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Abstract

Asthma is the most prevalent chronic disease among pediatrics, as it is the leading cause of student 

absenteeism and hospitalization for those under the age of 15. To address the significant need to 

manage this disease in children, the authors present a mobile health (mHealth) system that 

determines the risk of an asthma attack through physiological and environmental wireless sensors 

and representational state transfer application program interfaces (RESTful APIs). The data is sent 

from wireless sensors to a smartwatch application (app) via a Health Insurance Portability and 

Accountability Act (HIPAA) compliant cryptography framework, which then sends data to a cloud 

for real-time analytics. The asthma risk is then sent to the smartwatch and provided to the user via 

simple graphics for easy interpretation by children. After testing the safety and feasibility of the 

system in an adult with moderate asthma prior to testing in children, it was found that the analytics 

model is able to determine the overall asthma risk (high, medium, or low risk) with an accuracy of 

80.10±14.13%. Furthermore, the features most important for assessing the risk of an asthma attack 

were multifaceted, highlighting the importance of continuously monitoring different wireless 

sensors and RESTful APIs. Future testing this asthma attack risk prediction system in pediatric 

asthma individuals may lead to an effective self-management asthma program.

I. INTRODUCTION

Pediatric asthma is the most prevalent childhood chronic disease, as it affects nearly 6 

million children in the United States [1], and significantly impacts their quality of life and 

healthcare related costs. Furthermore, recent statistics from the National Health Interview 

Study indicate that 9% of US children currently suffer from asthma [2], and there is 

considerably poor asthma control in these individuals. Asthma is the leading cause of 

hospitalization for those under the age of 15, and 10% of children diagnosed with asthma go 

to an emergency room each year [3], [4]. It is also a leading cause of student absenteeism, 

causing upwards of 14 million school days lost per year due to asthmatic symptoms [5], [6]. 
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Finally, the related societal and healthcare costs of asthma in the US are in excess of $50 

billion per year [7], with an estimated average yearly cost of care for a child with asthma 

being $1,039 [7], [8].

It is clear that there is a significant need to alleviate symptoms and manage this disease in 

children. Mobile health systems provide a potential platform for the management of asthma 

in children through patient education and adherence to medications. While most previous 

mobile asthma applications (apps) have focused on these aspects of mobile health [9], much 

of the information captured is typically through e-diaries and self-reports rather than 

automated sensor-based data collection. Moreover, a recent review [10] demonstrated that 

the absence of passive sensing (i.e., sensors that collect observations without involving 

people in the loop) and reliance on e-diaries led to a reduction in compliance and adherence. 

These observations suggest that there is a need for better integration of wireless sensing 

capabilities and communication protocols with asthma apps to reduce the amount of e-diary 

requests from the patient and thus improve adherence and compliance.

In this study, we describe our preliminary work to determine the overall risk of an asthma 

attack. Using both wireless sensors as well as representational state transfer application 

program interfaces (RESTful APIs), data is collected in real-time via a mobile smartwatch 

app. The data on the smartwatch is then sent via Health Insurance Portability and 

Accountability Act (HIPAA) compliant encryption to a HIPAA compliant cloud for real-

time integration and analytics. The resulting asthma risk is classified through a combination 

of machine learning approaches and provided to the user via simple graphics on the 

smartwatch.

II. Motivation and Related Work

With the advancement of low-cost wireless sensors, as well as smart phones and watches, 

remote monitoring of physiological, physical, environmental, and cognitive health behaviors 

has become increasingly adopted by healthcare professionals and the general public [11], 

[12]. In particular, mobile health apps can help asthma patients improve their symptoms 

through patient education and monitoring. The use of these systems to monitor asthma 

patients is not new [13]–[16], and previous studies on mobile asthma apps have found a 

positive impact on patient education and adherence. However, in order to detect and prevent 

asthma attacks in real-time, future asthma apps require remote sensing of the patient’s 

physiological state, their environment, cognitive health, physical activity levels, as well as 

their medication use.

In addition to wireless sensors for real-time physiological, environmental, and medication 

treatment information, RESTful APIs have also been utilized in previous asthma mobile 

apps for real-time monitoring. For example, a previous study conducted by Anantharam et 

al. [15] on the kHealth app incorporated population and public level observations through a 

series of RESTful APIs. Specifically, the study collected data from WeatherForYou.com, 

Pollen.com, and AirNow.gov to obtain information about the weather, outdoor air pollution, 

and outdoor pollen levels based on the individual’s location determined through GPS on the 

mobile phone. This data was then synchronized and aggregated with wireless sensing data to 

Hosseini et al. Page 2

Int Conf Wearable Implant Body Sens Netw. Author manuscript; available in PMC 2018 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



provide an enriched set of information while minimizing user involvement. By providing 

RESTful API information, the study was able to assess the risk of an asthma attack without 

the need for extensive user input through e-diaries.

