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Indirect effects of invasive rat 
removal result in recovery of island 
rocky intertidal community 
structure
Carolyn M. Kurle1*, Kelly M. Zilliacus2, Jenna Sparks2,5, Jen Curl3,6, Mila Bock2,7, 
Stacey Buckelew3,8, Jeffrey C. Williams4, Coral A. Wolf3, Nick D. Holmes3,9, 
Jonathan Plissner3, Gregg R. Howald3,10, Bernie R. Tershy2 & Donald A. Croll2*

Eleven years after invasive Norway rats (Rattus norvegicus) were eradicated from Hawadax Island, 
in the Aleutian Islands, Alaska, the predicted three-level trophic cascade in the rocky intertidal, with 
native shorebirds as the apex predator, returned, leading to a community resembling those on rat-free 
islands with significant decreases in invertebrate species abundances and increases in fleshy algal 
cover. Rats had indirectly structured the intertidal community via their role as the apex predator in a 
four-level trophic cascade. Our results are an excellent example of an achievable and relatively short-
term community-level recovery following removal of invasive animals. These conservation successes 
are especially important for islands as their disproportionately high levels of native biodiversity are 
excessively threatened by invasive mammals.

Invasive animals are a main driver of global biodiversity loss and can impact ecosystem  function1–5. Invasive 
animal impacts are particularly disruptive on islands because islands usually have small numbers of species 
resulting in simplified food chains and limited functional redundancy, and those species typically have limited 
evolved defenses against herbivory, predation, and  competition6. The direct effects of invasive animals on islands 
are well  documented7–11, and there is increasing evidence of their multiple indirect effects as  well6, 12–15.

Invasive rats (Rattus spp.) are the most widespread and damaging invasive  animals16,17. They are present 
on perhaps 90% of  islands18,19, influence island biota both directly as competitors, predators, herbivores, and 
 frugivores19–21, and indirectly via trophic cascades, cross ecosystem subsidies, propagule dispersal, and mutualist 
 networks9,13,14,22–24.

Because of these deleterious impacts, the removal of invasive animals has become an important global con-
servation strategy, with over 900 successful animal eradications on almost 800 islands since  195025. While the 
number, rate, and size of invasive animal eradications is  increasing8, 26–28, studies of the full benefits to island 
communities after invasive animal eradications are limited (but  see8). Longer-term post-eradication studies of 
island community recoveries from the direct and indirect impacts of invaders are even more  limited29, as are 
recoveries from the effects of cross-ecosystem (e.g. near-shore marine vs. terrestrial) interactions.

Community recovery after invasive animal eradication is difficult to measure for many reasons, including 
natural stochasticity and uncertain baselines by which to compare altered landscapes. In addition, demonstra-
tion of community recovery requires study of the indirect effects of invaders, adequate measures of multiple 
community components, and a commitment to long-term monitoring. Therefore, the extent to which entire 
communities recover following invasive species eradication, and the time required for recovery, are much less 
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understood than the direct deleterious effects of invaders and the recoveries of multiple native species once 
invaders and their direct mechanisms of control (frequently predation) are removed (but  see30,31).

Hawadax Island (previously known as Rat Island) is in the central Aleutian Island chain (Fig. 1). The island 
was likely invaded by Norway rats (R. norvegicus) when a Japanese ship went aground in the 1780′s, and invaded 
by Arctic foxes (Vulpes lagopus) following intentional introductions by fur traders in the  1800s32. The combined 
impact of an introduced carnivore (foxes) and omnivore (rats) had multiple direct and indirect impacts 33. For 
example, while archeological evidence from native Unangan (Aleut) habitation sites indicate marine birds were 
once common on Hawadax Island, rats and introduced foxes extirpated locally breeding seabirds, shorebirds, 
and land birds 32.

