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Abstract A broad range of decision-making processes involve gradual accumulation of evidence

over time, but the neural circuits responsible for this computation are not yet established. Recent

data indicate that cortical regions that are prominently associated with accumulating evidence,

such as the posterior parietal cortex and the frontal orienting fields, may not be directly involved in

this computation. Which, then, are the regions involved? Regions that are directly involved in

evidence accumulation should directly influence the accumulation-based decision-making behavior,

have a graded neural encoding of accumulated evidence and contribute throughout the

accumulation process. Here, we investigated the role of the anterior dorsal striatum (ADS) in a

rodent auditory evidence accumulation task using a combination of behavioral, pharmacological,

optogenetic, electrophysiological and computational approaches. We find that the ADS is the first

brain region known to satisfy the three criteria. Thus, the ADS may be the first identified node in

the network responsible for evidence accumulation.

DOI: https://doi.org/10.7554/eLife.34929.001

Introduction
All behaving animals must interpret sensory information arriving from the environment and use that

information to select future actions. How the nervous system solves this problem has been a long-

standing question in neuroscience. Multiple studies across a wide range of behavioral tasks and

model systems, including humans (Hunt et al., 2012; Krajbich et al., 2012; Ratcliff et al., 2015),

non-human primates (Gold and Shadlen, 2007; Huk and Shadlen, 2005; Shadlen and Newsome,

1996) and rodents (Brunton et al., 2013; Carandini and Churchland, 2013; Erlich et al.,

2015; Hanks et al., 2015; Raposo et al., 2012; Sanders and Kepecs, 2012) have proposed a

framework through which neural circuits gradually accumulate sensory evidence to guide decisions.

Yet, despite the observation of neural correlates of evidence accumulation in several brain regions

(Ding and Gold, 2010; Gold and Shadlen, 2007; Hanks et al., 2015; Ratcliff et al., 2007;

Shadlen and Newsome, 1996), a major challenge in this line of research has been that the neural

circuits that are causally responsible for evidence accumulation have not yet been determined. Two

of the cortical regions that are most prominently associated with evidence accumulation, namely

the posterior parietal cortex (LIP; Huk and Shadlen, 2005; Kira et al., 2015; Roitman and Shadlen,

2002; Shadlen and Newsome, 1996) and the frontal eye fields in primates (FEF; Ding and Gold,

2012a; Gold and Shadlen, 2000; Mante et al., 2013), together with its probable rodent analogue,

the frontal orienting fields (FOF; Erlich et al., 2011), have been the focus of studies
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recently. Surprisingly, these studies have indicated that neither region is central to the computation

of gradually accumulating evidence (Erlich et al., 2015; Hanks et al., 2015; Katz et al., 2016).

The anterior dorsal striatum (ADS) serves as an intriguing alternative candidate (Ding and Gold,

2013), due in part to its unique anatomical positioning as a convergence hub for multiple brain

regions (Cheatwood et al., 2003; McGeorge and Faull, 1989) where neural signatures of evidence

accumulation have been observed (such as the PPC and FEF/FOF; Gold and Shadlen, 2007;

Cheatwood et al., 2003; Ding and Gold, 2013; McGeorge and Faull, 1989). The ADS is thus ide-

ally positioned to participate in evidence accumulation as part of its established role in action selec-

tion (Bogacz and Gurney, 2007; Graybiel, 2008; Hikosaka et al., 2014; Jin and Costa, 2010;

Nelson and Kreitzer, 2014; Redgrave et al., 2010). Modeling work has also suggested that the

ADS may participate in post-accumulation decision commitment (Lo and Wang, 2006).

The auditory input to a different striatal subregion, the posterior ‘auditory’ striatum, has been

shown to be critical for auditory discriminations, leading to the suggestion that cortical projections

into the striatum may provide a general mechanism for the control of motor decisions (Xiong et al.,

2015; Znamenskiy and Zador, 2013). Specifically with regard to evidence accumulation, work in pri-

mates found neural correlates of evidence accumulation in the ADS (Ding 2015; Ding and Gold,

2010; Ding and Gold, 2012b; Ding and Gold, 2013; Ding, 2015, Lo and Wang, 2006), and

revealed that electrical microstimulation of the ADS impacts behavior that is based on accumulation

of evidence (Ding and Gold, 2012a). These data led to the proposal that the ADS may contribute to

the computations specifically involved in evidence accumulation. Yet three critical questions to test

this proposal have been left unanswered.

First, is the ADS required for unimpaired accumulation-based decision making? To date, there

have been no recorded inactivations of the dorsal striatum during the accumulation of evidence.

Inactivations are important probes of whether a region plays a central causal role for a cognitive vari-

able of interest (Newsome and Paré, 1988; Erlich et al., 2015; Katz et al., 2016).

Second, do neurons in the dorsal striatum encode sensory information in a way that is sufficient

to be involved directly in the graded accumulation process? The correlates of evidence accumulation

reported to date in striatum have been of two types: either firing rates that, when averaged over tri-

als, ramp upwards with a slope of the ramp that increases as the evidence strengthens (Ding and

Gold, 2010), or estimates of the temporal dynamics of firing rate variance across trials (Ding, 2015).

However, the trial averages do not distinguish between graded evidence encodings and other

encodings that on a single-trial basis do not represent gradually accumulating evidence, such as

sharp coordinated steps in firing for which the timing of the step varies across trials (Hanks et al.,

2015; Latimer et al., 2015). Furthermore, the variance estimates have not yet produced clearly

definitive conclusions, suggesting that the ADS is only partly involved in graded accumulation

(Ding, 2015).

We recently developed a complementary approach, distinct from the two earlier methods, to

assess evidence accumulation encoding. This most recent approach estimates ‘tuning curves,’ that

is, direct descriptions of the relationship between recorded neural firing rates and the graded value

of the evidence accumulator, and can discriminate between different encodings that otherwise

appear indistinguishable (Hanks et al., 2015). Here, we apply this approach to electrophysiological

recordings from the ADS.

Third, does the dorsal striatum play a causal role throughout the period of accumulation? One of

the key aspects of interest in gradual evidence accumulation is its relatively long timescale, as it

occurs over a period of hundreds of milliseconds or more (thought to be a potential model of mental

deliberation [Gold and Shadlen, 2007]). If the striatum is part of the gradual accumulation process

that drives behavior, perturbing it at any timepoint during that accumulation process should affect

behavior. This feature is thus an essential prerequisite for a component of the accumulator. However,

no temporally specific perturbations of the ADS during the accumulation of evidence have yet been

carried out to probe for this feature. Indeed, no brain region studied during an accumulation of evi-

dence behavior has yet been reported to possess this feature.

Here, using a combination of behavioral, pharmacological, optogenetic, electrophysiological and

computational approaches, we address these three fundamental questions. The results provide evi-

dence supporting a central causal role for the anterior dorsal striatum in evidence accumulation.

Yartsev et al. eLife 2018;7:e34929. DOI: https://doi.org/10.7554/eLife.34929 2 of 24

Research article Neuroscience

https://doi.org/10.7554/eLife.34929


Results
We trained rats on a previously developed decision-making task (Brunton et al., 2013) in which sub-

jects accumulate auditory evidence over many hundreds of milliseconds to inform a binary left/right

choice (Figure 1a). In each trial, rats kept their nose in a central port during the presentation of two

simultaneous trains of randomly timed auditory clicks, one played from a speaker to their left and

the other from a speaker to their right. At the end of the auditory stimulus, the rat’s task was to

decide which side had played the greater total number of clicks. Consistent with previous studies

using this task, analysis of our rats’ behavior indicated that they gradually accumulated auditory evi-

dence over the entire trial, and used that accumulated evidence to drive a categorical choice (Fig-

ure 1—figure supplement 1; Supplementary file 1).

We began to assess the role of the anterior striatum in the accumulation task using reversible

pharmacological inactivation with muscimol (Materials and methods). The anterior striatial region tar-

geted in this study receives convergent inputs from the PPC and the FOF, brain regions previously

reported to contain neural correlates of evidence accumulation but later shown to not be central to

the accumulation process itself (Erlich et al., 2015; Hanks et al., 2015; Katz et al., 2016). Unilateral

inactivation of the ADS biased rats to make more ipsilateral choices relative to controls (Figure 1b;

bias for right side inactivation = 19.2 ± 4.4%, p<0.01; bias for left side inactivation = 18.6 ± 3.3%,

p<0.01). This effect was not a gross motor bias, but was instead specific for accumulation trials,

because no significant bias was caused on interleaved motor control trials in which the rats had to

make a similar left/right motor response, but were cued by a simple visual stimulus (Figure 1—fig-

ure supplement 2; p>0.4 for both left- and right-side trials). Bilateral pharmacological inactivation

caused a substantial impairment in performance for accumulation trials (Figure 1c; impairment =

12.6 ± 3.2%, p<0.01). This impairment was again specific for accumulation trials, with no significant

impairment in motor control trials where the decision was not based on the accumulation of evi-

dence over time (Figure 1—figure supplement 2; p>0.6 for both left- and right-side trials).

