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ABSTRACT OF THE DISSERTATION 
 

Gene Expression and Chromatin Dynamics During Macrophage Polarization in Health and 
Disease 

by 
Klebea Carvalho 

Doctor of Philosophy in Pharmaceutical Sciences 
University of California, Irvine, 2021 

Professor Ali Mortazavi, Chair 
 

 

The complex task of maintaining homeostasis and fighting diseases involves an intricate 

network of immune cells with many relevant players. This thesis is focused on the plasticity and 

versatility of a critical class of innate immune cells called macrophages. Most naïve macrophages, 

named M0s, have the ability to polarize into two main subtypes, M1s and M2s, which help 

maintain a balance of inflammatory and anti-inflammatory responses, respectively. An imbalance 

in the ratio of M1s to M2s is associated with poor prognoses for a variety of diseases. Thus, 

understanding the markers and the gene regulatory networks (GRNs) that underlie the M0 to M1 

or M2 polarization is crucial to help modulate these cells ratios for therapeutic purposes. Here, we 

applied bulk and single-cell RNA-seq and ATAC-seq to a high-resolution time series of HL-60-

derived M0s polarizing towards M1 or M2 over 24 hours. We identified transient M1 and M2 

markers and the main transcription factors (TFs) that drive polarization. In addition, we identified 

a novel M2 marker, ID2. We built bulk and single-cell polarization GRNs and identified at least 

30 novel TF-TF interactions during M1/M2 polarization. We further compared the strengths of 

using bulk and single-cell technologies to build our GRNs providing experimental and 

computational guidelines for building GRNs of cellular maturation in response to 

microenvironmental cues. We concluded that despite the great advances of single-cell analysis, a 

combination of bulk and single-cell techniques provided a more complete GRN.  



 

xii 
 

The brain resident macrophages, named microglia, do not fit into the dichotomic M1/M2 

dogma of polarization. However, microglial activation and inflammation are directly linked to 

progression of Alzheimer’s disease (AD). Neuroinflammation, hyperphosphorylated tau, and 

accumulation of amyloid beta plaques in the brain are hallmarks of AD, which presents progressive 

dementia as its main clinical feature. Amyloid plaques can activate the complement system. 

Complement activation, specifically activation of complement factor C5a and its receptor C5aR1 

enhances microglial inflammation, which can worsen disease pathology through local injury and 

neuronal death. Thus, the C5a-C5aR1 signaling pathway is a potential target for modulation of 

AD. In order to investigate the effects of C5a in AD progression, we observed changes in 

hippocampal gene expression, hippocampal-dependent memory decline, and neuronal loss in two 

variants of the Artic mouse model of AD: one which lacks C5aR1 (cohort ArcticC5ar1KO) and 

one that overexpresses C5a under the GFAP promoter (cohort ArcticC5a+). The ArcticC5aR1KO 

group showed decreased inflammation, reduced activity of phagocytic and lysosomal pathways, 

and reduced cholesterol biosynthesis compared to Arctic mice. Furthermore, C5a overexpression 

led to poor cognitive performance, neuronal loss, and advanced disease progression compared to 

control. Our results suggest that pharmacological inhibition of C5a-C5aR1 signaling is a promising 

therapeutic strategy to treat AD. 
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CHAPTER 1 

Introduction: Macrophage Plasticity in either Fighting or Promoting Diseases 
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1.1 Dynamics of cellular specialization and cellular maturation in response to 

microenvironmental stimuli 

Cell fate decisions define a cell’s morphology, migratory status, proliferation, and 

behavior. The decision-making process is often binary, allowing cells to assume one of two major 

states (Olsson et al., 2016). The chosen fate will determine a cell’s competence to carry out an 

array of particular functions. Distinct cell identities exhibit non-identical and stable profiles of 

gene expression, despite the fact that they share an identical genotype. Important regulatory events 

can be determined by identifying temporal changes in gene expression and chromatin accessibility 

during cell differentiation and maturation in response to microenvironmental stimuli (Klemm et 

al., 2019; Scharer et al., 2018; Ramirez et al., 2017). Typically, only a subset of genes change 

expression during differentiation in a time-specific fashion, which are termed differentiation 

markers. Identifying the markers that define cellular identity and specificity is critical in order to 

determine how cells play roles in either fighting or promoting disease and to help modulate their 

ratios. Of particular interest are macrophages which are innate myeloid immune cells that are able 

to coordinate immune responses to inflammatory conditions, tumors, and neurodegenerative 

disorders (Li et al., 2021; Parisi et al., 2018; Sevenich, 2018). Macrophages are present in all stages 

of development, from embryo to adulthood, and reside in almost all tissues in the body, including 

skin Langerhans cells, liver Kupffer cells, and importantly brain microglia (Davies & Taylor, 

2015). Tissue-resident macrophages are one of the first cells to react to disturbances in homeostasis 

assuming functions consistent with their niches. Macrophages are essential for health and disease 

and are therefore the theme of this study.  
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1.2 Macrophages: more than just phagocytes 

 Macrophages (from the Greek “makrós” meaning big and “phageín” meaning eater) are 

well known for phagocytosis of external pathogens and clearance of apoptotic cells in order to 

maintain tissue homeostasis (Hirayama et al., 2018). Macrophages are multitaskers playing 

important roles in innate immunity and cross talking with the adaptive immune system by 

recruiting other immune cells, such as lymphocytes (Gaudino & Kumar, 2019). An efficient 

immune system requires a good balance of pro- and anti-inflammatory responses, to which 

macrophages are key players. The current accepted model of macrophage activation or polarization 

(both terms can be used interchangeably) states that naïve tissue resident macrophages, termed 

M0s, polarize into major subtypes, a pro-inflammatory M1 or an anti-inflammatory M2, in 

response to environmental stimuli (Mills et al., 2000). Macrophage polarization is the theme of 

Chapter 2.  

The M1 phenotype is induced by bacterial lipopolysaccharides (LPS) and/or pro-

inflammatory cytokine interferon-gamma (IFN-d), whereas the M2 phenotype is induced by 

interleukins 4 (IL-4) and 13 (IL-13) (Huang et al., 2018; Gordon & Martinez, 2010). M2 subtypes 

can be further subdivided into M2a, M2b, M2c and M2d macrophages, which are activated by 

distinct stimuli (Rőszer, 2015a). Although the M1/M2 dogma of polarization is a useful framework 

to investigate the regulatory functions and phenotypic characteristics of both major groups, 

macrophages in vivo might not follow such convention, showing more complexity with a spectrum 

of cells going towards either or both directions (Sica & Mantovani, 2012). 

Polarization stimuli initiate a network of transcriptional mechanisms that take part in the 

dichotomic macrophage activation/polarization process (Zhou et al., 2017). In response to 

environmental stimuli, canonical IRF/STAT pathway signaling via STAT1 promotes M1 
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phenotype, which will express high levels of IRF1, IRF7, GATA2, SOCS3, and IL1b; whereas 

signaling via STAT6 promotes a distinct M2 phenotype, which will express high levels of STAT3, 

MEF2A/C, ID2, RARA, RXRA and ICAM3 (Orecchioni et al., 2019a; XIE et al., 2016; Rőszer, 

2015b). A balance between M1s and M2s is crucial to maintain homeostasis. For instance, a high 

M1/M2 ratio can be associated with anti-tumorigenic effects and worsening auto-immune 

disorders, whereas a high M2/M1 ratio can be associated with pro-tumorigenic effects and 

improving skin regeneration (Xiao et al., 2020; Atri et al., 2018; Yuan et al., 2015). Characterizing 

the main transcription factors (TFs) that drive M1 and M2 polarization is crucial to determine how 

these subtypes interfere with disease pathology and to investigate therapeutics that modulate the 

M1/M2 ratio to treat cancers and immune disorders. Therefore, one of the goals of Chapter 2 is to 

determine the main TFs and polarization markers that underlie M1 and M2 activation, which can 

guide pre-clinical studies targeting polarization. 

 

1.3 Tissue-resident macrophages and brain microglia: same but different 

Most tissue resident macrophages are capable of polarizing into the two major groups: M1 

or M2. However, brain microglia might not fit into this dichotomic division. As other tissue 

resident macrophages, microglia are phagocytes mainly originated from yolk-sac derived myeloid 

progenitors, which are able to proliferate and differentiate in situ (Hoeffel & Ginhoux, 2018; 

Ginhoux & Guilliams, 2016). They are important modulators of the central nervous system (CNS) 

immune surveillance, repair, and regeneration. Microglia are constantly scavenging and extending 

or retracting their ramifications in order to monitor brain activity and maintain tissue integrity 

(Nayak et al., 2014).  However, microglial activation and dysfunction can also contribute to CNS 
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damage and neurodegenerative diseases. Hence, understanding the heterogeneous populations of 

CNS microglia have the potential to lead to therapies to treat multiple brain disorders.  

In homeostatic conditions, the blood brain barrier (BBB) is an essential gatekeeper of the 

CNS keeping its immune privilege and regulating brain permeability, hemodynamics, and nutrient 

transport (Pachter et al., 2003). Although the immune privilege is not absolute, the BBB is 

important to control and limit the brain immune response during homeostasis. The pools of 

cytokines and chemokines that make up the CNS microenvironment are those from cell-to-cell 

signaling, as well as those from the unique composition of the CNS given its separation from the 

circulation (Deczkowska et al., 2018). Hence, the CNS microenvironmental cues are distinct from 

the pool of signaling molecules present in other tissues. The microglial transcriptome differs from 

other tissue resident macrophage transcriptomes as it is strongly shaped by the immune isolated 

CNS milieu (Gosselin et al., 2014). 

Increasing evidence suggests that microglia do not fit the conceptual M1/M2 framework 

of polarization and still lack a nomenclature that will take the population diversity into account 

(Ransohoff, 2016). Nonetheless, a subset of microglia named disease-associated microglia (DAM) 

shows a unique transcriptional and functional signature associated with the progression of 

neurodegenerative diseases, such as Alzheimer’s disease (AD) (Keren-Shaul et al., 2017). Some 

of the signatures genes upregulated in this activated microglia are TREM2, a receptor needed for 

DAM activation, TYROBP, CTSD, LPL, CST7, and APOE (also expressed by astrocytes) 

(Deczkowska et al., 2018). DAM are conserved in mice and humans and mainly display an 

inflammatory phenotype with upregulation of genes involved in lipid metabolism, lysosomal and 

phagocytic pathways (Keren-Shaul et al., 2017). Targeting DAM’s inflammatory response is 

explored in Chapter 3 and may lead to a potential therapeutic approach to treat AD. 
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1.4 Macrophage polarization in health and disease: the good and the bad 

Primitive macrophages are generated without monocytic progenitors in the yolk sac and 

seed most of the embryonic tissues. They are typically the only tissue resident immune cells and 

are maintained by self-renewal throughout life in homeostatic conditions (Hoeffel & Ginhoux, 

2018). Macrophages reside in the heart, gut, eyes, cornea, epidermis, ovaries and virtually every 

tissue in the body, even inside joints that lack blood vessels, and human breast milk (Mosser, 

Hamidzadeh, & Goncalves, 2021). They perform engulfment and recycling of apoptotic cells and 

tissue debris preventing their accumulation, which could lead to local tissue injury and organ 

failure. Macrophages are able to capture a variety of microenvironmental inputs and transduce 

them into a myriad of responses to maintain tissue homeostasis. 

 Macrophage polarization can influence the outcome of a variety of diseases. Hence, many 

studies document the imbalance of M1/M2 or M2/M1 showing beneficial or detrimental effects in 

disease pathology. However, it is less clear whether this imbalance is the causal force or if it is a 

consequence of the disease pathology. M1 macrophages usually show an inflammatory and 

cytotoxic phenotype, being associated with positive effects in tumor elimination and negative 

effects for wound healing. M1s highly express surface markers CD80, CD86, TL4 and secrete pro-

inflammatory cytokines, such as IL-6, IL-1β, and TNF (Chávez-Galán et al., 2015). On the other 

hand, M2 macrophages usually show an anti-inflammatory phenotype, being associated with 

positive effects in chronic inflammation and negative effects in many cancers (Funes et al., 2018). 

M2s highly express surface markers CD206, CD163 and secrete anti-inflammatory cytokines, such 

as IL-10 (Figure 1.1).  
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1.4.1 Macrophages in immune disorders 

Many immune-related diseases are associated with an increased M1/M2 ratio. M1-

polarized macrophages have been linked with the pathophysiology of severe allergic asthma, 

specifically in patients that didn’t respond to treatment with systemic corticoids (Saradna et al., 

2018). Another study showed that myeloid cells isolated from patients with active systemic lupus 

erythematosus (SLE) presented higher number of differentially expressed M1-like genes when 

compared to patients with inactive SLE who showed higher expression of M2-associated genes 

(Labonte et al., 2018). Moreover, the comparison of myeloid cells from both active and inactive 

SLE patients showed bias towards pro-inflammatory M1 cells during flare-ups.  

Macrophages are also believed to be the main source of pro-inflammatory signaling 

molecules around adipocytes. Diet-induced obese mice seem to have higher infiltration of M1-like 

macrophages in adipose tissue, which was not seen on lean mice that showed higher infiltration of 

M2s (Lumeng et al., 2007). The inflammatory process caused by M1s is associated with insulin-

resistance in obese mice, leading to Type II diabetes (Cucak et al., 2014). In addition, an increased 

M1/M2 ratio seems to be associated with rheumatoid arthritis (RA) pathology, whereas decreased 

M1/M2 ratio has been associated with improved RA prognostics (Yang Wang et al., 2017). 

 

1.4.2 Macrophages in solid cancers 

 Macrophages located within solid tumor microenvironments known as tumor-associated 

macrophages (TAMs) are major contributors to the prognosis of cancer patients. They secrete 

cytokines, chemokines, growth factors, and promote chemotaxis of other immune cells (Lin et al., 

2019). TAMs may assume either M1 or M2 phenotypes, but researchers tend to consider most of 

the TAMs as M2-like macrophages. M2 TAMs provide an immunosuppressive environment by 
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secreting an array of anti-inflammatory molecules besides promoting angiogenesis in vivo (Shu et 

al., 2020; Jetten et al., 2014). Clinical observations show that the accumulation of M2 TAMs in 

tumorigenic tissues are thought to affect tumor initiation, progression, metastasis, and drug 

resistance (Jayasingam et al., 2019). Higher densities of TAMs around tumors are usually observed 

in advanced tumor stages. Thus, targeting TAM is a promising therapeutic strategy to treat cancer 

(DeNardo & Ruffell, 2019; Lin et al., 2019). 

 Both human and mice TAMs express programmed cell death protein 1 (PD-1), which is an 

immune checkpoint receptor that induces immunotolerance. TAM PD-1 expression increases over 

time during tumor progression and culminates with decreased TAM phagocytic activity against 

tumorigenic cells in a variety of cancers (S. R. Gordon et al., 2017). M2-like TAMs are associated 

with poor prognosis in breast cancer, which is the leading cause of cancer related death in women 

around the world (S.-Q. Qiu et al., 2018). TAM infiltration of breast cancer is linked to 

accumulation of hyaluronan, increase in tumor aggressiveness, and treatment resistance (Tiainen 

et al., 2015). In addition, M2 TAM presence in the lung tumor stroma was correlated with worse 

overall patient survival, whereas M1 presence in tumor islet was linked to more favorable patient 

survival in lung cancer (Wu et al., 2016). Ovarian cancer patients that showed a high M1/M2 TAM 

ratio presented higher and progression-free survival when compared to patients that had a lower 

M1/M2 TAM ratio (Macciò et al., 2020). Other examples of cancers in which TAM invasion 

showed great clinical relevance and M2 TAM negatively affected prognosis are skin cancer 

(Fujimura et al., 2018), gastric cancer (Räihä & Puolakkainen, 2018), and kidney cancer (Kovaleva 

et al., 2016). 
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1.4.3 Macrophages in muscle repair and muscular dystrophy 

Macrophages play important roles in skeletal muscle repair, as well as muscle fibrosis. 

Resident and infiltrating macrophages are responsible for clearance of necrotic myofibers and 

release of signaling molecules that promote stromal remodeling and regeneration (Stepien et al., 

2020). Fibroadipogenic progenitors (FAP) are stem cells within skeletal muscle tissues that can 

differentiate into myofibroblasts or adipocytes in response to macrophage signaling, contributing 

to muscle repair or fibrosis, respectively (Dort et al., 2019; Contreras et al., 2016). Different 

subtypes of polarized macrophages will exert distinct functions during muscle repair, depending 

on the stage of the insult. M1 macrophages are usually more abundant during the early stages of 

muscle injury. M1s promote phagocytosis of necrotic muscle debris, killing of intracellular 

pathogens, antigen presentation, and FAP apoptosis (Dort et al., 2019; Wynn, 2008). M2 

macrophages are usually found at later stages of muscle repair and promote FAP survival. M2s 

also secrete IL-10, which seems to be key to tissue survival post-transplantation, and wound 

healing (Bosurgi et al., 2012). Targeting macrophages at different stages of muscle repair can 

significantly affect the balance between muscle regeneration and fibrosis during injury. 

Duchenne muscular dystrophy (DMD) is a severe X-linked disorder in humans. DMD is 

characterized by chronic inflammation and muscle fibrosis that lead to muscle degeneration and 

necrosis (Duan et al., 2021; Dreyfus et al., 1958). A study has shown that pro-inflammatory 

macrophages (M1-like) derived from the circulating monocytes (Ly6Cpos) secrete high levels of 

TGF-β1 which sustains collagen production and matrix deposition by fibroblasts culminating with 

fibrosis in mouse and human DMD muscle (Juban et al., 2018). Another study showed that 

inflammatory monocyte-derived macrophages recruited by increased CCR2 signaling activation 

reduced muscle strength and worsened DMD muscle histopathological features in mice 
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(Mojumdar et al., 2014). Both studies suggest that inflammatory M1-like cells that arise from 

circulating monocytes but not local resident macrophages are linked to progression of DMD and 

may be therapeutically targeted to treat the disorder.  

 

1.4.4 DAM microglia in neurodegeneration: focus on AD 

 Microglia are potent immune sensors of CNS damage. Accumulating evidence suggests 

that DAM, a subset of brain macrophages with unique transcriptome as aforementioned, are able 

to play protective as well as detrimental roles in neurodegenerative disorders (Guzman-Martinez 

et al., 2019). DAM-like phenotype was primarily detected around sites of neurodegeneration and 

not in other regions. One recent study proposed that when damaged, the CNS sends out danger 

signals named neurodegeneration-associated molecular patterns (NAMPS), which are recognized 

by microglia and promote their transition into a DAM phenotype (Deczkowska, et al., 2018). 

Studies have shown that DAM are usually co-localized with β-amyloid (Aβ) plaques in mouse 

models of AD and in tauopathy models. DAM density also increase with aging, as well as with 

progression of other neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and 

multiple sclerosis (MS) (Keren-Shaul et al., 2017). Importantly, microglia with DAM signature 

genes were found in AD patients’ postmortem brain (Friedman et al., 2018).  

 CNS neuroinflammation along with accumulation of intraneuronal hyperphosphorylated 

tau protein forming the neurofibrillary tangles (NFTs) and the presence of neuritic plaques of Aβ 

are hallmarks of Alzheimer’s disease. AD is a neuropsychiatric disorder that affects mainly people 

over 65 years old that presents progressive dementia as its main clinical feature and has no effective 

treatment available able to stop or reverse the progression of the disease (Guzman-Martinez et al., 

2019). Neuroinflammatory pathways are linked to patients’ cognitive decline and the activation of 
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two types of glial cells (microglia and astrocytes) seem to be directly implicated in the process. 

Damage signals including complement factors, cytokines, and chemokines will polarize microglia 

that in turn activate astrocytes and amplify the immune response. Both reactive microglia and 

astrocyte release signaling molecules that will modulate CNS lesions in AD (Jha et al., 2019). 

 The AD brain tissue has an increased number of total microglia as well as an increased 

proportion of DAM to homeostatic microglia. The density of homeostatic microglia declines with 

the progression of the disease, as they switch to a DAM-like phenotype (Mathys et al., 2017). Once 

activated, microglia express different surface markers, such as phagocytic receptors CD33 and 

TREM2 (Griciuc & Tanzi, 2021), major histocompatibility complex II (MHC-II), and molecular 

pattern recognition receptors (PPRs). DAM secrete pro-inflammatory cytokines and chemokines 

such as IL-1β, IL-6, TNF, and IFN-d, as well as cytotoxic factors nitric oxide (NO), and reactive 

oxygen species (ROS) (Guzman-Martinez et al., 2019). DAM genetic signature includes down-

regulation of homeostatic genes TMEM119, SELPLG, P2RY12, and CX3CR1, as well as 

overexpression of genes CST7, APOE, LPL, LILRB4A, TYROBP, and SPI1, which are dependent 

on TREM2 activation (Zhou et al., 2020). One recent study showed that a subpopulation of DAM 

with unique transcriptome including AD risk genes CLU, INPP5D, PLCG2, SPI1, and CD33 is 

responsive to Aβ but not tau pathology, suggesting that Aβ pathology drive the AD genetic 

signature, which might be upstream of tau pathology (Sierksma et al., 2020).  

The complement system is an important effector mechanism of innate immunity which has 

been implicated as a contributor to AD pathology. The complement cascade can be activated by 

three pathways named classical, which is directly involved in the AD pathology, alternative, and 

lectin pathways (Reis et al., 2019). C1q is the initiating protein that activates the classical pathway. 

C1q engagement with fibrillar Aβ plaques in both human and mice initiates the cascade 
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culminating with the formation of the terminal complement membrane attack complex C5b-C9 

(MAC) (Zhou et al., 2008). MAC has been found co-localized with fibrillar Aβ and tangles in 

human AD brain, suggesting that there’s complete complement cascade activation in AD (Webster 

et al., 1997). Complement activation products C5a and C3a in combination Aβ ligate to toll-like-

receptors (TLR) on the surface of glial cells inducing an inflammatory response, including 

microglia activation. C5a is a potent inflammatory mediator of the complement cascade, and binds 

to C5a receptor 1 (C5aR1). In Chapter 3, we study the effects of C5a overexpression and ablation 

of C5aR1 in the pathology of AD and suggest that pharmacologic inhibition of C5aR1 is a 

promising therapeutic strategy to treat AD (Hernandez, Jiang, et al., 2017).  

 

1.5 Therapeutics targeting macrophages 

1.5.1 Cancer therapeutics: targeting TAMs 

 Macrophages are characterized by high plasticity and heterogeneity under both 

physiological and pathological contexts. Reverting the macrophage polarization subtype can be an 

important therapeutic strategy to treat diseases in which an M1/M2 imbalance affects the 

prognosis. For example, in solid cancers macrophages can make up to 50% of the number of cells 

within the tumor and can stablish a immunosuppressive tumor microenvironment (TME) (Qiu et 

al., 2018). Different types of molecular compounds against TAMs are currently being tested to 

prevent tumor progression and metastasis. There are three main cancer strategies targeting TAMs 

under investigation, which will be further discussed: repolarizing M2 TAMs to M1-like 

macrophages; disturbing M2 TAM survival or depleting TAMs; and inhibiting the recruitment of 

TAMs to the tumorigenic site (X. Zheng et al., 2017a).  
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 Repolarization of immunosuppressive/tumor-promoting M2-like TAMs to a tumor-

suppressive M1-like phenotype was evaluated in multiple pre-clinical cancer studies. One study 

used iron chelated melanin-like nanoparticles to repolarize TAM towards M1 in vitro and in vivo. 

As a result, the newly repolarized M1-like macrophages were able to increase chemotaxis of T 

cells and effector T cells to the tumor site, culminating with reduced tumor growth and metastasis 

(Rong et al., 2019). Another study showed that zoledronic acid at clinically compatible doses 

reduced the number of peritoneal TAMs and promoted TAMs switch to an M1-like phenotype, 

leading to reduced tumor vascularization and inhibiting spontaneous mammary carcinogenesis 

(Coscia et al., 2010). Zoledonic acid is currently evaluated in a randomized clinical trial to treat 

women with breast cancer that metastasize to bone (Hortobagyi et al., 2017). 

In order to provide further insight into the repolarization strategy, in Chapter 2 we 

identified the transcriptome profile of M2 repolarized towards M1 (M2M1) highlighting M2M1 

markers and identified the main differences between M1, M2 and M2M1. Targeting M2 

polarization markers has become a useful yet challenging repolarization approach. Immune side 

effects are the main concern of this approach, because the phenotypic conversion of M2 to M1 can 

happen in multiple loci during treatment causing an unnecessary M1 imbalance in healthy tissues. 

In light of this, one study applied a “smart” micellar nanodrug with M2 targeting peptides 

(M2peptide) which only became active inside the acidic TME. The STAT6 inhibitor nanodrug 

AS1517499 effectively suppressed tumor growth and metastasis in vitro and in vivo in a mouse 

model of breast cancer. In addition, it was observed to reduce immune side effects since the healthy 

organs’ neutral pH did not trigger the drug “stealth-to-nonstealth” stages (Xiao et al., 2020). 

Another study used legumain-targeting liposomal nanoparticles (NPs) to modulate the M2-TAM 

polarization marker STAT3. Hydrazinocurcumin (HC) encapsuled nanoparticles inhibited STAT3 
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signaling in TAM, switching its phenotype to an M1-like which reduced 4T1 cells migration and 

invasion in vitro and suppressed breast cancer angiogenesis, growth, and metastasis in vivo (X. 

