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ABSTRACT 
Individualized and personalized learning has taken on different 

forms in the context of digital learning environments. In intelligent 

tutoring systems, individualization is focused on estimation of the 

cognitive mastery of the student and the speed at which the student 

progresses through the material is conditioned on her individual 

rate of mastery. In prior work, a recommendation framework based 

on learner behaviors, rather than learner’s cognitive abilities, was 

proposed and developed. This framework trained a behavior model 

on millions of previous student actions in order to estimate how a 

future learner might behave. This behavior model can incorporate 

the amount of time spent on each course page, such that the model 

can take into account a learner’s previous behaviors and provide a 

specific course page recommendation to where the learner may 

want to go next where they can be expected to spend a significant 

amount of time on. We stipulate that this approach touches on 

factors more aligned with personalization, since the prediction of 

behavior is an aggregation of the student’s cognitive abilities, 

affective state, and preferences. This model was applied to a hand-

picked pair of MOOC offerings where model results were expected 

to be favorable. In this paper, we investigate the suitability of this 

behavioral prediction approach by applying it to an expanded set of 

13 UC Berkeley MOOCs run on the edX platform. Preliminary 

results from applying the time-augmented Recurrent Neural 

Network (RNN) based behavior model approach are presented and 

compared to baseline models. These findings contribute to the 

discussion of when and in what context this form of collaborative 

based personalized recommendation is appropriate in MOOCs. 

Author Keywords 
Adaptivity; Personalization; MOOC; RNN; Behavioral modeling; 

Navigational efficiency 

INTRODUCTION 
Digital learning environments have experienced tremendous 

growth in use over the past several decades. In particular, modeling 

of cognitive knowledge, skills, and abilities allows Intelligent 

Tutoring Systems (ITS) to individualize to a student’s particular 

pace of cognitive mastery of the material. Individualization to a 

student’s demonstrated abilities also manifests itself in computer 

adaptive tests, aimed at increasing the efficiency, accuracy, and 

precision of high-stakes summative assessments. Massive Open 

Online Courses (MOOC), a relative newcomer to the landscape of 

digital learning environments, are promising candidates for student 

modeling given the high volume of event log data collected by these 

popular platforms. Like most material in post-secondary education, 

MOOCs are largely devoid of the kind of knowledge, skills, and 

abilities tagged to problems in ITS. Why no tagging has emerged is 

debatable. One argument has been that these college level courses 

are of a more conceptual nature than the material found in the ITS 

domains of mostly K-12 STEM, and thus do not lend themselves 

well to theories of fine-grained atomic skill acquisition. There are 

also far fewer assessments in the design of a typical MOOC than in 

ITS, thereby limiting the granularity of skills that can be assessed 

with precision. Other reasons for the lack of tagging are less 

principled, including the digitization of existing residential courses 

simply being the path of least resistance. No matter the cause for 

differences in pedagogical approach, billions of events have been 

logged by learners utilizing MOOCs. Given the open navigational 

interface of the MOOC, we see the mining of these logs as an 

opportunity to learn pathways learners are taking through the 

courseware which are a function of their cognitive processing of 

the material, affect, and personal preferences. 

This paper applies a behavior modeling approach that utilizes 

Recurrent Neural Networks (RNNs) to learn patterns of student 

navigational behaviors in MOOCs. These models can then be used 

as part of a personalized recommendation framework that seeks to 

create more efficient navigations for the learner, with the potential 

learning benefit being a reduction in time on task to achieve the 

same performance goals (e.g. certificate / grade) or possibly even 

an increase in performance without increasing time on task. This 

paper helps investigate the extent to which such a modeling 

approach generalizes to different types of MOOCs. Additionally, 

this paper continues the research conversation on design 

considerations for personalized recommendation in MOOC 

contexts. The model accepts a sequence of navigation behaviors, 

including the amount of time spent on each page, and outputs a 

probability distribution over the next possible pages a student might 

navigate to and how much time she is expected to spend on that 

page. By allowing a learner to jump to the page they are predicted 

to spend the most time on next, time spent by the user searching for 

the relevant page could be saved. 