Psychometric curves such as those shown in Figure 1b,c group together trials based on the click

difference accrued by the end of the stimulus stream and treat all trials within each group as if they

were the same. But in our clicks task, we have far more information available because the precise

temporal pattern of each individual trial’s click trains is known. We have previously used this informa-

tion, together with a model that takes into account those known individual click times, to quantify

our subjects’ behavior in terms of multiple parameters governing the dynamics of a drift-diffusion

decision process (Ratcliff and McKoon, 2008). We use an enhanced model of the drift-diffusion pro-

cess so that we can obtain trial-by-trial, moment-by-moment estimates of accumulating evidence

(Brunton et al., 2013). This model converts the incoming stream of each trial’s discrete left and right

click stimuli into a scalar quantity a(t) that represents the gradually accumulating difference between

the two click streams; each right click increases the value of a(t), whereas each left click decreases a

(t). Eight parameters, quantifing sensory and accumulator noise, the leakiness or instability of the

accumulation process, a sticky accumulation bound, sensory depression or facilitation, side bias

(þ), and lapse rate, govern the dynamics of how a(t) evolves in response to the sensory evidence

pulses, and how they are then turned into a binary decision. At the end of each trial’s stimulus, the

accumulator a(tend), together with the parameter þ, drives choices: if a(tend) > þ, the model pre-

scribes ‘choose right’, whereas if a(tend) < þ, the model prescribes ‘choose left’. All of the parame-

ters are estimated by fitting the model to the rat’s behavior (Materials and methods).

The original model of Brunton et al. (2013) was not constructed to explain different types of side

biases, so it had only a single parameter (þ) that could account for such lateralized effects. By adding

three more parameters that could cause different types of side biases, fitting the extended model to

behavioral data following unilateral inactivations, and asking which parameters are most affected rel-

ative to control trials, we can better estimate which particular aspect of the behavior was impacted

by unilateral inactivations. The three side bias parameters that we consider, in addition to þ, are:

asymmetric sensory input gain, asymmetric sensory input noise, and asymmetric lapse rates

(Materials and methods). Considering all four of these side bias parameters in the case of unilateral

inactivations of the FOF, we previously concluded that FOF inactivations were consistent with per-

turbing a process that was not part of evidence accumulation directly, but was instead downstream

of the accumulation process and therefore followed it (Erlich et al., 2015; Piet et al., 2017).
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Here, we improve upon this analysis and apply it to our striatum inactivation data. At the time of

the Erlich et al. (2015) study, the complexity of determining the derivative of the model with

respect to all 11 of its parameters precluded us from fitting all 11 parameters simultaneously. We

instead performed exhaustive scans in the space of two parameters at a time while the other nine

parameters were fixed to their control (no inactivation) values (e.g., Figure 4 in Erlich et al. (2015)).

Figure 1. Dorsal anterior striatum is required for unimpaired performance on the Poisson-clicks evidence

accumulation task. (a) Sequence of events in each trial of the rat auditory Poisson-clicks task. From left to right:

after light onset above the center port, rats ’fixate’ their position by placing their nose inside the center port.

During nose-fixation, two different trains of randomly timed auditory clicks are played concurrently from the left

and right speakers. Upon termination of the sound trains, the light above the center port turns off and the rat

needs to make a choice, poking into the left or right port to indicate if more clicks were played on the left or right

sides, respectively. (b) Unilateral infusion of muscimol into the striatum results in a significant ipsilateral bias on

accumulation trials. Purple and cyan psychometric curves show data on days of right and left striatal infusions (n

left sessions = 29; n right sessions = 29), respectively. Black psychometric curve shows data from control sessions

that occurred one day before infusion sessions (n = 58). (c) Bilateral infusion of muscimol into the striatum results

in significant impairment on accumulation trials. The blue psychometric curve is from bilateral infusion sessions (n

= 26) and the black psychometric curve is from control sessions that occurred one day before bilateral infusion

sessions (n = 26). Data are shown as mean ± S.E.M.

DOI: https://doi.org/10.7554/eLife.34929.002

The following figure supplements are available for figure 1:

Figure supplement 1. Rat behavior indicates the accumulation of auditory evidence over the entire trial.

DOI: https://doi.org/10.7554/eLife.34929.003

Figure supplement 2. Control LED trials indicate that the behavioral bias and impairments resulting from striatal

inactivation are not due to motor impairments.

DOI: https://doi.org/10.7554/eLife.34929.004
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Since that time, however, algorithmic differentiation packages, which greatly facilitate computing

the derivative of arbitrary differentiable models embodied in computer code, have become widely

available (Abadi et al., 2016; Baydin et al., 2015; Revels et al., 2016; Al-Rfou et al., 2016). Using

the ForwardDiff package of the language Julia (Revels et al., 2016) to obtain automatically the

derivative with respect to all 11 parameters in the model of Erlich et al. (2015), we constructed a

package that can efficiently and simultaneously fit all 11 parameters in the model. We are publishing

this package in open source form, as part of the contribution of the current manuscript (code avail-

able at https://github.com/misun6312/PBupsModel.jl [Yoon and Brody, 2018]; copy archived at

https://github.com/elifesciences/PBupsModel.jl). We validated this approach and our previous FOF

analysis by fitting all 11 parameters simultaneously to our previous FOF unilateral inactivation data.

This new analysis (Figure 2—figure supplement 2, Supplementary file 4) confirmed the conclusions

about the FOF found by Erlich et al. (2015). Following this conclusion, we next turned to perform-

ing the same analysis on the inactivation data collected in the current study for the anterior striatum.

For simplicity of presentation, below, we illustrate some of the results of the model fits in terms

of psychometric plots (i.e., graphing the probability of a decision to one side as a function of total

#R – #L clicks, averaged over trials), but we note again that our model and its fits are sensitive to the

detailed timing of the click stimuli in each individual trial, which is information that is obscured in the

trial-averaged psychometric plot. As a result, the model and its fits can resolve the effects of differ-

ent parameters that are indistinguishable in a psychometric plot (see also illustrations of this point in

Supplementary Figure S4 in Brunton et al. (2013)). For example, a leaky (i.e., forgetful) accumulator

and an increased overall lapse rate both predict an overall performance impairment. But the leaky

accumulator impairment will be greater for trials that by chance had their clicks earlier rather than

later, whereas the lapse impairment will be independent of the timing of each trial’s clicks. A model

that is sensitive to the timing of each trial’s clicks can thus distinguish the two. Similarly, an asymmet-

ric sensory input gain and an asymmetric lapse rate both predict a side bias. But the magnitude of

the bias due to an asymmetric input gain will scale with the number of clicks presented on each

trial. This contrasts with the bias that would be induced by an asymmetric lapse rate, which would

be independent of the number of clicks presented. This again allows the effects of the two parame-

ters to be distinguished. In sum, trial-by-trial and detailed click-timing effects, although not visible in

the trial-averaged psychometric plot, impact the likelihood of the data under the model, and thus

impact the model fits and the likelihood landscapes (such as those shown in Figure 2b and d below).

When two parameters trade off in a manner that impairs our ability to distinguish them, this is

revealed in the likelihood landscape as a ridge of high likelihood. The shape of the ridge quantifies

the extent and scaling of the parameter trade-off (Materials and methods and for example

Figure 2D in Brunton et al. (2013)).