Zhang et al., 2013).  

 Different approaches have been used to reduce TAM survival, including the use of 

cytotoxic agents to induce apoptosis and targeting of TAM cell surface proteins. The 

chemotherapeutic agent trabectedin (ET-743) is specifically cytotoxic to mononuclear phagocytes 

due to activation of caspase-8, which is the initiator caspase of extrinsic monocyte apoptosis. The 

depletion of mononuclear phagocytes, including TAM, was shown to be essential for trabectedin 

anti-tumor activity (Germano et al., 2013). Targeting cell surface protein CSF1 receptor (CSF1R) 

is another cancer treatment strategy. CSF1 is a tumor stimulating factor that attracts macrophages 

and leads to their polarization towards a TAM-like phenotype. AMG820, a monoclonal anti-

CSF1R antibody that inhibits the CSF1/CSF1R pathway, showed anti-tumor activity against 

advanced solid tumors in a Phase I study and is thus a promising cancer therapeutic (Papadopoulos 

et al., 2017). The high frequency of TAM around the tumor site can predict metastasis and poor 

prognosis in around 60% of patients with neuroblastoma. The CSF1R inhibitor BLZ945 in 

combination with chemotherapeutics cyclophosphamide and topotecan inhibited neuroblastoma 

growth, and increased mouse survival time. Furthermore, blocking CSF1R enhanced therapeutic 

efficacy in neuroblastoma patients with limited anti-tumor T lymphocytes (Webb et al., 2018). 

 Many preclinical and clinical studies aim to reduce intratumor accumulation of TAM by 

inhibiting their recruitment to the tumorigenic site. A subset of pro-tumoral TAMs in the TME 

express kinase receptor Tie2. One study shows that a kinase switch control inhibitor named 

rebastinib inhibits Tie2 signaling, reducing TAM-induced tumor progression in pancreatic and 

breast cancers. Tie2 inhibition reduced TAM incidence in the TME and is a promising cancer 
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therapeutic (Harney et al., 2017). Many tumors have shown high expression of chemokine CCL2 

and its receptor CCR2, which were directly associated with TAM chemoattraction (Peña et al., 

2015). Inhibition of CCL2/CCR2 signaling showed great efficacy in many preclinical studies using 

solid tumor models (Argyle & Kitamura, 2018). However, clinical trials using CCL2/CCR2 

inhibitors were not successful or only showed minor tumor improvement with CCL2 levels rapidly 

increasing after treatment, suggesting that there are other mechanisms that compensate the CCR2 

inhibition (Malfitano et al., 2020). Thus, other TAM chemoattractant-targeting agents should be 

further investigated in order to produce more effective results in reducing TAM recruitment to 

TME. 

 

1.5.2 AD therapeutics: inflammation as a target? 

 AD clinical trials have shown over 99% failure rate so far. As of February 2020, there were 

136 active clinical trials testing 121 unique AD therapies, of which 29 were in Phase III trials 

(Cummings et al., 2020). Many of the failed clinical trials in the past 25 years were centered on 

Aβ pathology and mainly focused on reducing Aβ formation or enhancing its clearance. Though 

these agents were successful in decreasing Aβ accumulation, they failed in improving cognitive 

function or slowing cognitive impairment, suggesting that other pathological features of AD 

should be evaluated and targeted (Oxford et al. 2020). Other factors that limited the success of AD 

clinical trials were the inability of many compounds to cross the blood brain barrier and the limiting 

number of patients able to enroll. Those patients should be asymptomatic or in transitional disease 

state designated mild cognitive impairment (MCI) (Cooper et al., 2014). Over the last 5 years there 

was a diversification of the trials pipeline including agents that target synaptogenesis, 

neurogenesis, and importantly neuroinflammation (Cummings et al., 2020). There is an urgent 
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need for development of treatments that can slow the progression or cure Alzheimer’s disease and 

microglia-induced neuroinflammation is a promising therapeutic strategy under investigation. 

Multiple clinical trials have explored the potential effects of on non-steroidal anti-

inflammatory drugs (NSAIDs) to treat AD. Some NSAIDs, such as ibuprofen and the fenamate 

class have shown inhibition of inflammasome activation in vitro, but did not show positive effects 

in decreasing AD cognitive decline in clinical trials (Dong et al., 2019). One ongoing Phase I 

clinical trial investigates the effects of NSAID salsalate in patients with mild to moderate 

Alzheimer’s disease (NCT03277573). Another recently concluded Phase III clinical trial study 

evaluated the combination of ibuprofen and the mast cell stabilizer cromolyn to treat AD, but its 

results are yet to be released (NCT02547818). The main challenges of using systemic anti-

inflammatory drugs in treating AD is the promotion of systemic side effects that can be detrimental 

to healthy tissues, as well as the poor ability to penetrate the BBB. Therefore, a therapy with 

efficient brain penetration and selectivity to treat microglia-induced inflammation is needed and 

one possible approach is discussed in Chapter 3.  

 

1.6 HL-60-derived macrophages: a useful model to study macrophage polarization 

Promyelocytic HL-60 cells differentiate into macrophages when induced with phorbol-12-

myristate-13-acetate (PMA) (Ramirez et al., 2017; Murao et al., 1983). These cells, stemmed from 

a female patient with acute myeloid leukemia, grow and divide continuously providing a perpetual 

source of cells (Collins et al., 1977). A large amount of gene expression and chromatin accessibility 

data has been generated using the HL-60 model system (Wenzel et al., 2020; Cusanovich et al., 

2015; Poplutz et al., 2014; Annabi et al., 2007). Upon PMA stimulus, HL-60 cells show increased 

expression of PU.1, which dictates myeloid cell commitment and maintains macrophage 
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differentiation and proliferation (DeKoter & Singh, 2000; Nerlov & Graf, 1998). In a recent study, 

HL-60 cells differentiated into macrophages and neutrophils were used as a model to study 

differential methylation during myeloid differentiation (Antwi et al., 2020). Another study used 

the HL-60-derived macrophages to model immune functions of human microglia (Wenzel et al., 

2020). Thus, promoting HL-60 differentiation to macrophage and further polarization, which we 

applied in Chapter 2, is a valuable model to study the key transcriptional events involved in the 

M1/M2 activation process (Chistiakov et al., 2018).  

 

1.7 Bulk genomics techniques applied to our model of macrophage polarization 

Dynamics of mRNA expression are coordinated by an intricate network of regulatory 

elements. Characterizing cell state transitions and the gene regulatory networks that coordinate 

cellular differentiation and maturation are key challenges of developmental biology. An important 

tool for solving the puzzle is to leverage time-series analysis, which facilitates the understanding 

of transient states between the initial pre-stimulus and the terminally differentiated states. Another 

important question in developmental biology is how changes in gene expression drive cellular 

differentiation in a coordinated manner as cells could potentially take more than one path to the 

same end state. Cells change their chromatin landscape and gene expression as they become more 

specialized (Briggs et al., 2018; Buenrostro et al., 2018). Thus, combinatorial genomic approaches 

are needed to identify the regulatory mechanisms at work during myeloid progenitor to terminal 

macrophage differentiation and polarization (Chistiakov et al., 2018; Ramirez et al., 2017).  

ATAC-seq is used to identify open regions of DNA and sites of active transcription factor 

(TF) binding using a hyperactive Tn5 transposase that fragments and inserts synthetic adapters in 

double-stranded DNA at accessible regions of chromatin (Buenrostro et al., 2015; Corces et al., 
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2017). RNA-seq is a standard transcriptome profiling method to measure gene expression in a cell 

or a population of cells (Mortazavi et al., 2008). Dynamic gene regulatory networks can be 

computationally reconstructed by pairing these data sets with perturbation assays (Ramirez et al., 

2017). Key transcriptional events during cellular specification can be determined with 

comprehensive profiles of mRNA expression and chromatin accessibility with fine time resolution 

(Briggs et al., 2018). The characterization of transient states is particularly relevant to identify 

early signs of cellular maturation which could determine the specialization outcome (Olsson et al., 

2016).  

 

1.8 Single-cell genomics techniques applied to our model of macrophage polarization 

Analysis of expression changes using pooled populations of cells, generally known as 

“bulk” studies, cannot capture the heterogeneity of multifunctional cell types. Transient states that 

express low levels of TFs are often not detected in bulk studies. Furthermore, identifying cell types 

in bulk studies relies on known markers and cellular subtypes that have previously been described 

(Jaitin et al., 2014). Single-cell genomics techniques have greatly improved our understanding of 

transient genetic changes in complex multicellular populations (Shalek et al., 2013). Uncovering 

discrete intermediate cell states that delineate cell-type specification has been greatly accelerated 

(Ziegenhain et al., 2017). Single-cell RNA-seq (scRNA-seq) methods such as Drop-seq can 

measure the individual mRNA profiles of thousands of single-cells by encapsulating each cell in 

a nanodroplet with unique DNA-barcoded beads for each cell (Macosko et al., 2015). This 

technology has been used to demonstrate the binary decisions during cellular specification, such 

as in myeloid progenitors that undergo an early bifurcation which segregates myeloid cells from 

the erythroid lineage (Drissen et al., 2016). 
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scRNA-seq of hematopoietic progenitors revealed mixed lineage states expressing distinct 

levels of either Irf8, which is a monocytic TF, or Gfi1, which is a granulocytic TF (Olsson et al., 

2016). No single-cell study to date has clearly captured the heterogeneity of the macrophage 

subpopulations that undergo M0 to M1 or M2 polarization. Machine learning tools have 

contributed to the identification of distinct cell states by constructing an in-silico cellular 

trajectory, termed “pseudo time-course”, using a time-course of scRNA-seq data (Qiu et al., 2017). 

Such tools apply an unsupervised algorithm which is able to uncover branch points throughout the 

differentiation process. Another useful computational tool contributed to building the GRN of 

cellular differentiation using scRNA-seq and scATA-seq data (Jansen et al., 2019). Taking 

advantage of those methods, we propose to investigate the heterogeneous macrophage populations 

and the bulk and single-cell based gene regulatory networks that underlie macrophage polarization 

in Chapter 2, as well as the main changes in gene expression in cortex and hippocampus upon 

ablation of glial receptor C5aR1 and its ligand overexpression in Chapter 3. 
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Figure 1.1 Tissue-resident macrophage polarization 
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CHAPTER 2 

Uncovering the Gene Regulatory Networks Underlying Macrophage Polarization Through 
Comparative Analysis of Bulk and Single-cell Data 
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2.1 Abstract 

Gene regulatory networks (GRNs) provide a powerful framework for studying cellular 

differentiation. However, it is less clear how GRNs encode cellular responses to everyday 

microenvironmental cues. Macrophages can be polarized and potentially repolarized based on 

environmental signaling. In order to identify the GRNs that drive macrophage polarization and the 

heterogeneous single-cell subpopulations that are present in the process, we used a high-resolution 

time course of bulk and single-cell RNA-seq and ATAC-seq assays of HL-60-derived 

macrophages polarized towards M1 or M2 over 24 hours. We identified transient M1 and M2 

markers, including the main transcription factors that underlie polarization, and subpopulations of 

naïve, transitional, and terminally polarized macrophages. We built bulk and single-cell 

polarization GRNs to compare the recovered interactions and found that each technology 

recovered only a subset of known interactions. Our data provide a resource to study the GRN of 

cellular maturation in response to microenvironmental stimuli in a variety of contexts in 

homeostasis and disease. 

 

2.2 Introduction 

The developmental programs controlling cellular differentiation are encoded in the 

genome. The controlled spatiotemporal expression of specific transcription factors (TFs) is at the 

core of these regulatory events and are hallmarks of cellular differentiation. Each TF interacts 

transiently with downstream targets that can be described as a dynamic gene regulatory network 

(GRN) (Peter & Davidson, 2015). The links that make up such networks dictate patterns of gene 

expression during development and differentiation (Gnanakkumaar et al., 2019; Peter & Davidson, 

2011). However, how GRNs apply in the context of cellular maturation in response to 
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microenvironmental stimuli is less clear than in the context of cellular differentiation. While robust 

GRNs can be built by identifying temporal changes in gene expression and chromatin accessibility 

using bulk RNA-seq and ATAC-seq data (Duren et al., 2020; Ramirez et al., 2017), whether 

current single-cell RNA-seq and single-cell ATAC-seq are able to recapitulate or improve bulk-

derived GRN connections is unclear. Thus, a side-by-side analysis of GRNs derived using bulk 

and single-cell techniques in the same model system allows us to quantify the relative strengths of 

bulk vs single-cell. 

GRNs are of particular interest in macrophages, which are able to coordinate immune 

response to inflammatory conditions, tumors and degenerative disorders (Sharma et al., 2020; 

Chan & Viswanathan, 2019; DeNardo & Ruffell, 2019). Macrophages are innate immune cells 

that reside in almost all tissues in the body and play key roles in maintenance of tissue homeostasis 

and clearance of apoptotic cells (S. Gordon & Plüddemann, 2018). While heterogeneous, most 

naïve macrophages, termed M0, have the ability to polarize into two main activated states, M1 and 

M2, based on microenvironmental stimuli (Mills et al., 2000). The ratio of M1:M2 is highly 

regulated and synchronized in homeostatic tissues (Fujisaka et al., 2009). M1 polarization is 

induced by bacterial lipopolysaccharides (LPS) and/or the pro-inflammatory cytokine interferon-

gamma (IFN-g) and is therefore generally associated with a pro-inflammatory phenotype, bacterial 

phagocytosis and anti-tumorigenic activity (Orecchioni et al., 2019; Huang et al., 2018). M2 

polarization is induced by interleukins 4 (IL-4) and 13 (IL-13), and is linked to an anti-

inflammatory phenotype, helminth resistance and pro-tumorigenic activity (Shaked, 2019; Gordon 

& Martinez, 2010; Reece et al., 2006). While the M1/M2 framework has been useful to identify 

major polarization regulatory elements, macrophages in vivo may present more complex 

transcriptional signatures. Multiple M2-like subtypes with different gene expression profiles have 
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been described such as M2a, M2b, M2c and M2d, which are determined by distinct inducing 

stimuli (Rőszer, 2015c). Nonetheless, the M1/M2 dogma of polarization is still a useful conceptual 

framework to illustrate the main functions as well as the regulatory mechanisms of both major 

groups (Budhu et al., 2021; Leonard et al., 2020; Bok et al., 2018).  

The macrophage phenotype present in a microenvironment can be used as a predictor of 

disease prognosis. For example, M1 plays an important role in promoting potentially fatal cytokine 

storms in high risk patients with COVID19 (Lara et al., 2020). Also, prolonged activation of 

resident macrophages of the brain (microglia) increases both amyloid and tau pathology and may 

be linked to Alzheimer’s disease (AD) pathogenesis (Kinney et al., 2018). The potential role of 

activated macrophages in disease has motivated the search for drugs to control polarization (Zhang 

et al., 2019; Guerriero, 2018). One cancer treatment in development attempts to switch the 

phenotype of M2-like tumor associated macrophages to an anti-tumorigenic M1 phenotype, 

highlighting M2’s ability to repolarize towards M1 (Zheng et al., 2017). However, little is known 

about the transcriptome profile of M2 repolarized towards M1. Although progress has been made 

in understanding gene expression in terminally polarized M1 and M2 subtypes (Orecchioni et al., 

2019b), temporal transcriptional changes that drive polarization and repolarization remain poorly 

understood. Thus, reliable transient polarization markers are needed (Walentynowicz et al., 2018). 

Recent studies demonstrated that the TFs STAT1 and IRF7 are upregulated in M1, whereas STAT6 

is upregulated in M2 both in vivo and in vitro (Orecchioni et al., 2019; Yu et al., 2019). Albeit 

relevant, most of the current polarization studies focus mainly on changes in the STAT family of 

TFs, perhaps overlooking other transcriptional regulators (Ding et al., 2019). Furthermore, no 

single-cell study to date has clearly captured the heterogeneity of the spectrum of cells that undergo 



 

25 
 

M0 to M1 or M2 activation. 

Promoting or inhibiting M0 polarization towards M1 or M2 requires insight into changes 

to the chromatin landscape and gene expression that precede cell specialization (Briggs et al., 2018; 

Buenrostro et al., 2018).  A useful framework to study macrophage differentiation is the HL-60-

derived human macrophage model induced with phorbol-12-myristate-13-acetate (PMA) (Dao et 

al., 2020;  Ramirez et al., 2017; Murao et al., 1983). A considerable amount of gene expression 

and chromatin accessibility data has been generated using the HL-60 model system (Wenzel et al., 

2020; Antwi et al., 2020; Cusanovich et al., 2015; Poplutz et al., 2014). We have previously used 

bulk RNA-seq and ATAC-seq to build GRNs of HL-60 differentiation into M0s (Ramirez et al., 

2017). Thus, profiling mRNA expression and chromatin accessibility during the transition from 

HL-60-derived-M0 to M1 or M2 with fine time resolution is a valuable approach to identify the 

genomic mechanisms that drive macrophage polarization (Chistiakov et al., 2018). Last but not 

least, with the increasing adoption and throughput of single-cell techniques, we can now compare 

in a well-defined setting the quality of the networks derived using bulk or single-cell techniques. 

Here, we characterized the genomic regulatory events promoting macrophage polarization 

using the macrophage-differentiated HL-60 model to identify cell state transitions, intermediary 

markers and the gene regulatory networks between the initial M0 pre-stimulus and the terminally 

polarized M1 and M2 states. Our approach profiled the dynamic changes in the transcriptome and 

the chromatin landscape at bulk and single-cell levels at 3, 6, 12, and 24 hours of macrophage 

polarization. Furthermore, we explored the transcriptome profile of M2 repolarized towards M1. 

We identified key TFs at the core of the regulatory pathways that control polarization into M1 and 

M2 states and M2 to M1 repolarization. We built GRNs using bulk and single-cell data, and we 

validated the targets of multiple TFs in M2 polarization. Finally, we compared the GRNs that we 
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derived separately using bulk and single-cell data to identify what portions of the GRNs are 

recovered by either or both sets of methods. 

 

2.3 Results 

2.3.1 Distinct subsets of genes drive macrophage polarization towards M1 or M2 states  

We activated HL-60-derived M0 either to M1 with LPS and IFN-g or to M2 with IL-13 

and IL-4, respectively, in order to identify how subtype-specific polarization affects macrophage 

gene expression. We collected samples for bulk RNA-seq at 3, 6, 12, and 24 hours post-stimulation 

(Figures 2.1A and S2.1A). We identified 7,601 genes (alpha < 0.05, FDR < 0.05%) whose 

expressions vary in a time-specific fashion using maSigPro. These genes grouped into 18 distinct 

clusters from which we selected 11 clusters (4,760 genes) representing four major patterns of 

expression for HL-60-, M0-, M1-, and M2-specific responses (Figure 2.1B). Each cluster contains 

distinct subtype-specific signaling molecules and TFs (Figure 2.1B). We identified 1,269 genes 

whose expression is higher in M1 (clusters Rc2, Rc5, Rc6 and Rc15) and 1,462 genes whose 

expression is higher in M2 (clusters Rc1, Rc7 and Rc13). We used an UpSet plot of maSigPro 

detected genes to identify a subset of 1,194 genes that had a similarly increased expression in both 

M1 and M2, and another subset of 149 genes that had a higher expression in HL-60 and M2 only 

(Figure 2.1C). These subtype specific genes showed distinct temporal expression patterns (Figures 

2.1D & S2.1B). Canonical M1 polarization markers such as CXCL10, CXCL11 and GBP4 (Tang 

et al., 2017; Mantovani et al., 2006) increased expression rapidly by 3 hours post-stimuli and 

peaked expression around 6 hours (Figure 2.1D Upper). Canonical M2-associated genes CCL24 

and CLEC4A (Makita et al., 2015; Tang et al., 2017) were also induced at 3 hours post-stimuli and 

reached peak expression around 6 hours (Figure 2.1D Lower). M2 also showed higher expression 
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of signaling molecule CSF2 that was recently shown to promote macrophages transition into an 

M2 phenotype (Li et al., 2020). Therefore, important expression changes leading to terminal 

polarization of macrophage subtypes were established within the first 6 hours following addition 

of stimuli. We also identified a subset of pro-inflammatory chemokines present in M1-specific 

clusters, such as CCL7, CCL8, CXCL9, CXCL10, and CXCL11 (Gurvich et al., 2020; Lu et al., 

2018) (Figure S2.1C). M2 clusters showed higher expression of chemokines CCL24, which is 

upregulated in macrophages stimulated with IL-4 (Lee et al., 2020) and CKLF, which has been 

associated with decreasing inflammation in dermal disorders (Zheng et al., 2017). Overall, we 

found substantial and rapid differences in gene expression as the result of macrophage polarization. 

We performed gene ontology analysis on M0-, M1-, and M2-specific clusters to identify 

biological processes and pathways associated with subtype specific genes (Figure 2.1E). M0-

specific genes are enriched for Rap1 and insulin signaling pathways, which are important for 

macrophage response to pathogens and  phagocytosis,  respectively   (Chung et al., 2008; Liang et 

al., 2007; Rosa et al., 1996). M1-specific genes are enriched for regulation of inflammatory 

signaling, such as tumor necrosis factor (TNF) and IFN-g response, which is a hallmark of M1 

macrophages (Figure 2.1E). Activation of mitogen-activated protein kinase (MAPK) pathway, 

which is important for cellular proliferation and M2 polarization (Neamatallah, 2019), is enriched 

in M2-specific clusters. Thus, M2-specific genes are enriched for cellular division (Figure 2.1E). 

Interestingly, M2 cells are able to proliferate in our system, whereas M1 are not. 
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Figure 2.1 HL-60-derived M0 polarization reveals distinct clusters of M1- and M2-specific 
genes 
A) Schematic diagram of experimental design highlighting samples processed and distinct assays 
performed. 
B) Heatmap of 4,760 genes with dynamic temporal profiles identified by MaSigPro clustering 
(alpha < 0.05, FDR < 0.05%). Each column represents the average expression for a time point and 
each row represents a gene. Each cluster represents a subset of genes that show a similar pattern 
of expression along the time course. Brown, grey, pink, and blue represent HL-60-, M0-, M1-, and 
M2-specific clusters, respectively. RNA-seq data (TPM) is row-mean normalized. Signaling 
molecules (SM) and transcription factors (TF) present in each cluster are shown.  
C) UpSet plot highlights distinct and overlapping genes across main subtypes (HL-60, M0, M1, 
and M2). 
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D) Representative cluster of 221 genes (RNA Cluster 6) that exhibit increased expression during 
the M1 polarization time course. Representative cluster of 315 genes (RNA Cluster 13) that exhibit 
increased expression during the M2 polarization time course.    
E) Gene ontology (GO) enrichment analyses of M0 (430), M1 (1269), and M2 (1462) differentially 
regulated genes. 
 

We collected a time course of M1 and M2 polarizing macrophages to identify dynamic 

temporal expression changes and intermediary markers regulated in response to polarization 

signaling. 500 genes showed increased expression as early as 3 hours post-stimuli; 400 of those 

were higher in M1 and 100 higher in M2 (Figure S2.1D). FCGR1A, whose expression is increased 

in immuno-inflammatory syndromes (Minar et al., 2014), reacted to M1 but not M2 stimuli and 

was activated as early as 3 hours of polarization. The signaling molecule CSF2 displayed increased 

expression at 3 hours during M2 polarization but not during that of M1 (Figure S2.1D). CSF2 

over-expression leads to increased autophagy that promotes M0 polarization towards an M2 

subtype (Chen et al., 2014; Liu et al., 2015). Other known M1-specific genes such as chemokine 

CXCL9 and TF GATA2 (Yin et al., 2020) displayed differential expression in intermediary 

polarization states at 6 and 12 hours post-stimuli, respectively.  Intermediary M2 polarization states 

showed differential expression of COX6A1 (Codoni et al., 2016), which participates in macrophage 

oxidative phosphorylation, and M2 TF RXRA (Czimmerer et al., 2018) at 6 and 12 hours of 

polarization, respectively. Some genes displayed delayed response to stimuli, highlighting the 

dynamic nature of polarization. For instance, cytokine CCL7 only showed higher expression in 

M1 compared to M2 at 24 hours after stimuli, whereas CLECL1 gene that has been shown to 

stimulate IL-4 production in T helper cells and is overexpressed in nonclassical monocytes (M2) 

(Talker et al., 2020) comes up later in M2 polarization at 24 hours. Therefore, distinct subsets of 

M1- and M2-specific genes were regulated at early, intermediary and late polarization stages.  
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2.3.2 Dynamic shifts in chromatin accessibility occur in response to polarization stimuli and 

are sustained across differentiation 

We clustered regions with similar accessibility profiles over time to identify chromatin 

regions that change during macrophage polarization (Figure 2.1A). We associated each chromatin 

region with its nearest gene and identified 25,331 differentially accessible regions (alpha < 0.05, 

FDR < 0.05%) using MaSigPro. These regions grouped into 21 distinct clusters from which we 

selected 12 clusters (14,174 regions) representing four major patterns of chromatin accessibility 

for HL-60-, M0-, M1-, and M2-specifific responses. Eight of these clusters contained regions 

overall more open in M1 (clusters Ac19, Ac13, Ac11 and Ac5) or M2 (clusters Ac18, Ac6, Ac7 

and Ac17) (Figure 2.2A). The M1-specific cluster Ac13 highlighted regions around genes known 

to be upregulated in M1, such as apolipoproteins APOL1, APOL4 and APOL6 (Gurvich et al., 

2020; Lee et al., 2020; Mantovani et al., 2006) that became more accessible as M1 polarized and 

slightly less accessible as M2 polarized (Figure 2.2B Upper). Cluster Ac18 highlighted regions 

near known M2-specific genes, such as STAT6, ADK and CCL1 (Mantovani et al., 2006, 2004) 

that in turn became more accessible during M2 polarization compared to M1 (Figure 2.2B Lower). 

