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Abstract

This paper presents the formulation of an anisotropic damage model that incorporates the local-
ized dissipative mechanism associated to the formation of cracks in a brittle material (concrete).
This mechanism is characterized as the inelastic work done by the stresses on the singular strains
(a delta function) corresponding to the crack displacements. The singularity of these fields in a
local neighborhood of a material point is considered in the proposed constitutive model through
the formalism of strong discontinuities without smoothing. The model is incorporated in a stan-
dard formulation of the equilibrium of the solid (the large-scale problem), involving in particular
smooth displacements and strains. This step involves matching the dissipation observed in the
large-scale problem with the dissipation of the proposed local model. It is shown that this method-
ology leads to a well-defined formulation. Furthermore, the finite element implementation of the
proposed formulation arises naturally in the context of the enhanced strain finite element meth-
ods. The proposed method involves no regularization of the discontinuities and leads to mesh size
independent solutions. Connections with traditional smeared crack methods are identified at this
numerical level. Representative numerical simulations involving general unstructured meshes are
presented.

1. Introduction

The failure of brittle materials is characterized by the formation and propagation of
cracks in the material. While the response of the cracked solid softens with further loading,
a degraded (damaged) response is observed upon unloading. The highly oriented character
of this phenomenon leads to an anisotropic response of the damaged solid. Furthermore,
the final collapse of the solid is often preluded by the formation of highly localized patterns
of the deformation, in the form of localization bands. A characteristic example is cracking
of concrete in tension. It is the goal of this paper to formulate and implement numerically a
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model of anisotropic damage that simulates correctly these particular aspects of the failure
of brittle materials.

Local continuum formulations based on a rate-independent stress/strain relation are
known to lead to ill-posed problems when strain-softening is considered, due to a change
of type of the governing equations (loss of ellipticity). See the classical analyses of HiLL
[1962] and MANDEL [1966], and the recent complete analyses in RICE [1976], OTTOSEN
& RUNESSON [1991], and NEILSEN & SCHREYER [1993], among others. The main diffi-
culty can be traced to the modeling of the localized dissipative mechanisms that appear
in the final stages of the deformation of the solid. In brittle materials, this localized
dissipative mechanism can be characterized by the stress/crack-displacement softening co-
hesive laws governing the formation and propagation of cracks, as originally proposed in
BARENBLATT [1962] extending the approach of DUGDALE [1960] for ductile materials. See
also KACHANOV [1986] for the incorporation of continuum damage. The energy is dissi-
pated per unit area of created fracture surface (rather than per unit volume), leading to
non-physical solutions if a stress/strain softening law is assumed. At the numerical level,
these deficiencies lead to the well-known pathological dependence on the mesh size of finite
element solutions based on a local continuum with rate-independent strain-softening.

Finite element approaches accommodating directly stress/displacement relations were
introduced in HILLERBORG et al [1976] and HILLERBORG [1984] with the so-called discrete
crack approach. However, given that typical practical applications require the solution of
large-scale problems, it is of the main interest to maintain the local continuum framework
of the model and its numerical implementation. Furthermore, this framework is known
to characterize very well the pre-failure response of the material. These reasons have
motivated the search of alternative approaches to overcome the difficulties associated to a
local continuum with strain-softening.

Smeared crack models are commonly employed in the analysis of brittle materials as
it is the interest of this paper. See e.g. BAZANT & OH [1983], ROTS et al [1985], or the
more recent review of KROPLIN & WEIHE [1997], among many others. These models are
based on the introduction of the so-called “crack strains” as a smeared measure of the
accumulated crack displacements in a finite element. A stress-strain softening law is then
introduced, but such that it leads to the proper energy dissipation distributed over the
volume of the finite element. The dependence of the softening modulus on the element
size is then concluded, through the so-called characteristic length (see e.g. PIETRSZCZAK
& MROzZ [1981], and OLIVER [1989]). The constitutive model is then intricately related
with the finite element formulation: the mechanical model depends on the numerical im-
plementation through the mesh size. As described below, this relation is studied in detail
herein.

Alternative regularization approaches involve the change of the simple local continuum
framework to introduce explicitly a characteristic length in the constitutive model. Typical
examples are non-local models (BAZANT et al {1984]), models based on Cosserat continua
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(DEBORST & SLUYS [1991]), and higher-gradient models (COLEMAN & HODGON [1985)).
A difficulty often associated to these models is the definition (and actual determination) of
the length parameter as a material parameter. For practical purposes, the solution of the
non-local or higher order partial differential equations that appear in these formulations
(with the corresponding boundary conditions in the internal variable fields) is sometimes
difficult to motivate. This concern is especially important when we note again the different
scales involved in the problem, and if the solution of the large-scale system is the primary
interest. The approaches that incorporate the characteristic lengths of the fine scales
require, in particular, their numerical resolution, a task that may become overwhelming
in its computational cost, if not impossible, for typical practical applications.

Motivated by these observations, we have presented recently a number of analyses
based on the consideration of strong discontinuities. See SiMO, OLIVER & ARMERO
[1993] for an analysis of these solutions and their relation with a localized dissipative
mechanism. As presented in detail in ARMERO & GARIKIPATI [1996] for finite strain mul-
tiplicative plasticity, a bifurcation analysis allows to identify the consistency of a localized
softening mechanism with classical inelastic continuum models. See also the exposition in
OLIVER [1996] and the approach presented in LARSSON & RUNESSON [1996]. Numerical
implementations have been presented in these references, involving, in particular, the con-
sideration of the strong discontinuities without regularization (smoothing), as proposed in
ARMERO & GARIKIPATI [1995]. See also the related approach presented in DVORKIN et
al. [1990]. Implementations involving regularized strong discontinuities can be found in
SiMo, OLIVER & ARMERO [1993].

The formulation of anisotropic damage models has received an important amount of
attention in the literature. The works presented in CORDEBOIS & SIDOROFF [1982], ORTIZ
[1985], SIMO & Ju [1987] and references therein, are representative examples. In this paper
we present the formulation and numerical implementation of an anisotropic damage model
for brittle materials with the strong discontinuities as the starting point. More specifically.
it is shown that the consideration of a set of localized internal variables (including the
compliance of the crack) with a formalism based on distribution theory leads to the for-
mulation of an objective model, in the sense that the correct dissipation of the energy (i.e.,
per unit area and not per unit volume) is accomplished. The model assumes the formation
of the crack in mode I. The damage evolution equations are obtained through the principle
of maximum damage dissipation (see SIMO & Ju [1987]). These considerations are made
in a local neighborhood of a material point, the so-called small scales. The resulting model
incorporates directly the stress/crack-displacement laws obtained experimentally, without
the smearing or smoothing of the discontinuities.

Our main goal is the development of a large-scale model involving the smooth fields of
standard formulations of the mechanical boundary value problem, given its appropriateness
for numerical implementations. The inclusion of meso- and micro- mechanical effects in
large scale analyses (multi-scale analyses) is nowadays an area of intensive research (see
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e.g. FisH & BELSKY [1995], and references therein). Similarly, the recent contribution
of HUGHES [1996] identifies a multi-scale approach as a common setting for the numerical
analysis of several problems in computational mechanics. This recent interest motivates
in part the presentation in this paper.

In this context, the proposed anisotropic model developed locally in a neighborhood
of a material point (the small scale) is incorporated in a weak formulation of the stan-
dard mechanical boundary value problem, exhibiting, in particular, smooth solutions. The
“bridge” is built by equating the dissipation observed in both problems. Similar to the
so-called enhanced strain formulation of SIMO & RIFAI [1990] for the development of im-
proved finite element methods, the (smooth) large-scale problem is enhanced with the
singular strains arising from the strong discontinuities, the unresolved strains. The con-
sideration of the limit problem as the measure of the assumed neighborhood tends to zero
allows to identify the consistency of the proposed formulation with the standard local
continuum framework. In addition, it is shown that this methodology defines completely
the different fields appearing in the problem. The final numerical implementation of these
considerations fits then in the framework of the enhanced strain finite element method.
No special regularization of the discontinuities is required. The explicit modeling of the
localized softening response along the crack results in solutions independent of the mesh
size exhibiting the correct localized dissipation.

In contrast with previous smeared crack models, the proposed mechanical constitutive
model incorporates the localized effects of the cracks in the material without relying on
a numerical regularization (smearing). The local model is formulated in the traditional
local continuum framework with the help of distribution theory, without requiring the
introduction of ad-hoc characteristic lengths at this constitutive level. It is next, through
the “bridging” procedure described above linking these local and large-scale problems,
that the role played by the length scales commonly used in smeared formulations is fully
characterized. In particular, this procedure identifies a connection between traditional
smeared crack formulations and more sound anisotropic damage models.