Similar to Anantharam et al. [15] and the ongoing Asthma Mobile Health study conducted 

by the Icahn School of Medicine at Mount Sinai [16], our study also focuses on utilizing 

both wireless sensing and online RESTful API data to understand the level of risk of an 

asthma attack for an individual. By creating such an enriched data set, we have developed a 

personalized model that includes a wide range of health signals that influence asthma 

symptoms. However, current asthma apps such as those presented in Anantharam et al. [15], 

Tahir and Rice [16], as well as those reviewed in Huckvale et al. [17], do not address 

security concerns nor comply with HIPAA standards. Thus, in addition to addressing the 

need for wireless sensing to improve compliance, the asthma app presented here addresses 

the need to maintain HIPAA compliance through a hybrid cryptographic framework.

III. METHODS

The asthma app collected wireless sensors and online RESTful API data to continuously 

estimate the level of risk of an asthma attack for an individual. To ensure safety and 

determine the feasibility of using the app prior to testing it in children, it was first tested in 

an adult individual with moderate asthma (female, age 29, 5 ft 5″ tall, had asthma since 

birth) in a real-world setting under the University of California Los Angeles Institutional 

Review Board (IRB number 15-001402).

A. System Overview

The asthma app consisted of a wireless custom-built dust sensor and a commercially-

available spirometer (Section III-B) that sent encrypted data in real time to an Android 

smart-watch (Samsung Gear Live, Samsung, Seoul, South Korea) via Bluetooth 4.0 Low 

Energy (BLE) communication. The asthma app then combined this information with heart 

rate, acceleration, time, and location data from the smartwatch (Section III-C), and sent an 

encrypted JavaScript Object Notation (JSON) file to the cloud (see Fig. 1). The cloud 

decrypted this data, and pulled RESTful API data at the nearest location and corresponding 

timestamp (Section III-E). These data were then used as input features in a real-time 

analytics model (Section III-F) to estimate the overall asthma risk.

B. Wireless Sensors

In order to maintain a closed HIPAA compliant system design, data was encrypted on the 

firmware and sent to the smartwatch using the BLE stack. This level of encryption was 

deemed sufficient, as BLE encrypts data using 128-bit Advanced Encryption Standard 

(AES) cryptography [18], which meets the HIPAA requirement to have at least 128-bit 

encryption to protect electronic protected health information [19].

1) Dust Sensor—The wireless dust sensor used a compact optical dust sensor (Sharp 

Corporation, Osaka, Japan) for dust density measurements, which was validated against a 

Dylos professional air quality monitor (DC1100 Pro, Dylos Corporation, Riverside, CA) for 
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sensitivity and accuracy under several different air quality conditions. To allow the dust 

sensor to be portable, it was integrated with a BLE module (ARM Cortex-M0 

microcontroller with integrated Bluetooth 4.0 LE, RFDigital Corporation, Hermosa Beach, 

CA) and power supply board (PowerBoost 500C, Adafruit Industries, New York, NY). A 

circuit diagram of the wireless dust sensor can be seen in Fig. 2.

2) Spirometer—To collect physiological measurements of individuals, a Vitalograph 

Asthma-1 electronic peak flow meter (Vitalograph Ltd., Buckingham, England) was used to 

obtain spirometry data. Spirometry information is an important physiological measurement 

for the treatment of asthma, as it can assess the severity of the individual’s asthma [20]. 

More specifically, peak expiratory flow (PEF) and forced expiratory volume in one second 

(FEV1) information are most important for the clinical assessment of asthma, as a reduction 

in these values from age and height-matched healthy individuals’ averages indicates the 

overall severity of the asthma at a particular time [20].

Spirometry data was sent to the cloud immediately after the individual took measurements 

by pressing the “spirometer” button on the watch (see Fig. 3 below). The smartwatch app 

then parsed and read these data using the information provided in the device’s API 

developer’s toolkit, and sent this information to the cloud for real-time feedback of the 

current asthma attack risk.

C. Smartwatch App

The Android smartwatch (Samsung Gear Live, Samsung, Seoul, South Korea) was linked 

with a Samsung Galaxy S6 smartphone to send and receive data in real-time throughout the 

day. A smartwatch was chosen over using only a phone, as children with asthma are less 

likely to carry a phone during play and exercise [21], activities that can exacerbate their 

symptoms.