Simultaneously fitting all parameters of the enhanced 11-parameter model to data from sessions

with unilateral muscimol inactivation of the anterior dorsal striatum revealed that two parameters dif-

fered enough from their control values to produce substantial changes in behavior

(Supplementary file 2). First, the side bias in the lapse rates (the contralateral lapse rate parameter

kC and the ipsilateral lapse rate parameter kI, which are unitless parameters in terms of fraction of

trials; Materials and methods) significantly increased in favor of ipsilateral choices (kI: from 0.29, 95%

C.I. = [0.18 0.43] in control sessions to 0.00, 95% C.I. = [0.00 0.14] for inactivation sessions, kC: from

0.20, 95% C.I. = [0.04 0.58] in control sessions to 0.60, 95% C.I. = [0.14 0.93] for inactivation ses-

sions). An effect on lapse rates was also seen after unilateral FOF inactivations, where it was inter-

preted as an effect on processes subsequent to the accumulator, and not part of it (Erlich et al.,

2015). Second, the magnitude of the accumulator and sensory noise parameters, which respectively

describe diffusion noise intrinsic to the accumulator and noise associated with the addition of each

sensory click, also increased significantly (Figure 2a,b and Figure 2—figure supplement 1). The

trade-off between these parameters (Brunton et al., 2013) was large enough that it was impossible

to distinguish which of the accumulator noise s2
a or the ipsilateral and contraletral sensory noise

parameters s2
s,I and s2

s,C was responsible for the increase. We note that we do not mean to imply

that the combination of sensory and accumulator noise is a single, biologically interpretable quantity,

but simply that our data cannot distinguish between the different trade-offs between

these parameters that fit the data equally well. There was a suggestion that the intrinsic accumulator

noise s2
a specifically increased, with this parameter being significantly greater than zero during inac-

tivation trials whereas it was not distinguishable from zero in control trials (Figure 2b and Figure 2—
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Figure 2. Fits of the model of Brunton et al. (2013) and Erlich et al. (2015) to data from sessions following muscimol inactivation of the striatum. (a)

Psychometric curves for control and unilateral inactivation data. Left and right inactivations were collapsed together. Orange data points are from

sessions following unilateral infusions of muscimol. The black and orange lines are the psychometric curves predicted from the model fit to the control

and inactivation data, respectively. (b) Normalized likelihood of the data given the model, shown as a function of the parameters for which best-fit

values for inactivation data were significantly different from best-fit values for control data. Magenta shows the best-fit values for control datas.

The black cross shows the best-fit values for inactivation data. The color scale indicates the percentage of probability mass; the region of probability

mass >95 indicates the 95% confidence region. Left: sensory noise for the side contralateral to the infusion versus accumulator noise. Although there is

a trade-off between accumulator and sensory noise, the weighted sum of the accumulator and biased sensory noise has a best-fit value following

unilateral inactivations that is significantly greater than its control best-fit value. Middle: leak/instability parameter versus accumulator noise. Right:

summed sensory plus accumulator noise versus lapse rate, which shows that in fact the lapse rate kC does not trade off with the summed noise. (c,d) As

in panels (a,b) but for bilateral striatum inactivation data, and for a model where the sensory noise is constrained to be the same for both sides of the

brain, so there is only one sensory noise parameter. Here the tradeoff between sensory noise and accumulator noise is large enough that we cannot

distinguish whether one or both are significantly different from their control values, but there is nevertheless a significant increase in their sum.

DOI: https://doi.org/10.7554/eLife.34929.005

The following figure supplements are available for figure 2:

Figure supplement 1. Confidence regions with unbounded parameter optimization.

DOI: https://doi.org/10.7554/eLife.34929.006

Figure supplement 2. Fitting all parameters simultaneously for unilateral FOF inactivation data confirms the conclusions found by fitting only two

parameters at a time.

DOI: https://doi.org/10.7554/eLife.34929.007

Figure supplement 3. Psychometric curves of data and simulation data for which sensory and accumulator noise parameters are set to zero.

DOI: https://doi.org/10.7554/eLife.34929.008

Figure supplement 4. Psychometric curves of data and simulation data for which the bias parameters are adjusted to control best-fit parameter values

in the 11-parameter model.

DOI: https://doi.org/10.7554/eLife.34929.009

Yartsev et al. eLife 2018;7:e34929. DOI: https://doi.org/10.7554/eLife.34929 6 of 24

Research article Neuroscience

https://doi.org/10.7554/eLife.34929.005
https://doi.org/10.7554/eLife.34929.006
https://doi.org/10.7554/eLife.34929.007
https://doi.org/10.7554/eLife.34929.008
https://doi.org/10.7554/eLife.34929.009
https://doi.org/10.7554/eLife.34929


figure supplement 1), but the difference between control and inactivation s2
a values was not signifi-

cant (p<0.15). Lapse rate and noise parameters described distinct effects, and did not trade off with

each other (Figure 2—figure supplement 1a, third row, middle column).

For data from bilateral inactivation sessions, the combination of sensory and accumulator noise

parameters was again significantly greater than for control sessions (Figure 2c,d; w1s
2
a + w2s

2
s:

from 31.64 clicks2/sec [95% C.I. = [17.40 55.84]] in control sessions to 117.00 clicks2/sec [95% C.I. =

[71.12 156.53]] , where w1 = 0.92, w2 = 0.39 during inactivations. We note that noise magnitudes

cannot be less than zero, implying that confidence intervals for both s2
a and s2

s are bounded by

zero).

These fits contrast with those following FOF inactivation (Erlich et al., 2015). In particular, we

note that the sensory and accumulator noise parameters were minimally altered after FOF inactiva-

tion, whereas ADS inactivation significantly impacted them.

This pharmacological demonstration that the striatum is required for unimpaired decisions

that are based on the accumulation of evidence, and the model-based suggestion that the striatum

affects properties of the accumulator, led us to explore the detailed neural dynamics that may sup-

port its potential causal contribution. To do so, we conducted single-unit recordings from freely

behaving subjects engaged in the evidence accumulation task. Consistent with previous work (Gray-

biel, 2008; Jin and Costa, 2010; Kravitz and Kreitzer, 2012), we found that the neural activity of

many striatal neurons was modulated by movement initiation (Figure 3—figure supplement 1a–c).

However, we also found that over a third of the recorded neurons significantly modulate their activ-

ity in a side-selective manner (p<0.05) during the fixation period many hundreds of milliseconds

before the movement initiation reporting the decision (64/173 [37%] of the neurons active during

the fixation period [Figure 3—figure supplement 1d–f]). This timing suggests that they may have a

role in forming the upcoming decision (go-left or go-right). These neurons were termed as ‘side-

selective’ and for each we further defined the neuron’s prefered side as that yielding the largest acti-

vation, as done previously by Hanks et al. (2015). Consistent with previous work in primate dorsal

striatum (Ding and Gold, 2010), we found that the average responses of these rat striatum neurons

ramped upwards for stimuli in the preferred direction (Figure 3), and moreover, that after an initial

onset latency, the slope of the ramp was proportional to the stimulus strength (Figure 3; Figure 4a).

Importantly, however, a gradual ramping profile is not conclusive evidence for the encoding of grad-

ually accumulating evidence, because such a response profile can also be consistent with other

Figure 3. Peri-stimulus time histograms (PSTHs) of example neurons. PSTHs aligned to stimulus onset are shown for three example striatum neurons.

Trials were sorted into four stimulus-strength bins for each neuron. Green traces correspond to the preferred-direction stimuli and red traces to anti-

preferred-direction stimuli. Darker colors correspond to stronger stimuli (less difficult) and brighter colors correspond to weaker stimuli (more difficult).

DOI: https://doi.org/10.7554/eLife.34929.010

The following figure supplement is available for figure 3:

Figure supplement 1. Firing rate modulation of striatal neurons.

DOI: https://doi.org/10.7554/eLife.34929.011
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Figure 4. Graded representation of accumulated evidence in the dorsal striatum. (a) Responses of pre-movement

side-selective striatal neurons during evidence accumulation (mean ± S.E.M.). Trials are grouped by the average

strength of sensory evidence with greener and redder colors corresponding to stimuli in the preferred and non-

preferred direction of the neurons, respectively. Each group of trials is sorted on the basis of the difficulty of the

trials from easy to hard, corresponding to darker and lighter colors, respectively. Note the significant dependence

of ramping responses on stimulus strength (n = 64 neurons from three rats). (b) Click-triggered average response ±

S.E.M. Note the close correspondence of the average click-triggered population response to a theoretical

prediction of a fixed-magnitude and sustained increase in the neurons’ firing rate (see Materials and methods). (c)

Firing of striatal neurons aligned to trial onset minus the neural response lag (150 ms; see Materials and methods)

grouped on the basis of model-derived accumulator value (colors with ± B correspond to sticky accumulation

bounds). Note that this accumulator value to firing rate map is graded and fairly stable over time (n = 64 neurons).

(d) The population change in firing rate as a function of accumulator value averaged across time exhibits a graded

response.

DOI: https://doi.org/10.7554/eLife.34929.012

The following figure supplement is available for figure 4:

Figure supplement 1. Computing tuning curves that describe the relationship between neural activity and

accumulated evidence.

