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Abstract

Agricultural drought, a common phenomenon in most parts of the world, is 
one of the most challenging natural hazards to monitor effectively. Land 
surface water index (LSWI), calculated as a normalized ratio between near 
infrared (NIR) and short-wave infrared (SWIR), is sensitive to vegetation and 
soil water content. This study examined the potential of a LSWI-based, 
drought-monitoring algorithm to assess summer drought over 113 Oklahoma
Mesonet stations comprising various land cover and soil types in Oklahoma. 
Drought duration in a year was determined by the number of days with LSWI 
<0 (DNLSWI) during summer months (June–August). Summer rainfall 
anomalies and LSWI anomalies followed a similar seasonal dynamics and 
showed strong correlations (r 2 = 0.62–0.73) during drought years (2001, 
2006, 2011, and 2012). The DNLSWI tracked the east-west gradient of 
summer rainfall in Oklahoma. Drought intensity increased with increasing 
duration of DNLSWI, and the intensity increased rapidly when DNLSWI was 
more than 48 days. The comparison between LSWI and the US Drought 
Monitor (USDM) showed a strong linear negative relationship; i.e., higher 
drought intensity tends to have lower LSWI values and vice versa. However, 
the agreement between LSWI-based algorithm and USDM indicators varied 
substantially from 32 % (D 2 class, moderate drought) to 77 % (0 and D 0 
class, no drought) for different drought intensity classes and varied from ∼30
% (western Oklahoma) to >80 % (eastern Oklahoma) across regions. Our 
results illustrated that drought intensity thresholds can be established by 
counting DNLSWI (in days) and used as a simple complementary tool in 
several drought applications for semi-arid and semi-humid regions of 
Oklahoma. However, larger discrepancies between USDM and the LSWI-
based algorithm in arid regions of western Oklahoma suggest the 
requirement of further adjustment in the algorithm for its application in arid 
regions.

Keywords: Drought duration, Drought intensity, Land surface water index, 
Summer drought

Introduction



Drought is a recurrent and inevitable threat in several parts of the world 
(Hulse and Escott 1986; Shahid and Behrawan 2008; Sönmez et al. 2005). 
Southern Great Plains of the USA experience drought on varying spatial and 
temporal scales (Basara et al. 2013; Christian et al. 2015). Drought is also 
among the most difficult of all natural hazards to monitor effectively.

Yet, the repeated occurrence of drought events has highlighted the need to 
develop effective drought-monitoring tools to assess the impacts of this 
phenomenon. Research to retrieve leaf water content from the reflectance 
acquired from satellite sensors has progressed for more than three decades. 
Tucker 1980 first suggested that the 1550–1750-nm spectral intervals were 
the best-suited band in the 700–2500-nm region for monitoring plant canopy 
water status from space. A number of broadband ratio and combination 
techniques using Thematic Mapper (TM) channel 4 (760–900 nm, near 
infrared) and TM channel 5 (1550–1750 nm, shortwave infrared) were 
proposed for remote sensing of plant water status (Hunt et al. 1987; Jackson 
et al. 1983). The combination of the near infrared (NIR) and short-wave 
infrared (SWIR) bands has the potential of retrieving vegetation canopy 
water content (Ceccato et al. 2001, 2002; Maki et al. 2004). The water-
related vegetation index computed from the combination of NIR and SWIR 
has different nomenclatures by different authors. Gao 1996 and Chen et al. 
2005 referred it the normalized difference water index (NDWI). Kimes et al. 
1981 used the term normalized difference infrared index (NDII). Similarly, 
Jurgens 1997 and Xiao et al. 2002a, b called the same combination of NIR 
and SWIR bands as the land surface water index (LSWI). Despite known by 
different names, the features they have in common is that the NIR spectral 
region serves as a moisture reference band and the SWIR spectral domain is 
used as the moisture-measuring band. The water-related vegetation index is 
a measurement of liquid water in vegetation canopies and hence is sensitive 
to the total amount of liquid water contained in vegetation when the 
vegetation cover is high. Some recent studies (Bajgain et al. 2015; 
Chandrasekara et al. 2011; Wagle et al. 2014) have identified LSWI as an 
index in extracting the vegetation water status and in drought detection.