Principal component analysis (PCA) revealed that PC2, which accounted for 18.1% of the 

variance, separated M1 from M2, with M0 sitting at 0 (Figure S2.2A). Pearson correlation analysis 

also showed great differences between macrophage subtypes (Figure S2.2B). Therefore, chromatin 

landscape reorganization was subtype-specific. 
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Figure 2.2 Differential chromatin accessibility occurs early in response to polarization 
stimuli 
A) Heatmap of 14,174 differentially accessible chromatin regions identified by MaSigPro 
clustering (alpha < 0.05, FDR < 0.05%). Each column represents the average chromatin 
accessibility for a time point and each row represents a genomic region. Brown, grey, pink, and 
blue represent HL-60-, M0-, M1-, and M2-specific clusters, respectively. Read counts were TMM 
normalized, scaled by library size, and row-mean normalized.  
B) Representative cluster of 847 genomic regions (ATAC Cluster 13) that exhibit increased 
accessibility during the M1 polarization time course. Representative cluster of 419 genomic 
regions (ATAC Cluster 18) that exhibit increased accessibility during the M2 polarization time 
course. 
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C) Hierarchical clustering of known motif enrichment in regions included in the 8 M1- or M2-
accessible clusters. 
D) Genomic regions with differential chromatin accessibility between M1 and M2 (log2FC>1, 
FDR<0.05) compared to normalized M0 accessibility. Genomic regions associated with IRF1, 
MYO7A, MAFF, ID2, REL, and STAT3 are indicated. 
E) UCSC genome browser screenshots depicting accessibility around IRF1 and ID2 genes in M1 
and M2 samples (y axis scaled from 0 to 600). 
 

We looked for enrichment of TF binding motifs in the M1- or M2-accessible regions of 

each cluster in order to determine whether a subset of transcription factors drive M1- or M2-

specific chromatin changes (Figure 2.2C). Pro-inflammatory TFs NFkB, STAT1, STAT5, and 

IRF1, which are known to control M1 polarization (Chauhan et al., 2018; Platanitis & Decker, 

2018), showed binding motifs enriched in M1 clusters (Figure 2.2C). JUND, an early target of LPS 

activation (Srivastava et al., 2013), also showed binding motifs enriched in M1 clusters. In M2 

clusters, RAR, STAT6, RUNX and MEF2 motifs were enriched (Figure 2.2C). While RAR and 

STAT6 are known to be essential TFs in M2 macrophage activation (Lee et al., 2016), the RUNX 

and the MEF2 families of TFs are less well-described. RUNX2 has been implicated in the 

promotion of osteogenic events in both M1 and M2 (Dube et al., 2017; Li et al., 2019) and MEF2 

was shown to be repressed by IFN-g signaling (Kang et al., 2017). Notably, the binding motifs for 

the RUNX family of TFs are nearly identical, as well as the MEF2 family of TFs have very similar 

binding motifs. Based on expression, RUNX1 or RUNX2 as well as MEF2A and MEF2C were 

predicted to bind their family motif match in our data. After scanning for motifs in all open regions, 

we increased the specificity of our analyses by only scanning for footprints of 8-31nt in regions 

likely bound by TFs using HINT-ATAC (Li et al., 2019) by pooling the ATAC-seq data for all 

time points (3 to 24 hours) for M1 (~350 million reads) or M2 (~260 million reads). We recovered 

362,198 footprints for M1 and 362,809 footprints for M2. The output mostly recapitulated the 

results from scanning for motifs in clusters of regions identified as M1- or M2-specific seen in 
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Figure 2.2C. Again, the NFkB, JUND, STAT1, and STAT5 TFs had more footprints in M1 than 

M2; RUNX and MEF2 families of TFs had more footprints in M2 than M1 (Figure S2.2C). The 

PU.1-IRF (CGGAAGTGAAAC) and the IRF1 (GAAAGTGAAAGT) motifs were enriched in the 

M1 subtype (Figure S2.2C). PU.1-IRF play important roles in macrophage transcriptional response 

to IFN-g (Langlais et al., 2016). In summary, we found that distinct subsets of TF are associated 

with M1 and M2 polarization in our model. 

We compared chromatin accessibility between M1 and M2 cells at 3, 12, and 24 hours to 

investigate temporal changes in the chromatin landscape leading to altered gene regulation upon 

polarization to M1 or M2 macrophages (Figure 2.2D).  At the 3-hour time point, we detected 173 

genes more open in M1 than M2, and 114 genes more open in M2 than M1 (log2FC > 1, FDR < 

0.05), indicating some early changes in gene accessibility in response to polarization stimuli 

(Figure 2.2D). While gene expression changes leading to polarization were established rapidly 

within the first 6 hours, important chromatin changes occurred later in the time course, after 12 

hours (Figures S2.1D & 2.2D). M1 stimuli led to increased IRF1 accessibility (as early as 3 hours 

of polarization) that was sustained along the time course. IRF1 is known to induce interferon 

transcription to drive M1 polarization (Platanitis & Decker, 2018). The core macrophage signature 

gene MYO7A (Puranik et al., 2018) became more accessible in M2 at 3 hours and maintained 

higher accessibility throughout M2 polarization (Figure 2.2D). TFs MAFF and REL, both induced 

by LPS signaling (Baillie et al., 2017), became more accessible in M1 than M2 later in the 

polarization process, at 12 and 24 hours, respectively (Figure 2.2D). TFs ID2 and STAT3 became 

more accessible in M2 than M1 at 12 and 24 hours post-stimuli, respectively. ID2 expression 

increased greatly and its genomic region became more accessible during M2 polarization (Figures 

2.2D & 2.2E). Thus, ID2 is a possible new M2 marker identified in our model. 



 

34 
 

2.3.3 Integration of transcriptome and chromatin accessibility dynamics during polarization 

Since the bulk ATAC-seq and bulk RNA-seq libraries were prepared from the same pool 

of cells, their transcriptome profiles and chromatin accessibility landscapes are directly 

comparable. We hypothesized that tightly regulated genes, such as targets of crucial TFs that share 

similar expression dynamics, would also share similar accessibility dynamics. In order to compare 

our previously identified open chromatin and gene expression clusters, we used a Pearson’s χ2 test 

to determine enrichment between each RNA-seq and ATAC-seq cluster (Figure 2.3A). Several 

linked RNA-seq and ATAC-seq clusters show similar dynamics in expression and accessibility. 

For instance, Rc2 and Ac13 as well as Rc5 and Ac19 had genes with higher expression and 

associated regions with chromatin more accessible in M1 (Figure 2.3A). These clusters contained 

PU.1 and IRF9, respectively, which are consistently higher in M1 over M2. M1-enriched clusters 

also contained IRF1, CCL8 and STAT1. M2-enriched clusters contained CSF2, MEF2A and 

IL10RA, which regulate anti-inflammatory function in macrophages (Shouval et al., 2014). Rc1 

and Ac6 as well as Rc1 and Ac7 have higher expression and chromatin accessibility in M2 (Figure 

2.3A). These clusters were enriched in ID2 and M2-specific gene TIMP1 that is known to respond 

to M2 cytokine IL-4 (Wang & Joyce, 2010). We therefore detected coordinated changes in 

chromatin and gene expression for key regulatory factors and polarization markers. 

 

2.3.4 Construction of gene regulatory networks from bulk expression and chromatin 

footprinting data reveals subtype-specific transcription factor interactions 

Based on the results above, we narrowed our GRN construction to a set of 17 transcription 

factors and 6 signaling molecules that stood out in our analyses. PU.1/SPI1, NFkB2, STAT1, 

STAT2, IRF1, IRF7, and IRF9 were highly expressed and more accessible in M1, while IL10RA, 
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MEF2A, ID2, CSF2, and TIMP1 were highly expressed and more accessible in M2 (Figures 2.3A 

& 3B). The specific role of PU.1 during macrophage polarization is unclear. However, one study 

has shown that a microRNA suppressing PU.1 promotes M2 polarization (Li et al., 2018). Another 

study has demonstrated that knockout of PU.1 leads to a decrease in NFkB activation and 

subsequent inflammation, a M1-specific process (Karpurapu et al., 2011) suggesting that PU.1 

plays an important role during M1 polarization.  

 

Figure 2.3 Bulk RNA-seq and ATAC-seq derived gene regulatory networks reveal subtype-
specific transcription factor interactions  
A) Heatmap of enrichment between each RNA-seq and ATAC-seq cluster calculated using 
Pearson’s χ2 test. Examples of matching M1-enriched and M2-enriched clusters are indicated in 
grey.  

-Log(p value)

421

R
N

A
 C

lusters

ATAC Clusters

A
c2

A
c9

A
c6

A
c1

A
c12

A
c8

A
c7

A
c3

A
c11

A
c4

A
c10

A
c5

Rc9

Rc7

Rc6

Rc11

Rc4

Rc2

Rc3

Rc10

Rc8

Rc5

Rc1

−log10(P
val)

0 1 2 3 4
3

PU.1, STAT1

NFkB2, IRF1, CCL8

IRF9

ID2, TIMP1

IL10RA

MEF2A

Rc14

R
N

A
 C

lu
s
te

r
s

ATAC Clusters

A
c
2

A
c
9

A
c
6

A
c
1

A
c
1
2

A
c
8

A
c
7

A
c
3

A
c
1
1

A
c
4

A
c
1
0

A
c
5

Rc9

Rc7

Rc6

Rc11

Rc4

Rc2

Rc3

Rc10

Rc8

Rc5

Rc1

−
lo

g
1

0
(
P

v
a
l)

01234

RNA Clusters

ATAC Clusters

Ac2Ac9Ac6Ac1Ac12

Ac8Ac7Ac3Ac11

Ac4Ac10

Ac5

Rc9

Rc7

Rc6

Rc11

Rc4

Rc2

Rc3

Rc10

Rc8

Rc5

Rc1

−log10(Pval)

0 1 2 3 4 A
c4

A
c1

6

A
c1

0

A
c1

A
c1

9

A
c1

3

A
c1

1

A
c5

A
c1

8

A
c6

A
c1

7

ATAC clusters

R
N

A
 c

lu
st

er
s

RNA Clusters

ATAC Clusters

Ac2
Ac9

Ac6
Ac1

Ac12
Ac8

Ac7
Ac3

Ac11
Ac4

Ac10
Ac5

Rc9

Rc7

Rc6

Rc11

Rc4

Rc2

Rc3

Rc10

Rc8

Rc5

Rc1

−log10(Pval)

01234 A
c7

Rc10

Rc9

Rc16
Rc6

Rc2

Rc5

Rc15
Rc13

Rc7

Rc1

CSF2

M1 M2
M0HL-60

M
1

M
2

M
0

H
L-

60

C

A B
●

●●●●●●●●●
●●●●

●●●

●●●●●●●●
●●

●●●●●
●

●

●●●●●●●●●●●●●●●
●
●

●●●●●●●●●●●●●●●
●
●

●●●●●●●●●●
●●●●

●●
●

●●●●●●●●●●
●●●●●●

●
●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●● M2 24hr

M2 12hr

M2 6hr

M2 3hr

M1 24hr

M1 12hr

M1 6hr

M1 3hr

M0

HL60

G
ATA2

IR
F1

IR
F7

IR
F9

N
FKB2

SPI1

STAT1

STAT2

C
XC

L10

C
C

L8

RU
N

X1

RU
N

X2

IL4R

R
XR

A

ID
2

C
SF2

TIM
P1

Gene

Sam
ple

RNA_Value●
●●●●

0.000.250.500.751.00

0.000.250.500.751.00
ATAC_ValueChromatin

Accessibility 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

Normalized 
Expression

HL-60

M0

3

6

12

24

3

6

12

24

Samples

P
U

.1
N

FK
B

2
E

2F
4

R
E

LB
S

TA
T1

S
TA

T2
IR

F1
IR

F2
IR

F7
IR

F9
C

S
F1

C
C

L8
C

X
C

L1
0

M
E

F2
A

R
U

N
X

1
S

TA
T6

TC
F3

R
X

R
A

R
A

R
A

ID
2

TI
M

P
1

IL
R

A
C

S
F2

Genes

M
1

M
2



 

36 
 

B) Bubble plot of gene expression and chromatin accessibility within the promoter region of key 
TFs and signaling molecules. Increasing size of the bubble indicates a higher signal in gene 
expression (TPM scaled across all samples) and a darker blue color indicates higher signal in 
chromatin accessibility (TMM normalized counts scaled across all samples).   
C) Gene regulatory networks containing 17 transcription factors and 6 signaling molecules 
generated from ATAC-seq footprinting and gene expression in bulk RNA-seq data. Genome view 
shows all connections identified. M1 and M2 panels show the connections specific to each cell 
type. Each color is specific to a transcription factor that regulates multiple targets. 
 

We merged all time points for M1 and M2 ATAC-seq datasets to achieve >200 million 

reads needed for chromatin footprinting analysis, as aforementioned. We identified 145,332 

footprints in M1 and 148,348 footprints in M2 using the Wellington algorithm (Piper et al., 2013). 

These footprintings were used to build subtype-specific GRNs (see Methods) focused on our 23 

genes of interest represented as circuit diagrams (Figure 2.3C). At the “genome view” level we 

identified 141 interactions, which includes 48 total detected in M0 (6 specific), 110 total detected 

in M1 (40 specific) and 88 total detected in M2 (17 specific); 78 of the 141 connections are shared 

between some combination of M0/M1/M2. We have previously described the M0 GRN (Ramirez 

et al., 2017),  and therefore focused on M1 and M2 interactions (Figure 2.3C “M1” & “M2”). As 

expected, we captured several well-known interactions, such as the PU.1 auto-regulatory feedback 

loop, RUNX1 regulation of PU.1, and STAT1 regulation of IRF1 (Zenke et al., 2018; Lie-A-Ling 

et al., 2014; Laslo et al., 2006) (Table S1). We decided to also incorporate ID2, which is an 

inhibitor of some basic helix-loop-helix-containing transcription factors such as TCF3 (E2A) and 

TCF12 (HEB) even though it does not bind directly to DNA and thus does not have a motif 

(Rautela et al., 2019). Interestingly, MEF2A binds to ID2 during M2 polarization, but not during 

M1 (Figure 2.3C). Three out of the five TFs targeting PU.1 in our model (PU.1, RUNX1, and 

RELB) have been confirmed in previous studies (Table S1) and their links to PU.1 are detected in 

both M1 and M2 GRNs. The targeting of PU.1 by NFkB2 was M1-specific. The binding motifs 
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for NFkB1 and NFkB2 are nearly identical and we selected NFkB2 in our networks because it is 

expressed ~15-fold higher than NFkB1 in M1. Moreover, NFkB2 expression is ~18-fold higher in 

M1 than in M2 and is therefore an M1-specific TF. This indicates that in our system, the NFkB 

pathway is upregulated specifically in the M1 subtype and plays a key role in regulating other 

transcription factors such as PU.1. In addition, the binding partner of NFkB2 (p100), RELB, is 

expressed ~1.5-fold higher than RELA in M1 and RELB expression is ~10-fold higher in M1 than 

M2. This indicates that in our system, the noncanonical NFkB pathway is upregulated specifically 

in the M1 subtype and plays a key role in regulating other transcription factors such as PU.1 (Figure 

2.3C). 

 

2.3.5 Single-cell heterogeneity during macrophage polarization reveals distinct activation 

trajectories 

We isolated and sequenced single cells representing each polarization time point seen in 

Figure 2.1A using the microfluidic Bio-Rad ddSEQ platform (see Methods) to examine how 

individual macrophages respond to stimuli. After filtering out low-quality cells, our final dataset 

contained 18,363 single cells representing subtypes of HL-60 and M0 as well as cells from M1 

and M2 polarization time courses (Table S2). A UMAP of 9,993 cells that passed the threshold for 

the RNA velocity analysis described below showed clear subtype-specific clustering with six 

distinct cell populations or “Paths” (Figure 2.4A). HL-60 and M0 cells were enriched in Paths 1 

and 2, respectively. Path 3 contained subsets of M1 and M2 time points, whereas Path 4 mainly 

contained subsets of M0, M1, and M2 cells (Figure 2.4B). Paths 5 and 6 were enriched for 

terminally polarized M1 and M2, respectively. Next, we used Monocle to identify a pseudotime 

course of macrophage polarization (X. Qiu et al., 2017) to further verify our clustering and 



 

38 
 

reconstruct the main trajectories of these populations (Figure 2.4C). Paths 5 and 6 were located at 

the end of two distinct trajectories, thus constituting terminally polarized M1 and M2, respectively. 

The terminally polarized M1 population contained subsets of all M1 time points (3-, 6-, 12- and 

24-hours post-stimuli). Similarly, the terminally polarized M2 population contained subsets of all 

M2 time points. We thus found that subsets of macrophages respond rapidly to stimuli and our 

time points contain mixtures of cells at different degrees of polarization.  

Paths 3 and 4 were located between M0-M1 and M0-M2 trajectories, suggesting that these 

cells are transitional cell types (Figure 2.4C). In addition, we applied RNA velocity (see Methods, 

Figure S2.3A) which uses the ratio of unspliced to spliced reads to infer differentiation trajectories 

represented as a vector whose amplitude and direction depict the future transcriptional state of 

each cell or group of cells (Figure 2.4A). This analysis revealed that Path 3 displayed long velocity 

vectors pointing back towards Path 2 (M0-specific). Moreover, Path 3’s unspliced signal for M1 

and M2 markers were similar to Path 2’s (M0) unspliced signal for those markers, indicating that 

Path 3 was regressing towards the naïve M0 state (Figure 2.4D). This suggests that Path 3 

represented macrophages that do not respond to stimuli and tend to maintain a naïve state. We 

observed that a subset of Path 4 cells was progressing towards Path 5 (M1-specific) and another 

subset was moving towards Path 6 (M2-specific) based on arrow directions and cluster proximity. 

Path 4 also showed unspliced reads signal of both M1 and M2 markers (Figure 2.4D). This 

suggested that Path 4 represented macrophages that could become either M1 or M2. Interestingly, 

Path 4 showed higher ATF3 and ZNF384 TFs activity compared to other paths (Figure 2.4E). Paths 

5 and 6 showed higher signal of unspliced reads for M1 and M2 markers, respectively, 

corroborating that these cells are likely terminally polarized M1 and M2. Our results indicated that 

there is cell to cell variability in response to microenvironmental stimuli and that our macrophage 
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subpopulations are heterogeneous. In particular, we found a subpopulation that does not respond 

to  stimulus  and  tends to  maintain an  M0 state, a very  plastic  subpopulation  that  can  polarize  

 

Figure 2.4 Single-cell RNA-seq and pseudotime analysis identify heterogeneous 
subpopulations of polarizing macrophages 
A) UMAP embedding representation of single-cell RNA-seq polarization time course annotated 
by clusters of subpopulations (Paths). RNA velocity vectors were projected onto the UMAP and 
indicate future cellular trajectories.  
B) Bar plot of the relative proportion of cell subtypes per cluster (Path). 
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C) Pseudotime trajectory of macrophage polarization colored by clusters. Colors are as noted in 
B. 
D) Bubble chart depicting spliced and unspliced reads for a given gene (row) per Path (column). 
Circle sizes represent the percentage of cells expressing the gene. Color key represents normalized 
average expression. 
E) Heatmap of AUC scores of transcription factors’ activity per cluster estimated by SCENIC. 
Columns represent clusters and rows represent top transcription factors that are active per cluster. 
F)  Pairwise odds-ratios (OR) for M1 genes (pink) and M2 genes (blue) detected in Path 5. Odds-
ratios that present a p value > 0.05 (calculated by Fisher’s exact test) are set to 0. Data shown as 
log2(odds-ratio). 
 

towards both M1 and M2, and a subset that responds to microenvironmental stimuli and terminally 

polarizes towards either M1 or M2. 

 

2.3.6 Subpopulation of terminally polarized M2 macrophages express proliferation genes not 

observed in the M1 population 

We sought to characterize the identity of our single-cell populations (Figure 2.4A) based 

upon expression of unique HL-60, M0, M1, and M2 markers obtained from our bulk RNA-seq 

analysis and from the literature. As expected, only Path 1 (HL-60-specific) presented high 

expression of TOP2A, which is a marker of aberrant cellular proliferation in cancer cells, and high 

levels of TYMS, which is known to be highly expressed in HL-60 cells (Pei et al., 2018; Ulger et 

al., 2003) (Figure S2.3B). M1 stimulation induced PARP9 that has been shown to promote 

expression of pro-inflammatory genes (Iwata et al., 2016). Importantly, P2RY14 gene that is 

involved in inflammatory signaling and induces cell cycle dormancy was present only in terminally 

polarized M1/Path 5, corroborating our findings that M1 cells do not continue cycling (Cho et al., 

2014). M2 stimulation induced expression of genes SLA and RASA3 which are involved in 

progression of cell cycle (Dulmovits et al., 2015) (Figure S2.3A). In addition, TF YY1 increases 

cell proliferation and is more active in M2 (Figure 2.4E). These results combined with ontology 
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analysis of M2-specific genes identified in our bulk experiments (Figure 2.1E) suggest that M2 

macrophages are capable of proliferating, whereas M1 macrophages might not be.  

 

2.3.7 M1 macrophages more strongly express polarization markers than M2 

After quantification of spliced and unspliced single-cell reads, we observed that Path 5 

(M1) expresses strong signals for both spliced and unspliced M1 markers, while Path 6 (M2) 

expresses weaker unspliced signals for M2 markers (Figure 2.4D). In addition, M1 showed more 

active TFs compared to M2 (Figure 2.4E). M1 stimulus led to increased activity of canonical M1 

TFs STAT1, STAT2, IRF1, IRF7, NFkB1, and NFkB2. M2 stimulus promoted increased activity 

of TFs YY1, RUNX1/2 and MEF2A/C. These results suggest that M1 and M2 polarization are 

regulated by a distinct subset of TFs that is reflected at the single-cell level. 

We explored orthogonal expression of M1 and M2 markers in individual single cells by 

calculating Odds-Ratio (OR) (see Methods) to further survey cell to cell variability in response to 

stimuli. For instance, we inquired whether a cell expressing a M1 marker X would have reduced 

probability (Negative OR, p value < 0.05) or increased probability (High/Positive OR, p value < 

0.05) of expressing a M2 marker Y. We also investigated which pair of M1 and M2 markers are 

more likely to be expressed in the same cell (Figures 2.4F & S2.3C). We observed that M1 cells 

(Path 5) expressing M1-specific chemokines CXCL10, CXCL9 and signaling molecule TNFSF13B 

are significantly less likely to express M2 markers (Figure 2.4F). Similarly, M1 cells that express 

M1-specific genes GBP2, IFIT3, and FCGR1A are less likely to express M2 markers (Figure 2.4F). 

When it comes to M2 cells (Path 6), the pair-wise expression correlations are not as strong (Figure 

S2.3C), as previously reported (Muñoz-Rojas et al., 2021).  This suggests that terminally polarized 

M1 present a stronger phenotype and are less likely to express M2 markers. 
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2.3.8 M2 repolarized towards M1 presents a unique transcriptome profile 

We addressed whether a polarization switch from M1 to M2 or from M2 to M1 was 

possible to further evaluate macrophage plasticity and ability to repolarize. Remarkably, we were 

able to repolarize M2 cells towards an M1 subtype but were unable to repolarize M1 towards an 

M2 subtype, likely due to a stronger M1 phenotype and low likelihood of expressing M2 genes 

(Figure 2.4F). We applied fluorescence-activated cell sorting (FACS) to select terminally polarized 

M2, CD163 high M2 macrophages (SM2) in order to obtain a homogeneous M2 population (Hu 

et al., 2017). We further repolarized these cells with M1 stimuli LPS and IFN-g (see Methods). We 

performed single-cell RNA-seq on M2 repolarized M1 (M2M1). We compared the transcriptome 

profiles of M2M1 cells with HL-60, M0 in addition to M1, M2 and SM2 (24 hours post-stimuli) 

and observed the clustering of subpopulations using UMAP (Figure 2.5A). We identified four 

distinct cell populations or paths (Figures 2.5A & S2.3D). As expected, HL-60 cells were enriched 

in a unique Path 1R and M0 cells were enriched in Path 2R (Figures 2.5B & S2.3E). Path 3R was 

mainly enriched in M1 and M2M1 cells and Path 4R was enriched in M2 and SM2. Next, we 

visualized the main markers identified in each population (Figure 2.5C). M2M1 showed a similar 

expression pattern as M1 macrophages, suggesting that the populations are transcriptionally very 

similar. Correspondingly, M2 and SM2 presented similar expression patterns. Unsupervised in-

silico trajectory reconstruction by Monocle demonstrated that M0 bifurcated into two distinct 

trajectories that contained mainly M2M1 and M1 or mainly M2 and SM2 (Figure 2.5D). Based on 

the number of M2M1 cells that clustered with M1 (Figure S2.3E) we determined that 

approximately 90% of terminally polarized M2 cells repolarized towards an M1 subtype upon LPS 

and IFN-g activation. M2M1 expressed M1-specific markers very similarly to M1 macrophages 

(Figures 2.5E & 2.5F). In addition, M2M1 showed high signal of unspliced M1 markers, 
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suggesting that their future state is more M1-like (Figure 2.5F). Although M2M1 expressed M1-

specific markers, they retained some unique transcriptional differences. M2M1 cells still expressed 

M2 genes associated with proliferation, such as CDK1, MCM2, and MKI67 (Figure 2.5F). In our 

model, we observed that M2M1 macrophages acquired an M1-like transcriptome profile but likely 

maintained M2’s ability to proliferate.  