We emphasize again that the model developed in this work is understood as a large-
scale model, capturing correctly (objectively) the dissipative effects of the small scales, but
treating the small length scales as unresolvable otherwise. The local continuum framework
is maintained, leading to efficient numerical methods of analysis of the pre- and post-failure
states of the large-scale structural systems of interest in this work. At this numerical level,
the localized dissipative effects are resolved locally at the element level by the assumed
enhanced part of the strain field. Special interpolations of the local fields are shown to
lead to traditional smeared crack formulations, up to the treatment of the shear response
of the cracks.

An outline of the rest of the paper is as follows. Section 2 describes the equations
defining the mechanical boundary value problem, the so-called large scale problem. Section
3 includes the developments leading to the anisotropic damage model. Complete details
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characterizing the energy dissipation in the model through the incorporation of stress-
displacement relations are included. The connection between the two problems is estab-
lished in Section 4, through the so-called “equi-dissipation bridge”. The proposed model
is analyzed and shown to recover consistently the local continuum framework. Next, we
describe in Section 4.2 the enhanced strain finite element formulation that implements
the above considerations. Section 5 depicts the solution obtained with the proposed for-
mulation in representative numerical simulations. Section 6 concludes with some final
remarks.

2. The Large-Scale Problem

We summarize in this section the equations governing the mechanical boundary value
problem of interest in this work. Regardless of the details particular to the constitutive
model defined in Section 3, the equations for the large-scale problem as assumed in this
section retain the usual regularity properties of, e.g., linear elasticity. Standard results
regarding the definition of the traction vector are summarized in Section 2.2.

2.1. The governing equations

Consider a domain 2 C R™™ (ng;, = 1,2 or 3) defining the reference placement of a
solid body B, identified with its current placement under the assumption of infinitesimal
strains assumed hereafter. As noted in the introduction, it is our goal to formulate a
large-scale model involving the standard continuum framework. To this purpose, we begin
with the introduction of the space of admissible (large-scale) displacement variations

V={n:.(2—>R"d"" :m=0 on 8,0}, (2.1)

that is, satisfying homogeneous boundary conditions on 8, §2 where the displacement field
is imposed. The functions i € V are assumed smooth, in the sense that V C H!(§2), with
the standard notation for the Sobolev space H!(£2) of functions with square integrable
Ly(£2) derivatives.

Following the introduction of the space V in (2.1), we define the affine space of ad-
missible large-scale displacements as

S={u:2->R"" : u=g+w, for some w € V}. (2.2)
Here, g is a smooth function such that
g=g on 0,12, (2.3)
for an imposed displacement § on 8,2, so we have

u=g on 0,2 VYuesS, (2.4)
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i.e., satisfaction of the essential boundary conditions is assumed for the displacement fields
in S, as usual. The infinitesimal large-scale strains are then obtained as

e(u) := Vu = 1 [Vu + (Vu)T] , (2.5)

with components in L2(S2) as a consequence of the assumed regularity of the displacement
field u in (2.2). The usual symbol (-)T has been employed in (2.5) to denote the matrix
transpose.

Let o = o(x) € R™=*"dim (symmetric) be the stress field in equilibrium with a body
force f : 2 —» R™*= and imposed tractions £ : 3rf2 — R™¥™ acting on the part 72 C 912
of the boundary of the solid. The usual assumptions ‘

0u2NorN=0 and 0. 20072 =012, (2.6)
in each of the ngiy, components of the displacement /traction are considered for a well-posed

problem.

The large-scale problem in 4 € S is finally determined with the consideration of
the weak form of the equilibrium equations of the solid 2. In the quasi-static limit, the
governing equations read

The Large Scale Problem. Find u € § satisfying
/G:V’nd(2=/f~qdﬂ+/ t-ndl’ VYneV, (2.7)
o Q ar

where the stress field o is a function of the the strains e(u) and other internal
variables as characterized by the constitutive model developed in the following
section. O

The starting regularity assumption V C [H!(£2)]"“™ reiterates again our goal to for-
mulate the large-scale problem in {2 under the standard framework of, e.g., infinitesimal
elasticity (see e.g. MARSDEN & HUGHES [1983], Section 6.1) or hardening plasticity (see
JOHNSON [1978]). To make mathematical sense of the left-hand-side of (2.7), the stress
field is assumed to have components in Ly(§2), giving the standard regularity to the stress
field. The usual assumptions of smooth loading and domain are considered for simplicity
(see MARSDEN & HUGHES [1983] for a discussion). The motivation behind these partic-
ular choices for the regularity of each field arises from the tools of analysis available. In
particular, the assumed large-scale fields can be easily resolved by standard techniques of
finite element analyses of the problem, as illustrated in Section 4.2. Additional contribu-
tions due to the specific response of the material (e.g., discontinuities) are introduced as
discussed in Section 3.
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2.2. The traction vector

A standard argument based on the weak form (2.7) of the equilibrium equations shows
the continuity of tractions for a given orientation defined by a unit vector n. Indeed, let
I be a generic smooth surface passing through a point £ € {2 with normal n. Let 2% and
£2~ each of two connected components in which the domain §2 is divided

Assume that the stress field o exhibits the added regularity of having components in
[C*(£2+)] U [CY(£27)], i.e., with continuous first derivatives. Integration by parts of (2.7)
under this assumption, and accounting for the internal surface I with unit normal n leads
to

/ [diva+f]-nd.(2+/[[a]|n-nd1“
o\r r
+/ f-—on]-ndl'=0 VYnevV, (2.8)
orf

where [o] denotes the jump in the stress field across I'. A standard argument leads then
the strong form of the equilibrium equations and natural boundary conditions,

dive+ f=0 in Q\I", (2.9)
on=1 on Orf2, (2.10)

together with the local form of the equilibrium across I" given by
[eln=0. (2.11)
Therefore, we have the well-defined vector
Tr := an’r , (2.12)

for all directions n, where the restriction at € € I' C §2 is understood in this last formula.
We shall refer to the vector T as the traction vector on I" at £ € {2 for the orientation n
in the large-scale.

Remark 2.1. The argument leading to the pointwise definition (2.12) of the traction
vector relies on the added C! smoothness of the stress field. The argument extends to
general Lo (§2) stress fields by the continuity of the different terms in (2.7) involving L, (£2)
stresses and strains, with the appropriate trace operator on the surface I. See DE VITO
[1966]. O
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FIGURE 3.1. Definition of the neighborhood 2 C 2 at a material
point &, with the smooth surface I'; and the corresponding orthogonal
reference system {T; =n,..., mndim} (ndim = 2 in the figure).

3. Characterization of Localized Anisotropic Damage Mechanisms

The formulation of the damage model is described in this section. The previous section
introduced the large-scale problem leaving undefined the constitutive relation between the
stress and the strain fields. The assumed regularity of the large-scale displacements and
corresponding strains may not incorporate all the effects observed in the material response.
In the case of interest, these effects correspond to the discontinuities and the corresponding
localized dissipation due to the appearance of cracks in the material.

In this context, the kinematics of strong discontinuities and singular internal variables
characterizing the localized damage due to the formation of cracks in the material is de-
scribed in this section. The main goal is to determine the constitutive relation for the
stress field that incorporates the proper (objective) localized damage mechanisms.

3.1. The crack displacements and the unresolved strains

The stress field & = o(x) has been introduced in Section 2. To define its relation to
the deformation of the solid in a certain point & € 2, consider a neighborhood 2, C 2
whose dimensions and full characterization will be detailed in Section 4. The arguments in
the rest of this section take place in this fized neighborhood £2,. This neighborhood can be
thought as a “magnifying lens” that allows us to consider the “small scale effects” of the
response of the material; see Figure 3.1. While looking through this lens, we concentrate on
the fields in the neighborhood {2, without imposing a-priori any compatibility requirements
with the fields observed by considering a different material point € £2. The incorporation
of these effects in the large-scale problem defined in Section 2 is accomplished in Section 4.
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The interest herein is focused on a brittle solid characterized by a tensile strength f;
under mode I fracture. Assume that a crack forms at the material point & € 2 with unit
normal n, the maximum principal stress direction corresponding to the principal stress
reaching the tensile strength f;. Consider a smooth surface I';, C §2; passing through =
and with unit normal n at . The discontinuous displacement field across the crack can
be written locally in §2, using the decomposition

uu(y) =u(y) +€(y) Mr,(y) vyE€R, (3.1)

where the function M, : £2; = R is smooth in §2;\I; and has been normalized to have a
unit jump discontinuity across I, that is,

Mr.]=1 only. (3.2)
Let Hr, denote the Heaviside function across I';, defined by

1 yef2,, ,

Hr.(y) = {0 o _ (3.3)

where £2;, and £2,_ denote each of the two connected components of the neighborhood
§2, defined by I';; see Figure 3.1. Given the definition (3.3) of the Heaviside function, the
function Mr_ can be written

Mr, =Hr + N, , (3.4)

for some smooth function N,.

