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Differential progression of coronary 
atherosclerosis according to plaque 
composition: a cluster analysis 
of PARADIGM registry data
Yeonyee E. Yoon1,2,3*, Lohendran Baskaran1,4, Benjamin C. Lee1, Mohit Kumar Pandey5, 
Benjamin Goebel1, Sang‑Eun Lee6,7, Ji Min Sung7,8, Daniele Andreini9, Mouaz H. Al‑Mallah10, 
Matthew J. Budoff11, Filippo Cademartiri12, Kavitha Chinnaiyan13, Jung Hyun Choi14, 
Eun Ju Chun3, Edoardo Conte9, Ilan Gottlieb15, Martin Hadamitzky16, Yong Jin Kim2, 
Byoung Kwon Lee17, Jonathon A. Leipsic18, Erica Maffei19, Hugo Marques20, 
Pedro de Araújo Gonçalves20,21, Gianluca Pontone9, Sanghoon Shin6, Jagat Narula22, 
Jeroen J. Bax23, Fay Yu‑Huei Lin1, Leslee Shaw1 & Hyuk‑Jae Chang7,8

Patient‑specific phenotyping of coronary atherosclerosis would facilitate personalized risk 
assessment and preventive treatment. We explored whether unsupervised cluster analysis can 
categorize patients with coronary atherosclerosis according to their plaque composition, and 
determined how these differing plaque composition profiles impact plaque progression. Patients 
with coronary atherosclerotic plaque (n = 947; median age, 62 years; 59% male) were enrolled from a 
prospective multi‑national registry of consecutive patients who underwent serial coronary computed 
tomography angiography (median inter‑scan duration, 3.3 years). K‑means clustering applied to 
the percent volume of each plaque component and identified 4 clusters of patients with distinct 
plaque composition. Cluster 1 (n = 52), which comprised mainly fibro‑fatty plaque with a significant 
necrotic core (median, 55.7% and 16.0% of the total plaque volume, respectively), showed the least 
total plaque volume (PV) progression (+ 23.3  mm3), with necrotic core and fibro‑fatty PV regression 
(− 5.7  mm3 and − 5.6  mm3, respectively). Cluster 2 (n = 219), which contained largely fibro‑fatty (39.2%) 
and fibrous plaque (46.8%), showed fibro‑fatty PV regression (− 2.4  mm3). Cluster 3 (n = 376), which 
comprised mostly fibrous (62.7%) and calcified plaque (23.6%), showed increasingly prominent 
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calcified PV progression (+ 21.4  mm3). Cluster 4 (n = 300), which comprised mostly calcified plaque 
(58.7%), demonstrated the greatest total PV increase (+ 50.7mm3), predominantly increasing in 
calcified PV (+ 35.9  mm3). Multivariable analysis showed higher risk for plaque progression in Clusters 
3 and 4, and higher risk for adverse cardiac events in Clusters 2, 3, and 4 compared to that in Cluster 
1. Unsupervised clustering algorithms may uniquely characterize patient phenotypes with varied 
atherosclerotic plaque profiles, yielding distinct patterns of progressive disease and outcome.

Understanding the process of coronary atherosclerosis could facilitate timely medical intervention to retard 
the development of clinically significant coronary artery disease and its consequences. Coronary computed 
tomographic angiography (CCTA) which provides noninvasive and comprehensive evaluation of coronary ath-
erosclerosis has been utilized to understand the pathophysiologic progression of coronary atherosclerosis over 
 time1–3. Furthermore, CCTA has the potential to personalize preventive therapy by quantitatively evaluating 
heterogeneous coronary atherosclerotic plaque volume and composition in whole coronary  trees4,5. However, 
plaque components form a pathophysiologic continuum, thus it is difficult to determine the threshold of plaque 
composition in terms of clinical implications.

Machine learning using unsupervised cluster analysis aims to group similar data points into clusters based 
on inherent similarities among them. It thus enables the exploration of possible heterogeneity within a disease 
category that has historically been considered  homogeneous6,7. In the present study, we hypothesized that unsu-
pervised cluster analysis could categorize heterogeneous patients according to atherosclerotic plaque component 
proportions. Furthermore, we aimed to determine how these differences in atherosclerotic plaque components 
at baseline differentially impact plaque progression and composition change.