Foxes were eradicated from Hawadax Island in  198434, and rats were eradicated in 2008 using aerially broad-
cast rodenticide (25-ppm  brodifacoum32). Croll et al.33 reported on the direct effects of rat eradication after five 
years, demonstrating significant recoveries of terrestrial birds (Gray-crowned Rosy Finch [Leucosticte tephrocotis], 
Lapland Longspur [Calcarius lapponi-cus], Snow Bunting [Plectrophenax nivalis], and Song Sparrow [Melospiza 
melodia]) and shorebirds (Black Oystercatcher [Haematopus bachmani] and Rock Sandpiper [Calidris ptiloc-
nemis], and the initial recolonization or recovery of marine birds (Tufted Puffin [Fratercula cirrhata], Leach’s 
Storm-petrel [Oceanodroma leucohoa], and Glaucous-winged Gull [Larus glaucescens]). However, community-
level changes resulting from indirect changes in trophic structure post-rat eradication are likely to take longer 
than the recovery of these directly impacted bird  species30.

To measure the time required and potential for passive community recovery on an island after rat eradication, 
we measured abundances of shorebirds and multiple rocky intertidal species before (2008), and five (2013) and 
11 (2019) years post-rat eradication on Hawadax Island. Previous comparisons in 2002–2004 by Kurle et al.12 of 
the rocky intertidal community composition on Islands in the Aleutian archipelago with and without invasive 
rats demonstrated a rat-mediated, four-level trophic cascade in which rats extirpated the shorebirds that forage 
on intertidal herbivores, leaving a system dominated by invertebrate herbivores (Fig. 2). Kurle et al.12 found that 

Figure 1.  The (A) central Aleutian Archipelago, Alaska, USA contains the (B) Rat Islands Group, including 
Hawadax Island. The (C) intertidal plots and beach transects surveyed on Hawadax Island. Intertidal plot 6 was 
only surveyed in 2008 and  201335.
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83% and 96% of islands could be assigned to their correct category of rat-infested or rat-free, respectively, based 
on the species composition of the rocky intertidal. Thus, we predicted that the rocky intertidal community on 
Hawadax Island would return to a state resembling a rat-free island given sufficient time for shorebird populations 
to recover to levels necessary to maintain the three-trophic level cascade typical of Aleutian Islands without rats.

We compared our long-term monitoring data collected on Hawadax Island pre- (2008) and post- (2013 and 
2019) rat eradication to data contrasting rat-infested and rat-free Aleutian Islands measured in 2002–2004 from 
Kurle et al.12. Specifically, we sought to: (1) document longer-term recovery of breeding intertidal-feeding marine 
birds (Black Oystercatchers and Glaucous-winged Gulls), (2) examine changes in the marine rocky intertidal 
community related to the direct and indirect impacts of marine bird recovery, and (3) better understand the time 
required for recovery of marine rocky intertidal communities on islands after rat removal.

Results
Intertidal community. Predicted changes in the rocky intertidal  community12 were largely not evident five 
years post-rat eradication (Table 1, Fig. 3, and Supplementary Fig. 1). However, by 11 years post-eradication, 
seven of 13 intertidal taxonomic groups showed significant predicted changes (Table 1, Fig. 3, Supplementary 
Fig. 1). Three species (anemones, mussels, and snails) met or exceeded the expected percent changes in abun-
dance over time observed between islands with and without rats. One (sponges) was within less than 10% of 
the expected abundance  change and three (fleshy algae, limpets, and sea stars) were within 17 to 35%. The 
abundances of two (barnacles and tunicates) did not change as predicted, and the remaining four taxa were not 
measured in Kurle et al.12 (Fig. 3, Supplementary Table 1), so were not compared.

Beach transects. Glaucous-winged Gulls and Black Oystercatchers were significantly more abundant post-
eradication in 2013 and even more so in 2019 (Table 2, Fig. 3, Supplementary Table 1, Supplementary Fig. 1). 
Kurle et al.12 observed that Black Oystercatcher and Glaucus-winged Gull abundances were greater by 984% 
(0.246 ± SD 0.44 vs. 0.025 ± SD 0.04 per km of shoreline) and 1014% (17.643 ± SD 60.89 vs. 1.740 ± SD 3.09 per 
km of shoreline), respectively, on islands without rats, whereas we observed 900% and 291% increases in their 
abundances between 2008 and 2019 (Table 2). In addition, we detected 19 active Glaucous-winged Gull nests 
and five active Black Oystercatcher nests post-eradication in 2019 compared to five nests and one nest, respec-
tively, pre-eradication in 2008.

