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Abstract
The desire to move to music appears to be a human universal.
This behavioral response seems to be supported by a tight
coupling of auditory and motor networks, even in the absence
of overt movement. The prevailing theories explain this
phenomenon either in terms of passive brain network
entrainment to musical periodicity or motor system
involvement in predictive coding. Both explanations
recognize the role of rhythmic complexity in modulating
motor activity. However, the precise nature of the relationship
between rhythmic complexity and motor activity remains
unclear. In this work, we conducted an fMRI literature review
to examine this relationship. Out of 110 screened articles, 24
met inclusion criteria, reporting findings ranging from
non-existent to linear or inverted-U-shaped. Underlying these
findings, we encountered significant heterogeneity in the
measurement and conceptualization of rhythmic complexity.
We provide a summary of the relationships found, the
approaches to measuring rhythmic complexity and the
different types of tasks and stimuli used. We conclude that, in
order to move forward, more agreement is needed regarding
measures and notions of complexity.
Keywords: beat perception; action-perception coupling;
rhythmic complexity; music cognition.

Introduction
The urge to move seems to be a universal psychological
response to music (Singh & Mehr, 2023). Ethnographic
studies have found dancing to music in every examined
society (Mehr et al., 2019). Moreover, the development of
musical rhythm perception follows a similar pattern across
various cultures (Hannon, Nave-Blodgett & Nave, 2018).
For instance, the perception of musical rhythms
demonstrates perceptual narrowing. At 12 months old,
infants exhibit culture-specific responses to musical
rhythms, in contrast to their culture-agnostic responses
observed at 6 months of age (Hannon & Trehub, 2005). 
Additionally, children aged 5-24 months show considerably
more movement in response to rhythmically periodic stimuli

compared to speech, with some level of tempo flexibility
(Zentner & Eerola, 2010).   

This behavioral response to rhythmic sound indicates a tight
coupling between auditory and motor networks (Cannon &
Patel, 2021; Kasdan et al., 2022). This connection is
reflected in a facilitation effect on tracking the timing of
sound events through periodic movement. For example,
pianists demonstrate better prediction of the timing of the
final sound in a sequence when they actively move to the
beat of that sequence (Manning, Siminoski, & Schutz,
2020). Importantly, this type of enhancement provided by
synchronizing movement to the beat is also present in
non-musicians (Manning & Schutz, 2013).

Neuroimaging studies have provided evidence that
sensorimotor synchronization relies on functional
connectivity between the motor and auditory areas of the
brain as shown in fMRI during beat tapping experiments
(Toiviainen et al., 2020; Siman-Tov et al.,
2022). Additionally, patient studies show that children at
risk for developmental coordination disorder encounter
more difficulties than neurotypical controls in both duration
and rhythmic perception tasks (Chang et al., 2021).
Similarly, Parkinson's patients have shown poorer rhythmic
discrimination abilities than healthy controls (Grahn &
Brett, 2009), but they can benefit from music or dance
interventions for gait rehabilitation (Pereira et al., 2019). 

These behavioral, neuroimaging and lesion studies are
further complemented by the finding that motor areas of the
brain are active during passive perception of rhythm, that is,
when no overt movement is being performed (Chen,
Penhune & Zatorre, 2008b; Gordon, Cobb &
Balasubramaniam, 2018). Although this covert tracking of
temporal regularity by the motor system could be the result
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of frequent associations between music and movement,
some have argued that the motor system plays a causal role
in rhythm perception (Grahn & Rowe, 2009; Patel &
Iversen, 2014; Schubotz, 2007; Zatorre, Chen & Penhune,
2007). However, the precise functional role of the motor
system during the perception of musical rhythm remains
unclear.