Because agricultural drought occurs due to lack of soil moisture and the 
consequent water stress in the vegetation, a water-based index should also 
be used along with the greenness-related indices such as normalized 
difference vegetative index (NDVI) and enhanced vegetative index (EVI) to 
develop systematic and effective method of agriculture drought assessment 
(Bajgain et al. 2015; Chandrasekara et al. 2011; Tian et al. 2013; Wagle et al.
2014). The Moderate Resolution Imaging Spectrometer (MODIS) sensor on 
board the NASA Terra satellite platform provides continuous daily 
observations of the land surface. Our hypothesis is that the water-related 
vegetation index LSWI computed from time series MODIS images offers a 
new and improved capacity for drought monitoring. In this study, we 
evaluated the hypothesis over 113 Mesonet sites across Oklahoma under 
different land cover and soil types. Also, the drought intensity class classified



based on LSWI values corresponding to US Drought Monitor (USDM) drought 
intensity classes are further linked to the duration of LSWI <0 (DNLSWI) to 
establish a certain threshold of DNLSWI (in days) to define drought intensity 
classes. Therefore, results from this study will help in improving the 
capability of remote sensing vegetation drought monitoring by establishing 
LSWI as a complimentary tool to existing NDVI-based drought products. 
Specifically, we addressed the following research questions:

1. Is LSWI anomaly able to capture the drought events across multiple sites 
over years?

 2. Is LSWI-based drought-monitoring algorithm developed for two tallgrass 
prairie sites (Bajgain et al. 2015) applicable to quantify drought intensity 
over 113 Mesonet sites comprising various land cover and soil types in 
Oklahoma?

 3. What is the relationship between the DNLSWI and drought intensity 
classified by USDM?
 

Materials and methods

Data

Oklahoma Mesonet stations and rainfall data

An extensive environmental observation network is well established and 
distributed over Oklahoma, known as the Oklahoma Mesonet (Brock et al. 
1995). The Oklahoma Mesonet is a network of 120 automated stations with 
at least 1 in each 77 counties of Oklahoma. The Mesonet provides quality-
controlled measurements of meteorological and land-surface variables such 
as precipitation, temperature, and soil moisture at intervals spanning 5–30 
min depending on the variables (http://www.Mesonet.org/).

In this study, we used 113 Mesonet stations that have continuous 
measurements of meteorological parameters from 2000 to 2013. Retired and
replaced Mesonet stations were not considered because site replacements 
were on different MODIS pixels. The locations of the selected sites are 
presented in Fig. 1; biophysical features are presented in Table S1. In this 
study, we used the precipitation and soil water content (SWC) data for three 
summer months (June–August) and calculated the rainfall and SWC 
anomalies from the 14-year mean (2000–2013). Additionally, the anomalies 
in rainfall calculated from 30-year rainfall data (climatological normal) from 
Cooperative Observer Program (COOP, National Weather Service) sites were 
compared with the rainfall anomalies computed from a 14-year data from 
Mesonet stations, two from each climate division of Oklahoma.



FIGURE 1 The location and distribution of the Mesonet sites (113 Mesonet stations) in Oklahoma, USA

MODIS surface reflectance and vegetation index data

The MODIS is an instrument on board the NASA’s Terra (EOS am) and Aqua 
(EOS pm) spacecraft. This sensor provides simultaneous observations of the 
atmosphere, terrestrial surface, and oceans. The MODIS instrument has a 
temporal resolution of 1 to 2 days with high radiometric resolution images 
(12 bit). It collects data for 36 spectral bands, and the following 7 of these 
bands are designated mainly for land surface and vegetation studies: blue 
(459–479 nm), green (545–565 nm), red (620–670 nm), near infrared (nir1 
841–875 nm and nir2 1230–1250 nm), and shortwave infrared (swir1 1628–
1652 nm and swir2 2105–2155 nm; Lillesand et al. 2014).

The 8-day MODIS land surface reflectance product (MOD09A1) at a 500-m 
spatial resolution was used in this study. The MOD09A1 time series datasets 
for individual Mesonet sites were downloaded from the data portal managed 
by the Earth Observation and Modeling Facility at the University of Oklahoma
(http://eomf.ou.edu/visualization). The geographic locations of the Mesonet 
sites were used to retrieve MODIS data at pixel level. For each MODIS 8-day 
composite, surface reflectance (ρ) values for visible, NIR, and SWIR bands 
were used to calculate NDVI, EVI, and LSWI as