Methods
Study design and population. The Progression of AtheRosclerotic PlAque DetermIned by Computed 
TomoGraphic Angiography Imaging (PARADIGM) study was a multinational observational registry that pro-
spectively enrolled 2252 patients who underwent clinically indicated serial CCTAs at an inter-scan interval 
of ≥ 2 years at 13 sites in 7 countries between 2003 and  20158. The study protocol complied with the Declaration 
of Helsinki and was approved by the institutional review boards of all participating centers (Severance Hospital, 
Gangnam Severance Hospital, Seoul National University Hospital, Seoul National University Bundang Hospital, 
National Health Insurance Service Ilsan Hospital, and Busan University Hospital, Korea; Weil Cornell Medical 
College and NewYork-Presbyterian Hospital, and Harbor UCLA Medical Center, USA; St. Paul’s Hospital, Can-
ada; University Hospital of Parma, and IRCCS, Italy; Hospital da Luz, Portugal; University of Munich, Germany; 
Casa de Saude Sao Jose, Brazil). All the study participants gave informed consent.

For the present analysis, we excluded patients with uninterpretable CCTAs (n = 492), prior revasculariza-
tion (n = 282), and no coronary atherosclerotic plaque at baseline (n = 358). (Supplementary Fig. 1) To explore 
the natural history of coronary atherosclerosis, we defined statin-naïve patients as patients who were not using 
statin at the time of the baseline and follow-up CCTAs. Statin-taking patients were defined as those who were 
using statin at the time of follow-up CCTA 2. After further excluding patients without information on statin use 
(n = 121) and those who discontinued statin use after the baseline CCTA (n = 52), 947 patients remained for the 
final analysis.

CCTA analysis. Acquisition and analysis of CCTAs were performed in accordance with  guidelines8. Data 
from each participating site were transferred to a core laboratory for blinded image analysis by level-III expe-
rienced readers using semi-automated plaque analysis software (QAngioCT Systems, Leiden, the Netherlands) 
with manual  correction8.

All coronary artery segments with a diameter ≥ 2 mm were evaluated for plaque and vessel volume  (mm3) 
using a modified 17-segment American Heart Association  model9,10. Segments were matched between baseline 
and follow-up CCTAs using branch points as landmarks. The presence of atherosclerosis was defined as any 
tissue ≥ 1  mm2 within or adjacent to the lumen that could be discriminated from surrounding pericardial tis-
sue, epicardial fat, or lumen, and identified in ≥ 2 planes. Plaque volume (PV)  (mm3) was measured and further 
sub-classified by the composition using pre-defined Hounsfield unit (HU) cut-off values (necrotic core, − 30 to 
30 HU; fibro-fatty plaque, 30 to 130 HU; fibrous plaque, 131 to 350 HU; and calcified plaque, ≥ 351 HU)11,12. 
To account for differences in the total vessel length between patients and to provide an equal weighting of each 
patient in the calculation of PV, we normalized PV as [(absolute PV/the total vessel length) * mean population 
vessel  length]13. We calculated the annualized total PV change as (Δtotal PV/CCTA interval,  mm3/year), and 
used the median value as a cut-off point to determine the plaque progression.

Unsupervised clustering. Clustering is an unsupervised technique used to group objects that are “close” 
to one another in a multi-dimensional feature space, usually to uncover some inherent structure within the data 
without prior  assumptions7,14. K-means clustering is a vector quantization method used for partitioning n obser-
vations into a pre-defined number (k) of mutually exclusive clusters, in which each observation belongs to the 
cluster with the nearest mean. The algorithm iteratively minimizes the sum of the square distances between clus-
ter points and the cluster mean. As such, it locally optimizes the following objective function, using an iterative 
procedure similar to the expectation–maximization algorithm as below (n = the number of data points, K = the 
pre-defined number of clusters, wik = 1 if xi belongs to cluster k or 0 otherwise, and xi = the mean of cluster k)6.
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To categorize heterogeneous patients according to plaque component proportions, we applied k-means clus-
tering to the baseline percent volume (%vol) of each plaque component (necrotic core, fibro-fatty plaque, fibrous 
plaque, and calcified plaque), defined as (component plaque volume/total plaque volume × 100, %). Clustering 
was performed independently from clinical and follow-up CCTA data. The number of clusters was selected as 4, 
based on the Calinski-Harabasz Index and Average Silhouette Width, as well as the elbow method (Supplemen-
tary Fig. 2)6,15. Since the clustering algorithm does not provide a specific cluster order, we ordered the clusters 
based on the %vol of calcified plaque.

Clustering was validated with nonparametric bootstrapping (Supplementary Table 1)16, and visualized using 
several techniques including 3-dimensional (3D) plots displaying 3 of 4 features at a time, and the remapping 
of multi-dimensional plots into 2-dimensional (2D) plots using radial visualization (RadViz) and t-distributed 
stochastic neighbour embedding (t-SNE)17,18.