RELATED WORK 
Personalized adaptation in learning contexts has been researched 

from a variety of angles. PERSEUS [1] was a framework that 

provided social navigation support, topic-based navigation support, 

concept-based navigation support, and adaptive recommendation in 

educational hypermedia systems. ELM-ART [2] was one of the 

first Web-based Intelligent Educational systems that offered a 

combination of Intelligent Tutoring and Adaptive Hypermedia 

technologies. In this paper, a collaborative filtering approach is 

used to determine potentially useful resources to recommend to 

students. Behavioral states of the current student are compared to 

the abstract behavioral state learned from many students in 

previous versions of the course. An alternative approach towards 

recommendation is content-based recommendation [3] [4]. In the 

content-based approach, recommenders seek to infer relationships 

between resources by their content. In the case of MOOCs, this 

could be video transcripts matched to text of an assessment problem 

to determine how related these two elements were. This is a viable 

approach towards recommendation in MOOC contexts as well; 



however, content-based recommendation is a topic for future work 

as we explore the utility of the collaborative based method. 

Sequential modeling is required to recognize patterns in 

navigational behaviors and how past navigations might affect 

future navigation predictions. Several sequential models could be 

suitable for this task. In other work, tensor factorization was used 

to model the learning process for students in order to predict future 

student performance [5]. Such an approach might also be suitable 

for behavior prediction, but is not explored in this paper.  

Figure 1 Screenshot of Recommendation Interface (bottom of 

page) in a live 2017 edX MOOC 

The work presented in this paper continues work where behavior in 

a single MOOC was modeled using a Recurrent Neural Network 

[6] at a level of granularity where actions such as pausing videos, 

changing video lecture speed, viewing and answering problems, 

and navigating through the course page were included as behaviors 

to be modeled. In that work, the RNN-based Long Short-Term 

Memory models proved to be successful in capturing signal better 

than n-gram and course structure baselines. This type of RNN-

based model approach was then additionally used as part of a live 

implementation of a recommendation system [7] deployed in a 

2016 edX MOOC. From that live implementation, a student’s 

behaviors during the 2016 offering of the MOOC were modeled 

using a predictive model of behaviors from the 2015 offering of that 

same course. In that work, actions were modeled at the granularity 

of course pages, rather than the more specific actions such as 

changing video speed or pausing videos. Thus, the granularity at 

which the behaviors were modeled was slightly different compared 

to the initial work. Once again, the LSTM and RNN based models 

found better predictive accuracy than n-gram and course syllabus 

baselines. The recommendation framework produced a 

personalized and live recommendation to the student, indicating 

that the student is likely to spend a significant amount of time on 

this recommended course page. Figure 1 shows what the student 

saw on their course page. The recommendation framework 

consisted of a JavaScript snippet automatically embedded at the 

bottom of the edX MOOC web page. Note the presence of a large 

green Go button. The URL that this Go button leads to was 

informed by the underlying RNN-based behavior model, where the 

current student’s behaviors were fed as input. This button would 

take the student directly to the page they were predicted to spend 

over 10 seconds on. In the cases where this suggestion was not 

simply the next page, this direct linking is anticipated to save the 

learner time. 

In this paper, the RNN based behavior model is applied to a wider 

selection of MOOCs and preliminary predictive results are 

reported. This type of investigation will help inform when the 

behavior-based personalization framework for MOOCs may be 

beneficially applied and when conditions are not conducive to this 

approach. 

When considering personalized recommendation for a MOOC, 

several important design choices must be considered. For some 

courses, it may be the case that a navigational behavior model can 

substantially increase the efficiency with which a student works 

through a course due to possibly complex course design with a high 

degree of referencing of earlier material in the assessments. Other 

courses, however, may not be well suited for navigation 

recommendation, but instead may have a diverse selection of 

content well suited towards content-based recommendation. How 

and what to recommend content in MOOCs is an open and ongoing 

research task. This paper specifically addresses how well a 

navigational behavior model, based on recurrent neural networks, 

predicts student navigations in a variety of courses. It is expected 

that some courses will benefit more strongly from behavior 

modeling compared to others. Testing other types of models for 

different types of MOOCs remains an open research task. 

METHODS 
The input to the RNN model consists of the history of courseware 

URLs that the student has visited. The output of the model consists 

of a probability distribution over all possible courseware URLs. 

Thus, the model outputs a probability for every possible next 

courseware URL navigation, and these probabilities sum to 1.  