USDM data

The USDM map is a weekly drought product developed by a partnership of 
various agencies including National Oceanic and Atmospheric Administration 
(NOAA), the US Department of Agriculture (USDA), and the National Drought 
Mitigation Center (NDMC) 
(http://www.drought.unl.edu/MonitoringTools/USDroughtMonitor.aspx). The 
USDM includes a weekly national map displaying dryness divided into five 
categories, or levels of intensities, from D 0 to D 4, based on a percentile 
ranking of numerous indicators or indices (Svoboda et al. 2002). The D levels
are based on a blend of different indices including the Palmer drought index, 
CPC soil moisture model, US Geological Survey (USGS) weekly streamflow, 
standardized precipitation index (SPI), and satellite vegetation health index 
(Kogan 2002; Kogan et al. 2004). The D levels are labeled by drought 
intensity or severity, with D 1 being the least intense and D 4 the most 
intense. The D 0 classification or drought watch areas are abnormally dry and
may be heading into drought or recovering from drought, but conditions 
have not yet returned to normal (Svoboda et al. 2002). The USDM archived 
weekly maps are available at http://droughtmonitor.unl.edu/archive.html.

For this study, weekly USDM drought maps for June–August (2000 to 2013) 
were provided by the NDMC in shapefile format and then rasterized to the 
10-km ALEXI CONUS grid. Numerical values were assigned to each drought 
category, with no drought conditions set to 0, abnormally dry conditions (D 0)
to 1, moderate drought (D 1) to 2, severe drought (D 2) to 3, extreme drought 
(D 3) to 4, and exceptional drought (D 4) to 5.

Methods

LSWI-based agricultural drought-monitoring algorithm

The LSWI-based algorithm uses LSWI as an indicator to assess agricultural 
drought in tallgrass prairie (Bajgain et al. 2015). Generally, green vegetation 
has positive LSWI values (>0) and dry vegetation has negative LSWI values 
(<0). Therefore, LSWI <0 during growing season indicates drought in 
tallgrass prairie in Oklahoma (Bajgain et al. 2015; Wagle et al. 2014). The 
duration of LSWI <0 (DNLSWI) during the summer months (June–August) was
used to estimate the drought duration and drought intensity. To illustrate the
algorithm at single site, the dynamics of rainfall and LSWI in drought (2006) 
and pluvial year (2007) at Marena Mesonet station is presented in Fig. 2. The
LSWI was greater than zero throughout the growing season in 2007 when 
ecosystem received well-distributed rainfall, while the LSWI was less than 
zero for substantial number of days in 2006 due to rainfall associated with 
drought (Dong et al. 2011). Therefore, we used DNLSWI during the summer 
months (June–August) to reflect the duration (length) of drought period as an
algorithm to assess summer drought of the ecosystem.



FIGURE 2 Seasonal dynamics and interannual variations of daily rainfall and land surface water index 
(LSWI) in drought (2006) and pluvial (2007) years at Marena, Oklahoma

Anomaly analysis of summer rainfall and LSWI

Mean LSWI was computed for the summer months, and anomalies were 
determined for each station during drought years (2001, 2006, 2011, and 
2012) from the 14-year mean (2000–2013). Similarly, summer rainfall 
anomalies were computed for each station during drought years based on 
the 14-year mean. The similarity between the LSWI anomaly and summer 
rainfall anomaly for each station was determined by evaluating the 
correlation between them. This method identified the stations where LSWI 
anomalies followed the trends of summer rainfall anomalies, thus providing a
direct method to assess ecosystem drought.

Results

Characteristics of summer rainfall over 113 Mesonet sites and identification 
of drought years based on summer rainfall

Figure 3a shows the box plots of the total summer rainfall that occurred in 
each year over the 113 Mesonet sites. The dispersion in the rainfall among 
the 113 stations is compared for each year, and the line in the box 
represents the median summer rainfall amount, which is equivalent to the 
50th percentile of observations (113 stations). The median summer rainfall 
was highest (455 mm) in 2007, while the years including 2001, 2006, 2011, 
and 2012 had relatively low median rainfall. For example, 50 % of the 
observations were below 111 mm of summer rainfall in 2011, indicating dry 
conditions at more than half of the Mesonet stations and was consistent with 
significant drought during the period (Hoerling et al. 2013; Tadesse et al. 
2015).