We introduce the space of displacement jumps
J={£: 02, - R~} (3.5)

assumed smooth functions in £2,. With these considerations the jump across I'; is given
by
[u] =€ (3.6)

Even though the main physical significance of the displacements £ are the jump across
Iz, we consider their extension in the neighborhood f2,. Details on the structure of the
neighborhood §2, and the space J of displacements jumps are presented in Section 4.1.1.
The displacement field u,, : 2, & R™¥™ defines the displacements observed locally in the
small scale around the material point &, incorporating the localized effects of the crack.

The infinitesimal strains corresponding to the displacement (3.1) are given by

€u:=Vu, =€e(u)+(E®VN;)*+ V€ Hr. + (E®n)° 6r, in 2, (3.7)

- > \ o

regular singular
distribution distribution
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where the superscript s denotes the symmetric part. The singular part is expressed in terms
of the the Dirac delta &, across I';, a singular distribution using standard terminology in
distribution theory. See STAKGOLD [1979] (page 100) for the mathematical details involved
in the derivation of (3.7) from (3.1). We introduce the notation

E,:=€(u)+(EQ® VN )" +V°€ Hr, in £, (3.8)
for the regular part of €,, and the singular strains
£s:=(&®n) in 2. (3.9)
With this notation, the strains (3.7) in {2, are given by
e=€,+€E50r, . (3.10)

Alternatively, the total strains €, in {2, can be decomposed as

E“ = E(u) + e—unreg + 56 61“: . (3-11)
= etnrea
where
Eunres := &, —€(u) = G(§), (3.12)
with
G(¢)= (E®VNr) + V%€ Hr, in 2, (3.13)

for a linear operator G(:) of the displacement jump €. The singular part &; is also a
linear function of € by (3.9). Physically, the strain field £,y,yes is the part of the strains
in £2; which are unresolved by the strains e(u) considered in the large-scale problem. The
decomposition (3.11) identifies the regular and singular part of these unresolved strains,

€unres = G(f) + (f ® n)a 51‘, . (3.14)

in terms of the crack displacements .

As noted in the introduction, the main goal in the present model is to capture the
dissipative effects of the singular fields observed in the small scales of the material, while
solving the large-scale problem of interest. The decomposition (3.1) is introduced only as
a motivation for the particular form of the total strains (3.11) defined only in §2,. The
rest of the arguments that follow require only the consideration of this decomposition of
the strains. In this way, the operator G(-) is left unknown a priori. Section 4.1.1 identifies
this operator through a consistency argument connecting the large and local problems as
measure(f2;) — 0, collapsing the neighborhood 2, to .
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Remarks 3.1.

1. The local decomposition (3.7) in a regular and a singular part is characteristic of the so-
called strong discontinuity approach as presented in StMO, OLIVER & ARMERO [1993],
ARMERO & GARIKIPATI [1996], and OLIVER [1996]. In the context presented herein,
this approach characterizes the response of the solid locally in £2; under the considered
assumptions of a brittle material. We note that no compatibility requirements between
the displacement fields © and u, are imposed a-priori on the local decomposition
(3.1). See the discussion in the end of Section 4.1.1 below for further comments in
this respect.

2. Clearly, the actual choice of what is considered the large and the local fields is arbitrary.
For instance, the consideration of smooth large-scale displacement without including
the discontinuous part due to the local effects is a particular choice in the formulation.
This choice is motivated by the numerical analysis of the problem as developed in
Section 4.1.2 below. Whereas the resolution of smooth displacement fields is readily
available using standard finite element interpolations, the incorporation of the singular
strain fields that appear in the problem require the special considerations developed
in this paper. O

3.2. The crack compliances

Denote by D the compliance of the material relating the stress field o and the strains
€4, that is, we introduce the relation

e, = Do in 2., (3.15)

defining D. Given the regularity of the stresses assumed in Section 2 and, in particular,
the continuity of tractions as given by (2.12), together with the singular distributional
character of the strains as given by (3.7)

Ep = €y + €&d6r, = D o , (3.16)
~~ —— ~~
regular singular regular
distribution  distribution distribution

we obtain the decomposition

D=D+Doér,, (3.17)

in a regular and a singular part, to make sense of the relation (3.16) by identifying the
regular and singular parts of each side of this relation. This result is a consequence of
the Lebesgue decomposition theorem (see e.g. ROYDEN [1988], page 278). Physically, the
singular part D of (3.17) defines a localized compliance along the discontinuity I, the
crack compliances. Inserting (3.17) in (3.16) and equating singular parts, we conclude

E,=Do in 2,\I, (3.18)
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and _
é€s = Do on I, (3.19)
for the singular part corresponding to the crack.
Let m; (i = 2,n4im) denote unit vectors such that {m; = n,...,m,,,_} defines an
orthonormal system in R"¢=; see Figure 3.1. We introduce the notation
§=8&Lm;, (3.20)

(summation implied over repeated indices) for the crack displacements &; in the local
orthonormal basis {m;}. In this notation, the £; corresponds to the so-called crack opening
displacement (COD). The singular strains €5 in (3.7) can then be expressed as

€5 :=(€®n)’ =§P;, (3.21)
where
P,:=(m;&n)°, (3.22)
with the superscript s denoting again the symmetric part.

Given the special form of the left-hand-side of (3.19), as given by (3.21), and assuming
symmetry of the compliance, we conclude that the singular compliance tensor D can be
written as

D=D;;P.® P;, (3.23)

with 13,-1' = Dji (4,7 = 1,n4im). With these considerations, equation (3.19) can be written
as

& = DyTy (3.24)

for ¢ = 1, n4im, where we ave introduced the traction vector T = T;m; in the small scale
£2,, satisfying

o:(y®n)® ér, d2, = T-~vdI;, VyeJ. (3.25)
2, I,

Equation (3.24) defines a relation between the crack displacements and crack stresses, in
terms of the crack compliances whose evolutions are obtained in the following section.

3.3. The localized crack dissipation

To derive the equations describing the evolution of the crack compliances D identified
in the previous section, we consider a common thermodynamic argument based on the
principle of maximum damage dissipation. To this end, we define the intrinsic energy
dissipation rate of the stress field o for a strain rate &, in the neighborhood §2, as

D, := /-Q: [a’ tE€y — ¢] s, , (3.26)
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that is, as the difference of the stress power associated to the strains €, and the rate of
change of the free energy

¥ =1(en 1), (3.27)

where Z denotes a generic set of internal variables. Superimposed dots denote time deriva-
tive, and purely mechanical effects in an isothermal setting are considered. Defining the
complementary energy x(o;Z) by the standard Legendre transform

x(07T) = max {0 : € — $(e D} (3.28)
the dissipation functional (3.26) can be expressed equivalently as
D, = / (-6 eu+ %] d2s, (3.29)
2,

in terms of the complementary energy x(o;I).

For the case of interest, characterized by the secant compliance of the material D, the
complementary energy (3.28) is given by

x(e;D,a) := 30 : Do — H(a) , (3.30)

for some potential H (), function of the scalar internal variable a characterizing the cohe-
sive softening response of the cracks. The consideration of the secant compliance as internal
variables characterizing the damage of the material can be found in ORT1Z [1985] and SiMO
& Ju [1987]. Given the assumed symmetry of the compliance D, we conclude that

. . . dH .
x=a:Da+%a:Da—-&—&-a
=&:e#+%a:ﬁa+qd (3.31)

after using the relation (3.15) and introducing the stress-like internal variable g conjugate
to

dH
=—-—. 3.32
o (3.32)
The intrinsic dissipation rate is then obtained as
D, = / [%a : Do + qd] ds2; , (3.33)
2,

after (3.29).

We assume that the only damage mechanisms are associated to the discontinuity I'y.
Assume then

D = D® = constant (3.34)
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a constant elastic compliance, and
a=a 51", ’ (335)

a scalar field localized on the cracks. Combining (3.8), (3.9) and (3.13) with the constitutive
equation (3.18), we obtain

Ey=¢€(u)+G(¢) =D in 02, , (3.36)

or equivalently
o =C*°[e(u) + G(§)) in 2, (3.37)

in terms of the elastic compliance D®, or alternatively the elastic stiffness moduli C¢ =
De~!. Equation (3.37) relates the stress field with the large-scale strains e(u) and the
regular part of the unresolved strains G(§).

With these assumptions, the intrinsic dissipation rate (3.33) can be written as
D, = / D, or, df2, = / D, dI;, (3.38)
2, I,

a localized damage dissipation on I'; C £2,, with

’15,, = b,-,-fl}Tj +qb& = %15 (T®T)+ qé on I, (3.39)

D=

identifying the thermodynamical forces %(T ® T') and ¢ conjugate to the rate of internal

variables D and &, respectively. The material relation

g=4q(a), (3.40)

specifies a given cohesive softening relation for the crack opening, derived from the assumed
potential H(a).

