of folded 

proteins have a substitutable chemical shift from another protein with high sequence and/or 

structural homology, and the experimental chemical shifts contain dynamical and ensemble 

averaging over environments that is not easily extracted from static crystal structures. But 

UCBShift-Y module still does not outperform the R2 regressor in all cases, because the 

engineered feature set also help predict the environmental variations of observed chemical 

shift values within each amino acid type. In particular, the engineered features of ring 

currents are especially important for hydrogen chemical shifts of nearly all side chains, 

especially for CH ⋯ π interactions, and the greater environmental variations of observed C 

chemical shift values for each amino acid depend on a dominant χ2 rotamer. For extreme 

cases and/or underrepresented examples such as low-frequency CH ⋯ π interactions, the 

UCBShift-X module outperforms UCBShift itself, due to interference by the UCBShift-Y 

where the transferred shift is unhelpful. Hence while UCBShift-1.0 adnd -2.0 can be used as 

a black-box algorithm for chemical shift prediction, we encourage users to take advantage 

of all modular UCBShift-X and UCBShift-Y components that can be tailored to desired 

applications for protein backbone and side chain chemical shift prediction.

Encouraged by the performance of our prediction tool we anticipate several valuable 

applications with significant impact on biomolecular NMR spectroscopy. Specifically, we 

suggest backward and forward applications of UCBShift 2.0. The most obvious backward 

application would be a 3D structure-based rigorous validation of experimental NMR signal 

assignments either obtained via automated or manual approaches. The example of Asn 

and Gln side-chain signals described in our study suggests valuable applications for these 
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notoriously difficult amino acids. It is interesting to note that a related correction tool was 

developed in the past for correcting erroneously annotated Asn/Gln rotamers in experimental 

X-ray structures.70

The introduction of AlphaFold2 (AF2) has clearly revolutionized structural biology.71 

Despite the high level of accuracy of AF2 models there is still the need for independent 

model evaluation and several experimental methods (SAXS, X-ray crystallography, cryo-EM 

or NMR) have been proposed for this task.72 The availability of side-chain information 

in UCBShift-2.0 will clearly boost the relevance of NMR spectroscopy in this endeavor. 

The necessary prerequisite for NMR-based evaluation of AF2 models is the availability 

of at least a backbone resonance assignment. With the advancement of machine learning 

techniques in biomolecular NMR spectroscopy this bottleneck no longer exists. For 

example, the ARTificial Intelligence for NMR Applications method (ARTINA)73 and 

the NMRtist webserver74 were introduced for visual spectrum analysis and automated 

signal assignment starting from raw experimental NMR data. More recently, a novel time-

optimized deep learning approach for protein NMR assignment was introduced that employs 

AlphaFold and chemical shift prediction.75 Importantly, in this approach the previous 

version of UCBShift was employed to provide backbone chemical shift data. Clearly, the 

now available side-chain information will lead to a further improvement of this powerful 

assignment approach.

While applications to automated NMR signal assignment and validation of AF2 

predicted structural models are clearly important and highly relevant, we strongly believe 

that potentially transformative forward applications will be in the study of protein 

conformational dynamics. It is common and undisputed knowledge that NMR provides 

unique insight into the structural dynamics of proteins in solution and numerous NMR 

spin relaxation experiments have been designed over the years.76 Importantly, the observed 

solution chemical shifts in proteins are the result of subtle conformational averaging process 

and therefore probe the entirety of the proteins’ dynamics. An interesting exploitation of this 

intricate relationship was recently introduced with an approach to assess structural dynamics 

along the protein backbone via a method called Accuracy of NMR Structures Using the 

so-called NMR random coil index (RCI)77 and Rigidity (ANSURR).78 It calculates the local 

rigidity of a protein structure79 and compares it with the local rigidity as measured using 

a version of the random coil index (RCI) based on backbone NMR chemical shifts. While 

this method was merely introduced to assess the accuracy of solution structures an extension 

of this conceptual thinking to side-chain chemical shift data could radically change the way 

protein dynamics are probed by NMR spectroscopy.

Specifically, there is a well established dependence of 13C side-chain chemical shifts on 

dihedral angles as a tool for conformational analysis in proteins,47 and simple relations exist 

to relate Ile ( Cδ113 )48 and Leu ( Cδ1, δ213 )50,80 methyl 13C chemical shifts into χ2 rotamer 

populations for these residues. Analogous relationships and procedures exist for obtaining χ1

torsion angle distributions for Val residues in proteins on the basis of measured Cγ1, γ213  shifts 

exclusively. Importantly, such chemical shifts, when available through relaxation dispersion 

NMR measurements, can even be used to infer ‘invisible’ excited protein states81-83 that are 
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only sparsely and transiently populated. Analogous extensions to other amino acids can be 

envisaged.