FIGURE 3 Summer rainfall across 113 Mesonet sites during 2000–2013 (a). The solid lines in the box 
represent the median, and the dots above and below the box represent the 95th and 5th percentiles, 
respectively. Yearly summer drought analysis by rainfall deficiency: percentage of the Mesonet 
stations under three drought categories (severe, moderate, and normal) for 2000–2013 (b). The 
frequency distribution of site-year grouped under different summer rainfall regimes (c) for whole study
period (2000–2013) and for drought years (2001, 2006, 2011, and 2012). Correlation of rainfall 
anomalies calculated from 30-year rainfall data from Cooperative Observer Program (COOP) and 15-
year rainfall data from Mesonet stations (d)

The analysis of summer drought for each year (2000–2013) was computed 
by calculating the average summer rainfall from the14-year average. 
Precipitation values representing 50 and 25 % of the long-term average 
rainfall were calculated for each station. These values were then deducted 
from the long-term average at every station to obtain values of 25 and 50 % 
precipitation. If the annual rainfall was between 25 and 50 % deficiency, then
it was classified as moderate drought. If the annual rainfall was less than the 
value of 50 % deficiency, then it was classified as severe drought. For 
example, at the Acme Mesonet station:



Thus, the summer rainfall at Acme in 2011 was less than the calculated 50 %
deficiency and was subsequently classified as severe drought.

Based on annual rainfall deficiency, the majority of the stations received less
than normal amounts of rainfall in 2001, 2006, 2011, and 2012, whereas 
stations received normal to above normal rainfall in 2004, 2007, 2008, and 
2013 (Fig. 3b). For example, in 2011, drought occurred at nearly all stations, 
whereby 70 % of stations included at least the moderate drought 
classification with 29 % of those classified as severe.

A frequency distribution was completed for drought periods when compared 
with the total period by computing total summer rainfall (June–August) for 
1582 site-years (14 years × 113 sites) of total data. The results displayed in 
Fig. 3c demonstrate that drought site years have a significant right skew in 
distribution, whereby the summer rainfall ranged from 50 to 350 mm with 
the greatest number falling within 150-mm bin. Conversely, the frequency 
distribution for all years (drought plus normal) ranged from 50 to 500 mm 
with the highest number falling within the 250-mm bin.

Figure 3d shows the anomalies in summer rainfall calculated from a 30-year 
rainfall data (climatological normal) from COOP sites compared with the 
rainfall anomalies computed from a 14-year data from Mesonet stations, two 
from each climate divisions of Oklahoma. The correlation analysis showed a 
strong relationship (r 2 = 0.91) between the anomalies of rainfall obtained 
from two data sources, suggesting that drought years (2001, 2006, 2011, 
and 2012) identified in our analysis can represent the climatic extremes of 
Oklahoma in the last decade based on climatological normal perspective.

The relationship between rainfall anomaly and LSWI anomaly

Once the drought years were selected, the relationship between summer 
rainfall anomalies and LSWI anomalies was investigated. Figure 4 displays 
the LSWI anomalies and summer rainfall anomalies for individual pixels over 
the 113 Mesonet stations during drought years (2001, 2006, 2011, and 
2012). Overall, the anomalous summer rainfall results in anomalous LSWI at 
most Mesonet stations during drought years. As such, the anomalies in 
summer rainfall and LSWI revealed a strong relationship between rainfall and
vegetation water content. For example, pixel-based correlation analyses 
between summer rainfall anomalies and LSWI anomalies are presented in 
Fig. 4 (inset graphs). For all identified drought years, strong relationships (r 2 
= 0.61–0.67) between anomalies of summer rainfall and anomalies of LSWI 
were identified. Although the magnitudes of the anomalies of summer 
rainfall and LSWI varied from year to year, the relationship between two 
parameters was consistently strong.



FIGURE 4 Dynamics of summer rainfall and LSWI anomalies in drought years a 2001, b 2006, c 2011, 
and d 2012 at 113 Mesonet stations. The inset graphs are the regression analyses between summer 
rainfall and LSWI anomalies (n = 113)

The relationship between SWC anomaly and vegetation indices anomaly

Figure 5 presents the Pearson’s correlation coefficients (r) between SWC 
anomalies and three vegetation anomalies (NDVI, EVI, and LSWI). As 
expected, a better relationship (r LSWI = 0.52) of SWC anomalies was 
observed with LSWI anomalies than NDVI anomalies (r NDVI = 0.40) and EVI 
anomalies (r EVI = 0.44). We examined the correlation coefficients (r LSWI, r EVI, 
and r NDVI) for all 113 Mesonet stations. Figure 6 compares the r values 
derived for NDVI, EVI, and LSWI anomalies with SWC anomalies. The analysis
showed the significant difference between r LSWI and r NDVI and r LSWI and r EVI 
with p values less than 0.0001. As a whole, there are significant r values that
fall above the 1:1 line towards the r LSWI. The r LSWI was 25 and 20 % higher 
than r NDVI and r EVI, respectively, suggesting LSWI as a better indicator of soil 
water content as compared to NDVI and EVI.