We observe that the proposed approach leads effectively to a decoupling of the con-
tinuum and localized responses of the material. In this way, the complementary energy
function (3.30) can be decomposed as

x=X(0) +%(T;D,&) or, , (3.41)
in a regular and singular part, with

X(c)=30:Do  in £, (3.42)
for the regular part, and

X(0;D,6)=1iD:(T®T)-H(@G) only, (3.43)
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for the singular part. This decoupling allows for a separate constitutive modeling of the
two different responses of the material, the bulk and the localized response. For simplicity
in the present paper, we assume the elastic response for the bulk response. The evolution
equations describing localized damage response are developed next.

3.4. The damage evolution equations

The softening response of the localized damage mechanism (crack) can be charac-
terized by n,ur;y damage surfaces ¢;(T ® T,q) (j = 1,nsurs), defined in terms of the
thermodynamical forces identified by the expression of the localized dissipation (3.39).
The damage evolution equations are obtained through the principle of mazimum damage
dissipation, under the unilateral constraint defined by the damage surfaces

¢j(T T, q) <0 J=1, Ngurf - (3'44)

The use of this principle in the derivation of continuum damage models was proposed in
SiMoO & Ju [1987]. In the context of interest herein, consider the dissipation function

Nsurf
Ep:=—D,,,+ Z VY ¢,~(T®T,q)
J=1
Naurf
- [1D (T@T)+qa] + Y % 4(T®T.q), (3.45)
=1

where the consistency parameters -y; are introduced satisfying the Kuhn-Tucker comple-
mentary conditions

Y5 2 0 ’ ¢] _<_ 0 ’ and Y5 ¢_7 =0 3 (.7 = 13 nsurf) 3 (346)

to enforce the unilateral constraints (3.44). The minimization of Eu for a given rate of the

internal variables, D and &, leads to the following damage evolution equations

Naurf 3\

Z i 6(T®T)

> (3.47)
nif a¢
= 2
a = ’)’j -,
Jj=1 0q J

The evolution equations are finally defined with the introduction of the consistency con-
dition
Yi ¢j =0 (fOI‘ ¢j = 0) ’ (3.48)
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(j = 1,m4urf), fully determining together with (3.46) the conditions defining the load-
ing/unloading. Viscous regularizations are easily incorporated in this localized framework.
A Perzyna-type regularization (see SIMO & HUGHES [1997], among others) is obtained
by replacing the unilateral constraints (3.44), the Kuhn-Tucker (3.46), and consistency
conditions (3.48) with the relation

y; = 2905 > 957";1) 2 (3.49)

for a scalar function g(-), Macaulay bracket < z >= (z — |z|)/2, and localized viscous
parameter 77, > 0.

The above developments characterize the localized damage mechanism associated to
a single crack. The orientation n of the crack is assumed fixed based on physical consid-
erations. In this respect, the proposed model can be understood as a fized crack model.
As the state of stress evolves in a given point, further cracks can be developed at that
point. These results are easily extended to the case of multiple cracks, involving the same
relations for each crack and leading to the so-called multiple fized crack model (see the
review in KROPLIN & WEIHE [1997]). In this context, it is customary the consideration
of the so-called threshold angle, a minimum angle between opened cracks. The reader is
referred to ROTS et al [1985] for further details in the context of smeared crack models.

It is important to emphasize that in contrast with more traditional formulations of
continuum anisotropic damage models (like in ORTIZ [1985], SIMO & Ju [1987], among
others), the proposed formulation involves localized quantities along the discontinuities
arising from the cracking of the material. In this respect, the damaged compliances D
(a two rank tensor, not a four rank tensor as in the initial continuum form (3.26)) model
clearly the degradation added to the material by the localized effects of the cracks, thus
leading to the correct (objective) energy dissipation as discussed in the next section.

As a simple model example, consider the single Mode I damage surface in tension
$pr=T1+q@)-f <0 (T1>0), (3.50)

the inequality ¢; < 0 holding in a closing crack. The damage evolution equations (3.47)
read in this case

Dll = % ’
1 (3.51)
o= ",
and
Dij=0 fori,j#1, (3.52)

for the different components of the localized compliance l.),-j (2,5 = 1,n4dim), together with
the Kuhn-Tucker loading/unloading conditions (3.46) and consistency condition (3.48),
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with n4y,¢ = 1. It is common practice in smeared crack models to consider a (constant)
degraded shear stiffness via the so-called shear retention factor coefficients (see e.g. ROTS
et al [1985]). Similarly, the degradation of the shear response can be accommodated in the
model described above through the consideration of constant degraded compliances

Dys=D3ss =D, >0, (3.53)

consistent with the damage evolution equations (3.52). We note that D1y = 0 initially in
the undamaged state, and that no coupling is assumed between the normal and tangential
component of the compliance. The main difference between this approach and the shear
retention factor of smeared crack models is that (3.53) corresponds to a stress vs. crack
displacement relation. It can be understood as a regularization of more traditional the
smeared crack shear response.

Remark 3.2. As an alternative to the constant degraded shear compliance of the crack
(3.53), one may consider the introduction of the damage surfaces in shear, as considered
in GOVINDJEE, KAY & Simo {1995],

¢; =|Tjl+rjg=f; <0 j=2,Ndim, (3.54)

where r; = f;/f; for the shear strength f; = f,, and maintaining ¢; < 0 as defined in
(3.50). The corresponding evolution equations read

Ndim
B, = 2L D, = i 5 — -
Du—ﬁ, D“-—'le, a_;rﬂj, (355)
(r1 = 1), with the the Kuhn-Tucker conditions (3.46) and consistency condition (3.48) for
J = 1,n4im. Alternatively, other surfaces can be found in the literature; see e.g. KROPLIN
‘& WEIHE [1997] for an hyperbolic relation between T} and T3, in the notation employed
herein. 0

3.5. The softening law

Relations between the stress components and the crack displacements (the crack open-
ing displacement, COD, and slip) have been used in the literature to characterize com-
pletely the response of the crack. The classical work of Hillerborg (see HILLERBORG et al
[1976] and HILLERBORG [1984]) is a representative example. See also REINHARDT [1984]
for their experimental determination. Smeared crack models effectively incorporate these
laws through the so-called crack strains (ROTS et al [1985]) via the introduction of a nu-
merical characteristic length based on the spatial discretization (a measure of the element
size). As discussed in Section 1, the introduction of a completely numerical quantity in the
formulation of a constitutive model of the material response seems an artificial formalism.
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The model developed in the previous sections accommodates naturally these stress vs.
crack displacements laws, and the corresponding fracture energy Gy (the area below the
curve). In particular, no length parameters were needed. Consider as an example the case
characterized by the softening law

for a softening parameter H < 0, & € [0, 00), and the simple Mode I damage surface (3.50).
Introducing (3.56) relation in the damage surface ¢; = 0, we have

<]

$1=0 = Ti=fi—q(a@)=frexp { 5} ; (3.57)

during continuing damage. Introducing this relation in the damage evolution equations
(3.51), we obtain

s 5 1 3 .
Dii= == —exp [—E a} &, (3.58)

which leads, after integration,

Dy = % (1 — exp [—?d}) = %{- (1 - %) , (3.59)

for a continuing damage state. The combination of this last expression with the relation
& = DTy, (3.60)
obtained from (3.24) and the vanishing of the cross terms D;; (i # j), leads to
Ty = f; + Héy (3.61)

a linear relation between the normal component of the traction and the crack opening
displacement during loading. Finally, we also have the relation

&1 = —% (1 — exp [%&D : (3.62)

after combining (3.57) and (3.61), so &; € [0, —f;/H]. We consider T} = 0 for & > —f./H.
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1~
2 O
FIGURE 8.2. Equivalency of the energy released for a softening law

in terms of the internal variable & or the crack opening displacement

1.

The energy release rate £ is defined as
Es:=D,+H, (3.63)

that is, as the energy dissipation rate plus the energy rate of the (artificial) softening
potential H defining the cohesive opening crack. Combining (3.32) and (3.39), we conclude
that ]
&= (Du—q&) or, = $D4T; or, , (3.64)
~
= &
showing the localized character of the energy released. Using the damage evolution equa-
tions (3.51), we can write this last expression as

E;=1T & I, (3.65)

DN

thus leading to the released energy £; in I given by

&= 1@ age. (3.66)
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for a final value &y, that is, the area below the curve T} vs. @/2. In terms of the COD &,
the energy released rate &; is given by

E=1Dy T = Té — — (3T161) , (3.67)

after using the relation §; = D;;T; and some straightforward algebraic manipulations.
Therefore, the energy released in I'; is given by

- €15
Es =/0 f Ti(6) déi— 3 Tu &1, (3.68)

the area between the curve Ty = T) (&1) and the degraded unloading path. Expressions
(3.66) and (3.68) are depicted in Figure 3.2 for the example given by (3.56). The total
fracture energy in I'; is then defined by

oo}
6= [ 1@ d3e), (3.69)
0
which for the case given by (3.61) reduces to the broadly used expression

_fE
2H

Gy = (H<0), (3.70)
defining the linear softening modulus H in terms of the tensile strength f; and fracture
energy Gy.