DOI: https://doi.org/10.7554/eLife.34929.013

Yartsev et al. eLife 2018;7:e34929. DOI: https://doi.org/10.7554/eLife.34929 8 of 24

Research article Neuroscience

https://doi.org/10.7554/eLife.34929.012
https://doi.org/10.7554/eLife.34929.013
https://doi.org/10.7554/eLife.34929


encoding schemes (Ditterich, 2006; Hanks et al., 2015; Latimer et al., 2015) such as step changes

in firing rate that occur at different times in different trials (Latimer et al., 2015). Thus, we extended

our analysis to include a more direct test in which the influence of single quanta of sensory evidence

on the responses of the cells is quantitatively assessed.

If indeed temporal integration underlies the ramping activity of the striatal cells, then each single

quantum of sensory evidence (an auditory click) should result in a fixed-magnitude and a sustained

increase in the neuron’s firing rate (Figure 4b, model) (Hanks et al., 2015; Huk and Shadlen, 2005).

We thus estimated the effect of each sensory evidence quantum by computing the click-triggered

average response of the side-selective striatal neurons. We found that striatal neurons modulated

their activity in close agreement with this theoretical prediction (Figure 4b, data), arguing in favor of

a role of this anterior striatal subregion in the behavioral accumulation of evidence process.

We also took advantage of a recently developed method, i.e., direct estimates of firing rates as a

function of accumulated evidence, to compute neural tuning curves (Hanks et al., 2015). Model-

derived estimates of the moment-by-moment value of the accumulating evidence in each trial are

collated with simultaneously recorded firing rates to generate tuning curves for accumulated evi-

dence (see Hanks et al. (2015)), Materials and methods, and the illustration of the method in Fig-

ure 4—figure supplement 1). When applying this analysis to the striatal data, we found that the

side-selective neurons encoded accumulating evidence in a remarkably graded manner throughout

the period of evidence accumulation (Figure 4c,d). This graded encoding was consistent across dif-

ferent neurons in the population of recorded striatal cells (Figure 5). Such a graded representation

implies that the striatum carries information about the graded value of accumulated evidence, as

would be necessary for a brain structure involved in such a process.

Our pharmacological methods address the questions of whether the anterior dorsal striatum is

involved in the process of accumulation of evidence, and our electrophysiological and computational

methods address how the anterior dorsal striatum represents the accumulation of sensory evidence.

However, neither directly addresses the question of when the anterior dorsal striatum is involved.

This question is critical and has proven to be pivotal in assessing the involvement of a brain region in

the evidence accumulation process. For example, some brain regions can be required for

Figure 5. Distribution of tuning curve slopes for individual striatal neurons. (a) Histogram of the slope of individual neurons obtained from a sigmoidal

fit of the relationship between firing rate and accumulator value. The black arrow indicates the median value of the distribution (50th percentile). Red

and blue arrows indicate points corresponding to the 20th and 80th percentile marks, respectively. (b) Example tuning curves shown for 20th, 50th, and

80th (colored as in [a]) percentile neurons. Graded encodings of accumulated evidence are exhibited for all of these neurons.

DOI: https://doi.org/10.7554/eLife.34929.014
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decisions that are based on accumulation of evidence, yet contribute at times suggesting that they

are instead required for processes that are subsequent to the gradual accumulation of evidence

itself (Erlich et al., 2015; Hanks et al., 2015). No region to date has been reported to be required

at points of time that fully coincide with the evidence accumulation period.

To delineate the precise timing of the anterior dorsal striatum’s contribution, we used optoge-

netic inactivation, mediated by halorhodopsin (eNpHR3.0), to unilaterally and transiently inactivate

this region during the Poisson Clicks task. We expressed eNpHR3.0 using viral delivery methods

(Figure 6a; Materials and methods). Acute neural recordings in our experimental rats verified that

we could indeed transiently silence neural activity in the striatum with fine temporal precision using

the delivery of green light (Figure 6b). We began with full-trial unilateral optogenetic inactivation

and found, in agreement with the pharmacological inactivation described above, that optogenetic

manipulation resulted in more ipsilateral choice biases relative to control trials, which in this case

were randomly interleaved with the inactivation trials (Figure 6c; bias = 9.0 ± 2.3%, p<0.01). These

effects were consistent across rats (Figure 6d). Control rats whose striatum was injected with the

same virus expressing YFP alone did not show a behavioral bias (bias = 0.1 ± 1.8%, p=0.89). Next, to

resolve directly when the striatum contributes to the auditory accumulation of evidence task, we

transiently inactivated it unilaterally during one of four different 500 ms time periods during the task:

(i) the delay period immediately preceding stimulus onset (‘pre-accumulation’), (ii) the first half of a 1

s sensory stimulus (‘first half’), (iii) the second half of a 1 s sensory stimulus (‘second half’), or (iv) the

movement period (‘post-choice’). In contrast to similar inactivation assays of the cortical FOF, which

have no effect during the early parts of the accumulation period (Hanks et al., 2015), we found that

transient optogenetic inactivation of the anterior dorsal striatum during both the first half and sec-

ond half of the accumulation caused a significant bias for the ipsilateral choices, with a similar magni-

tude of effect in these two periods (first half bias = 10.4 ± 4.0, p<0.01; second half bias = 12.9

± 3.7%, p<0.01; difference = 2.5 ± 2.8, p=0.2; Figure 6e; the first-half effect in the striatum is signifi-

cantly greater than that in the FOF, p<0.01, Figure 7). Remarkably, the effect in striatum was limited

to the stimulus presentation period and we found no significant effect of optogenetic inactivation

during the pre-accumulation or post-choice periods (pre-accumulation bias = 0.4 ± 5.4%, p=0.42;

post-choice bias = 0.9 ± 5.2%, p=0.38; Figure 6e). These results are consistent with the idea that

the anterior dorsal striatum plays a direct causal role throughout the entire evidence accumulation

process.

Discussion
Studies carried out over more than two decades have attempted to elucidate neural circuits that

underlie the accumulation of evidence over time (starting with Shadlen and Newsome (1996); see

Gold and Shadlen (2007), Carandini and Churchland (2013), Brody and Hanks

(2016), and Hanks and Summerfield (2017) for reviews; see also Carandini and Churchland

(2013), Gold and Shadlen (2007), Krajbich et al. (2012), Shadlen and Newsome (1996). Ding and

colleagues have shown that microstimulation of the ADS perturbs decisions based on

the accumulation of evidence (Ding and Gold, 2010, 2012a; Ding, 2015; but see Histed et al.,

2009 and Tehovnik and Slocum, 2013) for discussion as to whether or not microstimulation primar-

ily affects axon terminals, which would add complications for its interpretation when localizing neural

function). Despite these many years of studies, no brain region has previously been identified as:

first, being required for unimpaired accumulation-based decision-making behavior; second, having

the graded neural encoding required for direct involvement in computing the graded, gradually

evolving, value of the accumulating evidence; and third, making a causal contribution throughout

times that fully coincide with the accumulation process. By demonstrating that the anterior dorsal

striatum satisfies all three of these criteria, our work suggests that the anterior dorsal striatum is the

first identifiable node in the neural circuit causally responsible for computing evidence accumulation.

The anterior dorsal striatum is well positioned anatomically to participate in evidence accumulation

as it receives diverse convergent anatomical input from multiple cortical areas (Cheatwood et al.,

2003; McGeorge and Faull, 1989) and it is connected via recurrent loops with cortical and subcorti-

cal areas that are widely believed to play a role in action selection (Ding and Gold, 2013). Whether

the anterior dorsal striatum possesses a unique role in evidence accumulation, or whether it is an

important node of a more extended network of brain regions that operate in coordination to
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Figure 6. Optogenetic inactivation reveals that dorsal striatal activity causally contributes to decision formation

throughout the accumulation process but not before nor after. (a) Coronal section of the left hemisphere showing

the expression of eYFP-eNpHR3.0 in the left dorsal striatum. Optical fiber localization and 750 mm estimated

inactivation radius are indicated by the red circle. (b) Raster plot (bottom) and peri-stimulus time histogram (top)

Figure 6 continued on next page
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mediate evidence accumulation, remains to be resolved. Corticostriatal loops are organized as dis-

tinct parallel circuits (Alexander et al., 1986; Kim and Hikosaka, 2015); future studies dissecting

the contribution of different loops will be important for resolving this major question.