Study outcomes. After clustering, we compared the individual clinical phenotypes and changes in PV 
and characteristics among clusters, followed by an interpretation of the clinical relevance. In 808 patients (85%) 
with available clinical outcome data, we also compared the composite of major adverse cardiac events (MACE), 
including all-cause mortality, acute coronary syndrome, and coronary revascularization.

Statistical analysis. Continuous variables are presented as the median [interquartile range (IQR)]; cat-
egorical variables are presented as numbers (percentages). Differences among clusters were evaluated using the 
analysis of variance or Kruskal–Wallis test for continuous variables, and the χ2 test or Fisher’s exact test for 
categorical variables, as appropriate, followed by Bonferroni’s correction or Dunn’s post-hoc testing for multiple 
comparisons. Multivariable logistic regression analysis, including the 10-year atherosclerotic cardiovascular dis-
ease (ASCVD) risk, diabetes mellitus, baseline total PV, and statin use, was performed to compare the risk for 
plaque progression among clusters. Additionally, multivariable Cox regression analysis, including the 10-year 
ASCVD risk, diabetes mellitus, baseline total PV, annualized total PV change, and statin use, was performed to 
evaluate the relative hazard for MACE among clusters. Cluster 1 was used as the reference group for multivari-
able analyses, and the results are expressed as the adjusted odds ratio (aOR) or adjusted hazard ratio (aHR) with 
the corresponding 95% confidence interval (CI). MACE-free survival data were plotted using the Kaplan–Meier 
method and compared by the log-rank test. All statistical analyses, including clustering, were performed using 
RStudio (Version 3.6.3) and its packages. P < 0.05 was considered statistically significant.

Results
Clustering of patients with coronary atherosclerotic plaque. K-means clustering was applied to 
947 patients with coronary atherosclerotic plaque (age 62 years [56–67], 59% male) (Clinical characteristics in 
Supplementary Table 2) revealed 4 different groups of patients with significantly different plaque composition 
(P < 0.001 for all 4 plaque components) (Fig. 1). Cluster 1 (n = 52) mainly comprised fibro-fatty plaque (55.7% 
[47.2–61.8]), with a significant portion of necrotic core (16.0% [13.0–21.9]); Cluster 2 (n = 219) mainly com-
prised fibro-fatty plaque (39.2% [32.0–48.3]) and fibrous plaque (46.8% [40.0–53.5]); Cluster 3 (n = 376) mainly 
comprised fibrous plaque (62.7% [55.8–71.2]), with a significant portion of calcified plaque (23.6% [12.2–33.3]); 
and Cluster 4 (n = 300) mainly comprised calcified plaque (58.7% [49.9–71.3]). Representative cases of each 
cluster are shown in Fig. 2.

When we visualized clusters in 3D space (Fig. 3), the separation of Cluster 1 was mainly driven by its higher 
%vol of the necrotic core, and Cluster 4 was separated from others due to its higher calcified plaque %vol. 
Although Cluster 2 was separated from Clusters 3 and 4 by its higher %vol of fibro-fatty plaque, separation from 
Cluster 1 depended on its %vol of the necrotic core and fibrous plaque. We have also provided 2D plots using 
RadViz and t-SNE (Supplementary Fig. 3).

Clinical characteristic comparisons. Clusters 1, 2, and 3 demonstrated quite similar clinical characteris-
tics (Table 1). However, the patients in Cluster 4 tended to be older, have lower body mass index and triglyceride 
levels, and higher high-density lipoprotein levels than the patients in other clusters. While statin use at baseline 
was higher in Cluster 4 than in Cluster 3, statin use at follow-up was similar among clusters.

Baseline CCTA characteristic comparison. At baseline, Cluster 2 demonstrated the highest total PV 
(107.0  mm3 [42.3–194.1]) and Cluster 3 demonstrated the lowest total PV (63.9  mm3 [25.8–158.5]) (Table 2). 
Necrotic core and fibro-fatty PV were greatest in Cluster 1 and gradually decreased (in order) from Cluster 2 
to Cluster 4 (P < 0.001 for both). Fibrous PV of Cluster 2 was comparable to that of Cluster 3 (P = 0.589) and 
Cluster 4 (P = 0.088) and was significantly greater than that of Cluster 1 (P = 0.001). The calcified PV was lowest 
in Cluster 1 and gradually increased (in order) from Cluster 2 to Cluster 4 (P < 0.001). Cluster 4 demonstrated 
the greatest maximal diameter and area stenosis (P < 0.001 for both).

