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Experimental computation with oscillatory integrals

David H. Bailey∗ Jonathan M. Borwein†

June 26, 2009

Abstract

A previous study by one of the present authors, together with D. Borwein and I. Leonard [8], studied
the asymptotic behavior of the p-norm of the sinc function: sinc(x) = (sin x)/x and along the way
looked at closed forms for integer values of p. In this study we address these integrals with the tools
of experimental mathematics, namely by computing their numerical values to high precision, both as a
challenge in itself, and also in an attempt to recognize the numerical values as closed-form constants.
With this approach, we are able to reproduce several of the results of [8] and to find new results, both
numeric and analytic, that go beyond the previous study.

1 Introduction

A previous work by one of the present authors, together with D. Borwein and I. Leonard [8], studied the
behavior of the p-norm of the sinc function: sinc(x) = (sin x)/x. In particular, these authors considered
the function I(p) defined by:

I(p) :=
√

p

∫ ∞

0

∣∣∣∣
sin t

t

∣∣∣∣
p

dt (1)

Plots of I(p) over (0, 10) and (0, 100) are shown in Figures 1 and 2. In this study we wish to further
explore this function, both numerically and analytically. Indeed, in [8] one finds proofs of the following
composite result.

Theorem 1 For all p > 1 one has

I(p) >

√
3π

2

2p

2p + 1
>

√
3π

2

(
1− 1

2p

)
. (2)

Moreover

lim
p→∞

I(p) =

√
3π

2
, (3)

and there are real constants cs such that

I(p) ∼ 1

2

√
p

∫ π

−π

∣∣∣∣
sin(x)

x

∣∣∣∣
p

dx

∼
√

3π

2
− 3

20

√
3π

2

1

p
+

∞∑
s=2

cs
1

ps
+ · · · . (4)
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Figure 1: The function I on [2, 10]

A first challenge we set ourselves was to compute the limit value in (3) sufficiently well to recognize
the limit from numerical computation. Given the slow rate of convergence in (4) this is a very hard task,
the lower bound being of the correct order. The following related conjecture is made in [8] and is well
supported by the plots in Figures 1 and 2.

Conjecture I is increasing for p above the conjectured global minimum near 3.36 and concave for p
above an inflection point near 4.469.

Note that (4) shows that I(p) is concave increasing for sufficiently large p. While we can not fully
resolve this conjecture, we are able—inter alia—to resolve both the critical point and inflection point
to very high precision. We could not thusly identify a closed form but someone else may be able to
determine a closed form for one or both of these quantities.

2 Quadrature for highly oscillatory integrals

In a previous study of quadrature algorithms for very high precision, one of the present authors, together
with X. S. Li and K. Jeyabalan, found that Gaussian quadrature is generally the most efficient scheme
for regular functions (even at endpoints), and for moderately high precision levels (up to several hundred
digits). For functions with singularities or other difficulties at the endpoints, or for any function at very
high precision (beyond about 500 digits), these authors found that the tanh-sinh quadrature algorithm
of Takahasi and Mori is generally the most effective [5] [23].

The tanh-sinh scheme is simply the observation that if x = g(t) = tanh(π/2 sinh t), then

∫ 1

−1

f(x) dx =

∫ ∞

−∞
f(g(t))g′(t) dt ≈ h

N∑
j=−N

wjf(xj), (5)

where xj = g(hj), wj = g(hj) and N is chosen large enough that the terms of the summation are smaller
than the “epsilon” of the numeric precision being used for j > N . Note that the resulting quadrature
rule is a simple sum of weighted function values at precalculated abscissas xj , with weights wj — very
similar to Gaussian quadrature in this regard. Because of the nature of the function g(t), the transformed
integrand f(g(t))g′(t) rapidly goes to zero (together with all higher derivatives), even in (most) cases
where the original integrand function f(x) has blow-up singularities at the endpoints of the interval
[−1, 1]. Thus tanh-sinh quadrature exhibits “exponential” or “quadratic” convergence for a wide range
of integrands—dividing the interval length h by two (or, equivalently, taking twice as many abscissa
points) typically doubles the number of correct digits.
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Figure 2: The function I and its limiting value on [2, 100]

Even armed with advanced quadrature techniques, numerical evaluation of (1) to high precision (say
several hundred digits) presents numerous challenges. To begin with, it is first necessary to rewrite this
integral as one or more integrals on finite intervals. For most integrands this is handled by a simple
transformation such as:

∫ ∞

0

f(t) dt =

∫ 1

0

f(t) dt +

∫ 1

0

f(1/t) dt

t2
(6)

Unfortunately, in the case of integrals such as (1), this transformation yields, as the second integrand, the
function sin(1/t)/t2, which oscillates wildly near the origin. Partly for such reasons, this integral (with
p = 1, and without the absolute value) was selected to be one of 15 test integrals in the above-mentioned
study of quadrature algorithms [5].