Our results, together with those of Ding and colleagues (Ding and Gold, 2010; Ding and Gold,

2012a; Ding, 2015), suggest that the striatum may be directly involved in a more expansive set of

computations, traditionally considered to be more cognitive in nature, than the already well-estab-

lished functions of the dorsal striatum in action selection, response initiation, evaluation of reward

uncertainty, and habit formation (Ding and Gold, 2010; Graybiel, 2008; Hikosaka et al., 2014;

Jin and Costa, 2010; Kravitz and Kreitzer, 2012). It will be important to better understand how

the striatal involvement in computing accumulation of evidence, as identified in this study, may con-

tribute to those previously established functions.

Extensions to our paradigm (for example, free

response protocols or more extended trial dura-

tions) are likely to be useful for reconciling the

functions indciated by results with the other func-

tions of the striatum. The computations involved

in evidence accumulation may perhaps provide

an efficient mechanism for extracting important

pieces of information from the environment in

the service of other roles of the striatum.

By identifying model parameters affected by

the inactivations, our model fits suggest specific

aspects of the evidence accumulation computa-

tion that could be prioritized as potentially partic-

ularly strongly related to the ADS’s role in the

computation. The model fits to unilateral pharma-

cological inactivation data found that, similar to

unilateral inactivations of the FOF, the side bias

in lapse rates was increased by the inactivations.

But in contrast to what occurs in the FOF, noise

parameters, including the accumulator’s intrinsic

noise, were also substantially increased after

striatal inactivation (Figure 2a,b). Model fits to

bilateral anterior dorsal striatum inactivation data

found that the sum of sensory and accumulator

noise magnitude parameters was significantly

increased by striatal inactivation (Figure 2c,d). A

parsimonious account suggests that the main

noise parameter that is affected may perhaps be

the magnitude of the noise in the evidence accu-

mulator. This would be consistent with the idea,

supported by our electrophysiological and opto-

genetic data, that the striatum plays a role in the

Figure 6 continued

showing the effectiveness in silencing of local striatal activity in response to delivery of green light (indicated by

the green bar at the top). (c) Unilateral full-trial optical inactivation of the striatum results in an ipsilateral bias in

accumulation trials. The purple and cyan psychometric curves show data for right and left striatal inactivation,

respectively, whereas the black psychometric curve shows data from control trials that occurred on the same days

(n = 8 rats). (d) Scatter plot indicated the mean ipsilateral bias for each individual rat. (e) Bottom: behavioral bias

caused by 500 ms inactivation during the pre-stimulus delay period (red), the first half of the sensory stimulus

(yellow), the second half of the stimulus (green) and upon initiation of movement (blue). Top: task structure. Note

the significant effect (indicated by an asterisk) only during evidence accumulation but not prior to the presentation

of sensory stimuli nor after.

DOI: https://doi.org/10.7554/eLife.34929.015

Figure 7. Comparison of early stimulus period

optogenetic inactivation effects in the striatum and

frontal orienting field (FOF). Optogenetic inactivation

of the anterior dorsal striatum during the first half of

the 1 s stimulus presentation period produced a

significantly larger effect than the same manipulation of

the FOF (p<0.01), with the latter data coming from a

previous report. For this analysis, individual trials were

resampled with replacement from both data sets

across 1000 iterations, and the difference in inactivation

effect was calculated for each iteration to provide a

nonparametric statistical comparison. As reported

above, the first-half anterior dorsal striatum effect itself

is significant, and as reported previously, the first-half

FOF effect is not significant, but a direct comparison as

described here is still necessary to establish a

significant difference.

DOI: https://doi.org/10.7554/eLife.34929.016
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accumulation process. The lack of a significant effect on other parameters should be treated with

caution: it remains possible that future studies with greater statistical power could discern an effect

of striatal inactivation on some of these other parameters. Nevertheless, even while we emphasize

that we do not take the modeling results on their own as conclusive, they do suggest

that accumulator noise is a principal parameter of interest. It is conceivable that bilateral striatal inac-

tivation increases accumulator noise by destabilizing the accumulator’s representation without bias-

ing it, but a circuit model hypothesis to explain precisely how the striatum might affect the

accumulator noise level remains to be developed. Another important direction for future studies will

be the development of models with temporally specific parameters that could be used to model the

effects of temporally specific optogenetic inactivation appropriately.

Independently of whether the anterior dorsal striatum operates alone or as part of a broader cir-

cuit for computing gradual evidence accumulation, and independently of the precise nature of its

contribution to the evidence accumulation computation, the data reported here provide a critical

foothold towards delineating the relevant causal circuit: for example, the anterior dorsal striatum’s

major inputs and outputs become important candidate regions to be examined for a potential role

in the process. The possibility that the causal circuit for computing evidence accumulation may be

delineated in the near future suggests that we will soon be able to elucidate the circuit and cellular

mechanisms that support evidence accumulation, a computation that is crucial for decision-making

behavior in a wide range of species, including humans.

Materials and methods

Subjects and housing
All animal procedures described in this study were approved by the Princeton University Institutional

Animal Care and Use Committee and were carried out in accordance with National Institutes of

Health standards. All subjects were adult male Long-Evans rats (Taconic, NY) that were pair housed

in Technoplast cages and were kept in a 12 hr reversed light-dark cycle. All training and testing pro-

cedures were conducted during the dark cycle. Rats had free access to food but had restricted water

access. The amount of water that the rats could obtain daily was limited to 1 hr per day of free water

(starting 30 min following the end of training), in addition to what they could earn during training.

Behavior
Rats were trained seven days a week at similar times each day for a period of about 110 min daily.

The training took place in custom-made training boxes (Island Motion, NY) placed inside sound- and

light-attenuated chambers (H10-25A, Coulbourn Instruments, PA). Each box consisted of three

straight walls and one curved wall in which three nose ports were embedded (one in the center and

one on each side, Figure 1a). Each nose port also contained one light-emitting diode (LED) that was

used to deliver visual stimuli, and the front of the nose port was equipped with an infrared (IR) beam

to detect the entrance of the rat’s nose into the port. A speaker was mounted above each of the

side ports and was used to present auditory stimuli. Each of the side ports also contained a sipper

tube that was used for water reward delivery, with the amount of water controlled by valve opening

time.

All rats were trained using a semi-automated training protocol on a previously developed accu-

mulation of evidence task (Brunton et al., 2013). Training and testing procedures were similar to

those described previously (Erlich et al., 2015; Hanks et al., 2015). In brief, at the start of each trial,

rats were instructed to place their nose in the central port and to maintain nose fixation in response

to LED illumination of that port. Subsequently, after a delay of at least 200 ms, rats were presented

with a two trains of auditory clicks presented simultaneously, one from the left and one from the

right speaker. For neurophysioloigcal recordings and pharmacological (muscimol) inactivation experi-

ments, the click train duration varied between 0.1 to 1.2 s. For optogenetic experiments, the stimu-

lus duration was fixed at 1 s for all trials. The train of clicks from each speaker was generated by an

underlying Poisson process, with different mean rates for each side. The combined mean click rate

was fixed at 40 Hz, and trial difficulty was manipulated by varying the click rate ratio between the

two sides. The mean click rate ratio varied from 39:1 clicks/s (easiest) to 26:14 (most difficult). Upon

completion of stimulus presentation, the central LED was turned off and rats had to orient towards
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the side that played more clicks and nose poke into the corresponding port to obtain water reward

of 24 mL.

Behavioral model
To quantify the animals’ behavior and the effect of infusions, we used the behavioral model of

Brunton et al. (2013) and Erlich et al. (2015)), who described it in detail. As in previous work

(Erlich et al., 2015), to obtain a sufficient number of perturbation trials for the model-based analysis,

we combined data across rats and assessed the effects and their statistical significance on this

‘meta-rat’ data. In Supplementary file 1, we also present the result of fits to each individual rat,

which are in general consistent with the meta-rat conclusions. We present an abbreviated descrip-

tion here. The model converts each trial’s incoming stream of discrete left and right clicks into an

accumulating evidence quantity a(t) that determines choice behavior. Parameters that govern how a

(t) evolves are fitted on the basis of the rat’s behavior, with the choices made in individual trials con-

straining the possible trajectories of a(t). Thus, in each trial, the model estimates the evolution of a

noise-induced probability distribution over values of the accumulating evidence a(t). To evaluate

how well a particular set of parameter values u fits the behavioral data, we computed the probability

of observing the data given the model. Let ti,R and ti,L represent the right and left click times on trial

i, let D represent the subject’s decision in trial i, and let D present the full set of the subject’s deci-

sions across all trials. Assuming that trials are independent, we may compute the likelihood of the

model:

P Dj�ð Þ ¼
Y

i

P dijti;R; ti;L; �
� �

The best-fit parameter values (also known as the maximum likelihood values) are the parameters

that maximize the likelihood.