Figure 2.  The presence of invasive rats on Aleutian Islands in Alaska creates a (A) four-level trophic cascade 
wherein rats negatively impact primary productivity, indirectly (dotted line) turning the rocky intertidal 
community into an invertebrate dominated system by depredating shorebirds and releasing intertidal grazers 
from bird predation pressure. On islands without rats, and presumably on islands in recovery after rat removal, 
such as Hawadax, the rocky intertidal becomes a (B) three-level trophic cascade wherein shorebirds depredate 
herbivorous invertebrates, thereby releasing algae from grazing pressure, and indirectly creating an algal 
dominated community. Birds also consume invertebrate non-grazers (e.g., mussels, anemones, seastars, and 
sponges), and their decreased abundances following rat removal may lead to increased availability of space in 
the rocky intertidal, further facilitating increases in algal cover. Figure modified from Kurle et al.12., Gena Bentall 
drew the images and C. Kurle created the figure.
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Discussion
Multiple studies document significant restoration of plant and animal species on islands following invasive 
animal  removal5,8, 36–39. In particular, positive growth in bird abundances post-eradication is especially well-
documented31, 40,41, including in the Aleutian Islands, where bird abundances increased significantly 5–10 years 
after invasive fox and/or rat  eradication33, 42–44. However, most of these studies focus on the reestablishment of 

Table 1.  The relative abundance of intertidal organisms measured before and after rat eradication (Mean ± SE) 
(2008 and 2013: n = 8; 2019: n = 7). *P is significant with α < 0.05.

Intertidal organism

Pre Post 2008 vs. 2013 Post 2008 vs. 2019

2008 2013 t P 2019 t P

% Encrusting Algae 47.9 ± 3.1 12.67 ± 2.84 − 8.3931  < 0.0001* 5.9 ± 1.3 − 12.435  < 0.0001*

% Fleshy Algae 25.5 ± 2.3 26.09 ± 2.36 0.1858 NS 38.0 ± 3.2 3.151 0.0045*

% Geniculate Algae 4.52 ± 1.4 3.62 ± 0.98 − 0.5258 NA 3.2 ± 1.02 − 0.763 0.2298

% Barnacles 0.19 ± 0.11 0.21 ± 0.14 0.0965 NS 0.22 ± 0.18 0.136 0.4472

% Sponges 9.44 ± 2.4 8.51 ± 1.18 − 0.3427 NS 3.69 ± 0.84 − 2.245 0.0263*

% Tunicates 1.99 ± 0.5 1.87 ± 0.59 − 0.1513 NS 2.12 ± 0.69 0.148 0.4424

Anemones  m−2 66.6 ± 20.9 75.6 ± 33.98 − 0.1141 NS 17.1 ± 10.9 − 3.003 0.0061*

Isopods  m−2 85.7 ± 20.9 10.68 ± 2.82 − 4.973 0.0001* 1.69 ± 0.63 − 9.195  < 0.0001*

Limpets  m−2 26.4 ± 4.6 23.19 ± 4.95 − 0.6545 NS 13.5 ± 2.9 − 2.219 0.0255*

Mussels  m−2 54.9 ± 39.5 3.43 ± 3.15 − 1.5288 NS 0.61 ± 0.47 − 1.934 0.0447*

Sea Stars  m−2 8.1 ± 3.08 4.95 ± 1.41 − 0.2225 NS 1.59 ± 0.72 − 1.919 0.0395*

Snails  m−2 359.7 ± 72.1 191.04 ± 45.16 − 1.6452 NS 31.0 ± 11.5 − 5.452  < 0.0001*