The prevailing theories explain this activity as some
combination of bottom-up and top-down processes (Large et
al., 2023, Vuust & Witek, 2014). Theoretical approaches
explaining this activity recognize the role of rhythmic
complexity in modulating auditory-motor coupling (Vuust
& Witek, 2014). Rhythmic complexity is often defined in
terms of how a discrete pattern of durations (the rhythm
itself) fits within a particular temporal hierarchical structure,
such as the meter or beat (Tichko, Kim & Large, 2022;
Vuust & Witek, 2014). The percept of the beat and meter is
a subjective abstraction created by the listener. For example,
the beat defines periodically relevant moments in time and
the meter adds hierarchy to them, making some more
important than others. Together, they provide a type of
temporal scaffolding that allows the listener to organize the
perception of rhythmic information and generate
expectations about future events (Vuust & Witek, 2014).
Definitions and measures of complexity vary widely,
ranging from the number of different time intervals present
in a rhythm (Lewis et al., 2004); to accounts of motor
accuracy, such as the precision with which participants
perform polyrhythms (Thaut, Demartin & Sanes, 2008).
Here, we define complexity as beat strength, or the degree
to which a particular rhythm allows for the perception of a
relatively stable organizing beat. This understanding of
complexity is often operationalized as the degree of
syncopation, defined as the presence of sound events in
weak or less important metrical positions followed by
silence in strong or important metrical positions (Witek et
al., 2014).

Two main theoretical approaches provide accounts of the
relationship between motor areas and rhythmic processing:
dynamical systems (DS) and predictive coding (PC). Each
one yields different predictions on the relationship between
recruitment of motor areas and rhythmic complexity.
According to DS, instead of representing time intervals per
se, the brain maps timing information to the phase of an
oscillator that entrains with rhythmic events (Large et al.,
2023). This oscillator drives attentional rhythms that
generate top-down expectations about future events. To
explain the involvement of the motor area in rhythm
perception, Large et al. (2015) proposed a model that
includes two interacting heterogeneous-frequency networks,
one corresponding to auditory cortex dynamics and a second
one for the motor cortex (e.g., SMA). When presented with
an isochronous rhythm, both networks synchronize with the
frequency present in auditory stimuli, generating both
harmonics and subharmonics. However, when presented

with a complex rhythm with high degrees of syncopation,
this coupling differs. The auditory network exhibits activity
that closely tracks frequencies present in the stimulus, which
in very syncopated rhythms will not include the beat. Then,
it is the motor network that is predicted to entrain at the beat
frequency. Importantly, this suggests that in the case of a
beat-based rhythm, motor activity should remain rather
constant at the beat frequency, both at low and high levels of
complexity (Large et al., 2023).

On the other hand, the predictive coding approach (PC)
suggests that the brain is constantly predicting the causes of
its own internal states by comparing sensory input to a
generative internal model of the world acquired through
experience (Friston, 2005). This hierarchical process is
formally approximated by Bayesian inference, where
top-down predictions provide priors to lower levels in
nested neural networks, all the way to sensory information.
Conversely, lower level sensory information is contrasted
with prior predictions, generating bottom-up prediction error
signals that update the internal model. In this sense, the
brain is primarily involved in minimizing prediction error.
To do so, the brain either actively aligns attention with the
predicted information sources or produces the necessary
movements to fulfill its predictions, using efference copies
as motor commands aimed at generating the expected
sensory input (Clark, 2013).

Regarding rhythm, PC posits that beat- or meter-based
internal models serve as priors for predicting upcoming
sound events (Vuust & Witek, 2014). In the context of
syncopation, error signals are produced indicating the
absence of sound events at the expected pulse times, which
leads to a desire to move to the beat of the music to enact
the predicted sound event, thereby fulfilling the prediction
made by the model (Witek, 2017). This motor engagement
would be significantly reduced in isochronous rhythms,
where error signals are absent, and in highly complex
rhythms, where beat-based models are not effective at
predicting upcoming events. Importantly, previous studies
have found a behavioral association between rhythmic
complexity and the desire to move to music that follows an
inverted-U shape (Cameron et al., 2023; Stupacher, Wrede
& Vuust, 2022; Witek et al., 2014).

In short, DS suggests that motor area activity should be
similar across the complexity spectrum, as long as it is
possible to form a beat-based model of the incoming
rhythm. PC predicts that we should observe an
inverted-U-shaped association between complexity and
motor area activation where low and high complexity
rhythms show less motor engagement than medium
complexity ones. In this work, we conducted an fMRI
literature review to examine the available evidence for the
relationship between motor area activation and rhythmic
complexity in light of these theoretical predictions. We
provide a summary of the reported associations, the
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populations tested, the approaches to measuring rhythmic
complexity and the different types of tasks and stimuli used.
We found significant heterogeneity in how complexity is
conceptualized and measured, which made it difficult to
compare across studies. We present an ad-hoc, theoretically
driven categorization of stimuli aimed at making results
comparable.