The model was “time-augmented”, whereby the input sequence 

also included the amount of time spent on each page, estimated by 

the difference between the timestamps for that page and the next 

page (clipped to 30 minutes, max). The output probability 

distribution was also augmented with time, where the label of the 

next page accessed included the amount of time spent on that page. 

Time is represented as a concatenation of the index representing the 

unique pages with one of four time duration categories.  

The underlying mechanics of the behavior model are realized 

through a Recurrent Neural Network (RNN) approach. RNNs [8] 

were chosen because their sequential model topology lent itself 

nicely to our navigational sequence prediction task. RNNs have 

shown recent successes in similarly structured modeling tasks in 

the domain of natural language [9] and have been previously 

applied to a math tutoring setting to predict the correctness of 

responses to skills [10]. RNNs, in theory, are able to model time 

dependent relationships between events in arbitrarily long 

sequences without the need for manual feature engineering. 

In this paper, accuracy is measured as “recall @ 1,” meaning that a 

prediction is considered correct if the highest probability course 

page predicted in the output (regardless of time category) is the 

actual next course page visited by the student. This style of 

sequential modeling, whereby the input is a long sequence of 

previous elements and the output is a probability distribution over 



all possible elements, is analogous to the approach used in language 

modeling [11].  

An RNN uses all the same components of a simple feed-forward 

neural network, consisting of an input layer, an arbitrary number of 

hidden layers, and an output layer. The difference is that this 

structure is repeated for every time slice of the model, dictated by 

the maximum length sequence among the learners. The nodes in the 

hidden layer(s) of the network are all-connected to the hidden nodes 

in the hidden layer of the next time slice of the model. The weights 

of the network, including the weights associated with the between 

time slice connections, are shared in every time slice of the model. 

Formally, RNNs maintain a latent, continuous state ht. The RNN 

model is parameterized by the input weight matrix Wx, recurrent 

weight matrix Wh, initial state h0, and output matrix Wy. bh and by 

are biases for the latent and output units. σ and tanh are sigmoidal 

squashing functions that compress input, representing the sigmoid 

and hyperbolic tangent functions respectively.  

ht = tanh(Wxxt + Whht-1 + bh) 

yt = σ(Wyht + by) 

 

Long Short-Term Memory (LSTM) [11] is a popular variant of the 

RNN, whereby the hidden memory unit is augmented with 

additional gating logic that helps the model learn about long range 

dependencies. This gating logic learns when to retain and when to 

forget information in the latent state. Each hidden state ht is 

replaced by an LSTM cell unit that maintains the additional gating 

parameters.  

ft = σ(Wfxxt + Wfhht-1 + bf) 

it = σ(Wixxt + Wihht-1 + bi) 

C’t = tanh(WCxxt + WChht-1 + bC) 

Ct = ft × Ct-1 + it × C’t 

ot = σ(Woxxt + Wohht-1 + bo) 

ht = ot × tanh(Ct) 

 

fi, it, and ot represent the gating mechanisms used by the LSTM to 

determine when to forget, input, and output data from the cell state, 

Ct. C’t represents an intermediary candidate cell state that is gated 

to update the next cell state. ht and Ct are the memory components 

that are used to propagate information between timesteps and 

inputs, thus passing information to future predictions in the 

sequence.  

LSTM models contain several hyperparameters that affect how the 

model performs on training data [12]. For these preliminary results, 

the number of LSTM layers, the number of nodes in each layer, and 

the optimization algorithm were varied. LSTM layers varied 

between 1, 2, or 3, the number of nodes per layer were 32, 64, 128, 

or 256, and RMSProp and ADAM were tried as optimization 

methods [13]. This indicates that a total of 24 different 

hyperparameter sets were fit per dataset. For each MOOC dataset, 

30% of students’ actions were held out as a test set. Of the 70% of 

the student data used as the training set, 10% was held out as a hill-

climbing set. When the calculated loss on the hill-climbing set did 

not improve for 3 consecutive epochs, training was stopped and the 

learned weights were saved; this process is known as “early-

stopping,” as a method to account for over-fitting. The set of 

hyperparameters that had the highest accuracy on the hill-climbing 

set was then saved, and the model was then tested on the 30% held-

out test set. Thus, of the 24 hyperparameter sets, only the best 

performing set according to hill-climbing accuracy was tested on 

the 30% held out set. This process was repeated for both the vanilla 

LSTM approach and the time-augmented LSTM approach [7].  