Urchins  m−2 20.3 ± 5.5 11.63 ± 4.33 − 1.2599 NS 10.4 ± 2.34 − 1.088 0.1481

Figure 3.  The percent change in algal, barnacle, sponge, and tunicate percent cover and mean number per  m2 
of invertebrates pre- vs. post-eradication (2008 vs. 2013 and 2019) measured from intertidal photo quadrats. 
* indicates significantly different data between 2008 and 2013 or 2008 and 2019, p < 0.05. The red diamonds 
indicate the percent change between islands with rats and without rats from Kurle et al.12. No red diamond 
indicates an organism that was not measured in Kurle et al.12.
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individual native vertebrate or plant species. It is more difficult to assess the long-term responses of entire com-
munities or ecosystems, whose recoveries are frequently tied to the return of native species known to structure 
communities via their foraging patterns and other activities (but  see4,45).

Based on previous work by Kurle et al.12 comparing rocky intertidal communities on islands with and without 
rats in the Aleutian archipelago, we hypothesized that rat removal would eventually return the marine rocky 
intertidal community on Hawadax Island to a three trophic level system with shorebirds as apex predators, 
instead of a four trophic level system with rats as apex predators, and thus change from algae- to invertebrate-
dominated (Fig. 2). Consistent with this hypothesis, we found a dramatic shift in invertebrate and algal cover 
dominating the rocky intertidal community on Hawadax Island after rat eradication. Specifically, 11 years post 
rat eradication, we found: 1) a significant increase in percent cover of fleshy algae, 2) significant decreases in 
grazers of fleshy algae (isopods, limpets, and snails), as well as four other invertebrate groups (anemones, mus-
sels, seastars, and sponges), and 3) significant increases in the shorebird predators (Glaucous-winged Gulls and 
Black Oystercatchers) of these intertidal invertebrates both five and 11 years post-rat eradication. Isopods were 
the only invertebrate that showed a statistically significant decrease in abundance five years post-rat eradication.

In rocky intertidal communities, marine birds can control abundances of invertebrate grazers via 
 predation46,47, and intertidal invertebrate herbivores reduce algal cover through grazing  pressure48,49, leading, 
in some cases, to three level trophic  cascades50,51 such as those observed on rat-free islands in Kurle et al.12. We 
expect other processes such as upwelling, temperature, recruitment, and currents also influenced the rocky 
intertidal community structure across the Aleutian  Islands48, 52. However, given the many examples of top-down 
control in rocky intertidal systems (see above), coupled with the patterns Kurle et al.12 observed across 23 islands 
spanning nearly the entire Aleutian Island chain, we are confident that the likely mechanism driving the rocky 
intertidal community structure on Hawadax Island is the extirpation of rats followed by the recovery of gulls 
and oystercatchers as the apex predators in a three level trophic cascade.

Abundances of gulls and oystercatchers were significantly greater in 2013 (2.3 and 5 times higher, respec-
tively) compared with 2008, indicating passive recovery of the shorebird populations had already begun five 
years post rat-eradication. However, the intertidal data suggest this level or time for recovery was not sufficient 
to restore the rocky intertidal food web to a shorebird-mediated state more resembling that of a rat-free island. 
By 2019, gull and oystercatcher abundances had further increased to 2.9 and 9 times higher, respectively, than 
from 2008. These bird numbers are still lower than earlier measures from Aleutian Islands with no history of 
rat or fox  invasions12 (n = 89 islands, oystercatchers = 0.25 ± SD 0.44 and gulls = 17.64 ± SD 60.88 birds per km of 
shoreline). However, the bird numbers between this study and Kurle et al.12 are not directly comparable as they 
derived their estimates from bird counts conducted by personnel circumnavigating islands in small boats rather 
than the land-based beach transect counts used here.