The general case not considering the particular law (3.56) in the context of a single
Mode I surface is given by the relations

T, = T1(&) in loading (opening crack),
& (3.71)

T, = =— in unloading (closing crack),
11

for a given scalar function T} (-), and where

) £l,ma::

D11 = ==
Tl(gl,ma:l:)

in terms of the maximum crack opening displacement £; ;4 = max{¢;}. Relations (3.71)
and (3.72) are depicted in Figure 3.3, and can be obtained directly from experiments (see
REINHARDT [1984]). Full closing of the crack is obtained by imposing

, (3.72)
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5,

FIGURE 3.3. A softening law stress/displacement relation, with
damaged unloading, characterizes the localized dissipative mechanism
incorporated naturally in the model as obtained experimentally.

with
D11=0f01‘£1=0.

We also set D, = 0 in this case.
For later use, we introduce the localized tangent moduli
T=C¢,
e =_ [Ti&) 0
€= [ 0 13:1] !
for an opening crack (i.e., £&1 = &1,maz and él > 0), and
- AH—1
o= o]

8

for a closing crack (i.e., 0 < &1 < &1,maz, OF §1 = &1, maz and él < 0).

(3.74)

(3.75)

(3.76)

(3.77)

The developments in this section have identified the formulation of constitutive model
exhibiting the localized effects associated to the cracks in the material. The consideration



F. Armero 22

of the formalism of strong discontinuities allowed the introduction of these mechanisms
without the need of a length parameter defining locally a volume of damaged material.
Still, the above developments occur in the local neighborhood §2;. It is the goal of the
following section to connect the problem posed in this neighborhood to the large-scale
problem in the solid 2, as described in Section 2. It is this connecting procedure that
identifies the length scales typical of localization problems.

4. The Enhanced Strain Formulation: A Bridge of the Scales

So far, we have introduced the large-scale problem in Section 2 in terms of the smooth
displacement field u and the stress field o. Section 3 developed an anisotropic damage
model locally in the neighborhood {2, defining these stresses ¢ in terms of the small scale
strains €, and internal variables. The large-scale strains €(u) defined by (2.5) are unrelated
to the unresolved strains €,pnres defined by (3.12) in the local neighborhood 2, C £2. It is
the goal of this section to build this relation. To that purpose, we propose next a formalism
that effectively links the large-scale problem with the local model developed in the previous
section. We propose in this section a “bridge of of the scales” through the formalism of
the so-called enhanced strain formulation.

The enhanced strain formulation was first proposed in SIMO & RIFAI [1990] as a
methodology to develop improved finite elements. The main idea is to avoid the deficiencies
of standard displacement-based finite elements by adding to the strain field (enhancing)
the appropriate interpolation functions that will improve the numerical performance of
the finite element. The governing equations are derived from a three-field variational
formulation, leading to the orthogonality between the enhanced part of the strains and the
stresses. In the limit, as the finite element mesh is refined, the solution converges to the
continuum solution, with the enhanced part of the strains converging to zero. The exact
solution, in terms of the nodal displacement interpolating the continuum displacement
field, is obtained in the limit. See the analysis presented in REDDY & Simo [1995].

The situation in the present context is entirely different. We observe that the setting
defined by the large-scale problem, as presented in Section 2, is not complete enough to
define entirely the response of the solid. After the developments of Section 3.1, we can see
that the unresolved part of the strain, as defined in (3.9), is completely missing in the large-
scale problem (2.7). Alternatively, we can think of (3.9) as defining an “enhancement” of
the large-scale strains e(u) through the unresolved strains. Given the developments of
Section 3, this enhancement is defined locally in the neighborhood §2;. In this context,
we must build a “bridge” (a link) between the large-scale problem of Section 2 and the
equations of the constitutive model in {2, in terms of the unresolved strains (depending
on the displacement jumps €) and the large-scale displacement u.

We observe that the philosophy and final goal of the proposed methodology is different
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than the original proposal in SIMO & RIFAI [1990]. In the limit, we want to resolve the
localized dissipative effects arising from the cracking of the material, and not to obtain van-
ishing enhanced strains. We maintain, however, the name “enhanced strain formulation”
since it emphasizes the fact that the whole approach is based on the unresolved strains (or
enhanced part of the strains), rather than the local displacements u, given by (3.1). Our
main objective is to formulate a continuum model that captures the anisotropic localized
effects observed in the material in the local continuum limit (i.e. as measure(2;) — 0).
By working with the unresolved strain fields (3.9) in terms of a yet undefined operator
G(§) allows to model this limit problem without the need of requiring the compatibility of
the local strains €, with a global displacement, as shown in this section. The advantages
and freedom gained with these considerations are discussed in detail in what follows.

It is important to emphasize also that, given the developments of Section 3, the
resulting model will resolve the dissipative localized mechanisms associated to the strong
discontinuities. No “fine-scale length” is to be resolved. The model is to be understood as
a large-scale model. Given the large-scale simulations of interest in this work, this feature
adds considerably on the computational efficiency of the resulting numerical formulations.

The rest of this section is divided in two subsections. Section 4.1 develops these ideas
in the continuum setting, leading to a well-defined formulation by “bridging the scales”.
It is shown that equating the dissipation of the two problems, the large and small scale,
leads to a well-defined set of equations. The resulting model is analyzed in Section 4.1.2.
Section 4.2 develops a finite element formulation based on these considerations.

4.1. The “equi-dissipation bridge”

As the name of this section indicates, the basic idea in the proposed approach is
to equate the dissipations, that is, the energy dissipation rate observed in the large-scale
problem must be the same as the energy dissipation rate due to the localized effects in
the material. As noted in the introduction, the main requirement in setting a large-scale
problem as done in Section 2 is that the energy dissipation is captured objectively as
formulated in the model developed in Section 3. By equating the two dissipations, we
end up with a large-scale model that captures the localized dissipation objectively by
construction. We show next that this simple and physically intuitive idea is enough to link
the two problems.

The dissipation observed in the neighborhood 2, C £2 of = in the large-scale problem
(2.7) is given by

D=/n [+ i)~ 9] a2, (4.1)

where 1 corresponds again to the change of free energy of the material in 2, and 4 is
the rate of large-scale displacement u. Comparing (4.1) with (3.26), we observe that the
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difference between the dissipation rates at the two different scales due to the stress o stems
from the difference of the stress power measured with the large and small scale strain rates.
Combining (4.1) and (3.11) with (3.26), we obtain

D=/ﬂ (o2 (i) - 9] a2
=D, - /n |0 (€ + Eunres) = 9] d%
=Dy~ [ o Eunres % , (4.2)

2,

for a variation €ypres Of the local unresolved strains.

Assumption: The dissipation rate defined by the stress field o in the large scale
problem is the same as the dissipation rate given by the localized model in {2, for
any variation of the current equilibrium, that is, D = D,,.

Given (4.2), this assumption corresponds to the statement that the stress power on the
unresolved strains should vanish

/ O Eunres A12: =0, (4.3)
2,

for all the variations €,,s¢; Of the local unresolved strains. If we understand, as noted
above, the unresolved strains as the strains enhancing the large-scale strains e(u), we
recover the orthogonality of the stress and the enhanced strain fields common to enhanced
strain finite element formulations (see SIMO & RIFAI [1990)).

In the case of interest herein, we conclude that

Axd:éunres d.Q::/nza: [G(é)+ (f@n)“j 611:] dn,

_ [/xa:G(f)dﬂx+Azdn'édfx]

=[/nxa-:G(£°)d.Q,+ T-édrz] : (4.9)

I;

after using equation (3.14) for the unresolved strains and equation (3.25) defining the
driving traction T on I;. We conclude that

/ a:G('y)d.Q,+/ T-vdl,=0 Vye J. (4.5)
2, I,
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TABLE 4.1. Summary of the governing equations. The localized
damage model is introduced in the large-scale problem through the
bridging equation.