The smartwatch app collected dust sensor (number of large particles > 2.5μm) and 

spirometer (PEF, FEV1) data via encrypted BLE communication. This data was then 

appended to acceleration, heart rate, and location information pulled from the smartwatch 

(Fig. 1). The smartwatch encrypted and transmitted the combined data to the cloud through 

WiFi communication, where it was subsequently decrypted (see Section III-D). Note that a 

data plan can easily be added to the watch for continuous data transmission even when the 

individual is not within WiFi range. The decrypted data was then used in the analytics model 

on the cloud to calculate a risk value. Subsequently, the result was sent with the same secure 

method from the cloud to the smartwatch and displayed (Fig. 3) as a frown (high risk), 

neutral (medium risk), or happy face (low risk), graphics that can easily be understood by 

children.

D. HIPAA Cryptography Framework

The data was encrypted using a 128-bit AES technique. AES is a symmetric encryption 

method, which means that same key must be used to encrypt and decrypt the data. In order 

to ensure secure key exchange between the smartwatch and cloud, the Rivest Shamir 

Adleman (RSA) encryption algorithm was implemented to send the AES symmetric key 
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from the smartwatch to the cloud (Fig. 4). The RSA algorithm generates a pair of public and 

private keys on both the smartwatch and cloud. The public key is known by both parties, 

however, the private key is kept secret. The smartwatch uses the cloud’s public key to 

encrypt the AES symmetric key and then sends it to the cloud.

This hybrid encryption method was used in the system’s infrastructure, as Silva et al. [22] 

found that the technique achieves comparable performance levels as similar apps without 

encryption, and offers a robust and reliable increase of privacy, confidentiality, integrity, and 

authenticity of the protected health information required for HIPAA compliance [22]. The 

results of the study in Silva et al. [22] also showed that the combination of AES and RSA 

cryptography algorithms had better results in terms of encryption time when the size of the 

data increased compared to other encryption algorithms, which is important in this 

application given the large amount of data collected from wireless sensors.

E. Data Collection on the Cloud

The cloud platform (breatheplatform.com) used to store and analyze the data was developed 

using the Amazon Elastic Compute Cloud (Amazon EC2, Amazon Web Services, Seattle, 

WA). This platform pulled the encrypted data sent from the smartphone (which was synced 

with the smart-watch) and decrypted the data using the hybrid cryptography method 

presented in the previous section. Finally, the pulled timestamp and GPS data was used to 

combine this data with RESTful API data.

The RESTful API data in this study consisted of different atmospheric, traffic, and pollutant 

intensity metrics. Data was gathered from three online sources: AirNow. gov, Forecast.io, 

and MapQuest.com. Each of these websites provided different information (such as 

pollution level, weather condition, and nearby traffic volume) through RESTful APIs that 

take geographical coordinates as an HTTP request and returns requested data in a JSON 

format. Each online source is described below.

1) AirNow.gov—AirNow.gov provides the air quality index (AQI) for different 

geographical coordinates in the United States. The AQI is designed to allow people to better 

understand the local air quality in relationship to their health. This number is computed 

using the density of ozone, particulate matter (PM2.5, PM10), carbon monoxide (CO), 

nitrogen dioxide (NO2), and sulfur dioxide (SO2).

2) Forecast.io—The Forecast.io RESTful API provides different weather condition 

parameters for a given coordinate all over the world. Parameters provided by Forecast.io in 

each HTTP response are as follows: temperature, wind speed, cloud cover, humidity, 

visibility, pressure, ozone, expected precipitation intensity and probability of precipitation.

3) MapQuest.com—Since the Google Maps RESTful API is too restricted and cannot 

provide free nearby traffic volumes, the website MapQuest.com was utilized. For each 

HTTP response, the traffic service API provides nearby construction, incidents, and traffic 

congestion at a given coordinate in the United States. If the incident was determined to 

impact the traffic flow and thus cause a delay, the added delay due to the incident was used 

as a feature to assess the traffic volume of the given coordinate.
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F. Real-Time Analytics on the Cloud

All of the prediction and evaluation methods used in this study were performed using the 

Scikit-learn library for Python (Python Software Foundation, available at python. org). This 

is an open source library with strong documentation and efficient tools for the machine 

learning techniques used in this study.