Dynamics of a(t) in each trial
We discretize both time t and space a, and for each trial, start with the distribution at time t = 0,

which we set to be a delta function at a = 0. We then compute the probability distribution for the

next time step given the probability distribution for the previous timestep, and iterate through time-

steps until t = T, where T is stimulus duration. At each time point, the accumulator memory a(t) rep-

resents an estimate of the right versus left evidence accrued so far. At stimulus end, the model

decides right if a > þ and left otherwise, where þ is a free parameter. Right (left) pulses change the

value of a by positive (negative) impulses of magnitude C. sa
2 is a diffusion constant, parameterizing

noise in a. ss
2 parameterizes noise when adding the evidence from a right or left pulse: For each

click, variance ss
2 is scaled by the amplitude of C and then added to the evidence contributed by

the click. l parameterizes consistent drift in the memory a. In the ‘leaky’ or forgetful case (l <0), drift

is toward a = 0, and later pulses affect the decision more than earlier pulses. In the ‘unstable’ or

impulsive case (l >0), drift is away from a = 0, and earlier pulses affect the decision more than later

pulses. The memory’s time constant t = 1/l. B is the height of the sticky decision bounds and param-

eterizes the amount of evidence necessary to commit to a decision. f and tf parameterize sensory

adaptation by defining the dynamics of C. Immediately after a click, the magnitude C is multiplied

by f. C then recovers toward an unadapted value of 1 with time constant tf. Facilitation is thus rep-

resented by f >1, whereas depression is represented by f <1.

These properties are implemented by the following equations:

if |a| � B then da
dt
¼ 0; else

da¼ sadW þðdt;tR �hR �C� d�t; tL �hL �CÞdtþladt

where dt;tR;Lare delta functions at the times of the pulses; h are Gaussian variables drawn

from N 1;ssð Þ; and dW is a white-noise Wiener process. The initial condition a(t = 0) is 0.

Adaptation dynamics are given by:

dC

dt
¼
1�C

tf
þ f� 1ð ÞC dt;tR þ dt;tL

� �
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In addition, a lapse rate k parameterizes the fraction of trials in which a random response is

made. Ideal performance (a = #right clicks � #left clicks) would be achieved by:

s2

a ¼ 0; s2

s ¼ 0; f=0, þ = 0, k = 0

A list of this model’s parameters is thus:

l – quantifies leakiness (drift toward a = 0) or instability (drift away from a = 0) in the memory of
the accumulated evidence. l is equivalent to 1/t, where t is the time constant of the accumula-
tor’s memory.
sa

2– a diffusion constant (‘accumulator noise’), quantifies random noise in the accumulator’s
memory that is independent of the sensory stimuli.
ss

2 – ‘sensory noise’, quantifies noise introduced into the accumulator with each sensory stimulus
pulse.
B – a ‘sticky commitment bound’ (Ratcliff and McKoon, 2008), interpreted as the magnitude
|a| at which the subject would make and commit to a decision.
f – the sensory adaptation parameter, quantifying whether successive clicks depress (f <1) or
facilitate (f >1).
tf– the time constant of recovery from adaptation.
þ - ‘accumulator threshold bias’, quantifies whether the final value of a(t) has a tendency to be
classified as ‘go right’ (þ <0) or ‘go left’ (þ >0).
k - the ‘lapse rate’, or fraction of trials in which the subject ignores the stimulus and randomly
chooses right or left.

Complexity of the model
Each term in the model describes a distinct effect (Brunton et al., 2013), and is statistically signifi-

cant, with the exception of one parameter, B, which is not needed here: it is not affected by ADS

perturbations, and confidence intervals for B include B = infinity for all rats in all experiments (see

Supplementary file 1). B = infinity corresponds to not having that parameter at all.

In addition, we have used the Bayesian Information Criterion (BIC) (Nagin, 1999), which takes

into account and penalizes model complexity, to assess whether any parameter could be eliminated

from the model (see Supplementary files 6 and 7). The only parameter that can be eliminated

across all conditions is once again the parameter B.

Thus, except for the accumulator bounds parameter B, which we keep for consistency with other

papers, both BIC and confidence intervals indicate that we should keep all parameters. We have

nevertheless chosen to also keep B, rather than to eliminate it from the study, so as to document

that although striatum perturbations could, in principle, have affected B, in fact they did not.

Model-fitting
We used the procedures detailed in Brunton et al. (2013) and Erlich et al. (2015), except that in

this work we used an algorithmic differentiation package, the ForwardDiff package in the language

Julia (Revels et al., 2016), to obtain the derivative with respect to all model

parameters automatically. We have published the model-fitting code in open source form (https://

github.com/misun6312/PBupsModel.jl).

In brief, the model equations described above also determine how a probability distribution of

values of a evolves over time. We do not use Monte Carlo simulations to approximate the probabil-

ity distribution, but instead, for each trial given its individual click times, we simulate the time-evolu-

tion of this probability distribution directly. The probability distribution of a at the end of the trial

tend then defines the probability of going Right: P(a,tend) � þ , and the probability of going Left:

P(a,tend) < þ . Thus, given the model parameters, we can obtain the probability in each trial of

observing the choice that the subject made. As described above, assuming that different trials are

independent of each other, the probability of seeing the subject’s full data set is the product of all

the trial probabilities. This net probability is what we refer to as the likelihood, and we optimize

parameter values to find the highest likelihood. Under a ‘flat prior’ assumption, that is, when we

make no prior assumptions about parameter values, the likelihood can then be normalized to corre-

spond to the probability of seeing certain parameter values given the data, and is used to determine

confidence regions for the parameters.

Each model fit was run 10 times, starting from different parameter value seeds. Consistent with

previous similar fits (see Supplementary Fig. S6 in Brunton et al. (2013)), all fits ended within the
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final confidence region. Of the ten fits, the one with the highest log likelihood (and a positive semi-

definite Hessian) was chosen as the one that defined the best-fit parameter values and the confi-

dence region around them.

Trade-offs between different model parameters
Trade-offs between parameters are quantified by ridges of high likelihood in the likelihood land-

scapes (see Figure 2 in Brunton et al. (2013) and Figure 2 in the main text). The orientation of the

ridge quantifies the parameter-to-parameter scaling that best trades parameters off against each

other; and the extent of the ridge quantifies the range of the trade-off for which model fits are

almost as good as the maximum likelihood fit. Such ridges can be examined by plotting the likeli-

hood of the data as a function of pairs of model parameters (as in Figure 2). But a full description of

the trade-offs across all N parameters involves describing the shape of the N-dimensional maximum

likelihood peak. Given sufficient numbers of trials, this peak is well-approximated by an N-dimen-

sional Gaussian (MacKay, 2003); the covariance matrix C of this Gaussian (corresponding to the

inverse of the Hessian of the log likelihood, which we compute not numerically but with algorithmic

differentiation, which is much more precise) is then the second-order approximation that describes

the shape of the maximum likelihood peak (MacKay 2003). We focus on the eigenvector of C with

the largest eigenvalue; this eigenvector describes the orientation of the major ridge. Its correspond-

ing eigenvalue quantifies the variance along this ridge, and thus describes the extent of the trade-

off region.

Unbounded parameter optimization
Some of the model parameters have natural range constraints on their ranges; for example, noise

magnitudes are bounded by zero since the variance cannot be less than zero. However, optimization

procedures, as well as the Gaussian approximation that describes the shape of the likelihood land-

scape around its optimum, are simpler in unbounded spaces. Consequently, for each bounded

parameter a, we defined a bounded monotonic nonlinear function f such that q = f(a’) remained

within the desired bounds even when a’ was unbounded. We carried out the optimization using the

unbounded a’ parameter (which we refer to as ‘infinite space’ since a’ has infinite range), and com-

puted confidence intervals in the infinite space. We then used the f function to compute the corre-

sponding optimal value of a and confidence intervals for a. (See, for example, Figure 2—figure

supplement 1). When the optimal value of a parameter sits at the boundary of the range, the true

optimal point can exist outside the boundary. This could have an impact on other parameters that

are interacting with the parameter. Also, it may cause the Hessian matrix at the optimal point to be

not positive semidefinite. To resolve this issue, we used the tanh function to convert the parameters

to the unbounded domain and then we run optimization in unbounded space. After we find

the optimal point, the parameters were transformed to the original coordinates. With this

unbounded minimization method, we could obtain the positive semidefinite Hessian matrix, which

has all nonnegative eigenvalues.