 

Figure 2.5 M2 repolarized towards M1 presents a unique transcriptome profile 
A) UMAP embedding representation of single-cell RNA-seq repolarization time course annotated 
by time points and clusters of subpopulations (Paths). RNA velocity vectors were projected onto 
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the UMAP and indicate future cellular trajectories. Brown, grey, pink, light blue, dark blue, and 
orange represent HL-60, M0, M1, M2, sorted M2 (SM2), and M2 repolarized towards M1 (M2M1) 
populations, respectively. 
B) Bar plot of the relative proportion of cell subtypes per cluster (Path). 
C) Heatmap of top differentially expressed genes per cluster. Each column represents a cluster of 
cells (Path), and each row represents a gene. Expression is row normalized. Column colors are as 
noted in B. 
D) Pseudotime trajectory of macrophage repolarization colored by time points 
E) Stacked violin plots of selected M1 and M2 markers. Plot shows markers’ expression per 
cluster. 
F) Bubble chart depicting spliced and unspliced reads for a given gene (row) per Path (column). 
M1- and M2-specific markers were highlighted in pink and blue, respectively. Orange brace 
highlights proliferation genes expressed in the M2, sorted M2 (SM2), and M2 repolarized towards 
M1 (M2M1) populations. Circle sizes represent the percentage of cells expressing the given gene. 
Color key represents normalized average expression. 
 

2.3.9 Single-cell GRN provides additional potential network connections 

 We built scATAC-seq libraries of subsets of M0, as well as 24-hour polarized M1 and M2 

macrophages using the Bio-Rad ddSEQ platform to construct a single-cell GRN using scRNA-seq 

and scATAC-seq data sets (see Methods). We used the linked self-organizing maps (SOM) 

strategy (Jansen et al., 2019) to provide additional networking analysis from the single-cell data 

and compare the results to our bulk GRN. We built separate SOMs and performed metaclustering 

for each of the scRNA and scATAC datasets separately (Figure S2.4A). Metaclusters were linked 

by finding the closest gene within 1Mb for each genome region to create a multiclustering (see 

Methods). These linked metaclusters were each searched for motifs via FIMO (q-value < 0.05) 

and the motifs were filtered by linked metacluster enrichment (p value < 0.05).  This provided a 

total of ~500,000 unique network connections of which ~36,000 were TF-TF interactions. We 

identified 135 connections between the 23 genes of our core network (Figure 2.6A). We recovered 

previously studied interactions including E2F4 regulation of PU.1/SPI1 (Lachmann et al., 2010), 

PU.1 regulation of CSF1 (Smith et al., 1996), as well as IRF7’s and MEF2A’s auto-regulatory 

loops (Ning et al., 2005; Ramachandran et al., 2008) (Table S1). The predicted auto-regulatory 
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loop for IRF1 was also an interesting finding considering the well-known feed-forward loop 

behavior seen in the IRF1-STAT1 regulatory system (Michalska et al., 2018). 

  

Figure 2.6 Comparison of single-cell-derived connections and bulk-derived connections 
A) Gene regulatory networks containing 17 transcription factors and 6 signaling molecules. 
Genome view shows connections identified in the single-cell GRN, in the bulk GRN and 

Detected in both
Detected in bulk
Detected in single-cell

50 37 43

Connections from single-cell dataConnections from  bulk data

3123 24

B

141 135

Interactions validated from the literature

A
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connections identified by both methods. Solid bold lines indicate connections detected using both 
single-cell and bulk methods; solid lines indicate connections detected using the bulk method only; 
dashed lines indicate connections identified using the single-cell method only. Each color is 
specific to a transcription factor that regulates multiple targets. 
B) Venn diagram of total number of connections detected using bulk analysis (blue) and single-
cell analysis (orange) as well as the overlaps between both methods. Yellow diagram highlights 
the connections confirmed by previous studies. 
 

Footprinting analysis of bulk data identified a total of 141 connections, whereas SOM 

linking analysis of single-cell data identified 135 connections (Figure 2.6B). Comparison of the 

SOM linking-derived connections to those identified from the bulk analysis found that around half 

of these connections (68) overlapped. Overall, our single-cell-derived GRN identified 55 known 

interactions and 80 novel candidate interactions that regulate macrophage polarization, whereas 

our bulk-derived GRN identified 54 known interactions and 87 novel candidate interactions that 

regulate macrophage polarization. However, neither approach recovered all previously validated 

interactions from the literature, and the combined network is more complete than either strategy 

alone. 

 

2.3.10 Validation of GRN connections using siRNA in M2 polarization 

We decided to confirm some of our M2 polarization GRN predictions using siRNA 

knockdown (KD) of four transcription factors of interest – IRF1, IRF7, IRF9, and ID2 (Figure 

2.7A).  We chose to perturb M2 since it has been less studied, and our predicted targets presented 

unique links that are M2-specific. For instance, IRF1 is targeted by RARA only in M2; IRF7 is 

targeted by PU.1, IRF1, and IRF2 only in M2 (Figures 2.3C & 2.6A). Therefore, we perturbed 

IRF1, IRF7, and IRF9 to explore their regulatory roles during M2 polarization. Moreover, we 

sought to explore which genes were affected by ID2KD since our results showed that it might play 

an important role in M2 polarization.  
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We profiled bulk gene expression and chromatin accessibility after 24 hours of siRNA and 

M2 polarization stimuli (see Methods). We observed that chromatin became significantly less 

accessible in genomic regions associated with our KD targets IRF1, IRF7, IRF9 and ID2 (Figures 

2.7B & S2.5A). Similarly, the expression of IRF1, IRF7, IRF9, and ID2 was reduced compared to 

controls, confirming the successful knockdown (Figures 2.7C & S2.5B). ID2KD downregulated 

927 genes and upregulated 110 genes (Figure S2.5C). ID2 is known to repress TCF3 and its 

expression increased in ID2KD M2 (Figure 2.7C). Importantly, ID2KD led to overexpression of M1-

specific genes,  such  as  STAT1,  STAT2,  and  NFkB2 suggesting  that  ID2 might  repress  

important M1 markers during M2 polarization (Figures 2.7C & S2.5B). Differential motif 

enrichment calculated in regions whose chromatin accessibility changed upon knockdown showed 

that ID2KD and IRF9KD affected regions that contain similar motifs (Figures 2.7D & 2.7E). The 

chromatin regions that became less open upon ID2 reduction or IRF9 reduction were enriched in 

JUNB/C, ATF3, and BATF3 motifs (Figure 2.7E).  
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Figure 2.7 IRF1, IRF7, IRF9, and ID2 regulate distinct subsets of transcription factors 
during M2 polarization 
A) Perturbation assays pipeline: M0 macrophages were treated with IRF1, IRF7, IRF9, ID2, or 
control siRNAs combined with M2-specific stimuli (IL-13 and IL-4). Cells were harvested 24 
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hours post-siRNA treatment. Table indicates the number of differentially expressed genes (DEG) 
and the number of differentially open regions of chromatin (DNase I hypersensitive sites - DHS) 
per knockdown. 
B) Chromatin accessibility fold change (log2) between ID2KD, IRF1KD, IRF7KD, IRF9KD, and 
control conditions (log2FC > 0.5) is shown for a partial list of regions associated with genes 
(15kb+/-) depicted in the gene regulatory networks of macrophage polarization. The distance from 
the chromatin element to the start of each gene is indicated. Differential accessibility is 
indicated ∗p value < 0.05, ∗∗p value < 0.01. 
C) Gene expression fold change (log2) between knockdowns and control is shown for a partial list 
of genes depicted in the gene regulatory networks of macrophage polarization. Differential 
expression significance was calculated using biological replicates (see Methods). ∗p value < 
0.05, ∗∗p value < 0.01. 
D) Motif enrichment in regions that became more accessible upon ID2KD, IRF1KD, IRF7KD, and 
IRF9KD. Circle sizes represent the number of motifs for the given transcription factor (y axis). Each 
color represents the TF that was knocked down. 
E) Motif enrichment in regions that became less accessible upon ID2KD, IRF1KD, IRF7KD, and 
IRF9KD. Circle sizes represent the number of motifs for the given transcription factor (y axis). Each 
color represents the TF that was knocked down. 
F) Bulk M2-focused GRN (Figure 2.3C) centered on knockdown TFs. Links originating directly 
from IRF1, IRF7, or IRF9 are colored by green, pink, or blue, respectively, while all other links 
are in grey for simplicity. Target genes are colored if the single-cell analysis predicted a regulatory 
connection between the knockdown TF and the target gene. Any link present in both the bulk and 
the single-cell networks is in bold. The banners underneath each gene correspond to each 
knockdown (ID2 in gold, IRF1 in green, IRF7 in pink, IRF9 in blue). The stars represent the 
significance of the knockdown in both RNA-seq and ATAC-seq for that gene. Black stars indicate 
the gene is differentially expressed upon knockdown (p < 0.05), blue stars indicate differential 
chromatin accessibility determined by at least 1 region in 15kb+/- TSS (p value <0.05), and red 
stars indicate the gene is both differentially expressed and accessible. 
G) Single-cell-focused GRN (Figure 2.6A) centered on knockdown TFs. Target genes are colored 
if the single-cell analysis predicted a regulatory connection between the knockdown TF and the 
target gene. Differential expression and accessibility for each gene are noted as in F. Regulatory 
connection lines and colors are in the same style as in F. 
 

The number of chromatin regions that became more or less open upon IRF1KD was very 

similar to the number for IRF7KD (Figure S2.5D). In addition, chromatin regions that became more 

open upon IRF1KD or IRF7KD contained similar motifs, such as CTCF, ELF4, and PU.1 (Figure 

2.7D). These results suggest that IRF1 and IRF7 might have similar regulatory roles during M2 

macrophage polarization (Figures 2.7D & 2.7E). We found that several predicted IRF1 targets 

identified in our GRN showed significant changes in expression and/or chromatin accessibility 
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upon IRF1 knockdown. Such potentially confirmed targets include IRF2, IRF7, RUNX1, and 

IL10RA, which were predicted to be IRF1 targets in M2 in both bulk and single-cell GRNs, as well 

as RXRA and MEF2A (detected in the bulk GRN), and CSF1 and ID2 (detected in the single-cell 

GRN) (Figures 2.7F & 2.7G). Similarly, IRF7 was predicted to target RUNX1 (detected in the bulk 

GRN) and IRF1 (detected in the single-cell GRN), which both showed changes in chromatin 

accessibility and/or gene expression upon IRF7 reduction. Some differences in expression and 

chromatin accessibility upon knockdown of our targets can also be explained by indirect TF 

regulation. PU.1 expression significantly changes upon IRF1 knockdown (Figure 2.7F). Although 

we did not identify PU.1 as a direct IRF1 target, MEF2A is a predicted IRF1 target (detected in 

the bulk GRN) that seems to regulate PU.1 expression (detected in the single-cell GRN) (Figures 

2.6A & 2.7F). MEF2A expression significantly decreased in our IRF1KD in M2, thus potentially 

explaining PU.1 expression changes. Also, IRF7KD led to changes in gene expression and 

chromatin accessibility in IL10RA, which is not a direct IRF7 target. However, STAT1 is a 

potential IRF7 target whose expression and chromatin accessibility change in IRF7KD and 

therefore likely explains the expression changes of the STAT1 predicted target IL10RA (Figure 

2.7F). In summary, our perturbations provided significant evidence to key connections identified 

in our bulk and single-cell GRNs by direct or indirect TF interactions. 

 

2.4 Discussion 

Defining the gene regulatory networks that underlie cellular maturation in response to 

stimuli is a challenging task. A previous study used network modeling software on published gene 

expression data to identify macrophage polarization regulators (Palma et al., 2018). Although it 

highlighted important players in the M1/M2 activation, it did not identify the main TF-target 
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interactions that underlie the process. Our bulk footprinting-derived GRN revealed distinct and 

subtype-specific TF-target connections between 23 polarization genes. M1 had 40 unique 

connections, and M2 had 17 unique connections; 63 connections were shared between M1 and 

M2, suggesting a large concordance between the M1 and M2 polarization pathways. In addition, 

some polarization markers seem to play distinct roles in both M1 and M2 GRNs. We captured the 

known activation of IRF1 by STAT6 in the M1 GRN, but not in M2 (Miller et al., 2019). STAT6 

is a well-known marker of M2, while IRF1 is a pro-inflammatory marker of M1. Our identified 

connections implied that STAT6 may still have a regulatory role in driving a pro-inflammatory 

response in M1 that is absent in M2. Around 32% (23 of 73) of our bulk-specific interactions have 

been confirmed in previous studies, and 68% are novel candidate interactions. 

As regulatory genomics is rapidly adopting single-cell methods, we sought to verify 

whether single-cell techniques would reproduce or improve our bulk RNA-seq and ATAC-seq 

derived networks. Our single-cell GRN identified 135 connections, of which 68 overlapped our 

bulk GRN. It identified 67 connections not found using bulk data, whereas bulk analysis identified 

73 connections not found in the single-cell GRN. Similar to our bulk GRN, around 36% (24 of 67) 

of our single-cell-specific interactions have been confirmed by the literature and 64% are novel 

candidate interactions. Around 46% (31 of 68) of the links predicted by both methods have been 

confirmed in previous studies, which is a higher percentage compared to each method separately.  

Using our bulk data sets, we detected rapid changes in gene expression as early as 3 hours 

post polarization. Large chromatin accessibility changes during polarization were detected later in 

the time course, similar to results seen during macrophage differentiation (Ramirez et al., 2017). 

FCGR1A, whose expression is increased in immuno-inflammatory syndromes (Minar et al., 2014), 

reacted to M1, but not M2 stimuli as early as 3 hours of polarization. Therefore, FCGR1A is a 
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possible target to modulate M1 polarization for therapeutics of inflammatory disorders (Thepen et 

al., 2009). In turn, CSF2 reacted to M2 stimuli but not M1 as early as 3 hours. CSF2 is a potential 

candidate target to alter M2 polarization through modulation of autophagy and could possibly be 

a target for cancer therapeutics (P. Chen et al., 2014). Overall, our results provide early, 

intermediary and late polarization markers that could facilitate the manipulation of macrophages 

to desired polarized states and could therefore reveal novel therapeutic targets for cancers and 

immune diseases. 

ID2 is an important regulator of macrophage development in vivo and in vitro. ID2KD mice 

lacked specialized skin macrophages, called Langerhans cells (Hacker et al., 2003). However, ID2 

has never been explored as a macrophage polarization marker. Given its increased expression and 

chromatin accessibility during our M2 polarization time course, we suggest that it can be a novel 

marker of M2 polarization. Additionally, we found that ID2KD led to overexpression of M1 markers 

suggesting it may induce the M2 lineage by suppressing M1 markers.  

M0 macrophages’ ability to proliferate has been well explored (Daems & De Bakker, 

1982), but  it is less clear whether M1 or M2 can proliferate. Skin resident macrophages are able 

to proliferate in order to maintain the tissue population throughout life (Hacker et al., 2003). 

However, during inflammatory conditions, macrophages were unable to proliferate and were 

instead replaced by circulating monocytes  (Dieu-Nosjean et al., 2000). In our model, M1 

expressed genes linked to cell cycle dormancy suggesting that M1 did not enter the cell cycle, 

similar to what has been seen in inflammatory contexts. On the other hand, our M2 cells expressed 

proliferation genes not seen in M1 and thus seemed to proliferate. A previous study has shown that 

macrophage proliferation is a hallmark of T Helper 2 signaling and is linked to IL-4, which 

corroborates our findings (Jenkins et al., 2011). These results suggested that macrophage 
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proliferation is directly linked to microenvironmental stimuli. Thus, naïve M0 and M2 stimulated 

by IL-4 are able to proliferate, whereas M1 stimulated by inflammatory signals are not. Notably, 

despite acquiring an M1-like transcriptome, our M1 cells that repolarized from M2 maintained 

expression of proliferative genes. Therefore, M1 cells that were once M2 may inherit proliferative 

capabilities. 

Both bulk and single-cell functional genomics methods used in our studies have advantages 

and limitations that will shape the resulting networks. The bulk footprinting method we used is 

known to show high efficiency, but it relies on protein occupancy, which may not detect TFs with 

short-lived binding. Hence, important polarization TFs such as NFkB, which are very dynamic, 

do not always leave footprints in bulk chromatin (Sung et al., 2016). In contrast, single-cell assays 

face technical challenges, including resolution, sparsity and number of genes detected. This last 

limitation is present in our analysis due to 3’ tagmentation methods that produce dropouts. For 

example, we were unable to detect PU.1 reliably in our scRNA-seq experiments, which severely 

restricted our ability to detect its connections in the single-cell GRN.  Therefore, neither method 

alone was able to predict all known interactions, and more complete results were obtained by a 

combination of both bulk and single-cell GRNs. 

In summary, our findings provide a clearer understanding of the heterogeneity of the cells 

that undergo M1 and M2 polarization and M2 to M1 repolarization. We identified transient 

polarization markers and found that ID2 is a novel M2 TF. We constructed de novo GRNs 

containing both known and novel interactions that underlie M1 and M2 polarization. It will be 

interesting to investigate how much of this polarization network is conserved across heterogeneous 

tissue-resident macrophages in health and disease, especially in the context of microglial 

polarization in AD. In conclusion, we believe that despite the revolution and the great potential of 
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single-cell biology, bulk results are still needed for building more comprehensive and accurate 

GRNs where practical, i.e., where we can isolate relatively pure cell types for bulk assays. We 

expect that insights gained from this work will provide experimental and computational guidelines 

for building GRNs of cellular maturation in response to microenvironmental stimuli. 
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Figure S2.1 Characterizing temporal changes in gene expression during macrophage 
polarization 
A) Principal component analysis of the RNA-seq time course of macrophage polarization. Time 
points were connected to illustrate subtype-specific trajectories. Cell types are depicted in distinct 
colored points. 
B) Pearson correlation analysis of the RNA-seq time course of macrophage polarization. 
C) Heatmap of signaling molecules included in HL-60-, M0-, M1- or M2-specific clusters 
identified by MaSigPro. Each column represents the average expression for a time point and each 
row represents a signaling molecule. RNA-seq data is row-mean normalized. 
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D) Genes differentially expressed between M1 and M2 time points (log2FC > 1, FDR < 0.05) 
compared to normalized M0. M1- and M2-specific genes FCGR1A, CSF2, CXCL9, COX6A1, 
GATA2, RXRA, CCL7, and CLECL1 are indicated. 
 
 

 

Figure S2.2 Quality assessment of bulk ATAC-seq data 
A) Principal component analysis of the ATAC-seq time course of macrophage polarization. Time 
points were connected to illustrate subtype-specific trajectories. Cell types are depicted in 
distinctly colored points. 
B) Pearson correlation analysis of the ATAC-seq time course of macrophage polarization. 
C) Differential motif enrichment between chromatin accessibility footprints in M1 and M2 
subtypes compared to each other. Circle sizes represent the number of footprintings for the given 
transcription factor.  
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D) Distribution of ATAC-seq fraction of reads in peaks (FRiP). Mean = 44, median = 45. 
 

 

Figure S2.3 Single-cell RNA-seq of macrophage polarization and repolarization 
A) Single-cell RNA-seq data analysis pipeline. 
B) Stacked violin plots of selected markers’ expression per cluster (Path). 
C) Pairwise odds-ratios (OR) for M1 genes (pink) and M2 genes (blue) detected in Path 6. Odds-
ratios that present a p value > 0.05 (calculated by Fisher’s exact test) are set to 0. Data shown as 
log2(odds-ratio). 
D) UMAP embedding representation of the single-cell RNA sequencing repolarization time course 
annotated by clusters of subpopulations. RNA velocity vectors were projected onto the UMAP and 
indicate future cellular trajectories. 
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E) Bar plot of the relative proportion of cell subtypes per cluster. 
 

 

Figure S2.4. Single-cell RNA-seq and ATAC-seq data integration using SOM linking 
A)  SOM linking data analysis pipeline used to build the single-cell gene regulatory networks. 
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Figure S2.5 Differential gene expression and chromatin accessibility upon IRF1KD, IRF7KD, 
IRF9KD, and ID2KD 
A)  Chromatin accessibility fold change (log2) between ID2KD, IRF1KD, IRF7KD, IRF9KD, and 
control conditions is shown for regions associated with genes (15kb+/-) depicted in the gene 
regulatory networks of macrophage polarization. The distance from the chromatin element to the 
start of each gene is indicated. Differential accessibility is indicated ∗p value < 0.05, ∗∗p value < 
0.01. 
B) Gene expression fold change (log2) between knockdowns and control is shown for a partial list 
of genes depicted in the gene regulatory networks of macrophage polarization. Differential 
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expression significance was calculated using biological replicates (see Methods). ∗p value < 
0.05, ∗∗p value < 0.01. 
C) Volcano plot highlighting genes upregulated or downregulated in ID2KD, IRF1KD, IRF7KD, 
IRF9KD. Differentially expressed genes are colored in gold, green, orange, and blue, respectively. 
p value < 0.05, |log2FC| > 0.5.  
D) Differential chromatin accessibility between ID2KD, IRF1KD, IRF7KD, IRF9KD, and control 
conditions. Differentially open regions are colored in gold, green, orange, and blue, respectively. 
p value < 0.05, |log2FC| > 0.5.  
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Table S2.1  Regulatory interactions that were previously studied 

 

 

 

Citations Interactions
Identified in 
our data 

Bonizzi, G., Bebien, M., Otero, D. C., Johnson-Vroom, K. E., Cao, Y., Vu, D., … Karin, M. (2004). Activation of 
IKKα target genes depends on recognition of specific κB binding sites by RelB:p52 dimers. EMBO Journal, 
23(21), 4202–4210. https://doi.org/10.1038/sj.emboj.760039 RELB auto-regulatory loop Both

Bren, G. D., Solan, N. J., Miyoshi, H., Pennington, K. N., Pobst, L. J., & Paya, C. V. (2001). Transcription of the 
RelB gene is regulated by NF-κB. Oncogene, 20(53), 7722–7733. https://doi.org/10.1038/sj.onc.1204868 RELB->IRF7 Single-cell
De Silva, N. S., Anderson, M. M., Carette, A., Silva, K., Heise, N., Bhagat, G., & Klein, U. (2016). Transcription 
factors of the alternative NF-kB pathway are required for germinal center B-cell development. Proceedings of 
the National Academy of Sciences of the United States of America, 113(32), 9063–9068. 
https://doi.org/10.1073/pnas.1602728113; Lovas, A., Radke, D., Albrecht, D., Buket, Z. B., Möller, U., 
Habenicht, A. J. R., & Weih, F. (2008). Differential RelA- and RelB-dependent gene transcription in LTβR-
stimulated mouse embryonic fibroblasts. BMC Genomics, 9, 606. https://doi.org/10.1186/1471-2164-9-606 RELB->STAT6 Single-cell

Dong, X., Craig, T., Xing, N., Bachman, L. A., Paya, C. V, Weih, F., … Griffin, M. D. (2003). Direct 
transcriptional regulation of RelB by 1α,25-dihydroxyvitamin D3 and its analogs: physiologic and therapeutic 
implications for dendritic cell function. Biochemistry, (33). RXRA->NFkB2 Single-cell

El Zein, R. M., Soria, A. H., Golib Dzib, J. F., Rickard, A. J., Fernandes-Rosa, F. L., Samson-Couterie, B., … 
Boulkroun, S. (2019). Retinoic acid receptor α as a novel contributor to adrenal cortex structure and function 
through interactions with Wnt and Vegfa signalling. Scientific Reports, 9(1), 14677. 
https://doi.org/10.1038/s41598-019-50988-2 RARA->TCF3 Single-cell

Fijneman, R. J. A., Anderson, R. A., Richards, E., Liu, J., Tijssen, M., Meijer, G. A., … Cormier, R. T. (2012). 
Runx1 is a tumor suppressor gene in the mouse gastrointestinal tract. Cancer Science, 103(3), 593–599. 
https://doi.org/10.1111/j.1349-7006.2011.02189.x RUNX1->CCL8 Single-cell