Changes in CCTA characteristics at follow‑up. At follow-up (3.3 years [2.6–4.7]), the change in total 
PV gradually increased (in order) from Cluster 1 to Cluster 4 (23.3  mm3 [-7.5–79.6], 37.9  mm3 [11.8–85.8], 41.0 
 mm3 [11.5–105.6], and 50.7  mm3 [19.4–105.1], respectively, P < 0.001) (Table 2). Necrotic core and fibro-fatty 
PV regression were evident in Cluster 1 and gradually weakened (in order) from Cluster 2 to Cluster 3 and Clus-
ter 4 (P < 0.001 for both). While the increase in fibrous PV was highest in Cluster 1 and gradually decreased in 
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Figure 1.  Plaque composition across clusters. (A) K-means clustering identified 4 groups of patients with 
different plaque composition. (B) Density plots showing the distribution of the percent volume (%vol) of each 
plaque component.
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order from Cluster 2, 3, and 4 (P < 0.001), the change in calcified PV showed a gradual increase from Cluster 1 
to Cluster 4 (P < 0.001). On multivariable logistic regression analysis, the risk of plaque progression for Cluster 
2 was comparable to that of Cluster 1 (aOR 1.56, 95% CI 0.79–3.17, P = 0.207), but was significantly higher for 
Clusters 3 and 4 than for Cluster 1 (aOR 2.53, 95% CI 1.32–5.02, P = 0.006; and aOR 2.43, 95% CI 1.25–4.87, 
P = 0.010, respectively) (Supplementary Table 3).

Each plaque component %vol at the time of baseline and follow-up CCTAs are illustrated in Fig. 4. Cluster 
1, which had the least total PV progression, demonstrated decreased %vols of the necrotic core (median, from 
16.0% to 4.8%, P < 0.001) and fibro-fatty plaque (from 55.7% to 35.9%, P < 0.001), and increased %vols of fibrous 
plaque (from 26.7% to 50.3%, P < 0.001) and calcified plaque (from 0.0% to 2.1%, P < 0.001). Although Cluster 2 
showed a greater increase in the calcified portion (from 4.7% to 16.3%, P < 0.001) than did Cluster 1, both clus-
ters showed PV progression mainly driven by an increase in fibrous PV (114% and 48% of the total PV increase, 
respectively). In contrast, in Clusters 3 and 4, the fibrous plaque %vol decreased (from 62.7% to 50.3%, P < 0.001; 
and from 36.4% to 28.9%, respectively, P < 0.001), and PV progression was mostly driven by an increase in calci-
fied PV (52% and 71% of the total PV increase, respectively).

Changes in plaque volume according to statin use. When we evaluated the differences in PV progres-
sion among clusters in statin-naïve patients (n = 307), there was no significant difference in the total PV change 
(P = 0.241) and necrotic core and fibro-fatty PV regression was not evident even in Cluster 1 (Supplementary 
Table 4). Whereas, in statin-taking patients (n = 640), necrotic core or fibro-fatty PV regression was observed 
in Cluster 1 and 2, and the total PV increase was significantly greater in Cluster 3 (50.2  mm3 [14.0–124.2]) and 
Cluster 4 (55.8  mm3 [21.5–130.8]) than in Cluster 1 (15.5  mm3 [-11.5–46.5]) and Cluster 2 (35.2  mm3 [9.8–94.3], 
P < 0.001). Further stratification results according to the low-density lipoprotein (LDL) level at follow-up showed 
the differences in PV progression across clusters were more evident in patients with well-controlled LDL lev-
els (< 100 mg/dL) (Supplementary Table 5). Multivariable logistic regression analysis showed a higher risk of 
plaque progression for Clusters 3 and 4 in statin-taking patients, but not in statin-naïve patients (Supplementary 
Table 3).

Clinical outcome comparisons. The incidence of MACE was significantly lower in Cluster 1 (6.1%) than 
in Cluster 2 (23.0%, P = 0.033), Cluster 3 (19.9%, P = 0.050), and Cluster 4 (22.6%, P = 0.033) (Supplementary 
Fig. 4). Multivariable Cox regression analysis showed a higher risk of MACE for Cluster 2 (aHR 4.48, 95% CI 
1.39–14.45, P = 0.011), Cluster 3 (aHR 3.55, 95% CI 1.11–11.34, P = 0.032), and Cluster 4 (aHR 3.28, 95% CI 
1.02–10.56, P = 0.046) than for Cluster 1 (Supplementary Table 6). Subgroup analysis according to statin use 
demonstrated an increased risk for MACE in Clusters 2, 3, and 4 than in Cluster 1 in statin-taking patients, but 
not in statin-naïve patients.