The large — scale problem

/a(u,&):V’ndQ=/f-nd.Q+/ t-ndl’r VneV,
Q 2 or 0

B

/ o(u,§):G(w) d!23+/ TE) - vdI,=0 VyeJ,
2, I

¢=DT
where
Naurf Naurf
- 0d; s 0¢;
D_J.—_12713(T®T)’ a—;% Oq ’

720, ¢;<0, vd;j=0 and ;=0 (j=1,nsurs)-

The localized damage model

This equation is to be added to the principle of virtual work (2.7) defining the the large-scale
problem and the localized anisotropic model in the local neighborhood 2, as formulated
in Section 3. The final formulation is summarized in Table 4.2. We note that the operator
G(§) is still unspecified. It remains to be shown that the final set of equations determines
a well-defined formulation in the sense that a solution for the unknown fields (i.e., the
large-scale displacement u and the crack displacement §) can be found. We show in the
next section that this is the case through a limiting procedure that recovers the local
continuum framework, defining in the process the operator G(£). As shown in Section
4.1.2, equation (4.5) is enough to determine the evolution of the displacement jump £ in
terms of the large-scale displacements u.
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4.1.1. The consistency with the local continuum framework

An arbitrary neighborhood 2, but fired, has been assumed in the preceding sections.
The model developed to this point exhibits then a non-local structure due to the appearance
of this finite neighborhood defining the material response at the point * € 2. This
situation is characteristic of non-local constitutive models, as proposed by BAZANT et
al [1984], among others. As indicated in Section 1, our goal is however to formulate a
constitutive model that recovers in the limit the local continuum framework (a simple
material in the classical terminology introduced in TRUESDELL & NOLL [1965]), and still
captures the localized dissipation as described in Section 3.

The next step is then the consideration of the limit as the measure of {2, tends to zero.
We need to show that this limit process leads to a well-defined formulation (i.e., the bridge
equation (4.5) is consistent with the weak equation (2.7) defining the large-scale problem).
The analysis will lead in particular to the consistent definition of the linear operator G(-).
To this purpose, we introduce the following notation

Az :=measure(§2;) = | dfl;, Iz :=measure(Iz)= [ dI%, (4.6)
22 I

and

hy = == . (4.7)

The case of interest corresponds to h; — 0, with A, = O(h;"4™) and I, = O(hz("‘“"‘_l)),
so the neighborhood {2, reduces to the point & in the limit. The length scale h, is chosen as
the controlling parameter in this limit process. In this context, we consider the expansions

a'(y) =0, +0(hs), Y(¥) =7+ O(hs) Vy € §2:, (4.8)

and
T(y) = T: + O(he) Vyel;, (4.9)

where (-); = (-)(z), that is, the value of the corresponding quantity at the fixed point
x € §2. The standard notation for the “big oh” O(.), that is,

O(hs*)
h;—0 hzk

< o0, (4.10)

is considered in (4.10) and (4.9).

A dimensional argument based on equation (4.5) shows that

GO~ - (4.11)
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after noting that the stress tensor o and the traction vector T are of the same order.
Introducing the expansions (4.10) to (4.9), we obtain

7= [/ G(%) dﬂz] + T vle +O0(™™)=0 VyeJ, (412
2,

— -~ N
O(#2) = O(h "dim~?) O(h.("dim—1))

as hy — 0. Evaluation of the large-scale equation (2.12) at & € §2, leads to
T, =on. (4.13)

Comparing (4.12) with (4.13), we conclude that in order for the proposed model to be
consistent in the local limit h, — 0 with the local equilibrium relation (4.13) we must have

/ G(v) d2, = ~ly (Y2 ® 0)° + O(h"™) Vv e T, (4.14)
2,

after equating the first order terms in (4.12). Dividing equation (4.14) by A, we obtain
the equivalent relation

+ / G(v) d2% = — - (= ®n)’ +0(1)  VyeJ, (4.15)
T J 2, T

Therefore, the mean value of the operator G(-) is restricted by the first order consistency
condition (4.15). We conclude

G(v) := _hi, (vz: ®n)° + 0(1) in £2;. (4.16)

Higher order approximations of G(-) can be obtained by equating higher order terms in
the expansion (4.12), leading in principle to the consideration of more details of the strain
field in the local neighborhood {2..

Remarks 4.1.

1. As indicated in Section 4.1, the proposed methodology does not assume a-priori the
compatibility between the large-scale and local displacements, leading to an incompat-
ible unresolved strain field €ynyes, in general. We note that stress-strain relations like
(3.37), defined in terms of incompatible strains, are not uncommon. For instance, any
infinitesimal elastoplastic model is based on an additive decomposition of the strain
field in an elastic and plastic parts, both parts being incompatible in general. The
compatibility of the unresolved strains, however, is embedded in the final proposed
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formulation as the following formal argument shows. Equation (4.5) can be written
formally as

<o,G(¥)>=0 VYyeJ, (4.17)

for the operator }
G(v)=G)+(vy®n)’ dr, . (4.18)

Denoting the adjoint operator G*(-), defined by the relation

<0,G)>=<G*(o),y> VyeJT, (4.19)

we can write (4.17) as
<G*(o),y>=0 Vye J, (4.20)

The argument presented in this section imposes the operator é*(-) to be consistent
to the desired order in h; with the local equilibrium equation (4.13). We recover
then to the desired order the compatibility of the unresolvable strains defined by G(:)
in the sense of being defined by duality to the equilibrium operator. Existence and
regularity analyses of elastoplastic models based on the mechanical equations written
in dual form as in (4.20), with a complete discussion of the above arguments, can
be found in MATTHIES et al [1979], JOHNSON [1976], JOHNSON [1978] and SUQUET
[1981].

2. We note that the Taylor’s expansions considered in (4.10) and (4.9) involve regular
fields. In particular, we consider the (smooth) displacement jumps and not the strains.
This situation is to be contrasted with the typical argument that relates traditional
non-local models with higher-order models in terms of a Taylor’s expansion of the total
strain field, which becomes singular (unbounded), making the expansion argument
questionable. See P1JAUDIER-CABOT et al [1995] for a discussion of these issues. [

4.1.2. Analysis of the model

It remains to show that the displacement jump £ is determined with the equation
(4.5), locally in £2;. To this purpose, we introduce the expression (4.16) characterizing the
unresolved strains in the limit of interest in the governing equation (4.5) to obtain

T:) = Aiz /Q on df2; + O(hs) = —;—x o Ce[e(u) + G(§)In df2: + O(hs) , (4.21)

after dividing by I, and making use of the constitutive relation (3.37). Equation (4.21)
identifies the traction vector at & as the average value arising from the stress field in 2.,
up to terms O(h,), as we would expect after the considerations in the previous section.

Rearranging the terms in (4.21) leads to the nonlinear algebraic equation in £, € R™dim

iQeez +T(&;) = F(u), (4.22)
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where we have introduced the linear operator

Flu) = 711: /,, n- Cee(u)] d2 + O(hs) . (4.23)

The tensor Q¢ € R™i=*"dim corresponds to the elastic acoustic tensor in the direction n
defined as

ka = Ciejkl n; ng, (424)

and is assumed, without loss of generality, positive definite. For instance, under the usual
assumption of isotropic elastic response

ikt = A 0ij O+ p [Bir G5t + 6ar O] (4.25)
for Lamé constants A and yu, the acoustic tensor (4.24) reads
Qi = 1 ik + (A + p) ni ne (4.26)

which is positive definite if 4 > 0 and A + 2u > 0.

Consider the eigenvalue problem
Ca=uw Q%, (4.27)

in the eigenvalues w € R and eigenvectors a € R™*™ where (o] corresponds to the localized
tangent matrix defined in (3.75). Then, a solution of (4.21) in the limit of interest h, — 0
is assured by the implicit function theorem (non-zero derivative of the left-hand side of
(4.21)) as long as

Wmin + 1 >0, (4.28)
, hs
where wpin = min{wy,...,wy,  }. Condition (4.28) is satisfied by taking h, sufficiently
small, under the assumption of finite wp,in. We conclude that the model developed in the
previous sections determines the displacement jump £ in the limit h, — 0 characterizing
the local small scale fields in terms of the large-scale displacement u, as indicated by the
nonlinear equation (4.22). After solving this local equation, the large scale problem is
completely formulated entirely in terms of the large-scale field u. Constant elastic moduli
C*® in §2; have been assumed in writing (4.22). The general case is recovered by assuming
the average value in the local neighborhood 2.

It is also interesting to observe that given (4.22) and the boundedness of the elastic
moduli and stress, we conclude that

n-Cee(u)Nﬁl—Qe£,,+0(1) n 2, (4.29)
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FIGURE 4.1. One dimensional cracking problem. a) Prob-
lem definition: bar under imposed displacement @ at the tip. b)
Stress/displacement relation. ¢) Large-scale displacement field u(z)
for finite hz and d) for the limit problem h; = 0. In this last case, the
large-scale displacement resolves the jump discontinuity associated to
the crack.

identifying the singularity of the strains in the limit problem h; = 0 in a set of measure(£2;) =
O(hz™¥ ™). Note that as h; — 0, the neighborhood §2; collapses to the material point z,
with the total strain is given only by the large-scale field £(u) near the discontinuity. Phys-
ically, the result (4.29) states that in the limit h, — 0, the strain field in the large-scale
problem of interest captures the singularity introduced by the strong discontinuity, being
of the order 1/h, at a distance h, from it.