Ho, J., Pelzel, C., Begitt, A., Mee, M., Elsheikha, H. M., Scott, D. J., & Vinkemeier, U. (2016). STAT2 Is a 
Pervasive Cytokine Regulator due to Its Inhibition of STAT1 in Multiple Signaling Pathways. PLOS Biology, 
14(10), e2000117. https://doi.org/10.1371/journal.pbio.2000117 STAT2->STAT1 Both
Hohaus, S., Petrovick, M. S., Voso, M. T., Sun, Z., Zhang, D. E., & Tenen, D. G. (1995). PU. 1 (Spi-1) and 
C/EBP alpha regulate expression of the granulocyte-macrophage colony-stimulating factor receptor alpha 
gene. Molecular and cellular biology, 15(10), 5830-5845. DOI: 10.1128/MCB.15.10.5830 PU.1->CSF2 Single-cell

I, A., WY, Y., A, F., JJ, C., EA, W., & MR, H. (2014). p75NTR is highly expressed in vestibular schwannomas 
and promotes cell survival by activating nuclear transcription factor κB. Glia, 62(10). 
https://doi.org/10.1002/GLIA.22709 TCF3->NFkB2 Both

Ji, M., Li, H., Suh, H. C., Klarmann, K. D., Yokota, Y., & Keller, J. R. (2008). Id2 intrinsically regulates lymphoid 
and erythroid development via interaction with different target proteins. Blood, The Journal of the American 
Society of Hematology, 112(4), 1068-1077. https://doi.org/10.1182/blood-2008-01-133504 PU.1->ID2 Single-cell

Koh, C.P., Wang, C.Q., Ng, C.E.L., Ito, Y., Araki, M., Tergaonkar, V., Huang, G., and Osato, M. (2013). RUNX1 
meets MLL: epigenetic regulation of hematopoiesis by two leukemia genes. Leukemia 27, 1793–1802. RUNX1->MEF2A Both
Kwon, G., & Kang, K. (2020). Transcriptional regulation of IL10 gene in human macrophages. PU.1->IL10RA Both

Lachmann, A et al. (2010) ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-
X experiments. Bioinformatics. 26:2438-44. - Harmonizome - D R, GW G, NF F, Z W, CD M, et al. (2016) The 
harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and 
proteins. Database(Oxford) Jul 3;2016 E2F4->NFkB2 Both

Laslo, P., Spooner, C.J., Warmflash, A., Lancki, D.W., Lee, H.J., Sciammas, R., Gantner, B.N., Dinner, A.R., 
and Singh, H. (2006). Multilineage Transcriptional Priming and Determination of Alternate Hematopoietic 
Cell Fates. Cell 126, 755–766; Kubosaki, A., Tomaru, Y., Tagami, M., Arner, E., Miura, H., Suzuki, T., Suzuki, 
M., Suzuki, H., and Hayashizaki, Y. (2009). Genome-wide investigation of in vivo EGR-1 binding sites in 
monocytic differentiation. Genome Biology 10, R41 PU.1 auto-regulatory loop Both
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E2F4->IRF1
E2F4->IRF2
E2F4->IRF7
E2F4->MEF2A
E2F4->STAT1
E2F3->TCF3

Lie-A-Ling, M., Marinopoulou, E., Li, Y., Patel, R., Stefanska, M., Bonifer, C., … Lacaud, G. (2014). RUNX1 
positively regulates a cell adhesion and migration program in murine hemogenic endothelium prior to blood 
emergence. Blood, 124(11), 11–20. https://doi.org/10.1182/blood-2014-04-572958 RUNX1->PU.1 Both
Lovas, A., Radke, D., Albrecht, D., Buket, Z. B., Möller, U., Habenicht, A. J. R., & Weih, F. (2008). Differential 
RelA- and RelB-dependent gene transcription in LTβR-stimulated mouse embryonic fibroblasts. BMC 
Genomics, 9, 606. https://doi.org/10.1186/1471-2164-9-606 RELB->ID2 Single-cell

Mathelier, A et al. (2014) JASPAR 2014: an extensively expanded and updated open-access database of 
transcription factor binding profiles. Nucleic Acids Res. 42:D142-7. - Harmonizome - D R, GW G, NF F, Z W, 
CD M, et al. (2016) The harmonizome: a collection of processed datasets gathered to serve and mine 
knowledge about genes and proteins. Database(Oxford) Jul 3;2016 IRF2->STAT1 Both
Michalska et al., (2018) A Positive Feedback Amplifier Circuit That Regulates Interferon (IFN)-Stimulated 
Gene Expression and Controls Type I and Type II IFN Responses. Frontiers in Immunology, 
https://doi.org/10.3389/fimmu.2018.01135 IRF1->STAT1 Both

Minucci, S., Leid, M., Toyama, R., Saint-Jeannet, J. P., Peterson, V. J., Horn, V., ... & Ozato, K. (1997). 
Retinoid X receptor (RXR) within the RXR-retinoic acid receptor heterodimer binds its ligand and enhances 
retinoid-dependent gene expression. Molecular and Cellular Biology, 17(2), 644-655. DOI: 
10.1128/MCB.17.2.644 RXRA->RARA Both

Nair, P. M., Starkey, M. R., Haw, T. J., Ruscher, R., Liu, G., Maradana, M. R., … Hansbro, P. M. (2018, March 
1). RelB-deficient dendritic cells promote the development of spontaneous allergic airway inflammation. 
American Journal of Respiratory Cell and Molecular Biology, Vol. 58, pp. 352–365. 
https://doi.org/10.1165/rcmb.2017-0242OC RELB->PU.1 Both
Nakagawa, M., Shimabe, M., Watanabe-Okochi, N., Arai, S., Yoshimi, A., Shinohara, A., … Kurokawa, M. 
(2011). AML1/RUNX1 functions as a cytoplasmic attenuator of NF-κB signaling in the repression of myeloid 
tumors. Blood, 118(25), 6626–6637. https://doi.org/10.1182/blood-2010-12-326710 RUNX1->IRF7 Both

RARA->IRF1 Both
RARA->STAT6 Both
RXRA->RUNX1 Single-cell
RXRA->TCF3 Single-cell

Navarro-Montero, O., Ayllon, V., Lamolda, M., López-Onieva, L., Montes, R., Bueno, C., … Real, P. J. (2017). 
RUNX1c Regulates Hematopoietic Differentiation of Human Pluripotent Stem Cells Possibly in Cooperation 
with Proinfla RUNX1->CSF1 Single-cell
Nigten, J., Nikoloski, G., De Witte, T., Van der Reijden, B. A., & Jansen, J. H. (2004). Id1 and Id2 Are Retinoic 
Acid Responsive Genes and Induce a G0/G1 Arrest in Acute Promyelocytic Leukemia Cells. 
https://doi.org/10.1182/blood.V104.11.2029.2029 RARA->ID2 Single-cell
Ning, S., Huye, L. E., & Pagano, J. S. (2005). Regulation of the transcriptional activity of the IRF7 promoter by 
a pathway independent of interferon signaling. Journal of Biological Chemistry, 280(13), 12262-12270. doi: 
10.1074/jbc.M404260200 IRF7 auto-regulatory loop Single-cell
Orlikova, B., Schnekenburger, M., Zloh, M., Golais, F., Diederich, M., & Tasdemir, D. (2012). Natural 
chalcones as dual inhibitors of HDACs and NF-κB. Oncology Reports, 28(3), 797. 
https://doi.org/10.3892/OR.2012.1870 STAT1->NFkB2 Single-cell
Pongubala, J. M. R., & Atchison, M. L. (1997). PU.1 can participate in an active enhancer complex without its 
transcriptional activation domain. Proceedings of the National Academy of Sciences of the United States of 
America, 94(1), 127. https://doi.org/10.1073/PNAS.94.1.127 PU.1->TCF3 Single-cell
Ramachandran, B., Yu, G., Li, S., Zhu, B., & Gulick, T. (2008). Myocyte enhancer factor 2A is transcriptionally 
autoregulated. Journal of Biological Chemistry, 283(16), 10318-10329. doi: 10.1074/jbc.M707623200 MEF2A auto-regulatory loop Single-cell
Wislet, S., Vandervelden, G., & Rogister, B. (2018). From Neural Crest Development to Cancer and Vice 
Versa: How p75NTR and (Pro)neurotrophins Could Act on Cell Migration and Invasion?. Frontiers in 
molecular neuroscience, 11, 244. https://doi.org/10.3389/fnmol.2018.00244 TCF3 auto-regulatory loop Both

RARA->RUNX1
RARA->PU.1

PU.1->CSF1 Both

PU.1->STAT1 Single-cell

Satoh, J. I., Asahina, N., Kitano, S., & Kino, Y. (2014). A comprehensive profile of ChIP-Seq-based PU. 1/Spi1 
target genes in microglia. Gene regulation and systems biology, 8, GRSB-S19711. 
https://doi.org/10.4137/GRSB.S19711

Lee et al., (2011) Wide-ranging functions of E2F4 in transcriptional activation and repression revealed by 
genome-wide analysis. Nucleic Acids Research, Volume 39, Issue 9, https://doi.org/10.1093/nar/gkq1313 Both

Saeed, S., Logie, C., Stunnenberg, H. G., & Martens, J. H. A. (2011). Genome-wide functions of PML-RARα 
in acute promyelocytic leukaemia. British Journal of Cancer, 104(4), 554–558. 
https://doi.org/10.1038/sj.bjc.6606095 Single-cell

Nakanishi, M., Tomaru, Y., Miura, H., Hayashizaki, Y., & Suzuki, M. (2008). Identification of transcriptional 
regulatory cascades in retinoic acid-induced growth arrest of HepG2 cells. Nucleic Acids Research, 36(10), 
3443–3454. https://doi.org/10.1093/nar/gkn066
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Sin, W.-X., Yeong, J. P.-S., Lim, T. J. F., Su, I.-H., Connolly, J. E., & Chin, K.-C. (2020). IRF-7 Mediates Type I 
IFN Responses in Endotoxin-Challenged Mice. Frontiers in Immunology, 11, 640. 
https://doi.org/10.3389/fimmu.2020.00640 STAT1->IRF7 Single-cell

Tallam, A., Perumal, T. M., Antony, P. M., Jäger, C., Fritz, J. V., Vallar, L., ... & Michelucci, A. (2016). Gene 
regulatory network inference of immunoresponsive gene 1 (IRG1) identifies interferon regulatory factor 1 
(IRF1) as its transcriptional regulator in mammalian macrophages. PLoS One, 11(2), e0149050. 
https://doi.org/10.1371/journal.pone.0149050 IRF1->RUNX1 Both

IRF1->IRF2 Both

IRF2 auto-regulatory loop Both
PU.1->IRF1 Both
PU.1->RUNX1 Both

Thomsen, I., Kunowska, N., Souza, R. de, Moody, A.-M., Crawford, G., Wang, Y.-F., … Sabbattini, P. (2018). 
RUNX1 controls the dynamics of cell cycle entry of naïve resting B cells by regulating expression of cell cycle 
and immunomodulatory genes in response to BCR stimulation. E-Conversion - Proposal for a Cluster of 
Excellence.; Navarro-Montero, O., Ayllon, V., Lamolda, M., López-Onieva, L., Montes, R., Bueno, C., … Real, 
P. J. (2017). RUNX1c Regulates Hematopoietic Differentiation of Human Pluripotent Stem Cells Possibly in 
Cooperation with Proinfla RUNX1->IL10RA Single-cell

Tomaru, Y., Simon, C., Forrest, A. R. R., Miura, H., Kubosaki, A., Hayashizaki, Y., & Suzuki, M. (2009). 
Regulatory interdependence of myeloid transcription factors revealed by matrix RNAi analysis. Genome 
Biology, 10(11), R121. https://doi.org/10.1186/gb-2009-10-11-r121 RXRA->RELB Single-cell
Wan, Y. J. Y., Wang, L., & Wu, T. C. J. (1994). The expression of retinoid X receptor genes is regulated by all-
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RELB->IRF2 Single-cell
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Table S2.2 Statistics for bulk and single-cell experiments 

 

 

 

Timepoint Replicate
Mapped 

reads 

Genes > 

1TPM 

Mapped 

reads 

Homer total 

peaks 

IDR-passing 

peaks

Cells > 

500UMI

Cells >150 

genes & 

<20% MT 

reads

Cells that 

pased QC

Avg. TSS 

Enrichment 

Score

Rep1 9.0M 13,187 21.5M 531,523

Rep2 8.4M 13,124 14.1M 737,361

Rep1 13.9M 14,436 15.8M 514,659

Rep2 12.7M 14,374 8M 584,661

Rep1 13.5M 10,369 29.3M 584,661

Rep2 17.2M 9,250 25.1M 494,114

Rep1 13.5M 10,473 19.7M 431,602

Rep2 13.1M 9,369 13.3M 391,476

Rep1 11.7M 9,744 25.3M 482,322

Rep2 16.2M 9,820 56.1M 459,273

Rep1 13.2M 9,385 19M 508,889

Rep2 12.9M 11,136 11.7M 423,695

Rep1 8.0M 8,228 15.3M 451,124

Rep2 12.0M 8,109 15.9M 460,571

Rep1 10.0M 7,722 16.1M 501,319

Rep2 13.7M 7,510 16.3M 505,241

Rep1 9.5M 7,413 23.1M 462,814

Rep2 10.7M 7,585 29.4M 549,522

Rep1 9.0M 7,788 20.3M 506,421

Rep2 10.0M 8,123 20.9M 504,361

M2_24hrs_S

orted
_ _ _ _ _

829 630
_ _

M2M1_Repol

arized

_ _ _ _ _
1,323 1,159 329 16

Rep1 15.5M 11,293 23.9M 459,529

Rep2 18.3M 12,022 24.4M 459,889

Rep1 13.1M 12,373 25.9M 479,147

Rep2 15.0M 11,674 23.8M 485,730

Rep1 13.3M 10,643 23.3M 471,072

Rep2 15.5M 10,669 27.3M 514,258

Rep1 13.7M 10,534 27.9M 508,087

Rep2 13.7M 10,770 23.2M 490,966

Rep1 18.4M 11,125 25.1M 484,455

Rep2 15.8M 11,545 25.3M 477,066

Rep1 20.9M 11,760 22.6M 473,521

Rep2 10.8M 12,016 23.2M 465,532

_ _ _ _

scRNA-seq scATAC-seq

_

4,145 4,960 42

415 _ _

_ _475

HL-60

Bulk RNA-seq

49,081 628 _

Bulk ATAC-seq

M2_3hrs

M2_6hrs

M2_12hrs

M2_24hrs

Mac_0hrs

M1_3hrs

M1_6hrs

M1_12hrs

M1_24hrs

M2_Neg_Ctrl

M2_IRF1_KD

M2_IRF7_KD

M2_IRF9_KD

M2_ID2_KD

M2_Pos_Ctrl

157,267

148,226

153,577

187,605

4,123

4,480

597

507

494

131,631

168,480

162,497

170,366

164,340

635

3,453

571 490 _ _

524 8,425 40

474 435

389

877 285

_ _

_ _

_ _

418 8,809 37

_ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

172,866

142,157

181,900

166,015

184,304

112,537
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2.5 Methods 

2.5.1 Experimental model and subject details 

HL-60 cells (ATCC-CC240) were grown in ATCC-recommended media: 20% FBS 

(Omega Scientific) and 1% penicillin/streptomycin antibiotics (Life Technologies) in Dulbecco’s 

Modification of Eagle’s Medium (Corning). They were incubated at 37°C with 5% CO2. All cell 

lines were maintained in horizontally oriented 25mL or 75mL Falcon Tissue Culture Treated 

Flasks (Thermo Fisher Scientific) at a density of 1 × 106 cells/mL in a total of 10mL or 20mL, 

respectively. Cells were consistently passaged once over 2 to 3-day periods up to differentiation. 

 

2.5.2 Macrophage differentiation and polarization 

We performed PMA-induced differentiation of HL-60 cells into M0 macrophages (Murao 

et al., 1983) in order to obtain M1 and M2 macrophage subtypes for characterization. 

Approximately 5 × 106 cells at a density of 1 × 106 cells/mL were plated in 60mm cell culture 

dishes with 10 µM of PMA (Thermo Fisher Scientific). Media was changed every 48 hours and 

10µM of PMA was added at every media change. After 120 hours of PMA stimulus, M0 

macrophages were polarized by either applying 100ng/mL of IFN-g and LPS to obtain M1 or 

10ng/mL of IL-4 and IL-13 to obtain M2 polarized subtypes (Huang et al., 2018; Wang et al., 

2007). Differentiation and polarization were confirmed by fluorescence immunostaining for cell 

type specific markers (Rőszer, 2015; Yu et al., 2009; Holness & Simmons, 1993) and by 

observation of markedly distinct cellular morphologies, as M1 cells are characterized by a large 

cell body with a varied number of pseudopodia and M2 cells are characterized by an elongated 

shape (McWhorter et al., 2013). Macrophages were collected at 0, 3, 6, 12 and 24 hours after 

addition of polarization stimuli, along with undifferentiated HL-60 for bulk and single-cell RNA-
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seq (Figure 2.1A). We generated a total of 62 bulk data sets, approximately 50,000 single-cells 

using scRNA-seq, and approximately 40,000 single-nuclei using scATAC-seq. 

 

2.5.3 M2 repolarization towards M1 

M0 macrophages were polarized towards M2 for 24 hours according to aforementioned 

protocol. M2 macrophages were harvested and resuspended in PBS at a concentration of 

1 × 104 cells/mL. Non-specific antigens were blocked by 5% BSA in PBS buffer. Cells were then 

fluorescently labeled using CD163-FITC mouse conjugated monoclonal antibody (Thermo Fisher, 

MA5-17719). Cells that presented high CD163 levels were sorted using an Aria 2 Flow Cytometer 

(BD Biosciences) in order to obtain a homogeneous M2 population (Hu et al., 2017). M2 

macrophages were repolarized towards M1 by applying 100ng/mL of IFN-g and LPS during 24 

hours. Populations of M2 repolarized towards M1 (M2M1) were harvested in a single-cell 

suspension and loaded into the ddSEQ single-cell isolator (Bio-Rad). Single-cell libraries were 

prepared using the SureCell WTA 3′ Library Prep Kit for the ddSEQ System (Illumina). The 

quality of the libraries was assessed using the Agilent 2100 Bioanalyzer. Single-cell libraries were 

sequenced using the NextSeq 500 (Illumina). Cell viability (>90%) was confirmed prior to single-

cell library preparation.  

 

2.5.4 Bulk RNA-seq and ATAC-seq experiments 

Bulk sequencing experiments were conducted in triplicates per time point (Figure 2.1A) 

per assay. We collected 2 million cells for RNA-seq and 50,000 cells for ATAC-seq. RNA-seq 

and corresponding ATAC-seq biological replicates were collected from the same dish. Cell 

viability (>90%) was monitored prior to cell collection. Macrophages were detached from plates 
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by incubating with 3.5mL of Trypsin-EDTA 0.25% (Life Technologies) at 37°C for 4 minutes. 

Trypsin was neutralized by adding 14mL of complete media per dish, then the cells were pelleted 

in a centrifuge at 1,500 RPM for 5 minutes. The cells were washed with PBS and spun down again 

to remove all traces of Trypsin and media before library preparation. HL-60 cells were collected 

for RNA-seq by pelleting suspended cells and washing them with PBS. We relied on our previous 

paper for undifferentiated HL-60 ATAC-seq data (Ramirez et al., 2017). RNA-seq and ATAC-seq 

libraries were built following the Smart-seq2 protocol (Picelli et al., 2014) and the Omni-ATAC 

protocol (Corces et al., 2017a), respectively. The Omni-ATAC-seq libraries went through a gel 

size selection step to enrich for DNA fragments ranging from 150 to 500bp. The quality of all 

libraries was assessed using the Agilent 2100 Bioanalyzer. Bulk libraries were sequenced using 

the NextSeq 500 (Illumina) obtaining around 10 million reads per sample for RNA-seq and around 

20 million reads per sample for ATAC-seq. Two replicates per time point were used in downstream 

analyses.  

 

2.5.5 Single-cell RNA-seq experiment 

Single-cell libraries were prepared from 12,000 cells per time point (Figure 2.1A) using 

the SureCell WTA 3′ Library Prep Kit for the ddSEQ System (Illumina). Cells with viability >90% 

were collected by detaching cells from plates using Trypsin-EDTA 0.25%, as previously described 

in  the “Bulk RNA-seq and ATAC-seq experiments” section. The detached cells were washed in 

cold PBS + 0.1% BSA and resuspended to reach 2,500 cells/µL. The cells were filtered through a 

40 µM strainer and verified to be in single-cell suspensions under the microscope. Cells suspended 

in a reverse transcription reaction buffer were loaded into the Bio-Rad ddSEQ microfluidic device 

along with barcoded beads. Single cells were encapsulated in an oil-water emulsion as 
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nanodroplets and their RNA was reverse transcribed, during which unique molecular identifiers 

(UMIs) and cell barcodes were added to the cDNA. The first strand cDNA was recovered from 

the droplets through emulsion breakage and bead cleanup, then the second strand of cDNA was 

synthesized. The cDNA was cleaned, tagmented, amplified, and cleaned again to produce the final 

libraries. The concentration and size distribution of the libraries were assessed using the Agilent 

2100 Bioanalyzer. Single-cell libraries were sequenced using the NextSeq 500 (Illumina) at 3.1 

pM loading concentration using a custom primer. 

 

2.5.6 Single-cell ATAC-seq experiment 

The Omni-ATAC version of the Bio-Rad ddSEQ SureCell ATAC-seq (Illumina) workflow 

was followed, based off of the bulk ATAC-seq protocol of the same name (Lareau et al., 2019; 

Corces et al., 2017). Single-cell suspensions of M0, as well as 24-hour polarized M1 and M2 

samples were prepared as previously described in the “Single-Cell RNA-seq experiment” section. 

Cells were resuspended to approximated 1x106/mL in PBS + 0.1% BSA, filtered through a 40µM 

strainer, and verified to be single-cell suspensions under the microscope. Samples of 300,000 cells 

per biological replicate of M0, M1, and M2 were lysed with ATAC-Lysis buffer containing freshly 

added digitonin, then the nuclei were washed with ATAC-Tween buffer. Staining with Trypan 

Blue (Bio-Rad) confirmed cells were lysed with viability <10% and nuclei were verified to be 

single-nucleus suspensions under the microscope. 60,000 nuclei were used in each Tn5 

tagmentation reaction (incubation at 37°C for 30 min) per sample. After tagmentation, nuclei 

suspended in an amplification reaction were loaded into the Bio-Rad ddSEQ microfluidic device 

along with barcoded beads. Single nuclei were encapsulated in nanodroplets and the fragments 

generated by the Tn5 transposase were barcoded by UMIs and cell barcodes and amplified. The 
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fragments were recovered from the droplets through emulsion breakage, bead cleanup, a second 

amplification reaction, and a final bead cleanup before quality control using the Agilent 2100 

Bioanalyzer. Libraries were assessed by concentration and size distribution before being loaded 

onto the NextSeq 500 (Illumina) and sequenced at 1.5 pM loading concentration using a custom 

primer. 

 

2.5.7 IRF1, IRF7, IRF9 knockdown in M2 

M0 cells were differentiated from HL-60 then polarized to M2 for 24 hours as previously 

described in the “Macrophage differentiation and polarization” section. At the same time that 

polarization reagents were added, siRNAs targeting IRF1, IRF7, IRF9, ID2, positive control 

(GAPD), and negative (non-targeting) control (Dharmacon) were transfected in 3 biological 

replicates of M2 per target knockdown. DharmaFECT 4 Transfection Reagent was added at 1:500 

final concentration and siRNAs were added at 0.025µM final concentration in 4mL media in 60mm 

cell culture dishes. The perturbed cells were collected for both bulk RNA-seq and ATAC-seq 24 

hours later. 

 

2.5.8 Bulk RNA-seq preprocessing 

Bulk RNA-seq reads were mapped to the hg38 reference genome with gene annotations 

from Gencode release 29 using STAR (version 2.5.1b) and gene level expression was quantified 

using RSEM (version 1.2.25) (Dobin et al., 2013; Li & Dewey, 2011). Expression represented by 

counts per gene was normalized utilizing the “weighted” Trimmed Mean of M-values (TMM) 

approach using edgeR (version 3.28.1) and saved as a matrix of TMM normalized counts per 
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million (CPM) (Robinson & Oshlack, 2010). Counts were also converted to transcripts per million 

(TPM). 

 

2.5.9 Bulk RNA-seq analysis 

EdgeR (version 3.28.1) also identified genes differentially expressed between selected time 

points using a false discovery rate (FDR) of 1% and an alpha of 0.05. TMM normalized CPM were 

then log2 normalized and used as input for maSigPro (version 1.58.0) to identify gene expression 

changes over time allowing for k-means clustering of genes that present similar patterns of 

expression during the time course of polarization.  

 

2.5.10 Bulk ATAC-seq preprocessing 

ATAC-seq reads were mapped to the hg38 genome, annotated by Gencode release 29, 

using Bowtie2 (version 2.2.7) (Langmead & Salzberg, 2012). Reads mapped to the mitochondrial 

chromosome were discarded from downstream analysis. The resulting bam file was sorted using 

Picard toolkit (version 2.18.4) and PCR duplicates were removed 

(https://broadinstitute.github.io/picard/). Using a custom script, the remaining reads aligning to the 

positive strand were shifted by +4bps and reads aligning to the negative strand were shifted by -

5bps to account for the 9bp duplication caused by Tn5 transposition (Berg et al., 1983). We used 

HOMER (version 4.7) to create a tag directory for each sample using the sorted and shifted bam 

file (Heinz et al., 2010). To determine the final set of open regions: peaks were called for both 

“narrow” regions of 150bp and “broad” regions of 500bp using HOMER (version 4.7) and the 

resulting bed files were merged across replicates for each sample. Biologically reproducible 

regions across replicates were identified by irreproducible discovery rate analysis (IDR), then 
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ENCODE “blacklist” regions were removed in order to generate the final set of open regions 

(Amemiya et al., 2019; Li et al., 2011). We used HOMER (version 4.7) to estimate read coverage 

across the final set of open regions using the tag directories generated for each sample, and to 

annotate each region. 