FIGURE 5 Correlation analysis between soil water content (SWC) anomaly and vegetation index (VI) 
anomalies a NDVI, b EVI, and c LSWI. Each point represents the VI anomalies and SWC anomaly value 
for each month of the summer from 2000 to 2013

FIGURE 6 Relationship between the 1.0 values of correlation coefficients of VI anomalies and SWC 
anomaly. Each point represents the correlation coefficient obtained by plotting monthly anomaly 
values for each station

The relationship between LSWI-based drought duration and summer rainfall

Figure 7 shows the scatter plot of DNLSWI versus total summer rainfall 
across 113 Mesonet stations binned into 50-mm classes. The result 
highlights that LSWI was highly sensitive to summer rainfall and the DNLSWI 



rapidly decreased as the amount of rainfall increased. Specifically, the 
DNLSWI was more than 50 days when summer rainfall was less than 150 
mm, indicating water stress (LSWI <0) during active growing period of the 
vegetation. Conversely, the DNLSWI was less than 2 weeks when summer 
rainfall was greater than 400 mm.

FIGURE 7 Relationship between summer rainfall and duration of LSWI <0. Each point is an average for 
all Mesonet stations binned by 50 mm of summer rainfall

The longitudinal gradient of summer rainfall is a widely recognized pattern in
Oklahoma, where the amount of rainfall decreases from east (mean summer 
rainfall ∼300 mm) to west (mean summer rainfall ∼150 mm; Fig. 8a). To 
understand the occurrence of drought across the rainfall gradient of 
Oklahoma, we counted total DNLSWI during summer months (June–August) 
from 2000 to 2013 for all Oklahoma Mesonet stations. As expected, a distinct
increasing pattern of total number of DNLSWI was observed across east-west
gradient of Oklahoma (Fig. 8b), which was opposite to the rainfall pattern. 
The sites towards the east with greater amount of average summer rainfall 
had the least DNLSWI, whereas a general increment of DNLSWI was 
observed with lesser precipitation as we moved from east to west.



FIGURE 8 The performance of LSWI to track east-west rainfall gradient of Oklahoma: a average 
summer rainfall gradient from east to west and b DNLSWI (total number of days with LSWI <0 during 
summer months) from 2000 to 2013 for 113 Mesonet stations arranged by east-west geographical 
locations

Characteristics of DNLSWI and USDM drought history (2000–2013)

The pattern associated with DNLSWI for 113 Mesonet stations during the 
study period (2000–2013) is presented as box plots in Fig. 9a. These plots 
revealed the distribution of DNLSWI among the Mesonet sites within a year 
and among years. The median DNLSWI was relatively greater during the 
drought years (2000 = 32 days, 2006 = 48 days, 2011 = 56 days, and 2012 
= 56 days) than non-drought years. The distribution as well as the median 
DNLSWI was the lowest in 2007, which was a pluvial year and the wettest 
summer on record in central Oklahoma (Arndt et al. 2009; Christian et al. 
2015; Dong et al. 2011). Figure 9b shows the frequency distribution of the 
Mesonet stations (113 stations over 14 years) with associated DNLSWI (113 
stations over 3 months) for the total study period and drought years 
separately. The count was highest for DNLSWI equal to 8 days because it is 
very common that majority of the stations could have LSWI below zero for 8 
days over limited period during seasonal drying. However, the ratio of 
drought years to all years increased as the DNLSWI increased, suggesting 
that drought years contributed larger counts for the higher DNLSWI (Fig. 9c). 
For example, ratio of 0.13 for DNLSWI equal to 8 days means only 13 % of 
the total counts were contributed by the drought years, while for DNLSWI 
equal to 64 days, drought years contributed 63 % of the total counts, 
suggesting higher DNLSWI during the drought years.



FIGURE 9 Duration of LSWI <0 (DNLSWI) across 113 Mesonet sites during 2000–2013 (a). The solid 
lines in the box represent the median, and the dots above and below the box represent the 95th and 
5th percentiles, respectively. The frequency distribution of the Mesonet stations (113 stations × 14 
years) with associated DNLSWI for 2000–2013 (b) and the ratio of number of stations with drought 
years to total years (drought and normal) for respective DNLSWI bins (c)

Figure 10 shows the weekly percentage of Oklahoma Mesonet sites affected
by D 0 to D 4 drought from 2000 to 2013. The drought periods spanning 
2006, 2011, and 2012 were evident and reached D 4 status for extended 
periods. The plot also depicts the pluvial condition during 2007 when D 0 
drought occurred in a very limited temporal window. However, significant 
areas, especially sites in western Oklahoma where drought conditions 
persisted even though majority of the state yielded above normal 
precipitation, showed higher-intensity summer drought in 2013, which was 
also considered as an overall pluvial year based on total year rainfall.