1) Data Manipulation—After retrieving data from the smartwatch and RESTful APIs, 

initial data manipulation was required to make the data set ready for analysis. A data 

cleaning step was first performed, as the gathered data contained some missing or out-of-

bound values. In this step, the sample was removed from the data set since the number of 

these samples was negligible compared to the rest of the data set. Then, for the 

accelerometer data to determine the individual’s physical activity level, the algorithm 

proposed by Yamada et al. [23] was used as it has a higher correlation with measured 

metabolic equivalents than the widely accepted Doubly Labeled Water method for 

estimating total energy expenditure. To this end, the vector norm of the composite 

acceleration (Km) was first calculated as follows:

(1)

where

(2)

and

(3)

The values x, y, and z are the raw accelerometer values measured over a 5 s time window.

For the dust sensor data to be used in the analytics model, it was preprocessed to output the 

number of particles > 2.5μm rather than the raw voltage values. This was done by removing 

all dropped packets, increasing the sensitivity by scaling when the data deviates from its 

baseline values, and smoothing the data over a moving window of 6 s.

2) Machine Learning Model—After preprocessing the data, it was then fed into a 

training model. The training model used a random forest classifier to classify samples into 

three different classes (high, medium, and low risk). A random forest classifier was chosen 

as it uses averaging to improve the predictive accuracy and control for over-fitting. A 
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training phase was first performed offline and the model was saved on the cloud to allow for 

real-time predictions. To predict the asthma risk at each moment, a fixed size window of the 

last reported values was considered. For the dust sensor data, this window was used to avoid 

sudden changes in dust readings. For acceleration readings, values in one window were used 

to compute the energy expenditure using Eqns. 1–3. The resulting features that were 

included in this model were: FEV1 (L/min), PEF (L/min), dust density (number particles > 
2.5μm), heart rate, total energy expenditure, temperature, humidity, ozone, pressure, cloud 

cover, wind speed, precipitation probability, precipitation intensity, traffic density, and AQI.

3) Methods used for Predicting Asthma Risk—The prediction model was tested and 

optimized through several full day experiments in a real world setting. Specifically, to test 

the feasibility of the current system, an individual with asthma collected data using the 

asthma risk system and wireless sensors over the course of five days to simulate a school 

week in children. The participant also performed spirometry and the Asthma Control Test 

(http://www.asthmacontroltest.com/) every hour throughout the day on each experiment day. 

The Asthma Control Test was used because this self-report has been used in previous asthma 

apps for validation [17]. Also, this test is available for children from 4 – 11 years of age, 

which will be important in future validation tests with our target population.

4) Evaluation Measures and Validation Methods—To evaluate the modeling results, 

we plotted the expected risk output from the self-report data against the predicted value for a 

portion of the test samples to visualize the results. In addition, as almost every method used 

in this study contained hyper-parameters that required tuning to obtain the best results, we 

used 10-fold cross-validation while applying grid-search in all methods to obtain optimal 

results that fit best with the self-report results.

IV. RESULTS

The wireless sensors and RESTful APIs were able to continuously and securely collect data 

through the asthma app in real world settings to provide real-time asthma risk information to 

the user. Furthermore, the overall asthma attack risk level was accurately estimated by the 

analytics model in the individual with moderate asthma during all feasibility tests.

A. Data Collection from Wireless Sensors

The dust and spirometer sensors were able to accurately send particle count, PEF, and FEV1 

readings to the cloud. As seen in Fig. 5, when compared to the professional air quality 

monitor, the dust sensor was able to accurately report the number of large particles (those 

greater than 2.5μm) when exposed to smoke. Note that the sensors were not equally distant 

from the origin of the smoke due to their differences in size, so the small dust sensor was 

exposed to smoke before the professional sensor.

It can be seen in Fig. 6 that the spirometer PEF and FEV1 readings decreased when the 

individual with asthma was exposed to a room with smoke. Furthermore, the asthma risk 

labels generated by the analytics model accurately determined that the individual was at a 

high risk of an asthma attack when she entered the room. The individual with asthma also 

reported an average PEF value of 320.6±30.3 L/min during instances of no asthma 
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symptoms and little to no asthma risk. Compared to age and height-matched healthy 

persons, whose average PEF is approximately 380 L/min, it is evident that individuals who 

suffer from asthma have a lower PEF value at baseline. Thus, it is important to take several 

baseline measurements prior to using the app so that the machine learning model can 

appropriately interpret the individual’s asthma risk.