In the limit problem h, = 0, the large-scale fields resolve the strains associated to the
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strong discontinuities at I' = {, where localization has been detected}. This situation
is depicted in Figure 4.1 for a straight rod in ngim = 1 with 2 = [0,L]. An imposed
displacement is applied at the right end whereas the left end is assumed fixed. No body
forces are applied. The equilibrium equations identify then the axial stresses o as constant.
A strong discontinuity is assumed to form at & (due to, say, an imperfection) when o = f;,
so I' = z. The constant stress distribution leads to a linear distribution of the displacement
u outside the neighborhood £2; = (z — h;/2,z + hz/2). Since both the stress o and the
jump distribution £, are constant in f2,, the strain e(u) is constant as well in (2., leading
to the linear distribution of u in £2;. The jump &, is given in terms of the applied stress by
equation (4.22). As h, — 0, we observe that the large-scale displacement field u resolves
in the limit the jump singularity associated to the crack.

The above developments have identified the properties of the proposed anisotropic
damage model. In particular, we conclude that the effects of the localized dissipation
associated to the formation and opening of cracks in the material can be built into a
large-scale model involving the desired smoothness of the unknown fields for their numer-
ical resolution. The following section describes a finite element method based on these
considerations.

4.2. Finite element implementation

The formulation developed in the previous section can be incorporated very easily
in a finite element formulation in the framework of assumed enhanced strain methods as
presented originally in SIMO & RIFAI[1990]. In fact, the above developments are very much
inspired in the resulting numerical formulations as described in ARMERO & GARIKIPATI
[1995,96] for localization problems in infinitesimal and finite strain plasticity.

Consider the discretized large-scale strains defined as
e(uh) = Bd, (4.30)

in a typical finite element 2., where B denotes the standard linearized strain operator
arising from a standard finite element interpolation

uh = Nhd , (4.31)

for some interpolation functions N and corresponding d. The simulations of Section
5 consider linear triangles. Mixed or assumed strain interpolations can be incorporated
easily at this stage, so B refers to these general cases. See ARMERO & GARIKIPATI
[1995,96] for the consideration of higher order mixed triangles in the pressure, in the
context of Mises plasticity.
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FIGURE 4.2. Determination of the length parameter h, for triangu-
lar and quadrilateral finite elements.

The neighborhood {2, in the arguments above is taken to be a finite element {2, where
localization has been detected (0mqz = f¢ at some point of the element). The interpolated
total strain ez is then given following the developments of Section 4.1 as

eh = e(uh) + eﬁnres s (4.32)

with the unresolved strain (or, equivalently, in this context the enhanced part) is given by
(3.14) as
e’;nres = Gefg + Pe£2 61", 3 (433)

where £, € R"4™ denotes a set of ngim unknown parameters and, for a plane problem,

) cos?¥ —cosdsind
P. = | sin?9 cosdsind | , (4.34)
sin 29 cos 29

in the standard vector notation for the strain field, with 9 being the angle between the nor-
mal to the crack and the z; cartesian direction. Constant enhanced parameters £ € R"¢m
are introduced in a localized element, approximating the corresponding crack displacements
€ as employed in the previous sections are considered. Higher order interpolations can be
accommodated following the remarks leading to (4.16).

The strain operator G, in (4.33) is defined after (4.16) as

Go=—— P, inf., (4.35)

1
he
with P, given by (4.34), and vanishes outside £2.. The element parameter h, is defined
in (4.7) as the ratio of the A, = measure(§2.) and of the surface l, = measure(I.) of
the considered neighborhood (2. in this case). Since the definition of I, in ngim > 1 is
inherently arbitrary (an extension of the crack at &), the definition of k. is also arbitrary,
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except for the consistency condition he — 0 as the finite element mesh is refined (i.e., a
measure of the element size). In the 1D case ngim = 1, we have lo = 1 and A, = h,
(see Figure 5.1), so in contrast h, is well-defined. As shown in the numerical simulation
presented in Section 5.1, the exact solution depicted in Figure 5.1 is obtained for the
proposed finite element formulation in this one-dimensional case. With this background, we
consider the length parameter h. as defined in Figure 4.2, for triangular and quadrilateral
finite elements and the given orientation 9 of the crack. With this definition the exact
solution is obtained again for the simulation of a 1D rod employing an aligned mesh, as
presented in Section 5.1.

We note that for the general case of a discontinuity I, not aligned with any side
of the triangular element the strain given by (4.33) is not the gradient of a compatible
displacement field (that is, vanishing at the nodes). Still, the formulation developed in
the previous section allows the proposed interpolations, without the need of the pointwise
satisfaction of the kinematic compatibility constraint. The added freedom is clearly to the
advantage of formulating efficient numerical formulations. The compatibility constraints
are effectively imposed in the limit as noted in Remark 4.1.1. We refer to ARMERO &
GARIKIPATI [1995,96] for finite element formulations in the framework of elastoplascity
based on discrete unresolved strains (4.35) obtained as the gradient of discontinuous in-
terpolation functions on a triangle, leading to unsymmetric formulations.

The proposed formulation falls in the class of assumed strain methods as proposed
originally by SiMo & RIFAI [1990]. The unresolved strains corresponds to the enhanced
part of the strain, that is,

"= Bd + G.&' |, (4.36)
~~ ——

conforming enhanced

for the enhanced strain operator G, defined by

= 1

G..=-—P,+ P, or, . (4.37)
he

We note that the consistency condition identified in SIMO & RIFAI [1990] for the satisfac-
tion of the patch test, namely

0= [ G.d2=P, [—fll—eAe+ or. d.()], (4.38)
2. e 2,

= r, ar=: 1,

is satisfied, a clear consequence of the developments of Section 4.1.1.

The finite element formulation is based on the discrete counterpart of the weak equa-
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tion (2.7) and the local nonlinear equation (4.22)

Nelem
R:= fert — A BTo d2=0
e=1 7% : (4.39)

8¢ := Fod — [hlqeeg + T(eg)] =0 in £

where

F.(d) =~ f in-C®B)] df, (4.40)
Ae Jo,
after (4.23), and the stress o is given by
o =C°[Bd+G.t] . (4.41)

We note the independence of the enhanced parameters from element to element, consistent
with the local character of the decomposition (3.7). As a practical consequence, this leads
to the efficient implementation of the proposed formulation through the static condensation
of the enhanced parameters as described below.

The system of equations (4.39), in the nodal displacements d and local enhanced
parameters £? is nonlinear due to the nonlinearity of the cohesive softening law (4.39),.
This system is solved using a standard Newton-Raphson technique involving the consis-
tent linearization of the equations. The different steps for a typical time increment, say,
[tn, tn+1] are summarized in Table 4.4. In a first step, the new enhanced parameters £2f21
at a given iteration (k) are obtained in terms of the current values of the nodal displace-
ments dflk_zl. The global residual and stiffness matrix is then assembled after the static
condensation of these parameters, leading to the algebraic system of equations (4.45) in
terms of the nodal displacements only. An alternative implementation involving of the
local Newton iteration (4.42) coupled with the global Newton-Raphson scheme (4.45) has
been described in ARMERO [1997]; see this reference for details. The final set of equations
(4.45) in the nodal displacements d corresponds to the large-scale problem described in
Section 2 incorporating the dissipation of the small scale effects objectively by construction,
as it was the original goal of the proposed formulation of a large-scale model incorporating
the localized dissipative mechanisms of the material.

Remark 4.2. Traditional smeared crack approaches (see e.g. BAZANT & OH [1983],
ROTS et al [1985]) are effectively recovered with the proposed formulation by considering
the following interpolations of the enhanced strains

Nint

eznrea Z [Gl(fzh) Nl(z) + f’l& 51"1] 3 (4.46)

I=1
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TABLE 4.3. Integration algorithm for a time increment [tn,tn41].

Given €2, (the converged value at t,), &, = maxi—12{€¥;} > 0 and Dy q,
and given a current iteration dfle of the nodal displacements (n being the index

for the current time increment, and k the index for the current iteration), then

1. Update the enhanced parameters nggl by solving (4.39); with fixed dfgl,
using Newton’s method

1=0 )
DO WHILE e.g. ||s. (Ei‘ff;? ) | < TOL
K, 1 =
He$1+1) = —Qe + C(ﬁ?,mazn) L (4 42)
(k,1+1) (k1) k)]t (k,0)

Egn-}-l £gn+1 + [Hefz+1)] Se (Eng-I)

lel+1
END DO )

starting with the initial estimate given by the converged value £gf:£) = ¢h

at the previous time step. The tangent C(-) in (4.42) is given by (3.76) for an
opening crack ({g(l’f,;lll > &2 mas,,) OF (3.77) for a closing crack (0 < £ gknlil <

£ maz,,)- If a closed crack is detected ({gg’fnlll 0), then we set 521(1 121 =0.