FIGURE 10 Percent of Oklahoma area covered by a USDM drought designation from 2000 to 2013. The 
designations 0 (no drought), D 0 (abnormally dry), D 1 (moderate drought), D 2 (severe drought), D 3 
(extreme drought), and D 4 (exceptional drought) are the drought intensity classes defined by USDM 
(data source: US Drought Monitor)

The relationship between LSWI-based drought severity and USDM drought 
intensity categories

The LSWI values corresponding to its NDVI values for each week based 
on USDM weekly map are plotted in Fig. 11. Results showed that larger
negative values of LSWI corresponded to higher drought intensity 
categories identified by USDM classes (i.e., D 3 and D 4—extreme and 
exceptional), while no drought and abnormally dry categories (0 and D 
0) corresponded to the larger positive LSWI values. Further, moderate 
to severe drought categories (D 1 and D 2) corresponded to 
intermediate LSWI values. Based on this LSWI-NDVI two-dimensional 
scatter plot, we identified the range of LSWI values for each drought 
categories used by USDM in Bajgain et al. 2015. Due to the large 
number of site years and mixture of land cover types, the groupings of 
drought intensity could not be visualized effectively within the range 
formulated on observations at two tallgrass prairie sites. However, the 
general pattern that higher drought intensity tends to have lower LSWI 
values and vice versa was observed for all land cover types as well as 
grasslands and croplands. Compared to all land cover types and 
croplands, grasslands showed better relationships to the drought 
intensity categories.



FIGURE 11 Relationship between NDVI and LSWI for individual pixels of the all types (a), grasslands (b),
and croplands (c) of land cover sites for June–August over a 14-year study period (2000–2013). Each 
point in the plot represents the weekly observation of drought intensity designation for the study area 
as determined from US Drought Monitor (USDM) drought maps 
(http://droughtmonitor.unl.edu/MapsAndData/)

To determine the agreement between LSWI-based drought intensity 
classification based on the LSWI value range and USDM drought categories 
(Table 1), we computed the percentage of pixels that fall within the defined 
LSWI value range for the particular drought class. The assessment was 
performed for different land cover types (all land covers, grasslands, and 
croplands; Fig. 12a). Overall, the agreement was higher (>60 %) for low-
intensity (0 and D 0) and high-intensity (D 3 and D 4) droughts (the two ends 
of drought class), but the intermediate drought intensity (D 1 and D 2) had 
relatively low agreement. However, the relationship was slightly improved 
when computed for individual land cover types with grasslands showing the 
best agreement. Furthermore, we analyzed the agreement of the LSWI-based
drought classification for nine climate divisions of Oklahoma to further 
analyze the spatial variability of drought tracking by the LSWI-based 
algorithm (Fig. 12b). The LSWI identification showed better agreement (>80 
%) with USDM 0 and D 0 (no dry and abnormally dry) classes in the eastern 
humid areas, whereas the agreement was low (<30 %) for the same drought 
classes in the western arid areas (panhandle). However, the western region 



identified as severe to exceptional drought (D 3 and D 4) by USDM matched 
very well with the new LSWI-based classification. For example, 91 % of the 
pixels were classified as severe and exceptional droughts in the panhandle 
region, whereas USDM also identified the same drought intensity. However, 
only 19 % of the low-intensity drought pixels matched well with the lower-
intensity drought classification of USDM.

FIGURE 12 Agreement of the drought intensity class to the LSWI-based classification adapted from 
Bajgain et al. (2015) for different (a) land cover and (b) climate divisions of Oklahoma (NE 
northeastern, EC east central, SE southeastern, CT central, NC north central, SC south central, WC 
west central, SW southwestern, and PH panhandle)

The relationship between USDM drought intensity, DNLSWI, and average 
LSWI value is presented in Fig. 13. The general observation was that 



drought intensity increased as DNLSWI became longer. For short DNLSWI 
periods (0–24 days), the drought impact was sharp and then plateaued 
between 24 and 48 days. As DNLSWI became larger (>48 days), the 
addition of each new day resulted into larger drought impacts identified as 
a higher drought intensity class by the USDM (Fig. 13). This relationship was
further supported by the average LSWI values which declined as DNLSWI 
increased. The decreasing pattern of average LSWI was also persistent for 
the shorter DNLSWI but declined sharply as the DNLSWI was longer than 
50–60 days.