BASELINE MODELS 
Two baseline models are used. The first is the “Next Syllabus 

URL” model, which always predicts that the student will go to the 

next URL in the course structure. This is equivalent to the student 

always clicking the Next button rendered in the browser. The 

second baseline is the “Next Most Common URL” model, which 

predicts the course page that most commonly followed a particular 

URL in the 70% of training data. This is equivalent to a 2-gram 

approach [14]. The syllabus model is a useful baseline since it 

relates directly to the implied structure of the course set by the 

course instructor. The next most common model is a simple yet 

intuitive heuristic that accounts for very common deviations in 

navigation behavior from the syllabus model. 

DATASETS 
For this preliminary work, 13 UC Berkeley MOOC datasets from 

courses administered in late 2015 to 2016 from the edX platform 

were analyzed. These datasets range from as few as 204 students to 

as many as 13,998 students who answered at least one quiz 

question. The number of navigational actions recorded ranges from 

as few as 8,421 to as many as 1,268,706 actions. Note that this is a 

filtered subset of actions, whereby a process of “duplicated 

navigations” were removed. Thus, if a student performs a 

navigation to the same page, either through refreshing the page or 

navigating to the same page via the browser navigation buttons, 

those navigations were removed. Each student sequence of 

navigations was also truncated to the length of the 99.5 percentile 

length for each particular course’s dataset. This helps alleviates 

training time by allowing for a smaller length of vector as input to 

the LSTM model structure. Additionally, there exists the possibility 

of very long student sequences that are produced by web crawlers 

or other types of bots, and this helps to mitigate some of those 

concerns.  

Table 1 Dataset Sizes. Column abbreviations stand for 

Number of (N)avigational behaviors, Number of (S)tudents in 

the dataset, Number of unique (C)ourse pages that exist in the 

syllabus, and Measure of (E)ntropy. 

Table 1 displays four columns: (N) Number of navigational 

behaviors, (S) Number of students in the dataset, (C) Number of 

unique course pages that exist in the syllabus, (E) Measure of 

BerkeleyX Course  N S C E 

BJC.3x 1T2016 23435 231 81 0.42 

BJC.4x 1T2016 20004 204 115 0.55 

ColWri2.2x 1T2016 792577 13998 54 0.36 

ColWri2.3x 1T2016 91569 1570 46 0.21 

ColWri.3.10 1T2016 25558 814 24 0.46 

ColWri.3.11 1T2016 18358 555 25 0.48 

ColWri.3.12x 1T2016 14859 416 28 0.55 

ColWri3.1x 2_3T2015 33852 767 30 0.65 

ColWri3.2x 2T2016 8421 210 27 0.42 

ColWri3.3x 2T2016 12729 226 33 0.54 

EE40LX 2T2015 1268706 9605 287 0.61 

Fin101x 1T2016 65466 1534 113 0.62 

Policy01x 1T2016 50038 637 91 1.12 



entropy [15], a measure of variation in navigational pathways 

generated by treating student paths through a course as a Markov 

Chain and then computing the entropy of the transition probability 

matrix. A higher amount of entropy indicates a larger amount of 

variation in navigation. The Course column corresponds to the 

recorded course ID logged by edX. Each of these courses have the 

following proper titles; BJC refers to the Beauty and Joy of 

Computing (CS principles), parts 3 and 4. ColWri is short for 

College Writing, and each of the courses focus either on a set of 

novel(s) or different writing styles. EE40LX refers to an Electrical 

Engineering course pertaining to Electronic Interfaces. Fin101x 

refers to a finance course about how to save money. Policy01x 

refers to a public policy course relating to UC Berkeley’s 

“Eightfold Path”, whereby the course discusses solving public 

policy problems. 

 

PRELIMINARY RESULTS 
The first step in selecting a behavioral model for a course was to 

tune the hyper parameters of the model and Table 2 shows the set 

of hyperparameter values that performed best on the 10% hill-

climbing set. The hyperparameters for both the vanilla LSTM and 

the Time-Augmented LSTM (TLSTM) models are shown. The 

hyperparameters are displayed in the format (L, N, E, O), standing 

for Layers, Nodes, Epochs, and Optimizer. Layers represents the 

number of LSTM layers in the model, Nodes represents the number 

of nodes per LSTM layer, Epochs represents the epoch at which the 

best hill-climbing accuracy was produced, and Optimizer 

represents the best optimizer, which is either Adam or RMSprop, 

denoted as A and R in the table respectively. 