As it turns out, when p is an even integer (so that the absolute value signs can be replaced by
simple parentheses), such integrals can be efficiently computed by applying a clever technique recently
introduced by Ooura and Mori [20]. Let x = g(t) = Mt/(1− exp(−2π sinh t)). Then in the case of p = 2,
for instance,

∫ ∞

0

(
sin x

x

)2

dx =

∫ ∞

−∞

(
sin g(t)

g(t)

)2

· g′(t) dt ≈ h

N∑

k=−N

(
sin g(hk)

g(hk)

)2

· g′(hk) (7)

Now note that if one chooses M = π/h, then for large k, the g(hk) values are all very close to kπ, so
the sin(g(hk)) values are all very close to zero. Thus the sum can be truncated after a modest number
of terms, as in tanh-sinh quadrature. In practice, this scheme is very effective for oscillatory integrands
such as this.

When p is not an even integer, neither than tanh-sinh nor the Ooura-Mori scheme can be used,
because the condition of regularity except at endpoints is not met due to the absolute value signs in
(1). What happens is that convergence is very slow, and even with high precision arithmetic and many
abscissa-weight pairs, accuracy is typically only a few digits. One response is to write, for integer N and
2N − 1 > |θ|,

∫ ∞

0

(∣∣∣∣
sin (t)

t

∣∣∣∣
)2 N+θ

dt =

∞∑
n=0

θn

n! 2n

∫ ∞

0

(
sin (t)

t

)2 N
(

log

(
sin(t)

t

)2
)n

dt (8)

on expanding the θ-power as an exponential series. This eliminates the absolute value signs, but unfor-
tunately the log sin term results in singularities at every integer multiple of π, and thus, sadly, is also not
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suitable for high-precision quadrature computation as it stands. We shall return to this type of integral
in Section 4.

An alternate strategy is to employ the Hurwitz zeta function, which is defined as:

ζ(p, x) :=

∞∑
n=0

1

(n + x)p
(9)

With this definition, we can derive:

I(p) :=
√

p

∫ ∞

0

∣∣∣∣
sin (x)

x

∣∣∣∣
p

dx =

√
p

πp−1

∫ 1

0

sinp (πx) ζ (p, x) dx. (10)

This can be obtained by breaking the integral in (8) on the intervals [nπ, (n + 1)π] and gathering up the
translations.

We recall that the Bateman project [15, (7), p. 24] records

ζ (s, v) =
1

Γ (s)

∫ 1

0

xv−1 (− ln (x))s−1

1− x
dx. (11)

An even more efficient scheme is given by the following formula supplied by Richard Crandall [3]:

Lemma 1 (Crandall) The complete analytic continuation of ζ(s, a) for a ∈ (0, 1), s 6= 1 + 0i, is given
by

ζ(s, a) =
1

Γ(s)

∑

n≥0

Γ(s, λ(n + a))

(n + a)s
+

1

Γ(s)

∑

m≥0

(−1)mBm(a)

m!

λm+s−1

m + s− 1
,

with the following interpretations: Γ(s, ·) is the standard incomplete gamma function, Bn is the standard
Bernoulli polynomial, λ is a free parameter with |λ| < 2π. For any case of integer s = −n ≤ 0, the Γ(s)
divergence cancels a divergent m-summand, and so ζ(−n, a) = −Bn+1(a)/(n + 1).

We chose not to use this formula because it requires access to the incomplete gamma function. Instead,
for our purposes here it suffices to use the Euler-Maclaurin summation formula [2, pg. 180]. Let m ≥ 0
and n ≥ 1 be integers, and define h = (b− a)/n and xj = a + jh for 0 ≤ j ≤ n. Further assume that the
function f(x) is at least (2m + 2)-times continuously differentiable on [a, b]. Then the Euler-Maclaurin
summation formula is:

h

n∑
j=0

f(xj) =

∫ b

a

f(x) +
h

2
(f(a) + f(b)) +

m∑
i=1

h2iB2i

(2i)!