Four model parameters to quantify sources of a lateralized bias
The original model (Brunton et al., 2013) had only a single parameter that could describe a right

versus left choice bias, the decision borderline Þ. By adding three more parameters that could cause

different types of side biases, fitting the extended model to behavioral data following a unilateral

inactivation, and asking which parameters are most affected relative to control trials, we can esti-

mate which particular aspect of the behavior was impacted by the inactivation. Erlich et al. (2015)

fit each of these parameters individually. Here, using algorithmic differentiation, we fit all 11 parame-

ters simultaneously. In all, the four different sources of a lateralized choice bias that we considered

were:

Accumulator threshold bias (þ)
The accumulator is categorized into ‘Go Left’ vs ‘Go Right’ decisions by comparing the accumula-

tor’s value to þ. In the behavioral model, this is implemented by setting the decision borderline to Þ.

At stimulus end, the model decides right if a > þ and left otherwise, where þ is a free parameter. It
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quantifies whether the final value of a(t) has a tendency to be classified as ‘go right’ (þ <0) or ‘go

left’ (þ >0).

Post-categorization bias (kC – kI)
When performing unilateral inactivation, the choice directions can be mapped as ‘contralateral’ or

‘ipsilateral’ with respect to the side of inactivation. Contralateral lapse rate is a fraction of the trials

categorized as choices contralateral to the inactivated side of the brain, and converts them into ipsi-

lateral choices. And ipsilateral lapse rate is the fraction of the trials categorized as choices ipsilateral

to the inactivated side of the brain, and converts them into contralateral choices. The scaling is

biased when kC 6¼ kI. So, we re-parametrize lapse rate parameters for each side as a total lapse

(kC + kI) and a biased lapse (kC – kI).

Input gain bias (gw)
This can be thought of as a form of sensory neglect: Left and Right clicks have different impact mag-

nitudes on the value of the accumulator. 0.5 is the balanced point, where left and right clicks have

same impact magnitudes. If the value of input gain weight is lower than 0.5, then ipsilateral clicks

have a stronger impact, and decision will consequently be biased to the ipsilateral side. The closer

the value to 0, the stronger the impact of ipsilateral clicks. Whereas, the closer the value to 1,

the stronger the impact of contralateral clicks.

The magnitude of the input C is given by:

C ¼ 2 � gw � Ci � 2 � 1� gwð Þ � Cc, where gw is the input gain bias, Ci is the sum of ipsilateral clicks

and Cc is the sum of contralateral clicks.

Biased sensory noise (separate ss,L
2 and ss,R

2)
By differentially affecting signal-to-noise ratios from the two sides, biased sensory noise can be

thought of as a form of sensory neglect distinct from input gain bias: Left and Right clicks have dif-

ferent magnitudes of noise in their impact. The biased sensory noise was implemented by allowing

the contralateral noise variance to be a free parameter, fit to the behavioral data from unilateral

inactivation trials.

Surgery
The experiments described in this manuscript focus on the anterior dorsal striatum of the rat at ste-

reotaxic coordinates of 1.9 mm anterior and 2.4 mm lateral, relative to bregma. Each rat received

one of three surgical procedures that have all been described in detail elsewhere for different brain

areas but were identical in all other respects. These were: (i) implantation of a tetrode-based micro-

drive consisting of eight tetrodes (three rats, left striatum) (Erlich et al., 2011, 2015; Hanks et al.,

2015), (ii) cannulas for pharmacological inactivation (four rats, bilateral) (Erlich et al., 2011;

Hanks et al., 2015) and (iii) chemically etched optical fibers coupled with viral

injection (Hanks et al., 2015) (13 rats; six left striatum and seven right striatum). The injected virus

consisted of 2–3 mL of AAV virus (either AAV5-CaMKIIa-eYFP-eNpHR3.0 or AAV5-hSyn-eYFP-

eNpHR3.0 or a mixture of both at a ratio of 1:2, respectively). Two of the three rats that were used

for electrophysiological recordings and received a tetrode implant targeting the anterior dorsal stria-

tum were further injected with AAV5-CaMKIIa-eYFP-ChR2 and were implanted with two optical

fibers and an additional tetrode-based microdrive targeting the rat SNr, GPe and superior colliculus,

respectively. These data are not discussed in the present manuscript. The infusion cannulas were

implanted at an angle of 15o lateral to minimize any potential backflow of muscimol to the frontal

orienting fields (FOF), which have recently been demonstrated to be necessary for maximal perfor-

mance on this task (Erlich et al., 2015). Accurate placement of all implants and viral injection target-

ing was verified histologically.

Infusions
Infusion procedures follow methods described in detail previously (Erlich et al., 2015). Briefly, infu-

sions were generally performed during normal training sessions, were usually at least one week

apart, and were never on consecutive days. Control sessions took place on the day prior to the infu-

sion session. On the day of infusion, rats were lightly anesthetized with 2% isoflurane and anesthesia

was sustained via continuous delivery of isoflurane using a nose cone. Using a Hamilton syringe that
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was attached via tubing to the injector, we delivered 0.5 mL of muscimol at a concentration of 0.125

mg/mL to either the left or right side of the anteriodorsal part of the rat striatum during unilateral

infusion sessions and to both sides during bilateral infusion sessions (Figure 1b and c, respectively).

After delivery, the injector was left inside the brain for a minimum period of 5 min to allow adequate

diffusion before removal and also to minimize backflow along the cannula tract. Subsequently, the

injector was removed, the cannula was closed, and the rat was removed from isoflurane

anesthesia and placed back into its home cage. We allowed 30 min of recovery from anesthesia

before placing the rat into the behavioral box. The task performed by the rats during infusion and

control sessions was identical to that described above with the exception that on ~10% of trials, rats

were presented with an LED above the right or left port and had to orient towards that port. Thus,

the animals had to perform the same motor action but success was not dependent on evidence

accumulation, hence this procedure controlled for any potential motor deficits that could have arisen

due to the inactivation procedure that could impair the animal’s ability to orient effectively (Fig-

ure 3—figure supplement 1).

Optogenetic perturbation
The methods used in this study for optogenetic perturbation are identical to those described in

detail previously (Hanks et al., 2015). Prior to each experimental session, a 532 nm green laser

(OEM Laser Systems) was connected via a 1 m patch cable with a rotary joint (Princetel) and an FC

connector to the rat’s optical implant. The rotary joint was mounted on the ceiling of the behavioral

chamber. The laser operated at 25 mW and was triggered by a 5V transistor-transistor logic (TTL)

pulse, delivered in response to behavioral events and triggered by the automated traiwhayning soft-

ware (BControl). On all experimental days, laser illumination occurred during a random subset (25%)

of trials and was applied unilaterally. Laser illumination trials could be divided into two main types.

In the first type, we delivered light for a continuous period of 2 s, starting 500 ms prior to the initia-

tion of the auditory clicks stimulus and ending 500 ms after the termination of the click train. This

trial type is defined as ‘full-trial’ inactivation. For this we used a cohort of eight rats. In the second

trial type, which we refer to as ‘time-resolved’ inactivation, light illumination was delivered in one of

four different 500 ms time periods: the delay before stimulus onset, the first half of the 1 s auditory

stimulus, the second half of the 1 s auditory stimulus, or during the movement period (Figure 6e).

All time-resolved inactivation periods were randomly interleaved within single behavioral sessions.

For ‘time-resolved’ inactivation experiments, we used a cohort of seven rats, two of which also

belonged to the full-trial inactivation cohort.

The physiological effect of eNpHR3.0 on local neuronal activity was tested using acute recordings

in experimental rats (Figure 6a), as described previously (Hanks et al., 2015). Rats were anesthe-

tized using isoflurane and a sharp etched optical fiber was inserted into the center of the field of viral

infection. The optical fiber was coupled with a 532 nm green laser with ~25 mW light intensity at the

tip. In parallel, a sharp tungsten electrode (1 MW) was positioned adjacent to the optical fiber tip.

The effect of laser activation on spontaneous activity was tested by delivering a series of pulses,

of 500 ms duration each, at 25 mW every 5 s. The signals from the electrode were amplified, filtered

(300–6000 Hz), thresholded on the basis of voltage (30 mV) and sampled at 30.3 kHz (0.25 ms before

the threshold triggering and 0.75 ms after; Neuralynx Cheetah). The spikes and TTL pulses were

time-stamped with the same 1-MHz clock (Digital I/O, Neurlaynx).