Moreover, NMR spin relaxation measurements obtained for methyl group carbons revealed 

that, for example, extracted order parameters correlate with conformational averaging along 

the amino acid side-chain and thus again providing support for the expected correlation 

between chemical shift and conformational dynamics. While 13C chemical shifts primarily 

report on side-chain conformational averaging, 1H chemical shifts will be exquisitely 

sensitive to subtle structural arrangements of aromatic ring systems within a protein. We 

have recently demonstrated how this information can be used to extract binding poses 

in protein-ligand complexes with significant ramifications in structure-based drug design 

programs.84,85 Most importantly, QM calculations of ligand 1H chemical shifts for the 

protein-bound state allowed for refinement of the solution structures of protein-ligand 

(drug) complexes.84 Developments (exploiting machine learning techniques) are ongoing 

to improve QM calculations and make them applicable also to larger biomolecular systems.

To conclude, we anticipate that the improved chemical shift prediction tool presented 

here, and the explosive growth of machine learning to NMR structural biology2,11,86-88 

to generate protein conformational ensembles will offer exciting possibilities that cannot 

be analyzed using more conventional tools of structural biology. A better quantitative 

understanding of the intricate relationship between protein structure and NMR chemical 

shift will be highly valuable in this endeavour.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: The overall design of the original UCBShift-1.0 chemical shift prediction algorithm 
used for UCBShift-2.0.
The general UCBShift algorithm combines both a transfer prediction module that relies 

on both sequence and structural alignments, and a machine learning module that trains a 

tree regression model on augmented feature extracted data. The feature vector has been 

augmented for side chains as explained in the text. Reproduced from Ref.20 with permission 

from the Royal Society of Chemistry.
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Figure 2: Predicted CG and CD1 chemical shifts by UCBShift and SHIFTX2 compared to 
experiment.
Correlation between experimental and predicted CG chemical shifts subtracted from the 

random coil references for (a) SHIFTX2 and (b) UCBShift. (c-e) CD1 chemical shifts 

of isoleucine plotted against the χ2 dihedral angle. Correlation between experimental and 

predicted CD1 chemical shifts of isoleucine for (f) SHIFTX2 and (g) UCBShift. In (c-g), 

three conformational clusters are marked with different colours.
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Figure 3: 
The root mean square error (RMSE) of carbon and hydrogen chemical shifts for every amino 

acid predicted by UCBShift and SHIFTX2 compared to experiment.
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Figure 4: Relative importance of all the input features analyzed from the UCBShift model for 
side chain and backbone C, H and N atom types.
Importance values from the extra tree regressor (R0) were scaled in proportion to 

the ”Prediction from R0” contribution in the random forest regressor (R1), Tables S9-S11. 

These scaled values were then added to the corresponding importance values from the 

R1 regressor, giving the overall R0/R1 importance of features. Feature importance was 

calculated as the mean decrease in impurity across all trees, using the built-in feature 

importance method from Scikit-learn.29
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Figure 5: Heatmap presenting differences between predicted and experimental HB chemical 
shifts of Ile and Val from the subset including hydrogens involved in CH⋯π interactions.

UCBShift-X with turned off ring current effect feature, UCBShift-X, UCBShift-Y, 

UCBShift, ShiftX+ module of SHIFTX2 and SHIFTX2 prediction models are considered. 

Chemical shifts are in ascending order from left to right (from the strongest to the 

weakest ring current effect). The average absolute error (ppm) across this data set is 0.78 

for SHIFTX2, 0.84 for ShiftX+, 0.52 for UCBShift, 0.61 for UCBShift-Y and 0.36 for 

UCBShift-X.
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Table 1:
Number of training and testing set shift-structure examples for every type of atom.

Atom Train Test Atom Train Test Atom Train Test

CG 14995 1289 HB2 17423 4554 HG1 1234 493

CD1 4590 621 HB3 16259 4318 HD21 722 184

CG2 4300 731 HG2 9667 2684 HD22 720 185

CD 3467 515 HB 6442 1820 HE 604 162

CG1 2919 472 HD2 6104 1705 HE21 595 164

CD2 2735 367 HG3 5901 1416 HE22 594 162

CE 1649 256 HD1 4203 1234 HZ 558 164

CE1 1090 114 HD3 2911 758 HZ2 242 61

CE2 600 49 HE2 2612 645 HH2 222 59

CZ 428 55 HG 2076 450 HZ3 211 56

CZ2 176 16 HE1 2045 481

CH2 167 13 HE3 1409 345 ND2 672 120

CE3 156 17 HG12 1373 290 NE2 562 126

CZ3 151 15 HG13 1239 274 NE1 287 47
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Table 2:
Root mean square error (RMSE), mean absolute error (MAE) and Pearson’s correlation 
coefficients (R) for UCBShift and SHIFTX2.

We found that 25% and 3.5% of the testing structures are only predicted by UCBShift-X and ShiftX+ 

algorithms, respectively, in which no alignment is possible. For R coefficients calculations, chemical shifts 

were subtracted from the random coil references. Uncertainties were computed based on 50 random samples 

from 75% of the test data. All units in ppm.