A few rocky intertidal species measured in this study did not follow the patterns observed in Kurle et al.12 
between islands with and without rats. First, the percent cover of barnacles and tunicates were not different over 
time in this study, but their abundances were significantly less on islands without rats than on islands with rats 
in Kurle et al.12. These exceptions may simply reflect dietary choices by gulls and oystercatchers as they do not 
appear to eat tunicates, and barnacles make up only a small percentage of their preferred intertidal  prey53–56. 
Kurle et al.12 surmised that the greater area covered by invertebrates not eaten by shorebirds on islands with rats 
was due to less algal cover and the resultant increased rocky intertidal substrate space available for invertebrate 
colonization. If this is the case, it may take more time for intertidal community differences related to competition, 
succession, and space availability to become measurable. In addition, the percent cover of geniculate algae in the 
intertidal showed no difference between 2008 and 2019. Coralline algal species in the North Pacific are fairly slow 
to colonize newly opened  space57 and are initially outcompeted by fleshy algal species and certain  invertebrates58, 
which could explain why their abundances did not change over the course of this study.

Further, we found no significant differences in the abundances of sea urchins, a known diet component for 
shorebirds, between pre- and post-eradication on Hawadax Island. Urchin abundance was not assessed in Kurle 
et al.12. Urchins are difficult to accurately measure in intertidal surveys as they are largely subtidal organisms, 
remaining submerged throughout a tide cycle by following the tidal flux or via confinement to shallow tide 
 pools59. In addition, around the Aleutian Islands, urchin numbers are largely regulated by sea otter (Enhydra 
lutris) predaton. Sea otters around the Aleutian Islands have remained in steep decline since the 1990′s, likely 
from predation by killer whales (Orcinus orca)60, and are thus reduced across much of the Archipelago. Therefore, 
sea urchin abundances are high in many of the subtidal zones around the Aleutian Islands, including around 
 Hawadax61,62, and likely not controlled by bird predation.

A large marine heatwave (“The Blob”) began in the Gulf of Alaska in fall 2013, spread south to Baja California, 
and caused warm sea surface temperature anomalies in the top ~ 100 m of the ocean until April  201563. Long-term 

Table 2.  The mean number  km−1 ± SE of Black Oystercatchers and Glaucous-winged Gulls detected on beach 
transects “Pre” (2008; n = 16) and “Post” rat eradication (2013; n = 16 and 2019; n = 16). *P is significant with 
α < 0.05.

Species

Pre Post 2008 vs. 2013 Post 2008 vs. 2019

2008 2013 Chi Square P 2019 Chi Square P

Black Oystercatcher 0.001 ± 0.001 0.005 ± 0.001 15.7081  < 0.0001* 0.009 ± 0.002 17.8115  < 0.0001*

Glaucous-winged Gull 0.023 ± 0.008 0.052 ± 0.01 17.0103  < 0.0001* 0.067 ± 0.025 6.1029 0.035*



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5395  | https://doi.org/10.1038/s41598-021-84342-2

www.nature.com/scientificreports/

monitoring of sites in the Gulf of Alaska (GOA) and the eastern Alaska Peninsula (EAP) documented significant 
intertidal changes related to The Blob, including decreases in sea stars, increases in mussels, and decreases in 
fleshy  algae64. Coletti et al.64 related the reduction in sea stars to Sea Star Wasting Disease (SSWD), a syndrome 
causing mass mortality of sea stars from south-central Alaska to Baja California over the last decade. Mussel 
densities in the GOA and EAP then rose in response to a reduction in their sea star predators. The decreases in 
fleshy algal cover in the GOA and EAP were attributed to reductions in survival and/or recruitment of the brown 
algae Fucus distichus related to warmer than normal  temperatures65. The range of SSWD detected in sea stars 
does not include the Aleutian  Islands66, so is unlikely a factor in the decrease in sea stars or mussels we observed. 
And the trend of decreasing fleshy algal cover related to The Blob is the opposite of the increases we observed, 
making it unlikely its effects contributed to algal cover changes we observed on Hawadax.