Table 2 Best Hyperparameter Values According to Hill 

Climbing Accuracy 

BerkeleyX Course LSTM TLSTM 

BJC.3x 1T2016 1, 32, 81, A 1, 64, 41, A 

BJC.4x 1T2016 1, 32, 50, R 1, 32, 69, R 

ColWri2.2x 1T2016 1, 256, 9, A 1, 256, 10, A 

ColWri2.3x 1T2016 3, 64, 35, R 1, 64, 42, A 

ColWri.3.10 1T2016 2, 256, 37, A 1, 64, 31, A 

ColWri.3.11 1T2016 2, 64, 31, A 2, 128, 24, A 

ColWri.3.12x 1T2016 1, 256, 16, A 2, 32, 42, R 

ColWri3.1x 2_3T2015 1, 64, 48, A 2, 64, 36, R 

ColWri3.2x 2T2016 2, 32, 57, A 1, 64, 33, A 

ColWri3.3x 2T2016 2, 128, 46, A 1, 32, 37, R 

EE40LX 2T2015 2, 256, 33, A 1, 256, 15, R 

Fin101x 1T2016 2, 64, 25, A 2, 64, 53, A 

Policy01x 1T2016 1, 256, 20, A 3, 128, 60, A 

There did not exist a single set of hyperparameters that performed 

universally best across all datasets. In 19 of the 26 dataset+model 

formulation combinations, the Adam optimizer was found in the 

best performing hyperparameter set. In 14 of the 26 these 

combinations, 1 layer models performed best, while the remaining 

12 had either 2 or 3 layers. The number of nodes and the number of 

epochs varies throughout. These preliminary results indicate a need 

for a separate grid search each time an RNN-based model is utilized 

for MOOC behavior recommendation. 

Table 3 presents results of the different models applied to the 13 

BerkeleyX MOOCs. The 4 models shown are Course Syllabus (S), 

Next Most Common (NMC), Vanilla LSTM (LSTM), and Time-

Augmented LSTM (TLSTM). The accuracy is the model’s average 

performance across all students in the 30% held-out test set of each 

dataset. Thus, the NMC and LSTM models were trained on the 

same 70% of data and tested on the same 30% test set. The syllabus 

model is not a trained model, so its accuracy depends purely on the 

test set. The last 3 columns of the table show the percentage 

increase in performance of each model over the Course Syllabus 

baseline, with the highest percentage increase bolded. For example, 

% NMC / S referms to the absolute accuracy increase of the NMC 

model over the S model converted to a percentage of the accuracy 

of the S model. This gives a sense of how much the models are 

improving relative to the accuracy of the S model 

 In 10 out of the 13 courses tested, the TLSTM model has the best 

performance of the four tested models. In 2 of the remaining 3, the 

vanilla LSTM model performed the best. In one course, the NMC 

model shows the best performance. The difference in model 

performance could be due to a variety of factors. There was clear 

variation in the relative performance benefit of the TLSTM model 

over the S model, compared to the benefit of the NMC over the S 

model. For example, for ColWri2.2x 1T2016, NMC outperformed 

S by just 0.04%, while the TLSTM outperformed S by 9.49%. For 

BJC.4X 1T2016, the relative improvement of NMC / S 

outperformed the TLSTM / S again. These preliminary results 

indicated that in the general case, the TLSTM approach was, as 

expected, the strongest performing model, but for some types of 

datasets, the TLSTM was not generalizing well to the test set.  

When comparing model performance, it is useful to see to what 

extent different models agree or disagree given the same test data. 