UCBShift SHIFTX2 Improvement factors

Atom RMSE MAE R RMSE MAE R ΔRMSE ΔMAE

CG 1.028(2) 0.635(1) 0.68 1.429(3) 0.909(2) 0.18 0.401 0.274

CD1 1.1253(3) 0.719(2) 0.74 1.530(4) 1.087(2) 0.44 0.405 0.368

CG2 1.0037(2) 0.671(1) 0.69 1.311(2) 0.916(1) 0.35 0.307 0.245

CD 1.2102(4) 0.745(2) 0.60 1.445(4) 0.901(3) 0.29 0.235 0.156

CG1 1.0935(4) 0.715(2) 0.69 1.373(4) 0.954(3) 0.44 0.280 0.239

CD2 1.2031(2) 0.846(2) 0.77 1.697(5) 1.252(3) 0.40 0.494 0.406

CE 0.9221(4) 0.584(2) 0.47 1.026(3) 0.671(2) 0.26 0.104 0.087

CE1 0.935(4) 0.637(3) 0.66 1.32(1) 0.889(5) 0.06 0.385 0.252

CE2 0.9975(4) 0.760(5) 0.53 1.128(1) 0.878(4) 0.23 0.131 0.118

CZ 1.5504(2) 0.97(1) 0.64 2.43(2) 1.64(1) −0.25 0.88 0.67

CZ2 0.9999(8) 0.73(1) 0.60 - - - - -

CH2 1.5763(2) 1.02(2) −0.09 - - - - -

CE3 1.3219(1) 1.08(1) 0.52 - - - - -

CZ3 1.9102(4) 1.11(2) 0.55 - - - - -

HB2 0.2257(3) 0.1228(1) 0.77 0.2632(3) 0.1479(1) 0.68 0.0375 0.0251

HB3 0.2278(3) 0.1265(1) 0.77 0.2882(4) 0.1720(2) 0.61 0.0604 0.0455

HG2 0.182(3) 0.0964(1) 0.80 0.2169(3) 0.1266(1) 0.68 0.0349 0.0302

HB 0.1696(5) 0.0906(2) 0.86 0.2115(4) 0.1156(2) 0.78 0.0419 0.0250

HD2 0.2181(1) 0.1116(3) 0.77 0.264(1) 0.1436(2) 0.64 0.046 0.0320

HG3 0.2069(5) 0.1153(2) 0.76 0.2457(5) 0.1394(2) 0.64 0.0388 0.0241

HD1* 0.2095(1) 0.1036(3) 0.82 0.247(1) 0.1385(3) 0.64 0.049 0.0374

HD3 0.2842(1) 0.1421(4) 0.69 0.315(1) 0.1577(4) 0.60 0.031 0.0156

HE2* 0.1668(1) 0.0931(3) 0.82 0.226(1) 0.1269(3) 0.64 0.060 0.0343

HG* 0.2504(1) 0.1430(4) 0.71 0.262(1) 0.1514(5) 0.66 0.015 0.0107

HE1 0.2688(1) 0.1416(5) 0.77 0.322(1) 0.1595(5) 0.66 0.053 0.0179

HE3 0.1698(1) 0.1016(3) 0.82 0.252(1) 0.1293(5) 0.55 0.082 0.0277

HG12 0.2782(1) 0.1965(1) 0.72 0.327(1) 0.228(1) 0.59 0.049 0.032

HG13 0.2932(1) 0.2048(1) 0.76 0.357(1) 0.250(1) 0.61 0.064 0.045

HG1* 0.2911(2) 0.1254(5) 0.58 0.215(1) 0.1221(3) 0.69 0.029 0.0207

HD21 0.402(2) 0.255(1) 0.53 0.498(2) 0.301(1) 0.24 0.096 0.046

HD22 0.317(1) 0.210(1) 0.44 0.361(1) 0.237(1) 0.23 0.044 0.027

HE 0.4575(4) 0.215(1) 0.77 0.526(4) 0.246(1) 0.69 0.069 0.031
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UCBShift SHIFTX2 Improvement factors

Atom RMSE MAE R RMSE MAE R ΔRMSE ΔMAE

HE21 0.412(3) 0.231(1) 0.35 0.428(4) 0.215(1) 0.41 0.016 −0.016

HE22 0.255(1) 0.1664(5) 0.47 0.291(1) 0.180(1) 0.35 0.036 0.014

HZ 0.3541(4) 0.172(1) 0.72 0.40(1) 0.179(1) 0.62 0.05 0.007

HZ2 0.2393(1) 0.161(1) 0.67 - - - - -

HH2 0.2216(1) 0.169(1) 0.62 - - - - -

HZ3 0.3701(3) 0.251(2) 0.53 - - - - -

ND2 1.7795(1) 1.02(1) 0.79 - - - - -

NE2 1.71(2) 0.88(1) 0.73 - - - - -

NE1 1.4729(1) 1.07(1) 0.77 - - - - -

*
RMSE and MAE excluding atom types which ShiftX2 does not predict. RMSE for HD1, HE2, HG, HG1: 0.198(1), 0.166(1), 0.247(1), 0.186(1), 

respectively. MAE for HD1, HE2, HG, HG1: 0.1011(3), 0.0926(3), 0.1407(4), 0.1014(3).
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