 

2.5.11 Bulk ATAC-seq analysis 

ATAC-seq read counts were corrected for TMM and library size (represented as CPM) 

using edgeR (version 3.28.1) to normalize the data. EdgeR was also used to identify differentially 

open chromatin regions within gene promoters at each of the differentiation time points. TMM 

normalized counts were then log2 transformed and maSigPro (version 1.58.0) was used to cluster 

regions based on changes in accessibility during the polarization time course (Nueda et al., 2014). 

All clusters were converted into bed files of genomic regions and HOMER (version 4.7) 

findMotifsGenome.pl was used to find which known motifs were most enriched in each cluster.  

 

2.5.12 Bulk data integration and gene regulatory network construction 

We applied Pearson’s χ2 test from the R Stats Package (version 3.6.2) to determine p values 

of enrichment between ATAC-seq clusters and RNA-seq clusters. A final list of TFs was manually 

curated by combining TFs found in RNA clusters, linked RNA-ATAC cluster pairs, results from 

scRNA-seq analysis, motif enrichment in ATAC clusters, and differentially expressed TFs across 

the time course. ATAC-seq data across all the M1 or M2 replicates from 3 hours to 24 hours were 

pooled in order to achieve >200 million reads to mine the open regions for transcription factor 

footprints. We used the Wellington algorithm from the pyDNase library (version 0.2.4) and the 

HINT-ATAC tool to identify chromatin footprints with an FDR of 1%, with footprint sizes of 8 to 
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31bp with a 1bp step size (Li et al., 2019; Piper et al., 2013). We then used FIMO (version 4.12.0) 

to identify footprint regions with enriched HOCOMOCO (version 11) transcription factor motifs, 

using a p value cutoff of 0.0001 and hg38 background (Kulakovskiy et al., 2013). We used bedtools 

intersect to determine the target genes for each footprint using the HOMER-annotated bulk ATAC-

seq regions. We finally used footprints <50kb away from the TSSs of the target genes to build bulk 

GRNs with our TFs and signaling molecules of interest.  

 

2.5.13 Single-Cell RNA-seq preprocessing 

Single-cell RNA-seq reads were demultiplexed using ddSeeker, which extracts cell 

barcodes and UMIs and produces a demultiplexed bam file (Romagnoli et al., 2018). From the 

bam file, we used a custom script to extract one fastq file per cell. Each cell was mapped to the 

hg38 reference genome with gene annotations from Gencode release 29 using STAR (version 

2.5.1b). Spliced and unspliced reads were calculated using velocyto (version 0.17.16) and 

expression was also quantified using RSEM (version 1.2.25) (La Manno et al., 2018). Low quality 

cells with less than 500 UMI counts, more than 20% mitochondrial reads, and less than 150 genes 

detected were removed from further analysis. We also removed cells with more than 4,000 genes 

detected to avoid possible doublets. 

 

2.5.14 Single-cell RNA-seq analysis 

Each cell that passed the initial quality control filters was used as input for Velocyto (La 

Manno et al., 2018). Velocyto (version 0.17.16) only considers uniquely mapped reads that align 

to both exonic and intronic regions and removes reads mapped to repeat masked regions. The new 

UMI count matrices were exported from a loom file format to a Seurat object (V3.1.5) (Satija et 
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al., 2015). Downstream normalization, differential expression and Leiden clustering were 

implemented using Seurat (Traag et al, 2019). RNA velocities calculated by Velocyto were then 

overlaid onto the Seurat UMAP dimensionality reduction. To further investigate cell trajectories 

we used the R package Monocle (version 2.8.0) to order cells within a pseudotime utilizing an 

unsupervised clustering method (X. Qiu et al., 2017).  We then applied Single-Cell Regulatory 

Network Inference And Clustering (SCENIC, version 1.1.2-2) to estimate the transcription factors 

that regulate gene expression on cell populations identified using Seurat (Aibar et al., 2017). We 

finally applied the Odds-Ratio (OR) analysis to investigate orthogonal expression of M1 and M2 

markers in individual cells. The odds-ratio was calculated from the spliced counts. Genes with 

greater than 2 counts were considered “expressed”. The odds-ratio was calculated as the product 

of the number of cells expressing both genes (YY) and the number of cells expressing neither gene 

(NN) divided by the product of the number of cells expressing only one gene (YN) and the number 

of cells expressing only the other gene (NY). OR=(YYxNN)/(YNxNY). Plots use log2 of the odds-

ratio with any infinite values set to the positive or negative absolute maximum value. All odds-

ratio values with a p value > 0.05 were set to 0. 

 

2.5.15 Single-cell ATAC-seq preprocessing  

The average number of nuclei collected and average number of unique fragments per 

nucleus between technical replicates of M0 were 2,480 and 4,104, respectively. For two sets of 

biological replicates with two technical replicates each (4 libraries) of M1, we recovered 3,860 

nuclei and 8,102 unique fragments per cell on average. For two sets of biological replicates with 

two technical replicates of M2, we recovered 4,404 nuclei and 8,839 unique fragments on average. 

Raw sequencing data were primarily processed using the Bio-Rad ATAC-seq Analysis Toolkit 
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(version 1.0.0) in order to generate mapped reads. We installed the Bio-Rad Docker containers on 

our lab’s server and followed the steps to perform fastq QC, debarcoding of fastq files, alignment 

to hg38 using BWA with blacklist regions removed, and alignment QC using Picard Tools (Li & 

Durbin, 2009). Next, the Bio-Rad Toolkit used Jaccard indexing to determine bead duplicates and 

remove cell-free droplets, then BAP to “deconvolute” or merge bead duplicates. The mapped reads 

for UMI-passing cells and the peaks called by MACS2 (Zhang et al., 2008) were used in a custom 

python script (found here: 

https://github.com/fairliereese/lab_pipelines/tree/master/sc_atac_pipeline) to generate peaks-by-

cells counts matrices for each sample for use in SOM analysis.  

 

2.5.16 Single-cell SOM analysis 

To analyze the single-cell data, we trained a self-organizing map on the read counts for each of the 

210,312 fragments for each cell/nucleus.  For this, we used our SOMatic tool (Jansen & Ramirez 

et al., 2019) with a 40x60 map for 5 epochs and 100 trials.  This process resulted in 114 DNA 

metaclusters.  Similarly, we built a 40x60 map on the scRNA data with the same options and 

received 52 RNA metaclusters.  Then, these 2 sets of metaclusters were linked, generating 5928 

(114 x 52) linked metaclusters.  The regions in these linked metaclusters were sent through the 

same network analysis pipeline as our previous work (above) using the HOCOMOCOv11 motif 

database (p value < 0.05, q-value < 0.05). The pipeline can be found here: 

https://github.com/csjansen/SOMatic-Network-Analysis. This generated a total of 8,904,925 

potential network connections or 833,114 TF-TF interactions.  
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2.5.17 Data and software availability 

The accession number for the sequencing data reported in this paper is GEO: GSE164498. 
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CHAPTER 3 

Complement C5aR1 signaling promotes inflammatory cascades and modulates the 
expression of select glial activation genes in a mouse model of Alzheimer’s disease 
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3.1 Abstract 

The complement system is part of the innate immune system that works to clear pathogens 

and cellular debris. In the central nervous system (CNS), complement activation can promote 

synaptic pruning, clearance of neuronal blebs, and recruitment of phagocytes. However, in the 

inflammatory environment of the Alzheimer’s disease (AD) brain, complement activation may 

contribute to inflammatory pathways, neuronal loss, and cognitive decline. Importantly, activation 

of downstream complement via engagement of C5a with its receptor C5aR1 can instigate a feed-

forward loop of inflammation, injury, and neuronal death, thus making this molecule a potential 

target for modulation in AD therapeutics. To further elucidate the role of complement C5a in AD 

pathogenesis, we crossed the Arctic AD mouse model, known to rapidly accumulate fibrillar 

amyloid plaques, to a transgenic mouse that overexpresses C5a under the GFAP promoter (C5a+) 

or a model that lacks the receptor for C5a (C5aR1KO). Bulk RNA-sequencing and 

immunohistochemistry were used to identify pathways and molecular markers, respectively, that 

were altered with different C5a–C5aR1 activity throughout disease progression. Furthermore, we 

used the object location memory (OLM) test to determine the effects of C5a on AD-associated 

hippocampal-dependent memory loss. ArcticC5a mice showed advanced disease progression 

compared to Arctic mice, as shown in poor spatial discrimination in OLM and hippocampal 

neuronal loss compared to Arctic mice. Eliminating C5aR1 in Arctic mice did not alter amyloid 

plaque accumulation but either delayed or prevented the expression of important AD genes in 

hippocampi, indicating a separation between those genes induced by amyloid plaques and those 

influenced by C5a-C5aR1 signaling. C5ar1 deletion reduced the expression of select pan-reactive 

and A1 reactive astrocyte genes. The ArcticC5aR1KO group also showed delayed expression of 

genes enriched for biological processes that are significant in the AD context, such as regulation 
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of inflammatory signaling, microglial cell activation, astrocyte migration, and lysosome pathway. 

Immunohistochemical assays further confirmed that ablation of C5aR1 either delayed or reduced 

some reactive microglial markers in the Arctic hippocampus, including Cd11b. Our results suggest 

that C5a-C5aR1 signaling enhance AD pathways and alter microglial pathology. Thus, 

pharmacological inhibition of this pathway may be a promising therapeutic strategy to treat AD. 

 

3.2 Introduction 

Alzheimer’s disease (AD) is the most common form of dementia and is characterized by 

the accumulation of extracellular amyloid beta (Aβ) plaques, hyperphosphorylated tau, synaptic 

loss, eventual neuronal death, and ultimately cognitive decline (DeTure & Dickson, 2019). 

Evidence suggests that inflammatory pathways are induced by amyloid plaques and tau but also 

contribute to these AD pathologies, exacerbating neuronal injury and cognitive decline (Yang et 

al., 2020; Hur et al., 2020; Griffin et al., 1989). 

The complement system is a powerful effector of the innate immune system that is 

activated via three distinct pathways, classical, lectin, and alternative, all of which converge on 

proteolytic cleavage of C3 into the chemoattractant C3a and opsonin C3b. C3b also forms part of 

the C5 convertase, which cleaves C5 into C5a, a potent pro-inflammatory chemoattractant, and 

C5b, the initiating molecule of the lytic membrane attack complex (MAC) (Schartz & Tenner, 

2020). C1q, the recognition molecule of the classical pathway, can bind to apoptotic neurons to 

promote clearance by microglia to maintain neuronal homeostasis (Fraser et al., 2010). However, 

the association of C1q with the proteases C1r/C1s enables synaptic pruning as well as complement 

activation by fibrillar amyloid which can lead to the generation of C3a and, if C5 is present, C5a, 

both of which produce potent proinflammatory responses (Tenner, 2020). These inflammatory 
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responses can lead to neuronal death and promote neurodegeneration (Pavlovski et al., 2012; 

Hernandez et al., 2017). 

Ablation of complement C5a receptor 1 (C5aR1) alters microglial gene expression in the 

Arctic mouse model of AD resulting in decreased inflammatory gene expression and enhanced 

expression of genes associated with pathways involved in debris clearance (Hernandez et al., 

2017). Ablation of C5aR1 in Arctic mice is also associated with attenuation of cognitive decline 

and loss of neuronal complexity in the CA1 region of the hippocampus.  In addition, administration 

of C5a to neurons in vitro is neurotoxic (Hernandez, et al., 2017). In two other mouse models of 

AD, treatment with the C5aR1 inhibitor PMX205 reduced activated microglia and astrocytes, and 

protected mice against hippocampal synaptic loss and cognitive decline (Fonseca et al., 2009). 

Inhibition or ablation of C5a-C5aR1 activity has also been demonstrated to increase survival and 

lower motor deficits in models of amyotrophic lateral sclerosis (ALS) (Wang et al., 2017; 

Woodruff et al., 2008), reduce seizure susceptibility and inflammation in experimental epilepsy, 

and speed up functional recovery after spinal cord injury (Biggins et al., 2017). These data are 

consistent with detrimental consequences of C5a-C5aR1 activity in neurodegenerative diseases, 

including AD, and support that inhibition of C5a-C5aR1 signaling may slow or prevent the 

progression of these diseases. Importantly, C5aR1 receptor antagonists have been shown to be 

nontoxic in human clinical trials and case studies (Ennis et al., 2020; Tesar & Hruskova, 2018; 

Vergunst et al., 2007). 

To begin to define the mechanistic pathways from altered C5a-C5aR1 signaling to effects 

on neurons and thus cognition, bulk RNA-sequencing of microglia isolated from half brains 

(hippocampus and cortex combined) was previously analyzed over the course of disease 

progression. Arctic mice lacking C5aR1 (ArcticC5aR1KO) (Hernandez, et al., 2017) had higher 
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expression of genes associated with phagocytosis (e.g. Trem2, Tyrobp) and lysosomal proteins 

(e.g. Lamp1, Ncp2, Cts) relative to Arctic mice as early as 5 months of age, long before the onset 

of hippocampal-dependent cognitive decline that is evident in Arctic mice at 10 months of age 

(Hernandez et al., 2017). At the same time, other studies showed that microglial activation can 

influence the reactive state of astrocytes (Liddelow et al., 2017a). To further elucidate the role of 

C5a-C5aR1 signaling in amyloid-associated cognitive decline, and to expand on our previous 

behavioral studies examining the role of C5a-C5aR1 signaling on cognitive decline in the Arctic 

mouse, we crossed the Arctic mouse to a model that overexpresses C5a under the control of the 

GFAP promoter (ArcticC5a+) and tested spatial memory with the object location memory (OLM) 

test (Vogel-Ciernia & Wood, 2014). We used immunohistochemistry to assess morphological and 

molecular changes in microglia and astrocytes in the hippocampus and cortex relative to fibrillar 

amyloid plaques in Arctic, ArcticC5aR1KO, and ArcticC5a+ mice. In our previous study, 

astrocytic and other cell-specific genes were missing from the analyses. In this study, we 

microdissected the hippocampus and cortex of mice at different ages for bulk RNA-sequencing to 

identify region-, age-, and amyloid-specific transcriptomic changes. We aim to identify the 

dynamic roles of excess of C5a or C5aR1 depletion in the aging Arctic mice. 

Our approach profiled the dynamic changes in the transcriptomes of all 6 mice cohorts 

(WT, C5aR1KO, C5a+, Arctic, ArcticC5aR1KO, and ArcticC5a+) at 2.7, 5, 7, and 10 months of 

age. We identified more abundant changes in expression in hippocampi compared to cortices, 

correlating with higher amyloid pathology localization. We detected either decreased or delayed 

expression of AD-associated, DAM-associated, and reactive astrocyte-associated genes upon 

C5aR1 knockout. C5aR1 ablation also led to delayed expression of genes enriched for 

inflammation, microglial activation, phagocytosis, and cholesterol biosynthesis. On the other 
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hand, C5a overexpression induced genes associated with synapse assembly, transcription, and 

GABAergic synapse. Additionally, we did not identify significant sex-specific changes in 

expression in the Arctic mice besides known sexually dysmorphic genes. We also observed 

cognitive decline and loss of NeuN in the ArcticC5a+ at 7 months, supporting the hypothesis that 

C5aR1 ablation is neuroprotective. However, C5a increase did not result in robust inflammatory 

gene profile as expected. 

 

3.3 Results 

3.3.1 C5a-C5aR1 signaling accelerates hippocampal-dependent memory deficits and 

promotes hippocampal cell loss in Arctic mice 

We previously reported that ablation of C5aR1 in Arctic mice prevents memory deficits 

assessed with the OLM test at 10 months of age (Hernandez, et al., 2017), suggesting that binding 

of C5a to C5aR1 induces a response that contributes to the cognitive decline observed in the Arctic 

mouse model. The C5a+ transgene results in elevated levels of C5a in the cortex and hippocampus 

in both wild type and Arctic mice (Figure S3.1) without increasing plasma levels, as expected, 

since it is under the control of the GFAP promoter.  Since elevated C5a production could result in 

greater engagement of C5a with C5aR1, we assessed whether that transgene accelerates the effects 

of this receptor. Arctic and ArcticC5a+ mice and their WT controls were tested at 5 and 7 months 

to determine if overexpression of C5a in brain would accelerate memory decline in the presence 

(ArcticC5a+ cohort) or absence (C5a+ cohort) of amyloid pathology. First, analysis of open field 

and the familiarization trial of OLM (Vogel-Ciernia & Wood, 2014) revealed that there were no 

gross abnormalities in locomotion or differences in side preference for two novel objects or total 

object exploration (Figure S3.2). Twenty-four hours after the OLM training (Figure 3.1a), one of 
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the objects was moved to a new location, and exploration time of each object assessed.  At 5 

months of age, Arctic mice did not show a deficit in object location memory compared to WT. As 

hypothesized, ArcticC5a+ mice had a lower discrimination index (DI) compared to Arctic mice (p 

= 0.005).  The DI of ArcticC5a+ mice were also significantly lower than the C5a+ controls (p = 

0.001), while the DI of C5a+ mice did not differ from WT mice (Figure 3.1B). Similarly, 

ArcticC5a+ mice had diminished cognitive performance compared to Arctic mice at 7 months of 

age (p = 0.001).  Still, at this age there was no difference in behavior between WT and Arctic mice 

(p = 0.52) or the WT and the C5a+ mice (p = 0.35) (Figure 3.1C). These data suggest that the 

cognitive deficit accelerated by overexpression of C5a is dependent on co-existing amyloid 

pathology or some consequence of the overexpression of the hAPP mutant transgene. Taken 

together, and with the data published in 2017, these data are consistent with the hypothesis that 

chronic stimulation of the C5a-C5aR1 accelerating memory decline in Arctic mice, whereas 

ablation of C5aR1 protects against it. 

Neuronal loss and cognitive decline are common features of Alzheimer’s disease (DeTure 

& Dickson, 2019). In the Arctic model, mice show significant memory deficits and loss of neuronal 

integrity (neurite branching in CA1) by 10 months of age (Hernandez, et al., 2017). Therefore, to 

determine the effects of enhanced C5a-C5aR1 signaling and ablation of C5aR1 on neuronal loss, 

we used immunohistochemistry and semi-quantitative densitometry analysis to compare the levels 

of neuronal nuclei (NeuN) in the CA1, CA3, and dentate gyrus (DG) at 7 and 10 months of age in 

these mice (Figure S3.3). Percent field area was normalized to WT levels for each age. At 7 

months, NeuN levels were comparable between WT and C5a+ mice and between WT and Arctic 

mice in all regions of the hippocampus, consistent with previous findings using Sholl analysis in 

the CA1 (Hernandez et al., 2017). However, ArcticC5a+ mice had a trend towards lower NeuN 
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immunoreactivity in the CA1 (p = 0.06) and a significant loss in the DG (p = 0.02) compared to 

Arctic mice (no loss was detected in the CA3 (p = 0.17)) at 7 months, suggesting an accelerated 

neuropathology in these mice, which correlates with the early onset of cognitive deficits. By 10 

months of age, NeuN levels in the Arctic mice were significantly reduced in the CA1 (p = 0.02), 

CA3 (p = 0.001), and in the DG (p = 0.01) compared to WT mice. However, ablation of C5aR1 

did not protect against this neuronal loss as Arctic/C5aR1KO mice had reduced levels of NeuN 

compared to C5aR1KO hippocampus (CA1, p = 0.0004; CA3, p < 0.0001; DG, p = 0.06), similar 

to the reduced level of C5aR1 sufficient Arctic mice. No differences were observed between WT 

and C5aR1KO at 10 months.  

 

Figure 3.1 Overproduction of C5a accelerates memory decline in Arctic mice at 5 and 7 
months 
A) Overview of experimental design for object location memory (OLM) test. ArcticC5a mice had 
a significant deficit in OLM at 5 (B) and 7 (C) months of age. Data shown as Mean ± SEM. ** p 
< 0.01. Two-way ANOVA with Tukey’s post hoc test. For 5 months, N = 23 (WT), 14 (C5a+), 13 
(Arctic), 14 (ArcticC5a+). For 7 months, N = 19 (WT), 10 (C5a+), 11 (Arctic), 10 (ArcticC5a+).  
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3.3.2 Distinct subsets of genes are affected by C5ar1 knockout or C5a overexpression 

 We dissected 372 cortices and hippocampi of mice representing six distinct genotypes 

(WT, C5aR1KO, C5a+, Arctic, ArcticC5aR1KO, and ArcticC5a+) throughout disease progression 

at 2.7, 5, 7, and 10 months of age (see Methods) in order to build RNA-seq libraries and thus 

identify transcriptome changes in different cohorts (Figure 3.2A). UMAP dimensionality reduction 

showed clear tissue-specific clustering characterized by the separation of cortices from hippocampi 

samples on UMAP 1. UMAP 2 showed a subtle separation of tissues from younger mice located 

at the top and tissues of older mice located towards the bottom of the axis in cortex samples, and 

left to right in hippocampus samples, highlighted by the gradient of colors with age from light to 

dark, respectively (Figure 3.2B). We used edgeR (Robinson et al., 2010) to identify differentially 

expressed genes between male and female Arctic mice. Genes up-regulated in females were mainly 

known sexually dysmorphic genes (Armoskus et al., 2014; X. Yang et al., 2006), such as Xist and 

Tsix, which are X-chromosome located genes, whereas males presented upregulation of genes 

known to be male-specific, such as Eif2s3y, and Ddx3y genes, which are located in the 

Chromosome Y (Figures S3.4A & S3.4B). Therefore, differential expression analyses show lack 

of sex-specific changes in the Arctic mice. 

We assessed the gene expression patterns of the maSigPro generated clusters (Nueda et al., 

2014) to identify differences in gene expression between all the six cohorts (WT, C5aR1KO, C5a+, 

Arctic, ArcticC5aR1KO, and ArcticC5a+). We identified 1,763 genes whose expressions varied 

in a time-specific fashion (Figure S3.5A). These genes grouped into 15 clusters with distinct 

patterns of expression (Figure 3.2C). Clusters RNA cluster (Rc)6, Rc7 Rc1, and Rc2 represent 

genes whose expression changes were mainly driven by the knockout of C5ar1 and are represented 

in shades of brown. Clusters Rc4, Rc3, Rc5, and Rc8 to Rc15 represent genes whose expression 
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changed mainly in response to C5a overexpression and thus are represented in shades of lilac. Each 

cluster contains distinct subsets of complement pathway (CP) genes, as well as distinct subsets of 

astrocyte-associated (Ast) (Liddelow et al., 2017b), Arctic microglia-associated (Hernandez, 

Jiang, et al., 2017) and AD-associated genes elevated in the 5xFAD mouse model with pathology 

(5xFAD up) (Forner et al., 2021) (Figure 3.2C). Expression of C5ar1 gene was lowest (essentially 

non detectable) in the C5aR1KO and ArcticC5aR1KO cohorts, confirming its genetic ablation 

(Figure 3.2D). Correspondingly, expression of C5ar2 also decreased in the C5aR1KO and 

ArcticC5aR1KO cohorts, consistent with previous studies showing a correspondence in expression 

of  those genes (Klos et al., 2013; Lee et al., 2019). The C5a+- and C5aR1KO-dependent 

expression changes were more abundant in the hippocampus compared to cortex, correlating with 

the relative concentration of amyloid pathology localization in the Arctic mice (Hernandez et al., 

2017; Cheng et al., 2007). 

 Expression of genes of some of the early complement pathway components were induced 

in the Arctic mice peaking at 7 month of age and suppressed in the absence of C5ar1 (Figure 3.2D). 

Notably, cluster Rc6 contained most of the complement genes identified using maSigPro, 

including C1qa, C1qb, C1qc (known to be coordinately expressed) (Chen et al., 2011; Lattin et al., 

2009), and C4b, as well as the receptor for the C3a activation fragment, C3ar1, and the inhibitor 

Serping1 (inhibitor of C1, as well as bradykinin formation), all of which showed higher expression 

in the Arctic mice at 5 months and increasing with age. While C1q was the most robust early 

induced component, consistent with the rapid increase in multiple injury models, increases in 

expression  of  the  genes  for  C4  (required for synaptic pruning) and Serping1 were slower in the  
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Figure 3.2 Distinct subsets of genes are affected by C5ar1 knockout or C5a overexpression 
A) Schematic diagram of experimental design highlighting 372 RNA-seq samples processed from 
cortices and hippocampi of 6 mice genotypes during disease progression at 2.7, 5, 7, and 10 months 
of age.  
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B) UMAP embedding representation of 372 RNA-seq samples represented in panel A. Samples 
from WT mice are represented in shades of blue, from the C5ar1KO cohort in shades of gray,  from 
the C5aGFAP cohort in shades of yellow, from the Arctic cohort in shades of orange,  from the 
ArcC5ar1KO cohort in shades of green, and samples from the ArcC5aGFAP cohort in shades of 
pink. 
C) Heatmap of 1,763 genes with dynamic temporal profiles identified by maSigPro clustering 
(alpha < 0.05, FDR < 0.05%). Each column represents the average expression for a time point and 
each row represents a gene. Each cluster represents a subset of genes that show a similar pattern 
of expression along the time course. Clusters shown in brown gradient and lilac gradient represent 
genes whose expression changes are driven by C5ar1KO or C5a overexpression, respectively. 
RNA-seq data (TPM) is row-mean normalized. Astrocyte-associated genes (Ast),  Arctic mice 
isolated microglia-associated genes (Arc Mic), and genes upregulated with pathology progression 
in the 5xFAD mice (5xFAD Up) present in each cluster are shown.  
D) Heatmap of 15 genes of the complement pathway that were present in maSigPro identified 
clusters. RNA-seq data (TPM) is row-mean normalized. 
E) Representative diagram of the Classical pathway activation of the complement cascade, 
highlighting complement-associated genes present in the maSigPro identified clusters (as seen in 
panel D). 
 