(
f (2i−1)(b)− f (2i−1)(a)

)
+ E (12)

where B2i denote the Bernoulli numbers, and

E =
h2m+2(b− a)B2m+2f

2m+2(ξ)

(2m + 2)!
(13)

for some ξ ∈ (a, b).
As written, this formula is not particularly effective to numerically evaluate series. The strategy is

instead to evaluate a series manually for, say, N = 1000 terms, then to use the Euler-Maclaurin formula
to evaluate only the tail of the series, namely

∑
j>N f(xj). The Bernoulli numbers B2k, which are

required here, can be easily computed by recalling that for k > 0 [1, pg. 807],

ζ(2k) =
(2π)2k|B2k|

2(2k)!
. (14)

This can be rewritten as

B2k

(2k)!
=

2(−1)k+1ζ(2k)

(2π)2k
. (15)
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Figure 3: Integrand function for p = 3 (blue) and p = 3.5 (red).
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Figure 4: Fourth derivative of integrand function for p = 3 (blue) and p = 3.5 (red).

The Riemann zeta function at integer arguments can, in turn, be computed using the formula due to
Peter Borwein [10].

With a scheme to compute the Hurwitz zeta in hand, formula (10) can be used, in conjunction with
a high-precision quadrature routine, to compute I(p).

One question here is whether to use Gaussian quadrature or tanh-sinh. Because the integrand func-
tion sinp(πx)ζ(p, x) for various p seems quite well-behaved, our first inclination was to use Gaussian
quadrature. This works quite well for p = 3, for instance, but then we found that it gave very poor
results for p = 3.5 — even with a very small h and a correspondingly large number of evaluation points,
the accuracy was only a few digits. We naturally suspected a programming “bug,” but after observing
the same behavior whether we coded the algorithm in our own ARPREC software [4] or in Mathematica,
we looked elsewhere.

As it turns out, this strange behavior is due to the fact that when p = 3.5, while the integrand function
and its derivatives are well-behaved up to the third derivative, the fourth derivative exhibits severe blow-
up singularities at 0 and 1. This is illustrated in Figure 3, which shows the function sinp(πx)ζ(p, x)
for p = 3 (blue) and p = 3.5 (red), and Figure 4, which shows the fourth derivatives of these functions
with the same color scheme. Because of these singularities in the higher-order derivatives, Gaussian
quadrature gives poor results. The tanh-sinh scheme, in contrast, is not bothered by these singularities
and gives excellent exponential convergence to high-precision values.

Our first goal with this computer program was to find the minimum of the function I(p) near p = 3.36
and also the point of inflection near p = 4.46. We did this by starting with a “comb” of four equispaced
abscissa values (five in the case of the inflection point) near 3.36 (4.46 for the inflection point). We
evaluated I(p) for these values of p, then used polynomial regression to fit these (p, I(p)) pairs to a
quartic curve (quintic for the inflection point). We then used Newton iteration to calculate a new
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estimate for the zero of the derivative of this function (zero of the second derivative, for the inflection
point). This new estimate for the p at the critical point was then taken as a new element of the “comb,”
and the process was repeated, until successive new elements differed by an amount roughly equal to the
square root of the “epsilon” of the numeric precision being used, which is as good as can be expected.

This scheme appeared to work quite well. We obtained the results below and believe them to be
accurate to the precision shown:

• p at critical point (conjectured minimum):
3.36354876022451532816334301553541106982340973010200

93393024274526853624322808822111780630522743546839
65168546672961485462827077846841786411218613089950
8745727158152731

• I(p) at critical point (conjectured minimum):
2.09002860269180412254956491550781177353834974949186

75161558946115770419271274624491776411344314758189
93461306711846030747363223735023118868888017902470
29802232734781888386061734850631082243846394257215
38511911622108100945818827513170410889481080593453
364388301851618971531246883340068963419076

• p at inflection point:
4.46987788658564578917780820674988693171596919867299

11634253975525983837941459705451646979509928424279
4233718363336416486397093

3 The sinc norm at integer values

For integer M ≥ 1, on expressing ζ(M, x) in terms of Ψ(M−1)(x) and integrating by parts M -times we
have also the representation

I(M) =

√
M

πM−1

∫ 1

0

sinM (π x) ζ (M, x) dx =

√
M

Γ (M) πM−1

∫ 1

0

log Γ (x)
∂M

∂xM
sinM (π x) dx.