Methods

Literature search
A literature search was conducted on PubMed, Scopus and
Web of Science (WoS) using the search string: (rhythm* OR
beat OR meter) AND (complex* OR syncopat*) AND
(music*) AND (fMRI OR functional magnetic resonance
imaging). This search yielded 168 papers from inception
until October 4th 2023. After removal of duplicates (n=58),
110 papers were screened at the abstract level with the
following exclusion criteria:

a) not about music.
b) not on humans
c) not a research article
d) not an fMRI study
e) not related to rhythmic complexity

These criteria were further evaluated during a full text read
resulting in 24 final papers. Search flowchart and number of
articles removed at each stage can be found in figure 1.

Complexity recategorization
Complexity definitions and measures varied widely across
studies. Only 12 studies (50%) used or referenced some
objective measure of complexity (see Complexity Metric
column in Table 1).

Most studies used two or three categories to define more or
less complex stimuli. These categories were mostly different
(strongly metric, metrically weak, complex, non-metric,
etc.). Aiming to make the stimulus categories comparable
between studies, stimuli were recreated when possible (16
studies) and three complexity metrics were applied to all
possible categories. This presented a number of challenges
since, first, some studies did not rely on the stimuli and used
performance measures instead (n=3) (e.g., playing
polyrhythms, improvising on the piano), others used
segments of natural music (to which most complexity
metrics cannot be applied) (n=3) and yet others did not
provide clear enough instructions for reproduction (n=2).
Secondly, current complexity metrics are designed to either
assume some form of metrical structure (i.e., C-score, Fitch
and Rosenfeld’s Longuet-Higgins-Lee implementation
[LHL]) or are completely independent of it and thus poorly
represent syncopation based complexity (i.e., normalized
Pairwise Variability Index [nPVI]) (Condit-Schultz, 2019).
Given these limitations, we first proceeded to sort the
stimuli into 4 large categories qualitatively: Rest, when a

silent passive condition was included in the contrasts;
Isochronous, the least complex condition, in which subjects
heard or tapped to a metronome producing a stable pulse;
Complexity, including varying complexity stimuli which
were created using some form of metrical structure and in
which rhythmic intervals were composed of integer-ratios;
and Non-metric, in which stimuli did not conform to any
metrical structure are were composed of non-integer ratio
intervals. Within the Complexity category, we sought to
further divide the stimuli by establishing cutoff points for
Low, Medium and High complexity rhythms by using the
LHL metric. This proved to be impossible without splitting
up the contrasts from the original studies. For example,
when scored with LHL, both the metric simple (LHL: 2) and
metric complex (LHL: 3) stimulus from the Chen, Penhune
and Zatorre (2006, 2008a, 2008b) fell within the range of
the complex condition from Grahn and Brett (2007) (Mean:
4.3, SD: 1.3, min: 2, max: 7). Thus, separating the
conditions from Chen, Penhune and Zatorre (2006, 2008a,
2008b) would require splitting a uniform category from
Grahn and Brett’s study (2007).

Figure 1: Search flowchart.

In order to preserve the contrasts from original studies and
be able to compare across them we proceeded to generate
audios based on the stimuli from the Complexity category
employed in each of the selected studies. We used the
reproduced stimuli to assess the degree of rhythmic
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complexity perceptually and provide an ad-hoc
categorization by an expert drummer (author 1). This
resulted in three further categories: Low complexity, in
which machine performed stimuli presented a clear metrical
structure with low overall syncopation; Medium complexity,
in which machine performed stimuli which presented a
higher degree of syncopation with some sound events on
less salient metrical positions; High complexity, including
machine performed polyphonic stimuli with a high degree
of syncopation, with some stimuli presenting little to no
sound events aligned with strong metrical positions but still
conforming to some metrical structure. This category also
included human performed natural music, since these
stimuli were polyphonic and presented a wider degree of
variability provided by either tempo changes (Vuust et al.,
2006; Alluri et al., 2012) or expressive variations, which
have been shown to alter the perceived timing of events
(Danielsen et al., 2019).

The process of ordering the stimuli for comparison resulted
in some between-study conditions being mapped to other
categories while respecting the original relation between
levels. For example, Grahn and Brett’s (2007) complex
condition was included in our Medium complexity category,
while their simple condition was included in the Low
complexity category. Their highest complexity category,
nonmetric, was included in our Non-metric category.