ArcticC5ar1KO as seen in the previous analysis of isolated microglia in this model (Hernandez, 

Jiang, et al., 2017). Interestingly, delayed increases in these components were also seen in 

ArcC5a+ with highest expression at 10 months. We also investigated changes in expression of 

genes of the complement pathway that were driven by an increase in C5a from the transgene. 

Complement genes Cfh, Masp1, and C1ra, inhibitor Clu and the α chains Itgam (CD11b) and Itgax 

(CD11c) of CR3 and CR4 were up regulated by the presence of the Arc APP transgene but showed 

striking increased expression in the ArcticC5a+ hippocampus at 10 months (Figure 3.2D). Thus, 

the knockout of receptor C5ar1 and the overexpression of C5a affected genes that act in multiple 

arms of the complement cascade, including complement factors, receptors, and inhibitors (Figure 

3.2E).  

 We investigated changes in expression of genes found in our previous reports of isolated 

microglia from Arctic and ArcticC5aKO at the same ages (Hernandez et al., 2017), as well as 

changes in expression of genes known to be associated with AD pathology progression in the 
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5xFAD mice model (Forner et al., 2021), and human AD genes (Bertram & Tanzi, 2019; Verheijen 

& Sleegers, 2018; Efthymiou & Goate, 2017; Tanzi, 2012) in order to understand the effects of 

C5a-C5ar1 signaling on gene expression  in AD (Figure 3.2C &  Figure S3.5B).  Most of the genes 

upregulated in microglia isolated from the Arctic mice (Hernandez, Jiang, et al., 2017) were part 

of clusters Rc6 (80 of them) and Rc7 (15 of them), which are clusters linked to inflammation and 

cholesterol metabolism, respectively (Figure 3.2C). Similarly, most of the genes upregulated in 

the 5xFAD mouse model are part of Rc6 (306 of them) and Rc7 (105 of them). Interestingly, AD 

genes Cd33, Trem2, Cst7, and Tyrobp showed increased expression in the Arctic cohort with a 

peak at 7 months of age, while in the ArcticC5aR1KO cohort the expression did not increase until 

10 months of age. Genes Inpp5d, S100a6, Stat3 showed lower expression at all ages in the 

ArcticC5aR1KO.  Thus, C5ar1 deletion either delayed or prevented the expression of several genes 

upregulated in the Arctic and 5xFAD mouse models, as well as genes upregulated in human AD. 

Apoe, which is one of the main genetic risk factors for AD (Gottschalk et al., 2016) increased in 

both Arctic and ArcticC5aR1KO, (but showed decreased expression in the ArcticC5a+ mice) at 

10 months of age. In summary, eliminating C5ar1 in the Arctic AD model results in either 

decreased or delayed expression of many but not all important AD genes, indicating a separation 

between those genes induced by amyloid plaques and those requiring the C5a-C5aR1 signaling.  

While many of the above genes are considered predominantly microglial genes, we sought 

to determine the changes in expression of astrocyte-associated genes, given that our libraries were 

built from whole cortex or whole hippocampus tissues which included mainly neurons, astrocytes, 

and oligodendrocytes, and given the evidence for altered astrocyte states in AD (Habib et al., 2020; 

Jha et al., 2019; Liddelow et al., 2017). Rc6 contained 18 astrocyte-associated genes, including 

Pan-reactive astrocyte genes  Cd44, Lcn2, Osmr, Vim, and Serpina3n and A1 reactive astrocyte 
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genes Ggta1, H2-T23, Serping1, and Srgn  (Liddelow et al., 2017b) whose expression was higher 

in the Arctic cohort and ablation of C5ar1 reduced or delayed the activation of those genes. 

Therefore, C5ar1 deletion may reduce the activation of neurotoxic reactive astrocytes (Figure 

S3.5C).  The overexpression of C5a led to increased expression of those Pan-reactive and A1 genes 

at 10 months suggesting that an increase in C5a may lead to activation of reactive astrocytes. In 

contrast, GFAP (pan-reactive), as well as Psmb8 and Aspg (A1), are all highly upregulated in the 

presence of amyloid plaques regardless of C5aR1 presence or overexpression of C5a, indicating a 

subset of astrocyte genes that are responsive to insult, but not influenced by C5aR1 signaling 

(Figure S3.5C). 

 

3.3.3 Gene ontology analysis of Rc6 revealed reduced expression of inflammation- and DAM-

associated genes in the ArcticC5aR1KO mice 

 We performed gene ontology analysis to identify relevant biological processes and 

pathways associated with differentially expressed genes present in each maSigPro cluster. Cluster 

6 (Rc6) mainly consisted of genes whose expression was increased in the hippocampus of the 

Arctic cohort peaking at 7 months while in the ArcticC5aR1KO cohort their expression did not 

increase until 10 months of age. Rc6 was enriched for DAM genes, such as Trem2, Tyrobp, Cybb, 

Cst7, Ctss, and Spp1 whose activation was delayed in the ArcticC5aR1KO hippocampus (Figures 

3.3C & 3.3A). Rc6 contained inflammatory chemokine genes such as Ccl3, Ccl2, Cxcl9, and 

Cxcl10, whose signal was also delayed in the Arctic mice in response to C5ar1 ablation. 

Additionally, gene ontology and pathway analysis showed enrichment for biological processes that 

are significant in the AD context, for instance regulation of inflammatory signaling including IFN-

γ and IL-6 production, as well as microglial cell activation and lysosome pathway, all of which 
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were likely delayed in the ArcticC5aR1KO cohort (Figure 3.3B). Our results suggested that the 

ablation of C5ar1 delayed DAM activation, phagocytosis, astrocyte migration, and inflammation 

(Figure 3.3C). 

 

Figure 3.3. Reduction of inflammation- and DAM-associated genes  in the ArcticC5aR1KO 
mice   
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A) Heatmap of selected genes present in RNA cluster 6. Genes were clustered based on AD study 
findings and molecular functions: AD-associated genes, disease-associated microglia genes, 
chemokines, astrocyte-associated genes, complement cascade-associated genes, and chemokine 
receptors. RNA-seq data (TPM) is row-mean normalized. 
B) Gene ontology (GO) and pathway enrichment analyses of genes present in Rc6. 
C) Representative diagram of the Phagosome pathway (mmu04145) with select genes present in 
the panel B heatmap highlighted. 
 

3.3.4 Gene ontology analysis of Rc7 revealed reduced expression of genes associated with 

cholesterol biosynthesis in the ArcticC5aR1KO mice  

 Cluster 7 mainly consisted of genes whose expression was increased in the Arctic peaking 

at 7 months while in the ArcticC5aR1KO their expression did not increase. Rc7 was also 

dominantly driven by the Arctic mutations and further increased by the overexpression of C5a in 

the ArcticC5a+ mice at 10 months (Figure 3.4A).  Rc7 contained genes associated with 

inflammatory response, such as Csf1, Icam1, Tnfsf1b, Akna, Sbno2, and Nrros, whose expression 

was reduced in the Arctic mice at 7 months in response to C5ar1 ablation and further increased in 

response to C5a overexpression at 10 months. Gene ontology and pathway analysis showed 

enrichment for lipid metabolic processes, inflammatory response, and cholesterol biosynthesis, 

suggesting that those processes were reduced upon C5ar1 deletion in the Arctic model and 

recovered when C5a is overexpressed (Figures 3.4A & 3.4B). Cholesterol cannot cross the blood 

brain barrier, and almost all brain cholesterol is synthesized locally. Early studies have shown that 

human AD brain plaques were highly enriched in cholesterol (Panchal et al., 2010) and that 

reduction of brain cholesterol biosynthesis increased longevity in Alzheimer's disease mice 

(Strittmatter et al., 2009). Our results suggest that ablation of C5ar1 may be beneficial to AD by 

reducing brain cholesterol metabolic processes (Figure 3.4C). 
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Figure 3.4 Reduced cholesterol biosynthesis-associated genes in the ArcticC5aR1KO mice  
A) Heatmap of selected genes present in RNA cluster 7. Genes were clustered based on biological 
processes and molecular functions: lipid metabolic process, lysosome, inflammatory response, and 
cytokine signaling. RNA-seq data (TPM) is row-mean normalized. 
B) Gene ontology (GO) and pathway enrichment analyses of genes present in Rc7. 
C) Representative diagram of the Phagosome biosynthesis pathway with select genes present in 
the panel B heatmap highlighted. 
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3.3.5 C5a overexpression leads to increase in expression of genes associated with synapse 

transmission and assembly  

 C5a increase has been shown to promote neuronal damage in vitro, and enhance Aβ-

associated damage (Hernandez et al., 2017b), although it plays a positive role in neurogenesis 

during early development (Coulthard et al., 2017). We thus sought to explore effects of C5a 

overexpression in our mice in the presence and absence of amyloid pathology, given the 

accelerated deficiency in behavior (Figure 3.1). Genes in clusters 4 and 3 showed increased 

expression in the C5a+ mice at 10 months in the absence of the amyloid transgene, but also showed 

less but substantial increases in expression in the ArcticC5a+ cohort at 10 months. These results 

suggested that Rc4 and Rc3 expression changes were markedly driven by overexpression of C5a 

(Figure 3.5A). Interestingly, C5a overexpression seems to promote ion transport, synapse 

assembly, axogenesis, and transcription (Figure 3.5B). Specifically, C5a overexpression is 

associated with an increase of genes that regulate GABAergic synapse processes (Figure 3.5C). It 

has been shown that alterations of GABAergic neurotransmission may contribute to AD pathology 

(Yanfang Li et al., 2016). Therefore, C5a overexpression might contribute to alterations of 

GABAergic transmissions that may be detrimental to AD prognosis. 
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Figure 3.5 C5a overexpression leads to increase in expression of genes associated with 
synapse transmission and assembly  
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A) Heatmap of selected genes present in RNA clusters 3 and 4. Genes were clustered based on 
biological processes: ion transport, synapse assembly, and synapse transmission. RNA-seq data 
(TPM) is row-mean normalized. 
B) Gene ontology (GO) and pathway enrichment analyses of genes present in Rc6. 
C) Representative diagram of the GABAergic synapse pathway with select genes present in the 
panel B heatmap highlighted. 
 

3.3.6 Ablation of C5aR1 reduces microglial activation in the Arctic mouse. 

Amyloid pathology in humans and animal models can activate microglia to an 

inflammatory and disease-enhancing state (Dani et al., 2018; Sarlus & Heneka, 2017). Thus, we 

characterized the age- and pathology-dependent changes of several microglial markers in the 

Arctic and ArcticC5aR1KO mice alongside their controls (Figure 3.6). We assessed the 

hippocampus and cortex separately as amyloid deposition and glial activation are first seen in the 

hippocampus in the Arctic model. 

The ionized calcium binding adaptor molecule 1 (Iba1) is a macrophage- and microglia-

specific marker that is expressed on most microglia and has been shown to increase in expression 

after injury or in neurodegenerative diseases (Ohsawa et al., 2004). As expected, percent field area 

of Iba1 was greater in Arctic and ArcticC5aR1KO hippocampus and cortex compared to WT and 

C5aR1KO controls (Figure 3.6A) At 7 months of age, both Arctic and ArcticC5aR1KO mice had 

elevated levels of Iba1 in the hippocampus (p < 0.0001) and in the cortex (p < 0.01) compared to 

WT and C5aR1KO controls. By 10 months, Iba1 levels increased in the WT and C5aR1KO, 

supporting a primed state, as expected with age (Harry, 2013). However, Arctic levels were still 

higher relative to WT (p < 0.01) in the hippocampus. Interestingly, Iba1 field area was lower in 

the ArcticC5aR1KO hippocampus at 10 months compared to Arctic (p < 0.01) and comparable to 

C5aR1KO control levels (Figure 3.6B). In the cortex, Iba1 was higher at 7 months in the Arctic 
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and ArcticC5aR1KO compared to controls (p < 0.001), but by 10 months, no significant 

differences were observed (Figure 3.6C).   

Although we observed significant changes in Iba1 in the Arctic brain that were partially 

mitigated by the deletion of C5aR1, Iba1 is considered a pan-reactive microglial marker, and thus 

to further define the disease-associated status of the microglia, we assessed several markers that 

are either associated with phagocytosis or inflammation. CD68 is a lysosomal marker that is 

present in microglia is indicative of clearance of ingested material (Walker & Lue, 2015; Zotova 

et al., 2013). In Arctic mice, CD68 was significantly elevated at 7 months in the hippocampus 

compared to WT (p < 0.01) and at 10 months in both the hippocampus (p < 0.0001) and cortex (p 

< 0.001) (Figures 3.6D-F). CD68 expression was similar in ArcticC5aR1KO mice compared to 

the Arctic mice, suggesting that although ArcticC5aR1KO mice may have slightly fewer Iba1-

postive microglia, these microglia have a proportionally greater phagocytic and degradative 

capacity than Arctic mice, particularly in the hippocampus. This may have an important impact on 

plaque clearance and degradation.  

CD11b is part of the integrin receptor, CR3, for iC3b/C3b that is expressed exclusively on 

microglia in the CNS (Czirr et al., 2017). While detectable levels of CD11b were consistently low 

in WT and C5aR1KO mice, there was a significant increase in Arctic and ArcticC5aR1KO 

observed as early as 5 months of age in the hippocampus and 7 months in the cortex (Figures 3.6G-

I). By 10 months of age, CD11b field area was reduced in ArcticC5aR1KO compared to Arctic in 

the hippocampus (p < 0.001) and cortex (p < 0.05), and were comparable to WT and C5aR1KO 

levels.  Microglia high in CD11b in AD are typically associated with plaques and worsening 

pathology (Hickman et al., 2018). It is possible that ArcticC5aR1KO mice have an early yet mild 
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DAM response at 7 months of age and subsides at 10 months. Therefore, C5aR1 ablation might 

prevent amyloid-associated cognitive decline that is observed in the Arctic mice at this later age.  

 

Figure 3.6 Microglial activation in ArcticC5aR1KO 
Immunoreactive staining of Iba1 (A), CD68- (D), CD11b- (G), and CD11c-positive (J)  microglia 
in WT, C5aR1KO, Arctic, and ArcticC5aR1KO. Representative images from 10 months; N=2-6 
mice per genotype, 4 sections per mouse. 
Quantification of Iba1 (B and C), CD68 (E and F), CD11b (H and I), and CD11c (K and J) percent 
field area (%FA) in cortex and hippocampus. T-test (Arctic vs ArcticKO) *p<0.05; **p<0.01; 
***p<0.001; ****p<0.0001; One-way ANOVA w/ turkey’s post hoc for comparisons of 
genotypes within one age. 

 

CD11c-positive microglia appear relatively early in response to plaque deposition and 

continue to increase with disease progression around plaques in APP/PS1 mice (Kamphuis et al., 

2016). To determine if CD11c protein expression was influenced by C5a-C5aR1 signaling in the 

Arctic model, a time-course of CD11c expression was analyzed (Figure 3.6C). While expression 

was absent in the WT and C5aR1KO genotypes, CD11c levels increased with age/disease 

progression in the hippocampus and cortex of Arctic (p < 0.001) and ArcticC5aR1KO (p < 0.001) 

mice (Figures 3.6J-L). CD11c was lower in the ArcticC5aR1KO hippocampus (p = 0.05) and 
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cortex (p = 0.03) compared to the Arctic. However, while the levels of CD11c plateaued in the 

Arctic hippocampus and cortex at 10 months, levels continued to steadily rise in the 

ArcticC5aR1KO, resulting in comparable levels at this later age.  

 

3.3.7 GFAP+ astrocytes are largely unaltered by C5aR1 engagement in the hippocampus.  

A recent study demonstrated that inflammatory cytokines released by microglia can trigger 

a shift towards neurotoxic reactivity in astrocytes. Thus, in order to characterize changes in 

astrocyte function with disease progression and modulation of C5a-C5aR1 signaling, we used 

immunohistochemistry for the pan-reactive astrocyte marker GFAP (Figure 3.7A) and the “A1” 

astrocyte marker C3 (Figure 3.7B) throughout the progression of AD. As expected, we observed a 

significant increase in GFAP percent field area in all three Arctic groups compared to their 

respective controls in the hippocampus and cortex (Figures 3.7C-D). However, we were surprised 

to find that neither overproduction of C5a nor ablation of C5aR1 altered GFAP levels in the 

hippocampi of Arctic mice. Interestingly, ablation of C5aR1 did result in reduced levels of GFAP 

in the Arctic cortex at 7 months (p < 0.05). Similarly, C3 levels were elevated in the brains of 

Arctic, ArcticC5aR1KO, and ArcticC5a+ mice compared to WT, C5aR1KO, and C5a+ controls, 

particularly at 7 and 10 months of age, and levels tended to increase with age in the three Arctic 

groups but not in the controls (Figures 3.7E-F). However, C3 levels were not different between 

Arctic, ArcticC5aR1KO, or ArcticC5a+ in the hippocampus, while there was a decrease in C3 in 

the cortex of ArcticC5aR1KO and ArcticC5a+ compared to Arctic mice (p < 0.05). These data 

suggest that there is a region-specificity to the profiles of astrocytes in the Arctic mouse. 

Furthermore, these data support that C5a-C5aR1 engagement does not influence the microglia-

mediated programing of neurotoxic astrocytes. Lastly, our negative findings in hippocampal 
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astrocyte characterization suggest that microglial pathology are more influential in 

neurodegeneration and cognitive decline in the Arctic mouse model of AD.  

 

Figure 3.7 Astrocyte pathology in Arctic, ArcticC5aR1KO, and ArcticC5a+ mice 
A) and B) Immunoreactive staining of GFAP-positive (A) and C3-positive (B) astrocytes in WT, 
C5aR1KO, C5a+, Arctic, ArcticC5aR1KO, and ArcticC5a+ hippocampus and cortex.  
C) and D) Quantification of GFAP percent field area (%FA) showed an increase in expression in 
all Arctic genotypes compared to the non-Arctic controls. GFAP %FA was significantly reduced 
in the ArcticC5aR1KO cortex compared to Arctic mice at 7 months of age (D).  
E) and F) Quantification of C3 %FA showed an increase in expression in all Arctic genotypes 
compared to the non-Arctic controls. C3 %FA was significantly reduced in the ArcticC5aR1KO 
and ArcticC5a+ cortex compared to Arctic mice at 7 months of age (F). All data shown as mean ± 
SEM. *p < 0.05 One-way ANOVA, Tukey’s post hoc test. N = 3-6 per genotype 
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3.4 Discussion 

 For the past decade or so, the role of the complement pathway on synaptic pruning, 

neuronal injury, and cognitive decline has been heavily studied. In the healthy brain, complement 

proteins tag extranumerary synapses or cellular debris for clearance by microglia. However, 

aberrant complement activity may result in the removal of stressed but otherwise healthy neurons. 

Complement proteins are upregulated in the mouse brain with normal aging and are further 

increased in models of AD. Since inhibition of upstream complement components (such as C1, C3 

and CR3) would also impair the immunoprotective functions of the complement pathway, we have 

explored the effects of C5a, whose inhibition or ablation will not affect upstream complement 

signaling. Additionally, C5aR1 inhibition still allows for the formation of the downstream 

membrane attack complex. Our lab has shown that pharmacologic inhibition or genetic ablation of 

C5aR1 prevents learning and memory deficits in multiple models of AD.  

The early spread of human AD pathology is not uniform throughout different brain regions, 

with the frontal and temporal regions of the cortex showing amyloid deposits in early human AD. 

Interestingly, early amyloid pathology in the Arctic model is observed first and more severely in 

the hippocampus, and only spreads to the cortex in later disease stages.  Interestingly, our RNA-

seq data confirmed that changes in gene expression in consequence of C5aR1 ablation or C5a 

overexpression were more prominent in hippocampi compared to cortex in the Arctic mice. In 

addition, the Arctic mouse model did not present significant changes in hippocampal or cortical 

gene expression between males and females, suggesting that sex-specific differences seen in other 

AD mouse models may be due to their transgenes. Therefore, the Arctic mouse model has the 

advantage of revealing pathways common to Alzheimer’s disease in both sexes. 
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Our RNA-seq results suggested that overexpression of C5a in the Arctic mice was not as 

deleterious as expected, with inflammatory genes being delayed until later in pathology (10 

months), and genes associated with synaptic transmission being upregulated in both C5a+ and 

ArcticC5a+ hippocampi. This may suggest some off-target activity of C5a that may counteract or 

attenuate the toxic effects of C5a ligation to C5aR1. C5aR2 is an alternative receptor for C5a and 

its functions are not well elucidated. In vitro studies have confirmed that C5a and a metabolized 

fragment of C5a (C5a-des Arg) bind to C5aR1 and C5aR2 with similar affinities. C5aR2 has been 

hypothesized to be a regulatory receptor for C5a. Furthermore, C5aR2 can interact with C5aR1, 

which promotes C5aR1 internalization via recruitment of β-arrestin and downregulation of ERK 

signaling, suggesting that C5aR2 is a negative regulator of C5a-C5aR1 activity. A recent study 

using primary human macrophages demonstrated further evidence that C5aR2 activation 

attenuates C5aR1-mediated signaling and reduces inflammation in a C5a-dependent manner (Li et 

al., 2020). C5aR2 seems to bind to extra C5a that is available to regulate its effects. Furthermore, 

C5aR2 agonism reduces C5a-C5aR1- mediated inflammatory response to toll-like receptors, c-

type lectin receptors, or cytosolic DNA sensor stimulator of IFN genes. Therefore, the reduced 

expression of inflammatory genes seen in the C5a+ and ArcticC5a+ cohorts at 5 and 7 months 

might be due to excess of C5a and its binding to C5aR2. 

We didn’t identify significant differences in CD11c expression between ArcticC5aR1KO 

and Arctic at 5 months, which indicates that knocking out C5aR1 does not affect CD11c expression 

at this early age. Later at 7 months we observed a steeper increase in CD11c expression in the 

Arctic compared the ArcticC5aR1KO mice. This difference is no longer seen at 10 months, 

suggesting a continued increase in CD11c expression in the ArcticC5aR1KO, while in the Arctic 

mice a plateau maybe reached. Thus, the data suggested that ablating C5aR1 from Arctic mice 
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may delay or alter expression of specific microglial activation states during the early ages of 5-7 

months, which is overcome at later ages (between 7-10 months).   

Here, we provide a characterization of behavioral, cellular, molecular, and genetic changes that 

occur throughout disease progression and that are modulated by C5aR1 activation in the Arctic 

mouse model of AD. We demonstrated further support of a detrimental role of C5a-C5aR1 

signaling in the Arctic mouse, wherein overexpression of C5a in this model resulted in an 

acceleration of hippocampal-dependent spatial memory deficits that were accompanied by a loss 

of neuronal marker (NeuN) in the hippocampus. We identified a trend towards increasing select 

microglial and astrocyte markers with age in the ArcticC5a cohort, suggesting that this molecule 

enhances the glial response to Aβ-induced injury. C5a overexpression is also associated with 

increased inflammatory and DAM-associated markers while ablation of the receptor C5aR1 

reduced these markers, supporting a detrimental role of C5a-C5aR1 signaling in AD. These data 

support that inhibition of the potent anaphylatoxin C5a, while leaving C1q and C3 intact, has 

neuroprotective effects, marking C5a-C5aR1 signaling as a promising therapeutic target for AD. 
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Figure S3.1 Brain and sera levels of C5a  
C5a levels detected via enzyme-linked immunosorbent assay (ELISA) of half hippocampi (A), 
cortices (B), and sera (C) in WT, C5a, Arctic, and ArcticC5a mice at 5, 7, and 10 months of age.  
Data shown as Mean ± SEM.  *p < 0.05; **p < 0.001; *** p < 0.0001; Two-way ANOVA with 
Tukey’s post hoc test. N= X-X per genotype 
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Figure S3.2 Locomotion and exploration during open field (OF) and object location memory 
(OLM) training at 7 months  
A-C) During OF, mice were recorded and distance travelled (A), velocity (B), and inner duration 
(C) were measured to account for possible changes in locomotion or anxiety-like behaviors.  
D-E) During OLM training, total object exploration and preference of the left (L) or right (R) 
objects was assessed. Data shown as Mean ± SEM.  *p < 0.05. Two-way ANOVA with Tukey’s 
post hoc test. Object preference compared with paired t-test. For Open Field N = 17 (WT), 13 
(C5a+), 12 (Arctic), 13 (ArcticC5a+). For OLM training N = 16 (WT), 13 (C5a+), 10 (Arctic), 11 
(ArcticC5a+). 
 