Note also that when M is even we may substitute x = 1− x and average to get

I(2N) =

√
2N

π2N−1

∫ 1

0

sin2N (π x) ζ (2N, x) dx = −
√

N/2

Γ (2N) π2N−1

∫ 1

0

log

(
sin(πx)

π

)
∂2N

∂x2N
sin2N (π x) dx.

We can to use these last two formulae—via their Fourier expansions and Parseval’s formula—to recapture
the known closed form for even integers and to provide something new for odd integers. Indeed we have

− ln

(
sin (π t)

π

)
= log (2 π) +

∞∑
n=1

cos (2n π t)

n
, (16)

1

2
− t =

1

π

∞∑
n=1

sin (2n π t)

n
, (17)

log Γ (t) = −1

2
log

(
sin (π t)

π

)
+ (γ + ln (2 π))

(
1

2
− t

)
+

1

π

∞∑
n=1

log (n)

n
sin (2n π t) (18)

where the final composite Fourier series is originally due to Kummer [13]. Also, it is known [7] and easy
to show inductively that

sin2N−1(π t) =
1

22N−2

N∑
n=1

(−1)n+1

(
2N − 1

N − n

)
sin

(
(2n− 1) π t

)
(19)

and

sin2N (π t) =
1

22N−1

(
1

2

(
2N

N

)
+

N∑
n=1

(−1)n

(
2N

N − n

)
cos(2n π t)

)
. (20)
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Finally, for completeness, we recall that for 0 ≤ t ≤ 1,

∞∑
n=1

sin(2 π nt)

n2N+1
=

(−1)N−1

2
(2π)2N+1 φ2N+1 (t) (21)

and

∞∑
n=1

cos(2 π nt)

n2N
=

(−1)N−1

2
(2π)2Nφ2N (t) , (22)

where φN (x) is the Nth Bernoulli polynomial, normalized so that the highest-order coefficient is 1/N !,
see [22, p. 430]. Now it transpires that the first two terms of Kummer’s formula (16) and (17) are
orthogonal to (19) and hence

I(2N − 1) =

√
2N − 1

Γ (2N − 1) (2π)2N−2

∞∑
n=1

∫ 1

0

log (n)

n
sin (2n π t)

∂2N−1

∂x2N−1
sin2N−1 (π x) dx

=
1

π

√
2N − 1

Γ (2N − 1) (2π)2N−2

∞∑
n=1

N∑
m=1

(−1)m+1
(
2N−1
N−m

)
log (n)

n
(23)

×
∫ 1

0

sin (2n π t)
∂2N−1

∂x2N−1
sin

(
(2m− 1) π t

)
dx

=
(−1)N

√
2N − 1

Γ (2N − 1) 4N−1

∞∑
n=1

N∑
m=1

(−1)m
(
2N−1
N−m

)
(2m− 1)2N−1 log (n)

n

×
∫ 1

0

sin (2n π t) cos
(
(2m− 1) π t

)
dx

=
1

π

(−1)N
√

2N − 1

Γ (2N − 1)

∞∑
n=1

N∑
m=1

(−1)m

(
2N − 1

N −m

) (
m− 1

2

)2N−1
log (n)

n2 − (
m− 1

2

)2

=
1

π

(−1)N
√

2N − 1

Γ (2N − 1)

N∑
m=1

(−1)m

(
2N − 1

N −m

) (
m− 1

2

)2N−1 ∞∑
n=1

log (n)

n2 − (
m− 1

2

)2 . (24)

Let us set

L(x) :=

∞∑
n=2

log(n)

n2 − x2
= −

∞∑
s=1

ζ′(2s) x2s−2,

where the power series has radius of convergence two, and the derivative (here and elsewhere) is with
respect to the first variable. For general x, we may similarly write

L(x) =

bxc∑
n=2

log(n)

n2 − x2
−

∞∑
s=1

ζ′ (2s, dxe) x2s−2, (25)

with radius of convergence dxe. Thence we obtain

I(2N − 1) =
√

2N − 1 · (−1)N

(2N − 2)!
·

N∑
m=1

(−1)m

(
2N − 1

N −m

) (
m− 1

2

)2N−1 L (
m− 1

2

)

π
. (26)

In particular I(1) = ∞ and

I(3) =
3
√

3

2π

∞∑
s=1

9s − 1

4s
ζ′(2s) (27)

= 2.0930867689497938424321336535746596878058055573140 . . . .