B. Evaluation of the Analytics Model

The analytics model to determine the overall asthma risk of a three class classifier had an 

accuracy of 80.10±14.13% (N = 59) after performing 10-fold cross validation (chance level: 

33.33%). As seen in Fig. 7, FEV1, PEF, dust density, and heart rate were found to be the 

most important features to determine the individual’s asthma risk in real-world settings. This 

plot shows that the wireless sensors were most important in predicting the overall risk of an 

asthma attack. Note that when compared to a pulse oximeter (Onyx II, Nonin Medical Inc., 

Plymouth, MN), the heart rate data had a 96.74% accuracy under lying, sitting, standing, 

walking, and running conditions. Finally, the features presented here show how prediction 

models for asthma require both physiological as well as environmental data, as triggers for 

this disease are multifaceted.

V. DISCUSSION

The results of this study describe the feasibility of using wireless sensors and RESTful API 

data in real world settings to assess the risk of an asthma attack. The dust sensor and 

spirometry data sent through the HIPAA compliant hybrid cryptography framework were 

able to accurately detect known asthma triggers, and appropriate risk classifications were 

sent to the user in real time (see Figs. 5 and 6).

During the feasibility study on the adult individual with asthma, the analytics model was 

able to accurately assess the overall risk of an asthma attack. Specifically, the model was 

able to determine the risk of an attack with an 80% accuracy for a three class classifier, 

which can be improved with future testing in more individuals. The resulting important 

features found from the analytics model were multifaceted, and included both environmental 

and physiological features. As seen in Fig. 7, heart rate information was an important feature 

for determining the risk of an attack. Thus, future asthma apps will require the use of a 

smartwatch that has photoplethysmography (PPG) sensors to continuously measure heart 

rate so that the risk can be better predicted.

Although only tested in one adult individual, this smart-watch asthma app provides an ideal 

infrastructure for future mHealth systems. Particularly, the hybrid cryptographic framework 

used to send wireless sensor data to the cloud for real-time analytics followed HIPAA data 

transfer standards and ensured secure key exchange between the smartwatch and cloud. This 

method allowed our system to achieve robust and reliable privacy, confidentiality, integrity, 

and authenticity of the data without affecting the system’s performance.

Future research using this smartwatch asthma app will include testing the system on several 

children who suffer from asthma. These experiments will be a part of future clinical trials 

through the National Institute of Biomedical Imaging and Bioengineering (NIBIB) Los 
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Angeles (LA) Pediatric Research using Integrated Sensor Monitoring Systems (PRISMS) 

Center. In addition, as part of the NIBIB LA PRISMS Center, future developments of the 

app will include synchronization with caregiver’s and parent’s smart phones to display 

trendlines, provide action plans, and gamified incentives to allow caregivers to monitor and 

manage their child’s asthma symptoms. The security and data transfer infrastructure 

developed for this smartwatch app will also be used to standardize asthma apps across 

different platforms. If successful, this smartwatch asthma app may become an important tool 

for the management of asthma in children and will provide an appropriate framework for 

future mHealth systems.

VI. CONCLUSIONS

The work presented here describes an end-to-end asthma attack risk prediction system that 

informs individuals of their overall risk of an asthma attack through an easy to understand 

user interface on a smartwatch. The proposed system preserves users’ health related data 

through a HIPPA compliant cryptographic framework, and minimizes the need for e-diary 

requests through automated wireless sensing and RESTful APIs. These features of the 

system are important in future testing with children who suffer from asthma, as it will lead 

to increased compliance and adherence to the app while maintaining HIPAA compliant data 

transmission for the self-management care program.
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Fig. 1. 
System overview of the smartwatch asthma app.

Hosseini et al. Page 11

Int Conf Wearable Implant Body Sens Netw. Author manuscript; available in PMC 2018 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Circuit diagram of the wireless dust sensor.
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Fig. 3. 
Asthma app risk value user interface, showing the overall asthma risk and button to collect 

spirometer data on the smartwatch. Green risk level represents a low overall asthma risk, 

yellow risk level represents a moderate asthma risk, while red represents a high asthma risk.
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Fig. 4. 
Hybrid cryptography framework implemented to maintain HIPAA compliant security and 

privacy.
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Fig. 5. 
Processed dust data (blue) compared to a professional dust sensor (red) and the 

corresponding asthma risk labels when the sensors were exposed to smoke.
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Fig. 6. 
PEF and FEV1 spirometer readings and corresponding asthma risk labels when the 

individual entered a smoky room.
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Fig. 7. 
Most important features of the analytics model by weight. Red bars represent the average 

weight and black lines represent the standard deviation of the weights after 10-fold cross-

validation.
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