Figure 2 compares how often the Syllabus and the TLSTM models 

agreed on test set prediction. Each bar represents 0 to 100% 

correctness, where 100% correctness comprises the set of test set 

predictions that at least one of the Syllabus or the TLSTM model 

predicted correctly. Thus, in this graph, each bar examines to what 

extent both models either both made the same correct prediction 

and to what extent one model made a correct prediction while the 

other model made an incorrect prediction. The blue part of each bar 

represents the percentage of correct predictions that were correctly 

predicted by both models. The orange component represents the 

proportion of correct predictions that the Syllabus model predicted 

correctly, but the TLSTM model predicted incorrectly. The gray 

component represents the proportion of predictions that the 

TLSTM model predicted correctly, but the Syllabus model 

predicted incorrectly. Note that these are based off the raw number   

of correct and incorrect predictions, which is slightly different from 

the accuracy metric presented in Table 3, where accuracies are 

averaged across students rather than by raw correct and incorrect 

predictions. This difference is due to the fact that students have 

varying length sequences. Thus, when looking at accuracy among 

all possible predictions, sequences that are longer than average will 

affect the average more significantly, whereas when accuracy is 

averaged across all students, the importance of longer sequences is 

weighted similarly to shorter length sequences. This figure helps 

provide a sense of the variation in how often the Syllabus and 

TLSTM models agree and disagree with one another. It is clear 

from the figure that the TLSTM generates a larger proportion of 



uniquely correct predictions. Additionally, the degree to which the 

TLSTM outperforms the Syllabus model varies between courses. 

Using the four course attributes from Table 1 as features in a linear 

regression to the percent improvement of TLSTM over the Syllabus 

model from Table 3, the following model resulted (after 

normalizing all terms between 0 and 1): y = 0.652 + 2.49 × 

NumBehaviors –1.37 × Students –2.19 × Pages +0.54 × Entropy. 

Figure 2 Model Correctness as Percentages of Either Model 

Predicting a Specific Navigation Correctly 

 
 

 
DISCUSSION AND FUTURE WORK 
The preliminary results here indicate that the TLSTM model 

generally performed above the Syllabus and NMC baselines. High 

volume of data (NumBehaviors) and high variation in pathways 

(Entropy) contributed most positively to the TLSTM’s predictive 

performance over the course syllabus baseline, according to a linear 

regression.  

Future work is planned to expand this analysis to a multitude of 

courses, including many courses not administered by BerkeleyX. 

We also intend to include a greater number of course attributes in 

our regression analysis, including number of assessment problems 

in the course, certification rate, level of instructor or GSI 

involvement in the forums, among other attributes. There is 

potentially a case to be made for this personalized guidance being 

most helpful in low-touch self-paced courses, which we will 

explore further. 

When should data be used to adapt the courseware versus augment 

the course with recommendations? How do we work towards 

cognitive based adaptivity from observational data while avoiding 

false causal inferences? What is the learner seeking and how should 

a guidance framework balance meeting the wants and needs of the 

learner with the values and expectations of the instructor? We pose 

these open questions of import to the community for further 

discussion. 
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BerkeleyX Course S NMC LSTM TLSTM % NMC / S % LSTM / S % TLSTM / S 

BJC.3x 1T2016 0.578 0.591 0.577 0.588 2.22 -0.15 1.76 

BJC.4x 1T2016 0.530 0.536 0.523 0.543 1.22 -1.33 2.49 

ColWri2.2x 1T2016 0.611 0.612 0.648 0.670 0.04 5.91 9.49 

ColWri2.3x 1T2016 0.631 0.631 0.659 0.681 -0.04 4.4 7.85 

ColWri.3.10 1T2016 0.510 0.578 0.576 0.593 13.27 12.98 16.25 

ColWri.3.11 1T2016 0.487 0.555 0.563 0.569 13.79 15.47 16.83 

ColWri.3.12x 1T2016 0.482 0.536 0.537 0.542 11.22 11.37 12.47 

ColWri3.1x 2_3T2015 0.509 0.530 0.557 0.567 4.1 9.44 11.52 

ColWri3.2x 2T2016 0.501 0.506 0.525 0.516 0.85 4.64 2.94 

ColWri3.3x 2T2016 0.477 0.515 0.543 0.523 7.96 13.98 9.76 

EE40LX 2T2015 0.662 0.665 0.694 0.698 0.4 4.82 5.4 

Fin101x 1T2016 0.695 0.696 0.700 0.706 0.04 0.73 1.58 

Policy01x 1T2016 0.545 0.571 0.590 0.591 4.65 8.19 8.32 

Table 3 Preliminary Results. Column abbreviations stand for (S)yllabus, Next Most Common (NMC), and (T)ime (LSTM) 
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