Discussion
The present analysis of a large prospective observational cohort of patients with coronary atherosclerosis under-
going serial CCTA used unsupervised cluster analysis to categorize patients according to their coronary athero-
sclerotic plaque composition. The identified clusters of patients demonstrated markedly different plaque progres-
sion patterns, changes in composition, and clinical outcomes. This study provides insight into how patients with 
heterogeneous coronary atherosclerotic plaque composition differentially experience coronary atherosclerotic 
plaque progression and adverse cardiac events according to their baseline plaque composition.

Figure 2.  Representative cases from each cluster at baseline and follow-up.
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Figure 3.  Three-dimensional (3D) plots visualizing the clusters. 3D plots visualizing the clusters (A) using the 
percent volumes of the necrotic core, fibrous plaque, and calcified plaque, and (B) using the percent volumes of 
the necrotic core, fibro-fatty plaque, and calcified plaque.
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CCTA enables the accurate assessment of the change in coronary atherosclerotic plaque noninvasively over 
 time1,19,20. Recent advances have further promoted the use of CCTA, by providing semi-automated segmentation 
and characterization of the plaque composition. The PARADIGM registry is the largest available serial CCTA 
database with quantitative measures of atherosclerotic burden and  composition8. The prior PARADIGM registry 
studies provided important information regarding the natural course of coronary atherosclerosis and the clinical 
determinants of plaque progression or regression, by evaluating the impact of statin taking or high-risk features 
on the progression of coronary plaque  lesions2,21 or categorizing patients according to their clinical risk factor 
s such as diabetes  mellitus3,22. In the present study, we performed patient-specific plaque phenotyping, using 
the ability of CCTA to visualize plaque components in the entire coronary tree, to bridge the gap between the 
recognition of heterogeneous plaque composition on CCTA and individualized cardiovascular risk assessment 
and preventive strategy establishment.

Unsupervised clustering is an exploratory data analysis technique that provides insight into the data struc-
ture by segregating groups with similar traits and assigning them into  clusters7,14. K-means clustering is one of 
the most popular and simplest clustering algorithms. It partitions a feature space into k clusters by placing each 
data point in the cluster closest to its mean  value23. Since we aimed to categorize heterogeneous patients with 
coronary atherosclerosis according to their baseline atherosclerotic plaque composition, we applied k-means 
clustering to the %vol of each plaque component. In other words, k-means clustering allowed us to find groups 
of similar data points in a 4-dimensional feature space comprising the %vols of the necrotic core, fibro-fatty 
plaque, fibrous plaque, and calcified plaque. Considering that coronary atherosclerosis is a continuous process, 
it was not surprising that the distances between clusters were not large. Nevertheless, the resulting 4 clusters 
demonstrated distinct features and significantly different plaque progression patterns.

Phenotyping coronary atherosclerotic plaque at the patient level offers insight into how the progression and 
transformation of coronary atherosclerosis differ according to the baseline composition. Hwang et al. previ-
ously applied topological data analysis (TDA) to PARADIGM registry data and identified three distinct group 
of  patients24. Since TDA aims to pattern or shape the complex dataset using a geometric approach, multiple 
quantitative CCTA parameters, including total vessel length, total vessel volume, total lumen volume, PV, fibrous 
component volume, fibrofatty component volume, necrotic core volume, and dense calcium volume, were utilized 
to categorize patients in this study. The resultant groups demonstrated not only distinct plaque composition 
but also increasing PV accompanied by increasing age and prevalence of comorbidities. In contrast, the present 

Table 1.  Clinical characteristics. Data are presented as the median (interquartile range) for 
continuous variables and number (percentage) for categorical variables. Adjusted P-values for multiple 
comparisons < 0.05 are marked as * (vs. Cluster 1), † (vs. Cluster 2), ‡ (vs. Cluster 3), and § (vs. Cluster 
4). ASCVD = atherosclerotic cardiovascular disease, CAD = coronary artery disease, HDL = high-density 
lipoprotein, LDL = low-density lipoprotein.