Histology
The rat was fully anesthetized with 0.4 mL ketamine (100 mg/ml) and 0.2 mL xylazine (100 mg/ml) IP,

followed by transcardial perfusion of 100 mL saline (0.9% NaCl, 0.3x PBS, pH 7.0, 0.05 mL heparin

10,000 USP units/mL), and finally transcardial perfusion of 250 mL 10% formalin neutral buffered

solution (Sigma HT501128). The brain was removed and post fixed in 10% formalin solution for a

minimum period of 7 days. 100 micrometer sections were prepared on a Leica VT1200S vibratome,

and mounted on Superfrost Pus glass slides (Fisher) with Fluoromount-G (Southern Biotech) mount-

ing solution and glass cover slips. Images were acquired on a Nikon Eclipse Ti fluorescence micro-

scope under 4x magnification.
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Neural recording and spike sorting
Neural recordings and spike sorting methods have been described in detail previously (Erlich et al.,

2011; Hanks et al., 2015). Briefly, over the course of ~2–4 weeks following surgery, the tetrodes

were slowly lowered towards the dorsal part of the rat anterior striatum. On most recording days, an

electrically quiet electrode was used as a reference channel, and in the cases where such an elec-

trode was not available, we used the ground of our neurophysiology recording system (Nerualynx)

for reference. During recording, a unity-gain preamplifier (HS-32, Neuralynx) was attached to a

connector on top of the microdrive via a light-weight tether. Signals from each of the channels were

amplified (1,400–5,000�) and band-pass filtered (300–6,000 Hz; Digital-Lynx, Neuralynx). A voltage

threshold (20–50 mV) was used for collecting 1 ms spike waveforms, which were sampled at 30.3 kHz

(0.25 ms before the triggered event and 0.75 ms after; Neuralynx Cheetah). Neural activity was

recorded daily during behavioral sessions that lasted 2–4 hr on average. Regardless of the quality of

the recordings, tetrodes were never kept in the same position on different days, and were always

moved at the end of each recording day (40–200 mm daily), in order to obtain recordings from new

ensembles of neurons daily.

Analysis of causal perturbation data – optogenetics and
pharmacological inactivation
Detailed methods for generating psychometric curves and estimating biases resulting from inactiva-

tion in rats performing this exact behavioral task were described recently (Erlich et al., 2015;

Hanks et al., 2015).

In brief, for muscimol inactivation experiments, psychometric curves were generated by

concatenating data across either infusion or control sessions for individual rats and by fitting a four-

parameter sigmoid described using the following formula:

y¼ y0 þ
a

1þ e�ðx�x0Þ=b

In that equation, the ‘x’ variable is the click difference on each trial (# Right Clicks – # Left Clicks),

‘y’ is the proportion of trials on which the animal went ‘Right’, and the four parameters of the fitting

procedure are: ‘x0’, the inflection point of the sigmoid; ‘b’, the slope of the sigmoid; ‘x0’ and ‘a +

y0’, the minimum and maximum of the proportion of trials in which the rat went ‘Right’, respectively.

For optogenetic inactivation experiments, we measured behavioral bias resulting from transient

inactivation of neural activity in a subset of trials (25%) by first binning the trials on the basis of stimu-

lus strength. We then computed the mean difference between the fraction of trials during which the

rats went to the side ipsilateral to side of its optical implant for inactivation and control trials for

each of 10 binned stimulus strengths. Thus, a positive value resulting from this measurement repre-

sents an increase in ipsilateral responses in laser illumination trials over control trials in which the

optical stimulation was absent. Confidence intervals and statistical comparisons for this bias parame-

ter were calculated using nonparametric bootstrap procedures. The bias resulting from unilateral

pharmacological inactivation was calculated in a similar way, but the control behavior was derived

from non-inactivation control sessions obtained the day before inactivation. The performance

impairment resulting from bilateral pharmacological inactivation sessions was also calculated using

the non-inactivation control sessions obtained the day before inactivation. Performance was defined

as percent correct trials for each binned stimulus strength.

Analysis of neural recording
Spike waveforms were sorted on the basis of their relative energies and amplitudes on different

channels of each tetrode. Clustering software (SpikeSort3D, Neuralynx) was used to isolate single

units manually. Each spike was graphically positioned in a two- or three-dimensional space repre-

senting the energy or amplitude of the spike on two or three of the four tetrode channels. Convex

hull boundaries and template-matching of waveforms were used to identify well-separated clusters

of spikes, which were individually color coded. Data from the entire session were spike-sorted

together. To compute the peri-event time histogram (PETH) for the population activity in response

to the presentation of auditory clicks (Figure 3a and Figure 3—figure supplement 1), we followed

the following procedure. For all well-isolated single units, individual trial rate functions were first
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generated by smoothing the spike trains with a causal half-Gaussian filter with 0.1 s standard devia-

tion. The response functions of individual neurons were then normalized on the basis of the mean fir-

ing of each individual neuron at the time of stimulus onset. Trials were subsequently sorted by a

quantity that we defined as the ‘mean stimulus strength’ following the same procedure that has

been described previously (Hanks et al., 2015). Mean stimulus strength was defined by dividing tri-

als for each neuron into quantiles that are based on a difference in the preferred and non-preferred

click rates.

The influence of single auditory clicks on neural responses, the ‘click-triggered average’, was cal-

culated as follows. The trials of individual neurons were first grouped on the basis of the underlying

Poisson rates that were used to generate the auditory stimuli. For each group, the mean PETH was

computed. This quantity corresponds to the expected neural response at each point in time for each

Poisson rate group. This mean response was then subtracted from each trial to generate the residual

response from the expected one given the Poisson rate. Aligning this residual response to a click

describes the change in the neural response that is associated with a single auditory click relative to

the average expected response to clicks at other times. These click-aligned residual responses were

averaged across all click times to obtain the click-triggered average response for each Poisson rate

group. The click-triggered average for each neuron was calculated by averaging across the different

Poisson rate groups. To compute the response across clicks arriving from both the preferred and

the non-preferred sides, we inverted the residual response for non-preferred direction clicks prior to

averaging. The click-triggered average response profiles generated using this procedure were com-

pared to a model-based prediction that was based on a graded, linear encoding of accumulated evi-

dence. To do this, we simulated evidence accumulation trajectories for 5000 trials using the same

range of stimulus difficulties and durations that existed for the neural data. We then encoded these

simulated trajectories with a graded, linear function of accumulated evidence (firing rate r = k1 x a(t)

+k2 in which k1 and k2 are constants). Finally, we applied the same analysis described for the neural

data to estimate the predicted click-triggered average under this encoding (Figure 3b).

Behavioral model-based analysis of neural data
We applied recently developed methods in our lab to generate tuning curves that specify the rela-

tionship between neural firing rates and mentally accumulated evidence (Hanks et al., 2015). These

techniques take advantage of a behavioral model that provides a moment-by-moment and trial-by-

trial estimation of the mentally accumulated evidence for this task (Brunton et al., 2013;

Hanks et al., 2015).

Neural tuning curves
Following Hanks et al. (2015), the behavior model’s estimate a(t) was related directly to neural firing

rates on individual trials to estimate neural tuning curves for accumulating evidence. The estimates

of the neural response and accumulating evidence in individual trials were used to calculate the joint

probability distribution between those two variables as a function of time for each neuron. The cor-

respondence between time in the model and neural time was determined on the basis of the latency

of the stimulus-dependent response modulation. This latency was calculated as the first time bin in

the PETH to have a significant modulation of neural response based on stimulus strength, which cor-

responded to 150 ms (Figure 3a). Thus, t = 0 in the model was taken as 150 ms after stimulus onset.

From the joint probability, we extracted each neuron’s response conditional on the value of the

accumulator. We then combined across neurons by weighting the contribution of each by the inverse

of the variance of this conditional distribution, which gives more weight to representations that are

less noisy.

To quantify the relationship between neural response and accumulator value across time, we

averaged across the time period from 0.15 to 0.5 s into the decision process. To characterize the

encoding across individual neurons, we fit this relationship of the response to the accumulator value

with a four-parameter sigmoid using the following equation:

r¼ k1þ
k2

1þ e�k3 a�k4ð Þ

In this equation, k2k3/4 determines the slope at zero-crossing, which characterizes whether the
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neural response changes smoothly between negative and positive accumulator values or whether it

changes sharply in this region.
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