2. Compute the statically condensed residual

Nelem
=(k
n(+% - .fezt - A {

e=1

k
/ B7C* [BdY), + G.£h,Y), | dn

e

-1 (k)
~ Lo [HE| se (€200)) }(4.43)
where L := [, BTC®G, df? for the elastic tangent C® given by (4.25).

3. Assemble the statically condensed stiffness matrix

Nelement -1
k8= A { /Q BTC*B 2 - L, [He,‘"le] Lg‘}, (4.44)
e=1 e

4. Solve and update nodal displacements

K. Nadkt = RIE) with d®AD = a®), + adHY . (4.45)
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with ] ]
Gi(&) = - (¢ton) =-— PE, (4.47)

hy hi
for each quadrature point ! = 1, n,;. In (4.46), we made use of the shape functions Ni(x)
based on the quadrature points &;, | = 1, nine (i.e., Ni(x;) = 015 |, j = 1, n4ne). The matrix
P, and length parameter h; are defined as in (4.34) and Figure 4.2, respectively, for a given
crack direction ¥9; at quadrature point | = 1,n;,;. With this setting, the contributions of

the enhanced strains for each quadrature point decouple, leading to the counterpart of
equation (4.42)

- 1
8 := BTC*B, d - [E—Qfd‘ + T(£{‘)] =0 I=1n, (4.48)
l

solved locally as in (4.42) at each quadrature point [ = 1,n;n;. The resulting statically
condensed residual is given

Nelem [ Nint
=(k e k
R i fume - A{ZBFC (B,

e=1 =1
k
_ _p, (eﬁijl + [H;f,’fﬁl] s f,’fﬁl)] Az} : (4.49)

and the statically condensed stiffness matrix

. Nelement Nint 1 N -1 _
K= A {ZBIT [Cc - h—lCeP, [ng?-l] IJITCC} B Az} : (4.50)
e=1 1

where A; is the measure associated to the quadrature point | = 1,n;,; after using the
discrete quadrature rule (A4; = w;j; for a weight w; and Jacobian of the isoparametric map
Ji)- Relations of the form (4.49) and (4.50) are common in smeared crack models (see e.g.
ROTS et al [1985]), but with an important difference. As noted in Remark 3.2.1, the shear
response in the proposed formulation is given by a shear stress/slip displacement relation,
as given by the localized shear compliance D,, in (3.53), rather than a stress/strain relation.
The consideration of constant degraded shear stress/displacement laws was presented in
ARMERO {1997] in this context. In a more general setting, the localized stress/displacement
law T; = T'(&}) is defined by £} = D,T; with the crack compliances D being degraded
continuously by the evolution equations (3.47), leading to a general multi-surface localized
anisotropic damage model. a
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FIGURE b5.1. Rod under uniaxial stress. a) Solution at a tip dis-
placement of 30 for the 20 element mesh. All the displacement is lo-
calized in the finite elements with active enhanced modes (in gray).
b) The load-displacement curves for two different meshes overlap the
exact solution.

5. Representative Numerical Simulations

We present in this section two representative numerical simulations that illustrate
the performance of the finite element formulation described in the previous section. The
solution to the tensile test of a straight rod is considered in Section 5.1. Section 5.2 presents
the solution to the three-point bend test of a beam in plane stress conditions. The localized
anisotropic damage model involving only the mode I surface (3.50) is considered.

5.1. Tensile test of a straight rod

Figure 5.1 shows the results obtained in the uniaxial test of a straight rod. The total
length of the rod is 10. and it has an unit cross section area. The values of Young modulus
E = 10, Poisson’s ratio v = 0, tensile strength f; = 3, and softening modulus H = 0.1 are
assumed. A linear softening T' = T'(£€) law is employed. We consider two discretizations,
involving 10 and 20 linear triangles, respectively. Figure 5.1 depicts the discretization with
20 elements in an aligned mesh. To trigger the localization of the cracking an imperfection
of 0.1% in the tensile strength is assumed in the first two elements.
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FIGURE 5.2. Three-point bend test. Problem definition: L =
200 mm, h = 20 mm, a = 2 mm, and b = 10 mm. Imposed downward
displacement u and measured P.

The solution obtained with the 20 element mesh is depicted in Figure 5.1.a, showing
all the tip displacement accumulated in the two elements that soften. All the numerical
simulations are run with imposed displacements at the tip. Figure 5.1.b depicts the com-
puted load displacement curves for the two meshes. Both overlap the exact solution, as
depicted in Figure 4.1, showing the mesh-size independence of the numerical solution. We
note that some formulations proposed in the literature do not obtain the exact solution
in this simple 1D setting (see SLUYS {1997]), due to the different definition of the crack
length used in the finite element strain fields. The solution depicted in Figures 5.1 consid-
ers also the unloading, closing of the crack, and reloading paths. Exact solutions are again
obtained with the finite element formulation presented herein.

5.2. Three-point bend test

This second example considers the three-point bend test of a notched rectangular
beam. Figure 5.2 depicts the geometry of the specimen, a 200 x 20 x 1 mm? plain concrete
beam with 2 x 10 mm? notch, as presented in PETERSSON [1984]. Plane stress conditions
are assumed through the thickness. The material parameters are given by Young modulus
E = 3.10* N/mm?, Poisson’s ratio v = 0.2, tensile strength f; = 3.33 N/mm?2, fracture
energy Gy = 0.124 N/mm (hence, a localized linear softening modulus H = —f2/(2G 5)is
considered), and a degraded crack shear compliance of DS"o* = 8.10=2 mm/N.

The numerical simulations are run with an imposed downward displacement at the
top middle-span. Unstructured meshes are considered as shown in Figure 5.3 with a total
of 442 and 654, respectively. Figure 5.4.a depicts the solution obtained with the coarse
mesh (a magnification of 100 is considered). Figure 5.4.a shows the details of the solution
in the notch, showing the accumulation of the strains in the elements with active localized
enhanced modes (in gray). Figure 5.4.b includes the load/displacement curves obtained for
the different unstructured meshes. The difference observed between the solutions obtained
with different meshes are a consequence of the different level of approximation for each
mesh rather than the lack of objectivity of the solution.
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6. Conclusions

After the developments presented in the preceding sections, we can draw the following

conclusions:

1.

The consideration of strong discontinuities (through a formalism based on distribu-
tion theory) allows the formulation of anisotropic damage models that incorporate
the localized dissipation characteristic of brittle solids under tension (cracking). The
resulting model determines the local response of the solid.

. The consideration of the principle of maximum damage dissipation determines the

evolution equations of the localized internal variables describing the damage of the
material. In particular, a precise definition of the evolution of the compliance added
by the presence of a crack can be obtained through the proposed methodology.

. The resulting local anisotropic damage model incorporates naturally the stress/crack-

displacements relations obtained in typical experiments. In this way, the local model
incorporates the localized dissipative mechanism associated to the cracks in the mate-
rial without the need of smoothing or smearing the associated discontinuous displace-
ment and corresponding singular strains.

The local singular strain fields characterizing the damage of the material can be ef-
ficiently incorporated in a large scale problem in terms of smooth fields through the
consideration of the enhanced strain method. The proposed methodology accom-
plishes this “bridge between the scales” by matching the dissipation observed in each
problem. Since, as indicated in Item 3, the localized damage model captures the
dissipation objectively, the resulting large-scale problem will dissipate the energy ob-
jectively by construction following the proposed methodology.

. The resulting formulation is shown to be well-defined, with the local singular fields

being determined by the assumed smooth fields in the large scales. Furthermore, the
limit as the small scales vanish is shown to be consistent with the local continuum
framework. The proposed model is understood as a large-scale model, incorporating
efficiently the dissipative mechanisms observed in the large-scale applications of inter-
est, without the costly need to resolve fine length scales of the local response of the
material.

. The constitutive model developed with this procedure can be naturally incorporated

in a finite element formulation. The resulting method requires a local update of the
localized internal variables (crack displacements) at the element level, leading to an
efficient implementation in terms of the nodal displacements only.

Traditional numerical treatments of the problem based on the so-called smeared crack
approach can be effectively obtained through the proposed methodology. The shear
response of the crack involves, however, a natural stress/displacement relations, rather
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than a smeared relation. This link has identified then the connection of these com-
monly used smeared models with anisotropic damage models that describe the local-
ized damage based on sound thermodynamical principles.

8. This link adds generality to traditional smeared crack models through extensions
easily incorporated to the formulation of anisotropic damage models. Most notably,
the formulation of localized evolution equations (shear stress/crack displacement law)
of the shear response of the crack arises naturally in the proposed framework.

The general framework described in this last item has been developed in Section 3.4 (see
also the summary in Table 4.2), with the numerical simulations presented in Section
5 based on the Mode I model (3.50) and a constant degraded shear stiffness. The numerical
integration of the general localized multi-surface damage model (3.47) requires additional
considerations and will be the subject of a forthcoming publication.
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