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aDepartment of Plant Pathology, The Ohio State University, Columbus, Ohio, USA
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cDepartment of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
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ABSTRACT We report here the improved draft genome sequence of Bacillus sp.
strain YF23, a bacterium originally isolated from switchgrass (Panicum virgatum)
plants and shown to exhibit plant growth-promoting activity. The genome com-
prised 5.82 Mbp, containing 5,933 genes, with 193 as RNA genes, and a GC con-
tent of 35.10%.

Bacillus is a genus of Gram-positive and rod-shaped bacteria in the phylum Firmic-
utes. Bacillus spp. generally produce endospores, which can help the bacteria

survive under stress conditions, such as extreme temperature, or under terrestrial soil
conditions, which experience periodic drought stress (1–3). Some strains of Bacillus
have been reported to promote the growth of different plants through diverse mech-
anisms (4–6). Bacillus sp. strain YF23 originated from switchgrass (Panicum virgatum L.
var. Alamo) plants, one of the most important biofuel crops (7). Bacillus sp. YF23 was
isolated from the endophytic compartment of switchgrass, which was growing on a
reclaimed coal-mining site in western Kentucky. This bacterium showed significant
growth-promoting activity on greenhouse-propagated switchgrass plants, indicating its
potential to benefit the host plant under certain conditions and increase the yield
and/or fitness of the biofuel crop (7). The aim of this study was to generate the genome
of Bacillus sp. YF23 found in the endophytic compartment, as this may provide clues
into its metabolic features and mechanisms for host interaction.

The switchgrass plants were collected from a coal-mining site in Kentucky (7, 8).
Then, the shoots and roots of the switchgrass plants were cut into 3- to 5-cm segments
and were sterilized with 20 to 30% Clorox bleach for 15 min to kill the surface-localized
microbes. The segments were washed with the sterilized water 3 to 5 times. Further, the
plant samples were cut into 1- to 1.5-cm segments and put on the plates with the
tryptic soy agar medium (Sigma, USA). The plates were incubated in an incubator with
a constant temperature of 26°C for 3 to 5 days. Bacterial strains from different tissues
were isolated and further purified by growing them on the tryptic soy agar medium
plates 2 to 3 times. One of the isolates, Bacillus sp. YF23, was then obtained and further
purified (7, 8). For DNA extraction, Bacillus sp. YF23 was first cultured in the tryptic soy
broth medium (Sigma) and grown on a shaker at room temperature for 1 to 2 days.
Then, the broth containing bacterial cells was centrifuged, and the cell pellets were
used for DNA extraction. The genomic DNA was extracted by using the cetyltrimeth-
ylammonium bromide (CTAB) approach developed by the Department of Energy Joint
Genome Institute (DOE-JGI [9]). The genomic DNA was sequenced at the DOE-JGI using
Pacific Biosciences (PacBio) technology. The PacBio SMRTbell library was constructed
and sequenced with 86� depth (10).
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A total of 5,820,595 genome sequence reads were generated for Bacillus sp. YF23,
yielding an assembly of 7 contigs (Fig. 1), by using Circos software analysis with the
default settings (11). The code in its entirety, including specific parameters and settings,
used to generate Fig. 1 can be found in a GitHub repository (see https://github.com/
Wang-Cankun/Bacillus-sp.-YF23-Circos-scripts). The average read length for raw reads
of �5 kb was 7,849 bp. Reads were assembled, quality controlled, and error corrected
using HGAP version 2.3.0 with the default settings (12). The scaffold N50 value is 2 Mb.
The genome annotation was carried out using the JGI Integrated Microbial Genome
(IMG) system (13). Genes were identified using Prodigal 2.5 (14). The genome contains
a total of 5,933 genes and has 35.10% GC content. The numbers of total protein-coding
genes and protein-coding genes with predicted function are 5,740 and 4,670, respec-
tively. The numbers of genes in biosynthetic clusters and genes coding signal peptides
are 568 and 268, respectively. A total of 193 RNA genes were identified. Among them,
44 are rRNA genes, 116 are tRNA genes, and 33 are other RNA genes. For the rRNA
genes, 14 are 5S rRNA, 14 are 16S rRNA, and 16 are 23S rRNA (Fig. 1).

The genome information provides insight into the functional mechanisms and
application of this beneficial bacterium in enhancing switchgrass plant growth and
health for biofuel production.

Data availability. The whole-genome sequence has been deposited at DDBJ/EMBL/
GenBank under the accession no. PRJNA243950. The version described in this paper is the
first version. The associated sequence data can also be found at the Joint Genome Institute
(JGI) portal with the IMG taxon oid no. 2603880214 (https://genome.jgi.doe.gov/portal/
BacillusspYF23_FD/BacillusspYF23_FD.info.html).
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FIG 1 Circular representation of the Bacillus sp. YF23 genome generated using the Circos software. Features include the following: ring 1, 7 contigs of
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a 5-kb window; ring 9, RNA genes.
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