Figure S3.3 Loss of NeuN in the CA3 is attenuated in ArcticKO 
NeuN levels detected in hippocampal regions CA1 (A), CA3 (B), and DG (C). NeuN levels are 
slightly decreased (15%) in the CA3 of Arctic mice compared to WT. WT, KO, C5a+, Arctic, 
ArcKO, and ArcticC5a+ mice at 10 months of age. 
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Figure S3.4 Differential expression analysis show lack of sex-specific changes in gene 
expression in the Arctic mice 
A) Volcano plot highlighting genes upregulated in cortices of Arctic female mice (left) and genes 
upregulated in cortices of Arctic male mice (right) at 2.7, 5, 7 and 10 months of age. Differentially 
expressed genes are colored in gold, green, orange, and blue, respectively. p value < 0.05, |log2FC| 
> 2. Genes highlighted are known sexually dysmorphic genes. 
B) Volcano plot highlighting genes upregulated in cortices of Arctic female mice (left) and genes 
upregulated in cortices of Arctic male mice (right) at 2.7, 5, 7 and 10 months of age. Differentially 
expressed genes are colored in gold, green, orange, and blue, respectively. p value < 0.05, |log2FC| 
> 2. Genes highlighted are known sexually dysmorphic genes. 
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Figure S3.5 C5ar1 knockout in the Arctic AD model results in a decrease or delay of 
expression of some important AD and astrocyte-associated genes  
A) RNA-seq data analysis pipeline 
B) Heatmap of 24 genes linked to Alzheimer’s disease progression that were present in maSigPro 
identified clusters. RNA-seq data (TPM) is row-mean normalized. 
C) Heatmap of 22 astrocyte-associated genes that were present in maSigPro identified clusters. 
RNA-seq data (TPM) is row-mean normalized. 
 

3.5 Methods 

3.5.1 Animals 

The Institutional Animal Care and Use Committee of University of California at Irvine 

approved all the animal procedures performed and experiments were performed according to the 

NIH Guide for the Care and Use of laboratory animals. Mice were grouped housed in ambient 

temperature and given access to food and water ad libitum. The Arctic48 mouse model of 

Alzheimer’s disease on a C57BL6/J background (hereafter referred to as Arctic), which carries the 

human APP transgene with three mutations – the Indiana (V717F), the Swedish (K670 N + M671 

L), and the Arctic (E22G), was originally provided by Dr. Lennart Mucke (Gladstone Institute, 
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San Francisco, CA). This hemizygous mouse model produces fibrillar plaques as early as 2 to 4 

months of age (Cheng et al., 2004). C5a-overexpressing mice, created by cloning the coding region 

for the C5a fragment of C5 plus a signal sequence into a construct containing the GFAP promoter 

to induce production and secretion of C5a as a function of induction of GFAP (Reiman et al., 

2005), were crossed to Arctic+/- mice generating WT, Arctic, C5a+ and ArcticC5a+ mice. 

C5aR1KO mice, created by targeted deletion of the C5a receptor 1 gene (Hollmann et al., 2008), 

were crossed to Arctic+/- mice to generate mice homozygous for C5aR1 deletion with and without 

the Arctic transgene. These mice were used to assess the effect of C5a overexpression on amyloid-

associated cognitive decline, as well as the effects of C5a overexpression or C5aR1 ablation on 

microglial and astrocytic gene expression in wild type and Arctic mice from 2.7 months to 10 

months of age. Both male and female mice were used in all experiments.  

 

3.5.2 Object Location Memory 

Object location memory (OLM) took place in dim lighting (50-70 Lux) in testing arenas 

(37.3 X 30.8 X 21.6 cm) covered with approximately 1 cm of sawdust bedding as previously 

described (Hernandez et al., 2017; Vogel-Ciernia & Wood, 2014). Briefly, mice were handled for 

2 minutes each per day over 5 days in the testing room and were acclimated to the testing arena 

for 5 minutes per day over 6 days. The last two days of handling overlapped with the first two days 

of habituation. The first day of habituation was used as an open field test for measures of 

locomotion and anxiety-like behaviors. On the training day, two identical objects (e.g. 100 mL 

glass beakers, blue Legos, or opaque light bulbs) were placed in opposite and symmetrical 

locations in the testing arena and mice were allowed to freely explore the objects over 10 minutes 

for the familiarization trial. Twenty-four hours later, one of the objects was moved to the opposite 



 

108 
 

corner from its original placement and mice were again allowed to explore the objects for 5 

minutes. Exploration of objects was calculated per minute and was determined to peak by the end 

of 2 minutes, dropping thereafter. Therefore, subsequent analyses were done on the first two 

minutes of the OLM test trial as previously described (Hernandez et al., 2017). To prevent 

olfactory distractions, all objects and arena were cleaned with ethanol and bedding was stirred 

after each trial (different bedding was used for males and females). Training and testing sessions 

were recorded by mounted cameras from above and exploration of both objects was scored 

manually by 2 blinded experimenters using stopwatches.  Discrimination indices were calculated 

with the formula (time spent with moved object minus time spent with unmoved object)/time spent 

with both objects) x 100 to obtain a percent (%) discrimination index (DI) (Vogel-Ciernia & Wood, 

2014).  Results were compared with two-way ANOVA followed by Tukey’s post hoc tests. 

Differences were considered significant when p was < 0.05.  Mice were removed from the analysis 

if they spent less than 1 second/minute with the objects during training and/or testing or if the 

performance of mice was ± 2 standard deviations from the mean. (Data are presented ± SEM).   

 

3.5.3 Immunohistochemistry (IHC) 

Mice were deeply anesthetized with isoflurane and perfused transcardially with cold 

phosphate buffered saline (PBS; 137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, 1.47 mM 

KH2PO4, pH 7.4). Half brains were quickly dissected and fixed in 4% paraformaldehyde for 24 

hours, then stored PBS with 0.02% sodium azide at 4°C. 30-40 µm coronal sections were obtained.  

For colorimetric IHC, tissues were briefly washed with PBS, then incubated in 3% 

hydrogen peroxide (in H2O) for 30 minutes, followed by 20 minutes incubation in PBS with 3% 

Triton-x (Tx) (Sigma #T8787), and then incubated for at least one hour in immunobuffer (5% 
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normal horse serum, 2% BSA (Sigma #A2153) in PBS+0.1%Tx). Tissues were incubated in mouse 

anti-NeuN (1:1000, Millipore #MAB377) or goat ant-mouse CD45 (0.2 µg/mL, R&D systems 

#AF114), or rat anti-mouse CD45 (1 µg/mL, Biorad, #MCA1031G) in immunobuffer overnight at 

4°C. Following primary antibody incubation, tissues were washed, then incubated in biotinylated 

secondary antibodies against the corresponding species followed by incubation in avidin-biotin 

complex (Vector #PK-6100), and stain was developed with DAB (Vector #SK-4100). Tissues 

were then mounted on glass slides, dehydrated in ascending ethanol concentrations, cleared with 

xylene, and coverslipped with permount (Fisher #SP15-100). Images were acquired with a ZEISS 

Axio Scan.Z1 Digital Slide Scanner at 10X magnification, and percent field area was measured in 

the CA1, CA3, and DG with ImageJ.  

For immunofluorescence, sections were incubated in  blocking solution (2% BSA, 10% 

NGS, and 0.1% TxPBS) for 1 hour on a shaker at RT. Tissues were then incubated with primary 

antibody diluted in blocking solution overnight on a shaker at 4°C. Primary antibodies used were 

rabbit anti-Iba1 (1:1000, Wako #019-19741), rat anti-CD68 (1:700 Biolegend #137001), rat anti-

CD11b (Biorad #MCA74G), hamster anti-CD11c (1:400, Biorad #MCA1369), rat anti-mouse C3 

(1:50, Hycult #HM1045), rabbit anti-GFAP (1:2900, Dako #Z0334). Alexa Fluor secondary 

antibodies were diluted 1:500 in blocking solution and included 568 Goat anti-Armenian hamster 

(Abcam, # ab175716), 555 goat anti-rat (Invitrogen #A21434), 488 goat anti-rabbit (Invitrogen 

#A-11070), and 647 goat anti-rabbit (Invitrogen #A21244). To counterstain with Thioflavin-S 

(ThioS), sections were incubated in 0.1% ThioS in ddH2O for 10 min after secondary antibody. 

To stain with Amylo-Glo (1:100 in PBS, Biosensis #TR-300-AG), tissues were incubated for 10 

min before the first blocking step, washed in PBS for 5 min, and quickly rinsed with ddH2O before 

continuing with the IHC protocol. Sections were mounted and coverslipped with Vectashield 



 

110 
 

(VECTOR). Low magnification images (10X) were acquired using ZEISS Axio Scan.Z1 Digital 

Slide Scanner. The mean areas of C3, GFAP, CD11b, CD11c, CD68, Iba1, and plaques were 

quantified in the hippocampal regions CA1, CA3, and DG and in the cortex using the Surfaces 

feature of Imarisx64 (version 9.5.0). Quantitative comparisons between groups were always 

carried out on comparable sections of each animal processed at the same time with same batches 

of solutions. 

 

3.5.4 Enzyme-linked immunosorbent assay 

To confirm that mice expressing the C5aGFAP+/- transgene produce higher quantities of 

C5a protein, we performed enzyme-linked immunosorbent assay (ELISA) on pulverized 

hippocampus and cortex and on plasma taken from WT, Arctic, C5a, and ArcticC5a mice at 5 and 

7 months. 

 

3.5.5 RNA extraction 

Mice were perfused with PBS and dissected cortex and hippocampus were stored at -80°C 

prior to RNA extraction. Hippocampus and cortex were lysed separately in RLT (Qiagen # 80204) 

buffer with 1% β-Mercaptoethanol by the QIAGEN TissueLyser. We extracted total RNA of each 

tissue using the QIAGEN RNeasy mini kit (Qiagen # 80204) and quantified it using the NanoDrop 

ND-1000 spectrophotometer. The RNA integrity number (RIN) was assessed using the Agilent 

2100 Bioanalyzer and the samples with RIN > 8.0 were used for library preparation. 
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3.5.6 RNA-seq library preparation 

Bulk sequencing experiments were conducted utilizing between 5 and 8 mice per genotype 

per age (usually with equal numbers of M and F). RNA-seq libraries were built following the 

Smart-seq2 protocol using the Nextera library preparation kit (Picelli et al., 2014). In brief, 

polyadenylated RNA is reverse transcribed and a template-switching oligo (TSO) is added, which 

carries 2 riboguanosines and a modified guanine to induce a locked nucleic acid (LNA). cDNA is 

then amplified, and the resulting fragments are tagmented. Fragments between 150 and 600 

nucleotides are finally selected using Ampure XP beads. The quality of all libraries was assessed 

using the Agilent 2100 Bioanalyzer. Bulk libraries were sequenced using the NextSeq 500 

(Illumina) obtaining at least 10 million reads per RNA-seq sample.  

 

3.5.7 RNA-seq processing and data analysis 

Paired-end RNA-seq reads were aligned to mm10 reference genome and annotated to 

Gencode v21 transcriptome using STAR v.5.1 (Dobin et al., 2013). Gene expression was 

calculated using RSEM v1.2.25 (B. Li & Dewey, 2011). Possible noise introduced by batch effects 

was corrected by the R (version 3.6.2) package Combat-seq (Zhang et al., 2020). Data was then 

normalized using edgeR trimmed mean of M-values (TMM) function (Mark D Robinson & 

Oshlack, 2010). TPM was calculated utilizing a custom script and ComBat-seq batch corrected 

counts as input. Two statistical outliers were removed based on dimensionality reduction by PCA 

and Pearson correlation coefficient (Mukaka, 2012). A total of 372 RNA-seq data sets were 

generated.  
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3.5.8 Differential expression analysis 

The R package maSigPro (version 1.58.0) was used to identify gene expression changes 

over time allowing for k-means clustering of genes that present similar patterns of expression 

during the time course (Nueda et al., 2014). In addition, edgeR (version 3.28.1) was used to identify 

genes differentially expressed between selected ages and genotypes (Robinson et al., 2010) using 

a false discovery rate (FDR) of 1% and an alpha of 0.05. We utilized expression as TMM 

normalized counts represented as a count per million (CPM) matrix in both aforementioned 

packages. 

 

3.5.9 Gene ontology and pathway analysis 

Gene ontology enrichment analysis was performed using Metascape and DAVID online 

tools computing gene-set overlaps between pathways and biological processes, that were selected 

based on p-values smaller than 0.05 (D. Huang et al., 2007; Yingyao Zhou et al., 2019).  
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CHAPTER 4 

Discussion and Future Perspectives 
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4.1 Investigating macrophage polarization through an integrative analysis of miRNA and 

transcript isoforms 

We have applied bulk and single-cell RNA-seq and ATAC-seq techniques to investigate 

macrophage polarization towards M1 and M2 subtypes in Chapter 2. Another relevant assay that 

can provide insight into how macrophages polarize is microRNA sequencing. microRNAs 

(miRNAs) are short pieces of non-coding RNA (20-24nt). They are key post-transcriptional 

regulatory factors that affect the expression of their target mRNAs by destabilizing and degrading 

them via 5’ to 3’ exonuclease activity (Braun et al., 2012). The 3’ region of the miRNA is usually 

complimentary to its target mRNA in its 3’ untranslated region (UTR) which improves the efficacy 

of the targeting (Moore et al., 2015), although studies have indicated many non-canonical 

imperfect targets pairing (Seok et al., 2016). miRNA expression helps regulate cellular 

differentiation and specialization and aberrant miRNA expression has been shown to play 

important roles in many diseases (Peng & Croce, 2016; Tribolet et al., 2020).  

A number of studies have compared miRNA expression between M1 and M2 polarized 

macrophages and found that miRNAs are important regulators of polarization (Essandoh et al. 

2016). Over-expression of miRNA-155 seems to promote M1 polarization, whereas 

overexpression of miRNA-223 seems to promote M2 polarization (Self-Fordham et al., 2017). 

However, few studies use a fine temporal resolution to identify the transiently expressed miRNAs 

between the naïve M0 and the spectrum of polarizing M1 and M2 (Curtale et al., 2019). In order 

to gain further insight into the role that miRNAs play during macrophage polarization, a next step 

of our study would be to analyze a recently built time-course of miRNA-seq libraries of HL-60-

derived M0 polarizing towards M1 or M2 over a period of 24 hours. The information obtained 

from analyzing the time course of miRNA-seq would feed back into refining our characterization 
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of the regulatory mechanisms that underlie M0 to M1 or M2 polarization. Furthermore, we can 

integrate TF binding sites from our Chapter 2 study to miRNA target data in order to build a very 

comprehensive GRN of macrophage polarization. 

Short-read sequencing is widely used to measure gene expression (RNA-seq), miRNA 

expression (miRNA-seq), and chromatin accessibility (ATAC-seq), as aforementioned. However, 

RNA-seq has a limited ability to detect full-length isoform level changes in expression. Long-read 

RNA sequencing technologies allow for isoform-level quantification, as well de novo 

transcriptome analysis and discovery of new transcripts (Amarasinghe et al., 2020; Wyman and 

Balderrama-Gutierrez et al., 2020). Specific transcript isoforms can be linked to pathologies. For 

instance, distinct isoforms of the MAPT gene are differentially expressed during Alzheimer’s 

disease progression, formation of tangles and neurodegeneration (Love et al., 2015).  

One of the main long-read sequencing technologies available is the Pacific Biosciences 

(PacBio) Sequel II, which has sequencing error rate of only 1% after circular consensus correction 

and can yield up to 8 million reads per SMRT cell. In order to identify full length transcript 

isoforms present during macrophage polarization towards M1s or M2s, we could also build long-

read PacBio libraries of HL-60-derived M0s and across a 24 hour time course of polarizing M1s 

and M2s. At each time point, we would characterize the isoforms expressed for a given gene, at 

which level they are expressed, and whether a specific isoform is associated with either M1 or M2 

polarization. Furthermore, we can integrate the transcript isoform data with our miRNA data to 

provide a more complete investigation of the regulatory mechanisms that drive macrophage 

polarization towards M1 or M2. 

A thorough analysis of gene expression requires understanding transcription at the level of 

individual transcript isoforms being generated or degraded, thus profiling long-read transcriptome 
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sequencing and microRNA-seq provides a higher resolution comprehension of transcriptional 

dynamics. The identification of specific transcript isoforms and microRNAs that are being made 

during macrophage polarization will help understand both transcription and degradation rates. 

Therefore, applying an integrative analysis of miRNA and long read mRNA expression dynamics 

during HL-60-derived macrophage polarization towards M1 or M2 is a useful tool to further our 

understanding of M1 and M2 genomics. Considering the variety of studies targeting M1 or M2 

polarization to treat diseases, our integrative analysis of bulk and single-cell RNA-seq and ATAC-

seq in Chapter 2, combined with miRNA-seq and transcript isoforms investigation can provide 

valuable targets to modulate macrophage polarization for disease therapeutics.  

 

4.2 Using HL-60 to model human macrophage polarization 

 PMA is a protein kinase C (PKC) agonist and activate PKC irreversibly. The human 

leukemia HL-60 cell line activated with PMA acquire several characteristics that are distinct from 

undifferentiated cells including adherence to surfaces, loss of aberrant proliferative ability, 

expression of myelomonocytic enzymes such as lysozymes, acquisition of phagocytic capabilities, 

CSF1R expression, and eventually apoptosis (Seo et al., 2000; Collins, 1987). It is well stablished 

that HL-60 can differentiate into naïve tissue-resident macrophages (M0), including microglia-like 

cells (Tsutsumi et al., 2020; Wenzel et al., 2020; Ramirez et al., 2017). Although studies have used 

the HL-60-derived M0 model to investigate macrophage polarization (Takahashi et al., 2014), it is 

less clear how similar HL-60-derived M1 and M2 macrophages are to primary tissue resident M0 

polarized into M1s and M2s.  

A valuable next step of our project would be to activate primary human M0 macrophages 

towards M1 and M2, collect bulk and single-cell RNA-seq and ATAC-seq libraries and compare 
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the main polarization markers identified in our Chapter 2 to those of polarized primary 

macrophages. It would be particularly interesting to use methods where RNA-seq and ATAC-seq 

libraries can be built from the same single-cells. Furthermore, building the GRN of polarizing 

primary macrophages and comparing the results to our Chapter 2 GRN connections would provide 

great insights into how similar those cell types are and what their regulatory elements are. One 

important limitation of using primary cells for multi-omics sequencing experiments, such as bulk 

and single-cell RNA-seq and ATAC-seq, is the high number of cells required to build each library. 

Specifically, when applying a time series analysis of multi-omics sequencing, we need several 

million cells as input for library building. Understanding how similar HL-60-derived M1 and M2 

are from in vivo M1 and M2 will highlight the potential of using HL-60 to model macrophage 

polarization. Moreover, scientists will be able to take advantage of the endless source of cells and 

the ability to control the experimental steps, reducing the time required to conduct important 

research. Considering the importance of M1 and M2 polarization for disease prognosis, using the 

HL-60-derived M0 model may be a valuable tool to pre-clinical research.  

 

4.3 ID2 as a possible novel marker to module M2 polarization 

In Chapter 2 our M1- and M2-specific GRNs revealed subtype-specific transcription 

factors, how they affected downstream targets, and created a map of TF-TF interactions for M1 or 

M2 activation. These TFs are potential targets for modulating polarization towards a desired 

subtype. Our polarization GRNs helps understand how targeting one specific TF will affect 

downstream TFs that may be essential for other cellular processes and could help guide pre-clinical 

decisions. In addition, our newly identified M2 marker ID2 could be a potential target to reduce 
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M2 polarization in order to treat solid cancers that show better prognosis when there’s a high ratio 

of M1s to M2s. 

We have used siRNA to knock down ID2 in M2 macrophages and will verify whether ID2 

knock down affects the macrophage ability to polarize into an M2 phenotype. We have collected 

bulk RNA-seq and ATAC-seq libraries of M2-ID2KD. Next, we can compare the gene expression 

and chromatin accessibility profiles of those ID2KD macrophages to our M1s and M2s in order to 

identify if ID2 knock down can inhibit M2 polarization. If our macrophages lacking ID2 become 

more M1-like,  this will indicate that ID2 is a possible therapeutic target to reduce M2-like TAMs 

which are associated with poor prognosis of diseases such as breast, esophageal, and lung cancers, 

as previously discussed. 

 

4.4 Using HL-60 to model human microglia inflammation 

 Differentiated HL-60 have been used to model select microglial functions, such as 

phagocytosis (Wenzel et al., 2020; McKenzie & Klegeris, 2018). HL-60 were differentiated with 

dimethyl sulfoxide (DMSO) for 5 days and stimulated with LPS for 24 hours. Differentiated HL-

60 were used to study microglial phagocytic activity in which the cells were incubated with beads 

culminating with engulfment/phagocytosis of a percentage of the beads (McKenzie & Klegeris, 

2018). Another study differentiated HL-60 into monocytic-like cells by applying 1α,25-

dihydroxyvitamin D3 (VitD3), which were incubated with Aβ and human brain microvascular 

endothelial cells (HBMVEC). The presence of Aβ resulted in increased adhesion and 

transendothelial migration of HL-60-derived monocytic-like cells in vitro. These results 

corroborate in vivo studies that show that accumulation of Aβ  in AD brain leads to increased 

presence of microglia/monocytes (Giri et al., 2000) and suggest that differentiated HL-60 can 
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mimic that effect. However, it is less clear if HL-60-derived microglia display native microglia 

transcriptomic profiles or if they can be activated into a DAM-like phenotype.  

To gain insight into the ability to use HL-60 to model microglia, a clear next step that 

combines our Chapters 2 and 3 would be to differentiate HL-60 into microglia-like cells using 

either PMA, VitD3 or DMSO for 5 days and incubate these cells with Aβ. We would then compare 

the transcriptome profiled by bulk RNA-seq and the chromatin accessibility profiled by ATAC-

seq of both differentiated HL-60 and differentiated HL-60 primed with Aβ to those of microglia 

and DAM, respectively. If the differentiated HL-60 cells show open regions of chromatin around 

and expression of microglial genes such as CX3CR1, TMEM119, and P2RY12 (Bonham et al., 

2019) it would be an indication that HL-60-derived microglia are a viable system to study 

microglial genomics. Furthermore, if the differentiated HL-60 cells incubated with Aβ express 

DAM genes, such as TREM2, which is not expressed by tissue-resident macrophages, with 

exception of osteoclasts (Lee et al., 2021), as well as express DAM genes TYROBP, CST7, and 

LPL, it would suggest that we can use the HL-60-differentiated microglia to study DAM 

inflammation. 

 

4.5 Targeting C5a-C5aR1 microglial signaling to treat Alzheimer’s disease 

The complement fragment C5a is one of the most potent inflammatory mediators of the 

complement cascade, which binds to C5a receptor 1 (C5aR1) and C5a receptor-like 2 (C5aR2) (Li 

et al., 2013). The activation of the C5a-C5aR1 signaling pathway is thought to drive inflammation 

in many neurodegenerative diseases (J. D. Lee et al., 2017; Woodruff et al., 2006). Therefore, the 

development or discovery of selective C5aR1 inhibitors is an active area of research. PMX205 is 

a cyclic hexapeptide that act as a potent noncompetitive complement C5a receptor inhibitor. This 
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drug has shown to be well absorbed through both oral (23% availability) and subcutaneous routes, 

with elimination half-life of approximately 20 minutes. In addition, PMX205 has been granted 

“orphan drug” designation by the Food and Drug Administration (FDA), which may allow for 

accelerated progression to clinical trials (Ricklin & Lambris, 2016). PMX205 has demonstrated a 

safe profile with no drug accumulation in the brain, blood or spinal cord. PMX205 has also shown 

high bioavailability with CNS exposure (Kumar et al., 2020) and therefore poses to be a promising 

drug to treat diseases associated with neuroinflammation.  

We have investigated the benefits of reducing complement-mediated inflammation in the 

Arctic mouse model of Alzheimer’s disease in Chapter 3. We targeted glial cell inflammation by 

genetically knocking out C5aR1 and thus reducing the C5a-C5aR1 signaling. We found that there 

was improved cognition and decreased inflammation and cholesterol biosynthesis in the KO cohort 

compared to control (Hernandez, Jiang, et al., 2017). We are currently investigating the preclinical 

effects of the pharmacologic C5aR1 inhibitor PMX205 in the Tg2576 mouse model of Alzheimer’s 

disease. We have been treating Tg2576 mice with daily oral doses of PMX205 and collecting 

single cells from cortices and hippocampi of control and treated mice cohorts during disease 

progression. We will investigate changes in gene expression in microglia and astrocyte 

populations, identify the main populations associated with worsening pathology, and explore the 

main markers of each subpopulation. Furthermore, we will evaluate changes in cognition, brain 

morphology, and brain plaques density in all cohorts in response to PMX205. We hope to evaluate 

the effects of PMX205 in AD disease pathology using the Tg2576 mouse model. If we confirm a 

decrease in disease progression and/or improved cognition, a future goal of this study is to help 

bring PMX205 to clinical trials to treat Alzheimer’s disease. 
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