Results
The reviewed literature exhibited significant heterogeneity
in the conditions utilized across original studies, precluding
the ability to conduct a meaningful meta-analysis. Instead,
we organized the reviewed articles according to the
previously described complexity levels and activation of
areas and contrasts were notated within this framework in
order to evaluate the presence of activations relating to
particular levels of complexity. Table 1 presents a summary
of populations, associations, tasks and metrics.

Associations between complexity and motor area
engagement, study populations, stimuli used and complexity
metrics varied widely. Table 1 provides an ad-hoc
re-ordering of complexity levels based on a categorization
of stimuli used for ease of comparison across similar levels.
Associations were coded as /, when a positive association
between rhythmic complexity and motor activation was
found between one lower complexity condition and a higher
one; \, when a negative association was found between a
lower complexity association and a higher one; -, when no
association was found; ∩, in the case of inverted-U-shaped
associations; and /,\ when associations were mixed but did
not represent an inverted-U-shape. Brain areas are
represented in the condition that had the higher activation in
the original study and coloured segments of the table
indicate what contrast yielded said activation. For example,
Sakai et al., (1999) contrasted isochronous stimuli with
rhythms with medium complexity and non-integer ratio

rhythms. It found activations for both medium complexity
and non-integer rhythms as compared to isochrony.

Populations
8 studies (33.3%) contrasted musicians and non-musicians,
6 studies included only musicians, 5 (20.8%) exclusively
recruited non-musicians, 3 (12.5%) did not control for
musical training and 2 (8.3%) studies carried out contrasts
between Parkinson's patients and age matched controls.
Additionally, we found that almost all studies were
conducted by labs in the global north and predominantly on
WEIRD populations (96%) (Henrich, Heine, & Norenzayan,
2010).

Tasks
9 studies (37.5%) described pure passive perception tasks
which involved listening to rhythms with no concurrent
cognitive instructions (Perception), 6 (25%) involved active
conditions (Action). Tasks we considered active when overt
movement was required from the participants. Active
conditions included rhythm reproduction; metric
synchronization and/or continuation with the stimuli at
phase, antiphase or a provided ratio (3:2); and improvisation
at a piano. Effectors included mostly the hands, except for
Jungblut et al., (2012), which required participants to sing
the provided written stimuli. 6 studies (25%) included some
concurrent attentional or working memory tasks performed
at the same time as the passive perception task (e.g.
Perception + Attention, Perception + Working Memory,
Perception + Distractor), and 3 (12.5%) studies included
both passive and active conditions (Percepcion + Action).

Complexity
11 studies (45.8%) did not employ any objective complexity
metric and organized complexity ad-hoc (None). 5 (20.8%)
used or referenced Essens and Povel’s C-score (1985) for
defining complexity, 3 (12.5%) applied the Pressing model
(Pressing, 1999), 2 (8.3%) used both the C-score and Fitch
and Rosenfeld's metric (2007), and 2 (8.3%) used Pulse
Clarity (Lartillot et al., 2008). These metrics differ in
significant ways. The C-score, the Pressing model and Fitch
and Rosenfeldt all work with music in symbolic format.
However, they measure different aspects of complexity. The
C-score developed by Povel and Essens (1985) indicates
metricality as the best fit between the rhythms and different
“internal clocks”, representing a variety of metrical
structures. Pressing (1999) uses a theoretical cognitive
complexity model that organizes rhythms hierarchically and
gives varying weights to different subdivisions, assuming a
duple metrical structure. Fitch and Rosenfeld’s measure
(2007) is an adaptation of the Longuet-Higgins and Lee
measure (LHL) (Longuet-Higgins & Lee, 1984) which also
assumes a binary metrical structure and and assigns weights
to different metrical positions to provide a syncopation
index.None of these metrics works with non metrical or
non-integer ratio rhythms. The Pulse Clarity metric is the
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Table 1: Results summary.
Methods Results

Article Population Task Complexity
metric

Relation Rest Isochronous Low
complexity

Medium
complexity

High
complexity

Non-metrical

Sakai et al.,
(1999)

Non-musicians
(n=6, 2f) Action None / - < PMC, cerebellum iso < PMC

Ullén,
Forssberg &

Ehrsson
(2003)

Non-musicians
(n=17, 3f) Action None / -

< vPMC, dPMC, CMA,
SMA, pre-SMA,

cerebellum lobule IV

Lewis et al.,
(2004)