Cluster

P

1 2 3 4

(N = 52) (N = 219) (N = 376) (N = 300)

Age, years 59 [54;65]§ 60 [53;65]§ 62 [55;67] § 65 [59;70]*†‡  < 0.001

Men 35 (67%) 140 (64%)§ 233 (62%) 155 (52%)† 0.009

10-year ASCVD risk, % 11.2 [5.3;20.3] 9.8 [5.2;17.2]§ 10.3 [5.4;18.1] 12.1 [6.4;21.5]† 0.028

Body mass index, kg/m2 25.6 [24.2;27.4]§ 25.0 [23.3;27.7]§ 25.3 [23.7;27.5]§ 24.3 [22.5;26.5]*†‡  < 0.001

Hypertension 32 (62%) 121 (55%) 209 (56%) 173 (58%) 0.790

Diabetes mellitus 18 (35%) 55 (25%) 83 (22%) 76 (25%) 0.242

Hyperlipidemia 10 (19%)§ 71 (32%)§ 144 (38%) 134 (45%)*† 0.001

Family history of CAD 12 (23%) 44 (20%) 103 (27%) 79 (26%) 0.228

Current smoking 15 (29%) 46 (21%) 72 (19%) 45 (15%) 0.077

Systolic blood pressure, mmHg 128 [120;140] 127 [120;140] 130 [119;140] 130 [119;140] 0.845

Diastolic blood pressure, mmHg 80 [70;84] 80 [70;84] 80 [72;85]§ 76 [70;84]‡ 0.033

Lipid profile at baseline

Total cholesterol, mg/dl 188 [154;210] 184 [162;212] 190 [165;217] 186 [159;209] 0.168

Triglyceride, mg/dl 156 [114;184]§ 138 [96;190]§ 130 [92;186]§ 117 [84;163]*†‡ 0.001

HDL, mg/dl 45 [38;54] 46 [38;54]§ 48 [41;57]§ 51 [43;61]†‡  < 0.001

LDL, mg/dl 110 [91;134] 116 [93;142] 116 [90;139] 110 [87;132] 0.087

Lipid profile at follow-up

Total cholesterol, mg/dl 159 [142;190] 166 [144;190] 168 [142;195] 164 [142;188] 0.612

Triglyceride, mg/dl 124 [88;186]§ 116 [84;163]§ 116 [82;164]§ 104 [75;138]*†‡ 0.004

HDL, mg/dl 48 [41;53] 45 [39;52]‡§ 47 [40;57]† 51 [42;59]†  < 0.001

LDL, mg/dl 88 [70;110] 93 [72;120] 92 [76;118] 92 [74;120] 0.729

Statin at baseline 18 (35%) 94 (43%) 144 (38%)§ 158 (53%)‡ 0.001

Statin at follow-up 35 (67%) 140 (64%) 244 (65%) 221 (74%) 0.054
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clustering was performed independently of patient clinical characteristics and other CCTA characteristics, such 
as the total PV. Nevertheless, the resultant clusters from both studies are in concordance with the known natural 
history of atherosclerotic  plaque24, suggesting that the clustering was in accordance with the evolutionary stage of 
atherosclerosis at the patient  level25–27. The present study provides deeper insight into the compositional changes 
during the plaque progression. Clusters 1 and 2 comprised patients who had earlier-stage coronary atheroscle-
rotic plaques with more vulnerable plaque components, such as the necrotic core and fibro-fatty plaque, showed 
regression of these components and PV progression mainly driven by an increase in fibrous PV. Clusters 3 and 
4 represented patients who had more advanced and stabilized plaques, with more calcium and showed PV pro-
gression mostly driven by an increase in calcified PV. The similarities in clinical characteristics between clusters 
can be attributed to the multifactorial influences on the advent and progression of coronary atherosclerosis in 
an individual. Nevertheless, Clusters 3 and 4 demonstrated a higher risk for plaque progression, independ-
ent of clinical risk factors, statin use, and baseline total PV. The differential progression status among clusters 

Table 2.  CCTA characteristics. Data are presented as the median (interquartile range) for continuous variables 
and number (percentage) for categorical variables Adjusted P-values for multiple comparisons < 0.05 are 
marked as * (vs. Cluster 1), † (vs. Cluster 2), ‡ (vs. Cluster 3), and § (vs. Cluster 4). CCTA = coronary computed 
tomographic angiography.