I(5) = −5
√

5

64π

(
1

3
L

(
1

2

)
− 81

2
L

(
3

2

)
+

625

6
L

(
5

2

))
(28)

= 2.1061252846080842088918826986669843292200478501493 . . . ,
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since

−L
(

5

2

)
=

4

9
log (2) +

∞∑
s=1

(
ζ′ (2 s) +

log (2)

22 s

) (
5

2

)2 s−2

while L (
1
2

)
and L (

3
2

)
are as already engaged in (27). Such computations can be done quite efficiently to

much higher precision in either Maple or Mathematica. Richard Crandall has noted the following pretty
formula

I(3) =
3
√

3

8
π + 6

√
3

∫ ∞

0

t2

(t2 + 1) (t2 + 9) (eπ t − 1)
dt. (29)

Herein, the integral term only accounts for 2.5% of the value.
For even integers the computation is much simpler as the Fourier series have only cosine terms and

so are orthogonal on [0, 1]. We arrive at:

I(2N) =
√

2N

∫ ∞

0

(
sin x

x

)2N

dx =
√

2N · (−1)N

(2N − 1)!
·

N∑
m=0

(−1)m

(
2N

N −m

)
m2N−1 π

2
. (30)

Hence I(2) = π/2, I(4) = 2π/3 = 2.0943951023932 . . . and I(6) = 11
√

6π/40 = 2.1162072197671 . . ..
Result (30) can be found in Bromwich [11, Exercise 22, p. 518], where it is attributed to Wolstenholme,
and in many other places—including two relatively recent articles on integrals of more general products
of sinc functions [6, 9]. We recapitulate with a theorem.

Theorem 2 For integer N ≥ 1 one has

I(2N − 1) =
√

2N − 1 · (−1)N

(2N − 2)!
·

N∑
m=1

(−1)m

(
2N − 1

N −m

) (
m− 1

2

)2N−1 L (
m− 1

2

)

π
, (31)

with L given by (25), while

I(2N) =
√

2N

∫ ∞

0

(
sin x

x

)2N

dx =
√

2N · (−1)N

(2N − 1)!
·

N∑
m=0

(−1)m

(
2N

N −m

)
m2N−1 π

2
. (32)

The limit revisited For the limit of the I(p), as p →∞ the best we could obtain is 2.1708037537 . . ..
This required computing I(p) to high precision, using the Hurwitz integral representation (10), for
p = 4, 16, . . . , up to p = 412, and then using Richardson extrapolation. This is consistent with the actual
closed form

√
3π/2 = 2.1708037636748029781 . . . but certainly does not provide compelling evidence.

A discussion of the problems entailed in using formula (32) is given in [7].

4 More general oscillatory integrals

More complex integrands of the form studied in [6] can be handled by variations of (10). For example

∫ ∞

−π

∣∣∣∣
sin (x)

x

∣∣∣∣
p ∣∣∣∣

sin (x/2)

x/2

∣∣∣∣
q

dx =
2

(2π)p+q−1

∫ 1

−1

sinp (πx) sinq
(
π

x

2

)
ζ

(
p + q,

x

2

)
dx

+

∫ π

0

(
sin (x)

x

)p (
sin (x/2)

x/2

)q

dx. (33)

Likewise, logarithmic integrals of the form in (8) can be treated as follows. For p > 1, q ≥ 0 and q
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integer we write

I(p, q) :=

∫ ∞

0

∣∣∣∣
sin (t)

t

∣∣∣∣
p (

log

∣∣∣∣
sin(t)

t

∣∣∣∣
)q

dt (34)

=
1

πp−1

∫ ∞

0

∣∣∣∣
sin (πt)

t

∣∣∣∣
p (

log

∣∣∣∣
sin(πt)

π

∣∣∣∣− log |t|
)q

dt (35)

=
1

πp−1

q∑
r=0

(
q

r

)
(−1)r

∫ ∞

0

∣∣∣∣
sin (πt)

t

∣∣∣∣
p (

log

∣∣∣∣
sin(πt)

π

∣∣∣∣
)q−r

(log t)r dt

=
1

πp−1

q∑
r=0

(
q

r

)
(−1)r

∫ ∞

0

|sin (πt)|p
(

log

∣∣∣∣
sin(πt)