Uncontrolled
(n=10, 5f) Action None / -

< SMA, pre-SMA, dPMC
positive correlation with

number of intervals

Chen,
Penhune &

Zatorre (2005)

Non-musicians
(n=12, 6f)

Perception
+ action C-score / -

< pre-SMA, dPMC,
cerebellum lobule VI
covariation with ITI

standard deviation, same
areas were found to be

active during both passive
and active conditions

Vuust et al.,
(2006)

Musicians
(n=18, 4f)

Perception
+ action None / - < IFG

Grahn &
Brett (2007)

Musicians
(n=14) and

non-musicians
(n=13) (8f)

Perception
+ attention C-score \

pre-SMA,
SMA, caudate,

pálido,
putamen >

putamen > -

Thaut,
Demartin, &
Sanes (2008)

Musicians
(n=12, 3f)

Perception
+ action None / - < M1, S1, PMC, SMA,

pre-SMA

Bengtsson, et
al., (2009)

Uncontrolled
(n=17, 3f) Perception None /, \ IFG,

pre-SMA > - < cerebellum -

Chen,
Penhune &

Zatorre
(2008a)

Musicians
(n=12, 6f) and
non-musicians

(n=12, 6f)

Action C-score / -

< pre-SMA, SMA, dPMC,
vPMC, dlPFC, cerebellum
lobule VI covariation with

ITI standard deviation

Chen,
Penhune &

Zatorre
(2008b)

Non-musicians
(n=12, 6f) Perception C-score / -

< right SMA, left pre-SMA,
right dPMC, left cerebellum
lobule VI and right dlPFC

covariation with ITI
standard deviation

Berkowitz &
Ansari (2008)

Musicians
(n=13, 8f) Action None / - < dPMC, IFG

Grahn &
Rowe (2009)

Musicians
(n=19) and

non-musicians
(n=17) (15f)

Perception Subjective
validation \ putamen > < no effect

Chapin et al.,
(2010)

Musicians and
non-musicians

(n=13, 5f)

Perception
+ WM None / - < SMA, caudate

Jungblut et
al., 2012

Non-musicians
(n=30, 13f) Action None / - < IFG

Geiser, Notter
& Gabrieli

(2012)

Uncontrolled
(n=17, 8f)

Perception
+

distraction
None \ putamen > -

Alluri et al.,
(2012)

Musicians
(n=11, 5f) Perception Pulse Clarity \ SMA, putamen negative

correlation with complexity

Kung et al.,
(2013)

Musicians
(n=11, 5f)

Perception
+ attention

Pilot +
C-score / vlPFC positive correlation

with complexity

Herdener et
al., (2014)

Musicians and
non-musicians

(n=22)

Perception
+

distraction
None / - < IFG

Tsatsishvili et
al., (2018)

Musicians
(n=11, 5f) Perception Pulse Clarity \ left SMA, IFG negative

correlation with complexity

Vikene, Skeie
& Specht
(2019a)

PD (n=15, 6f)
and controls
(n=15, 8f)

Perception
Pressing +
subjective
validation

- - -

Vikene, Skeie
& Specht
(2019b)

PD (n=15, 6f)
and controls
(n=15, 8f)

Perception
Pressing +
subjective
validation

- - -

Matthews et
al., (2020)

Musicians
(n=29, 12f) and
non-musicians

(n=23, 12f)

Perception
C-score +
Fitch &

Rosenfeld
\

putamen, caudate, pallidum,
SMA, pre-SMA, bilateral

dorsal PMC and right crus 1
in the cerebellum >

< no effect
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only metric which works on audio representations instead of
symbolic data (Lartillot et al., 2008). This measure is
derived from an onset detection algorithm and an
autocorrelation function and is meant to capture the ease
with which participants are able to perceive the beat of a
musical piece.

Associations
Out of 24 studies, 13 (54.2%) reported increased motor area
activation for more complex rhythms with 8 of these
comparisons involving medium complexity versus lower
complexity. Six studies (25%) indicated greater activation in
motor areas for medium over high complexity rhythms, or
negative correlations between complexity and motor area
engagement, where more complex rhythms were associated
with less activity in motor regions of interest. Three studies
(12.5%) showed no significant complexity effect, 1 found a
mixed effect, and 1 observed an inverted-U-shaped
relationship between sensory-motor synchronization
performance and motor area activation, in which the highest
correlation between complexity and motor activation was
found for medium complexity rhythms with smaller but
significant correlations for low and high complexity
rhythms. When conditions were arranged by complexity, a
pattern emerged in which medium complexity rhythms
engaged motor areas significantly more than their low or
high contrasts. Main areas involved in the processing of
medium complexity rhythms over low or high ones included
cortical areas SMA (8 studies, 33%) and PMC (7 studies,
29%) and subcortical areas such as the putamen (4 studies,
16%).