Cluster

P

1 2 3 4

(N = 52) (N = 219) (N = 376) (N = 300)

Baseline CCTA characteristics

Total vessel length, mm 402 [351;440] 411 [ 336;489] 418 [342;487] 398 [309;485] 0.244

Total vessel volume,  mm3 2121 [1747;2788] 2220 [1676;2867] 2247 [1683;3029] 2111 [1527;3023] 0.474

Plaque volume,  mm3

 Total plaque 87.5 [55.5;141.5] 107.0 [42.3;194.1]‡ 63.9 [25.8;158.5]†§ 93.9 [39.8;257.2]‡  < 0.001

 Necrotic core 17.0 [9.1;29.2]†‡§ 3.6 [0.9; 8.3]*‡§ 0.1 [0.0; 0.7]*†§ 0.0 [0.0; 0.3]*†‡ < 0.001

 Fibro-fatty plaque 45.4 [30.6;82.7]‡§ 38.3 [17.0;74.5]‡§ 7.6 [1.8;24.1]*†§ 2.4 [0.2; 9.8]*†‡ < 0.001

 Fibrous plaque 19.7 [10.4;41.9]†‡§ 43.3 [20.9;85.3]* 38.0 [16.9;92.5]* 32.0 [13.1;84.7]* < 0.001

 Calcified plaque 0.0 [0.0;1.6]†‡§ 3.9 [0.2;21.5]*‡§ 13.4 [3.1;34.9]*†§ 55.4 [21.6;152.9]*†‡ < 0.001

Maximal diameter stenosis, % 22.0 [14.4;32.1]§ 24.3 [15.4;32.4]§ 23.1 [13.5;32.4] § 27.6 [18.1;37.9] *†‡ < 0.001

Maximal area stenosis, % 39.2 [26.7;53.9] § 42.7 [28.4;54.3] § 40.8 [25.1;54.3] § 47.5 [32.9;61.4] *†‡ < 0.001

Number of vessels with obstructive disease

 None 48 (92.3%)‡§ 202 (92.2%)*‡§ 324 (86.2%)†§ 246 (82.0%)*†‡ 0.024

 1 3 (5.8%) 12 (5.5%) 40 (10.6%) 32 (10.7%)

 2 0 (0.0%) 2 (0.9%) 8 (2.1%) 14 (4.7%)

 3 1 (1.9%) 3 (1.4%) 4 (1.1%) 8 (2.7%)

Segment involvement score 2.0 [1.0;3.0]†‡§ 3.0 [2.0;5.0]*§ 3.0 [2.0;5.0]*§ 4.0 [2.0;7.0] *†‡ < 0.001

Segment stenosis score 3.0 [2.0;4.0]†‡§ 4.0 [2.0;7.0]*§ 4.0 [2.0;7.0]*§ 6.0 [3.0;10.0]*†‡ < 0.001

Changes in CCTA characteristics at follow-up

CCTA interval, years 3.6 [2.6;5.2] 3.3 [2.6;4.8] 3.2 [2.6;4.6] 3.2 [2.6;4.5] 0.551

Change in plaque volume,  mm3

 Total plaque 23.3 [− 7.5;79.6]‡§ 37.9 [11.8;85.8]§ 41.0 [11.5;105.6]* 50.7 [19.4;105.1]*† < 0.001

 Necrotic core − 5.7 [− 17.6;− 0.3]†‡§ − 0.3 [− 3.6; 1.8]*‡§ 0.0 [− 0.0; 0.9]*†§ 0.0 [− 0.0; 0.2]*†‡ < 0.001

 Fibro-fatty plaque − 5.6 [− 28.2;14.9]‡§ − 2.4 [− 22.4;12.7]‡§ 0.1 [− 4.2; 7.9]*† 0.0 [− 1.9; 4.3]*† < 0.001

 Fibrous plaque 26.5 [15.3;55.0]‡§ 18.5 [6.3;48.3]‡§ 9.8 [− 1.6;36.0]*†§ 5.4 [− 7.9;25.2]*†‡ < 0.001

 Calcified plaque 2.5 [0.2;16.9]†‡§ 13.0 [2.4;35.1]*‡§ 21.4 [5.9;52.7]*†§ 35.9 [14.4;88.7]*†‡ < 0.001

Annualized change in plaque,  mm3/year

 Total plaque 5.7 [− 1.6;22.0]‡§ 10.1 [3.1;21.5]§ 11.6 [3.4;32.9]*† 14.4 [5.8;31.6]*† < 0.001

Other parameters at follow-up

Maximal diameter stenosis, % 25.6 [18.8;35.2]§ 28.7 [20.1;37.6]§ 26.6 [17.5;36.4]§ 32.1 [23.0;41.7]*†‡ < 0.001

Maximal area stenosis, % 44.7 [34.0;58.0]§ 49.1 [36.1;61.1]§ 46.1 [32.0;59.5]§ 53.9 [40.7;66.1]*†‡ < 0.001

No. of vessels with obstructive disease

 None 43 (82.7%) 180 (82.2%) 296 (78.7%) 215 (71.7%) 0.105

 1 6 (11.5%) 29 (13.2%) 49 (13.0%) 52 (17.3%)