FIGURE 13 Relationship between USDM-based drought intensity classes, DNLSWI (duration of LSWI <0)
and average LSWI. The USDM drought intensity classes 0, D 0, D 1, D 2, D 3, and D 4 are set to 0, 1, 2, 3, 
4, and 5, respectively

Discussion

The correlation analyses between summer rainfall anomalies and LSWI 
anomalies in drought years revealed sensitivity of LSWI to summer rainfall 
variability in Oklahoma. Higher negative anomalies in summer rainfall 
resulted in larger decline in LSWI values, an indication of drought-impacted 
vegetation (Bajgain et al. 2015; Wagle et al. 2014). Regardless of different 
land cover and soil types across 113 Oklahoma Mesonet sites, LSWI tracked 
droughts in majority of the study sites. However, it over-classified the low-
intensity droughts in arid western regions of Oklahoma. Given the 
anticipated future increase in precipitation variability (Liu et al. 2012; Zhang 
and Nearing 2005), ecosystems in this region are expected to be particularly 
susceptible to droughts resulting large losses for food and livestock 
industries. Our results suggested that the ability of LSWI to track the summer
rainfall anomalies could be one of the important features to assess and track 
agricultural droughts. Our finding on the performance of LSWI to track water 
content of the ecosystem was consistent with the results by Chandrasekara 



et al. 2011, which demonstrated LSWI as a potential indicator of increasing 
water content in the ecosystem following the onset of monsoon in India. 
Since commonly used NDVI and EVI are not always good indicators of 
vegetation conditions especially during adverse climatic conditions for 
vegetation growth (Gamon et al. 1995; Gamon et al. 1993), LSWI can better 
track the drought-impacted vegetation because of its higher sensitivity to 
drought (Bajgain et al. 2015; Chandrasekara et al. 2011; Tian et al. 2013; 
Wagle et al. 2014). The opposite longitudinal patterns of DNLSWI and 
summer rainfall suggested that counting the DNLSWI (in days) has the ability
in tracking the drought across various Mesonet sites of Oklahoma. The 
results illustrate that LSWI can be used as an effective tool to monitor 
dryness persisted in the diverse (land cover and soil types) ecosystems in 
semi-arid and semi-humid regions in eastern and central Oklahoma. 
However, the spatial variability of drought tracking ability was observed 
based on drought intensity. In eastern humid regions of Oklahoma, both 
USDM-D and LSWI-D showed no drought (0 drought class) when average 
summer rainfall was above 250–300 mm (Table 2). However, in western dry 
region of Oklahoma, USDM- and LSWI-based drought categories were 
different. For example, above 150 mm of summer rainfall was considered as 
no drought categories by USDM, but LSWI showed severe drought category 
(D 3) with 150–300 mm of summer rainfall. The less agreement between our 
LSWI-based and USDM drought categories for the low drought intensity 
categories is because of the fact that dry areas like panhandle region of 
Oklahoma has higher negative LSWI values, and consequently, the LSWI-
based algorithm showed higher drought severity. LSWI values are considered
proxy of vegetation water content and are the physical values, whereas 
USDM considered several factors including local reports of drought 
conditions (such as reports from water managers and residents) (Svoboda et 
al. 2002). This made USDM assessment more locally adjusted despite of 
coarse spatial resolution.

One of the main reasons behind attempting to establish the relationship 
between summer rainfall and LSWI was to determine the hydrological status 
of the ecosystem. The total amount of summer rainfall received by a 



particular ecosystem in a particular year could be related to DNLSWI, which 
in turn can be inferred in terms of drought intensity. Although our results 
showed a smooth decreasing trend of DNLSWI with increasing summer 
rainfall, site-specific relationship could not be established (Bajgain et al. 
2015) because averaging multiple data points produced a smoother overall 
trend. Thus, additional experiments are needed to identify the threshold 
values for each site with different soil and crop types in the future. Rainfall 
expressed as a percentage departure from the long-term average for a given
period is widely used index for drought monitoring, where monitoring other 
parameters such as soil moisture or evapotranspiration are costly and 
difficult (Nicholson 1989; Nicholson 2000). With this approach, where total 
summer rainfall is inferred in terms of DNLSWI for assessing drought is 
extremely valuable since LSWI is derived from satellite sensors. Therefore, it 
is very important to apply this information rendered from LSWI and summer 
rainfall relationship while developing drought-monitoring network for this 
region.