Conclusions
We conducted a systematic review to assess the association
between rhythmic complexity and the recruitment of the
motor system. Dynamical systems (DS) models from Large
et al., (2023) suggest motor activity should remain rather
constant through a wide spectrum of complexity, spanning
from isochrony to rhythms with no energy at the beat
frequency. In contrast, predictive coding (PC) predicts an
inverted-U-shaped interaction, where motor areas are more

engaged in the processing of medium complexity rhythms
over low or high complexity ones. Out of 110 reviewed
articles, 24 reported findings ranging from non-existent to
linear or inverted-U-shaped relations. When contrasts were
organized by their level of complexity, over half (54.2%) of
the studies reported higher motor area activations for
rhythms of medium complexity as opposed to lower or
higher complexity ones. Although this pattern of results
could be interpreted as evidence for an inverted-U-shape
relation between rhythmic complexity and motor area
activation, only one study directly reported this finding.
Additionally, when studies from the same research group are
considered jointly, the number of studies reporting
activations for medium complexity rhythms over low or
high ones is reduced by half. Regarding DS, 3 patient
studies from the same research group found flat associations
between complexity and motor area activation (12.5%). In
the context of the evidence presented here, it would seem
like more support is given to PC than to DS’s specific
prediction regarding the role of the motor system in the
processing of rhythmic complexity. However, it has been
shown that oscillators are a highly versatile strategy for
modeling other very different types of behavior than those
predicted here (Doelling and Assaneo, 2021) and we suggest
that in future models, PC’s predictions may be
accommodated within a DS framework, given that both
theories are far from necessarily pitted against each other
(Witek & Vuust, 2014; Large et al., 2023).

However, underlying these findings, we encountered
significant heterogeneity in the measurement and
conceptualization of rhythmic complexity and an overall
lack of theoretically driven hypothesis testing, which
precluded us from conducting a meaningful meta-analysis.
Finally, given the heterogeneity in the methodology of the
reviewed papers, we consider the theoretical implications of
our findings should be taken with a grain of salt and should
be considered only as a first step in answering our question.
Future directions should include objective measures of
complexity, contrasting theoretical predictions directly and
inclusion of natural music.

Methods Results

Article Population Task Complexity
metric

Relation Rest Isochronous Low
complexity

Medium
complexity

High
complexity

Non-integer ratio/
Random

Færøvik,
Specht &

Vikene (2021)

Musicians and
non-musicians

(n=10, 6f)

Perception
+ attention

Pressing +
subjective
validation

- - -

Siman-Tov et
al., 2022

Musicians and
non-musicians

(n=71, 41f)
Perception

C-score +
Fitch &

Rosenfeld
∩ -

< BA55b
positive

correlation with
entropy, ENT

standard
deviation and

LRV <

< BA55b positive
correlation with entropy,

ENT standard deviation and
LRV >

> BA55b
positive

correlation with
entropy, ENT

standard
deviation and

LRV

CMA: cingulate motor area; d: dorsal; dl: dorsolateral; v: ventral; PD: Parkinson's Disease; PMC: premotor cortex; SMA: supplementary motor area; IFG: inferior frontal gyrus; M1: primary motor area;
S1: primary sensory area; ITI: inter-tap interval; ENT: entropy; LRV: length of resultant vector; WM: working memory.
f indicates numbers of females.
/, a positive association was found between one lower complexity condition and a higher one; \, a negative association was found between a lower complexity association and a higher one; -, no association
was found; and ∩, in the case of inverted-U-shaped associations.
Empty cells with a - in the Results columns indicate this condition was included in the original study but not tested, for instance, Sakai et al., (1999) included an Isochronous condition but only found
activation when comparing Medium complexity rhythms over Isochronous ones and Non-metrical rhythms over Isochronous ones. They did not test Isochronous over any other condition.
When not specified, <> indicates the contrast was applied to the nearest condition marked with -, otherwise, the relevant contrast is included in the cell reporting the activation.
No-effect indicates the contrast was tested and no effect was found.
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