π

∣∣∣∣
)q−r

(log t)r

tp
dt

=
1

πp−1

q∑
r=0

(
q

r

)
(−1)r

∞∑
n=0

∫ 1

0

sinp (πt) logq−r

(
sin(πt)

π

)
logr(n + t)

(n + t)p
dt,

where this last expression has again broken up the integral. On exchanging the integral and sum, we we
arrive at our final theorem:

Theorem 3 For all real numbers p > 1 and integers q ≥ 0 one has

∫ ∞

0

∣∣∣∣
sin (t)

t

∣∣∣∣
p

logq

∣∣∣∣
sin(t)

t

∣∣∣∣ dt =
1

πp−1

q∑
r=0

(
q

r

) ∫ 1

0

sinp (πt) logq−r

(
sin(πt)

π

)
ζ(r) (p, t) dt (36)

where derivatives of the Hurwitz zeta function are taken with respect to the first variable.

Observe that for computational purposes it is preferable to write

∫ ∞

0

∣∣∣∣
sin (t)

t

∣∣∣∣
p

logq

∣∣∣∣
sin(t)

t

∣∣∣∣ dt =
1

πp−1

∫ 1

0

sinp (πt)

q∑
r=0

(
q

r

)
logq−r

(
sin(πt)

π

)
ζ(r) (p, t) dt.

Note that formula (36) recaptures (10). Observe also that the Fourier series of log
(

sin(πt)
π

)
was recorded

in equation (16). To illustrate the virtues of Theorem 3, with p = 3 and q = 1, 2, 3 we computed in Maple
that

I(3, 1) = − 0.21269444360025161284678764161199575472915948205259008888

3795304046951433904376033124895536374597320

I(3, 2) = + 0.15046077234624478828956577555259908739964416463107895870

0949532207087021383282901213520074598205646

I(3, 3) = − 0.21673166110791925450854193518248175083146189217945509989

946163130368897719634815944215473455858421

Each hundred digit computation took roughly three minutes on a modern laptop.
We can also handle quite general sinc products of the sort analyzed in [6]. Let 0 < n1 ≤ n2 ≤ · · · ≤ nN

be natural numbers. Set L := LCM(n1, n2, . . . , nN ) and set M := n1 · n2 · . . . · nN . Then

∫ ∞

0

N∏

k=1

sinc

(
x

nk

)
dx =

M/L

(2Lπ)N−1

∫ 1

0

N∏

k=1

sin

(
2L

nk
πx

)
ζ(N, x) dx. (37)

For example

1

51840000 π6

∫ 1

0

sin4 (10 π x) sin3 (6 π x)Ψ (6, x) dx = −2.81369873784840103 . . . = −286601

320000
π.

Equation (37) is most efficacious when the number of distinct integers nk, and hence L, is small. The
factor of 2 is not needed when each integer occurs an even number of times. To conclude, we illustrate
in Figure 5 the effect of the Hurwitz kernel for sin2(x)/x2. The increases in the values of the function on
[0, 1] exactly balance the amount needed to compensate for the values on [1,∞].
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Figure 5: sin2(πx)
x2 (blue) and sin2(πx)ζ(2, x) (black).

5 Concluding remarks

We found this study stimulating for several reasons.

1. Such numerical computations to high or extreme precision are quite difficult and worthwhile chal-
lenges in themselves.

2. In the integer cases for which we have a closed form we obtain excellent test integrals for different
high-precision numerical methods.

3. The numerical tools presented new analytic opportunities such as the discovery of the formula (26)
which represented an unexpected windfall. It is probably possible to emulate that result for integer
p, q in (33).

4. One other unexpected discovery in this study is the fact that the function sinp(πt)ζ(p, t) (when
p = 3.5) is a striking example of a function that appears entirely smooth and well-behaved, but
which in fact cannot be integrated using Gaussian quadrature to more than a few digits, due to
bad behavior of a higher derivative (the fourth derivative in this case). And for the same reason it
is yet one more example of the power of the tanh-sinh quadrature algorithm, since the tanh-sinh
scheme integrates this function without difficulty to very high precision.

5. Even partial failures, like the limited success in computing limp→∞ I(p), have left us with a much
better understanding of the issues involved with such experimental techniques.

6. Finally, our inability to determine closed forms for the critical point or the inflection point has still
resulted in high-precision data sets that can be revisited if and when inspiration strikes.
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