Knowledge of LSWI-based drought intensity could be critical for assessing 
drought with different parameters like DNLSWI. Quantifying drought intensity
in terms of LSWI and defining a threshold for each USDM drought class will 
be an important implication for a future drought-monitoring program. For 
example, secretarial disaster area determination and notification process 
depends on the USDM drought intensity classification for designating any 
geographical unit as a disaster area (USDA-FASA, 2015). The criteria used 
are the area should be under either D 3 or D 2 (at least 8 consecutive weeks) 
drought class. USDM drought classification involves a series of information 
for finding a threshold, comprised of complex procedures as well as could 
have a limited spatial precision because it relies on spatially interpolated 
climate data input (Tadesse et al. 2015). Our results suggested that this 
USDM drought intensity class can be linked with DNLSWI. The intersection of 
intensity curve and LSWIavg curves in Fig. 13 established a threshold point at 
which drought impacts increased sharply as LSWIavg declined. This threshold 
value is between the D 2 and D 3 drought intensity classes and can be 
inferred in terms of DNLSWI, which is approximately 60–62 days. Many 
agencies have used USDM drought intensity class thresholds to guide 
measures in a variety of assistance programs such as Livestock Forage 
Disaster Program (LFP), Emergency Haying and Grazing, Livestock Indemnity
Program, Noninsured Crop Disaster Assistance Program (NAP), and Crop 
Insurance Basics (Mallya et al. 2013; Mizzell and Lakshmi 2003; Otkin et al. 
2015). Such assistance programs can alternatively input DNLSWI thresholds 
for simple and easy operations as well as for a better precision in terms of 
spatial resolution (500 m). However, validation of this approach of LSWI-
based thresholds for such kind of applications remains a further research 
topic.

The MODIS-derived, LSWI-based drought assessment algorithm is simple and
has a higher spatial resolution (∼500). However, the LSWI-based drought 



algorithm can have a limitation when the reflectance from land surface is 
impacted by cloud cover (Jensen 2009). An appropriate gap-filling algorithm 
can create a continuous dataset, thereby reducing the effect of unreliable 
observations, which is needed for making the drought-monitoring algorithm 
robust. Another limitation is the threshold values used in the algorithm. We 
used LSWI <0 during the growing season as the indicator of agricultural 
drought in tallgrass prairie based on calibration made on two study sites 
(Bajgain et al. 2015). Although the algorithm showed good agreement in 
most of the Mesonet sites, the DNLSWI clearly over-classified D 0 and D 1 
drought conditions in the arid regions of Oklahoma. This is because these 
regions receive less rainfall than the semi-arid to semi-humid regions of 
eastern Oklahoma, where the algorithm was originally calibrated. This result 
suggests that it is necessary to further refine the LSWI-based algorithm to 
better represent drought severity in arid western regions of Oklahoma. One 
of the possible adjustments could be the LSWI threshold values for the arid 
region considering more negative magnitudes of the LSWI values in arid 
regions. This adjustment could reduce the discrepancies observed between 
the LSWI and USDM drought classification especially for lower drought 
intensity resulted from the larger negative values of LSWI, a common feature
of arid region.

Conclusions

Results of LSWI analysis for the period of 2000–2013 for 113 Mesonet 
stations across Oklahoma revealed valuable information within the context of
drought tracking. A strong correlation and dynamics between LSWI 
anomalies and summer rainfall anomalies comprises a fact that LSWI is 
sensitive to rainfall variations and can be used as an indicator of drought 
occurrence in an ecosystem. It is then deduced that DNLSWI had the close 
association with the vegetation condition under rainfall variations. Pixel-
based drought intensity classification has been tested to validate the LSWI-
based drought class for different land cover and soil types. Despite a 
relatively lower degree of agreement for the intermediate drought classes, 
the LSWI-based drought intensity class was reliable for low- and high-
intensity classes defined by USDM. There was a longitudinal sensitivity for 
low-intensity droughts between eastern and western Oklahoma as shown by 
lower agreement of D 0 and D 1 drought with USDM in panhandle region 
(western Oklahoma). The drought assessment at larger scale could be made 
more effective by incorporating information and features of LSWI such as 
DNLSWI from a site level to a regional scale with further improvement for 
arid regions, where larger negative LSWI values are common. The analogy of
DNLSWI to USDM drought intensity class could be made complement in 
current drought-monitoring program and algorithms. Results also 
demonstrated that by counting the number of DNLSWI, drought intensity 
thresholds can be established and used as a simple complementary tool in 
several applications.
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