 2 1 (1.9%) 3 (1.4%) 16 (4.3%) 20 (6.7%)

 3 2 (3.8%) 7 (3.2%) 15 (4.0%) 13 (4.3%)

Segment involvement score 3.0 [2.0;4.0]†‡§ 4.0 [3.0;6.0]*§ 4.0 [3.0;7.0]*§ 5.0 [3.0;8.0]*†‡ < 0.001

Segment stenosis score 4.0 [2.0;5.0]†‡§ 6.0 [3.0;9.0]*§ 6.0 [3.0;10.0]*§ 8.0 [5.0;12.0]*†‡ < 0.001
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underlines the role of CCTA in evaluating plaque composition, in addition to obstruction severity and plaque 
burden. Furthermore, the significantly different risk for MACE between clusters suggests that patient-specific 
phenotyping of coronary atherosclerosis would facilitate personalized risk assessment and preventive treatment.

The ability to predict how coronary atherosclerotic plaque progresses based on its composition may help clini-
cians decide who may benefit most from statins or other modifiers of atherosclerotic pathogenesis, while reducing 
harm. We additionally evaluated whether statin use differentially affects the plaque progression according to the 
baseline plaque composition. Although the PARADIGM registry’s observational study design limits the direct 
comparison of the impact of statin use in each cluster, the subgroup analysis according to statin use provided 
clues regarding the differential impact of statins across clusters. The higher risk of plaque progression in Clusters 
3 and 4 compared to Cluster 1 was only observed in statin-taking patients, not in statin-naïve patients. Similarly, 
the higher risk of MACE in Clusters 2, 3, and 4 was only observed in statin-taking patients. The observation of 
preserved differential plaque progression and clinical outcome in only statin-taking patients supports the need 
for a more personalized assessment of the cardiovascular risk and the deployment of a preventive strategy based 
on patient-specific plaque phenotyping. However, the value of patient-specific plaque phenotyping in facilitat-
ing personalized decision-making regarding statin use should be evaluated in randomized controlled trials that 
integrate CCTA with a targeted prevention strategy.

Figure 4.  Each plaque component %vol at the time of baseline and follow-up CCTAs. Cluster 1 demonstrated 
decreased %vols of the necrotic core and fibro-fatty plaque, and increased %vols of fibrous plaque and calcified 
plaque. Although Cluster 2 showed a greater increase in the calcified portion than did Cluster 1, both clusters 
showed PV progression mainly driven by an increase in fibrous PV. In contrast, in Clusters 3 and 4, the fibrous 
plaque %vol decreased, and PV progression was mostly driven by an increase in calcified PV.
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Study limitations. First, the PARADIGM study enrolled patients with repeated CCTA scans. Therefore, the 
current study populations mostly comprised patients with low-to-moderate risk, and were, therefore, not eligi-
ble for invasive coronary angiography. Furthermore, as patients with more rapid progression were more likely 
to experience clinical events and might not attend a second CCTA, the study population tended to represent 
patients with earlier stage of coronary artery disease; the risk of this selection bias must be considered before 
generalizing these results to a higher-risk population. However, our results provide valuable clues regarding ear-
lier changes in coronary atherosclerosis. The difference in plaque progression and MACE risk across the clusters 
indicates that the evaluation of plaque composition using CCTA has clinical implication from the earlier stage of 
coronary atherosclerosis. Second, the optimal number of clusters in k-means clustering is somewhat subjective; 
however, our decision to use 4 clusters was based on the Calinski-Harabasz Index and Average Silhouette Width, 
as well as the elbow  method28. Furthermore, the visualization of the clusters suggests that the clustering was 
done in a clinically intuitive manner based on the %vols of the 4 different plaque components. Finally, although 
an external validation dataset was not available, because of the paucity of registries similar to the PARADIGM 
registry with serial and quantitative measures of each plaque component, the clustering algorithm provided sta-
ble phenotyping as supported by bootstrapping validation. Ideal clustering should not only have good statistical 
properties, but should also provide clinically relevant results. We believe that the current study results provide 
important clues to understanding the impact of patient-level plaque composition on plaque progression and 
change in its character.

Conclusion
In conclusion, unsupervised clustering analysis of patients with coronary atherosclerotic plaque identified sub-
stantial phenotypic heterogeneity in coronary atherosclerotic plaque composition. Patient-specific plaque phe-
notyping may help our understanding of heterogeneity in coronary atherosclerotic plaque progression. Further 
research is needed to determine the utility of patient-specific plaque phenotyping in personalized risk assessment 
and preventive treatment.
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