Determining ecological community recovery following restoration is challenging but is aided by the clear 
definition of a goal, a quantified description of that state (e.g. equivalent monitoring data from experimental or 
natural controls), and an understanding of other environmental drivers that influence a restoration outcome. 
In addition, while species compositions are fairly uniform within intertidal communities across the Aleutian 
Islands, each island is subject to some variation in recruitment, reproduction, competition, predation, wave-
action, and other factors influencing the densities and cover of intertidal species, further complicating our ability 
to assess the degree of intertidal community recovery 11 years after rat eradication on Hawadax Island. However, 
comparisons of the percentage change over time for the densities and percent cover values of intertidal organ-
isms on Hawadax pre- vs. post-eradication are similar to those observed between islands with and without rats 
surveyed in 2002–2004 for Kurle et al.12 (Fig. 3, Supplementary Table 1), indicating a high degree of recovery 
from rat impacts in the rocky intertidal.

Across 60 + years of invasion ecology as a  discipline67,68, research has accumulated overwhelming evi-
dence detailing the loss of biodiversity and other threats to native species and ecosystems posed by non-native 
 invaders69, especially on  islands3. When mammalian invaders are removed from islands, conservation success, if 
measured at all, is generally tracked by how well populations of native (and largely terrestrial) species  rebound8. 
However, less understood or even studied, are recoveries of entire communities, particularly nearshore marine 
systems, and the biological parameters a community must attain for it to be considered recovered (but  see21,70). 
Community recovery is especially difficult to quantify as communities are host to a myriad of biological inter-
actions, and invasive species can insert themselves into those interactions, shaping community structure in 
unexpected ways via direct and indirect  mechanisms29,45. Finally, the time required for community recovery after 
invasive species eradication is uncertain, as is the variability of recovery for different components of the system, 
requiring a long-term commitment to extensive monitoring.

Here, we move beyond demonstrating increases in native bird abundances after removal of invasive rats, a 
finding repeatedly shown across multiple studies detailing direct effects of rat eradication on native island species. 
Our long-term intertidal monitoring data show the changes in densities of rocky intertidal invertebrates and the 
percentage of intertidal area covered by fleshy algae and aggregating invertebrates after rats were removed from 
Hawadax Island largely followed the same patterns observed between rat-infested and rat-free islands surveyed 
in Kurle et al.12 indicating a high degree of passive recovery was achieved in a relatively short 11 years. With 
invasive rats removed, shorebirds have resumed their role as top predator, indirectly shaping the rocky intertidal 
community (Fig. 2B;  see12).

More studies focused on understanding and measuring both direct and indirect impacts of invaders, and how 
communities respond following removal of those impacts, are needed to underscore the widespread conservation 
successes associated with invasive species eradication, especially on islands. In addition, our data demonstrate 
that continued eradication of introduced rats from other infested islands in the Aleutian Chain would add to 
increased bird and rocky intertidal community recoveries within the Alaska Maritime National Wildlife Refuge, 
thereby contributing to the Refuge’s mission of restoration and protection of natural biodiversity on refuge lands.

Methods
Hawadax Island (51.80° N, 178.30° E), part of the Alaska Maritime National Wildlife Refuge, is located within 
the Rat Islands group of the western Aleutian Islands (Fig. 2). The 2,780 ha (6,869 acres) island has steep cliffs 
along most of the coastline backed by rolling hills and plateaus rising to a small ridge of mountains with a peak 
elevation of 400 m. There are more than 30 offshore rock stacks and several islets. The largest islet is approximately 
4 ha (10 acres) in size and is located 1.7 km off the southeast end of the island (Ayugadak Point). Hawadax Island 
is a designated Wilderness and has no inhabitants or human facilities.

Rats were introduced to different Aleutian Islands at different times. However, while one island (Little Kiska) 
became infested in 1990, the rest received rats before 1940 and as early as the 1700′s42. Thus, rat effects would 
currently be largely uniform across islands.

During September and October 2008, the U.S. Fish and Wildlife Service partnered with The Nature Conserv-
ancy and Island Conservation to restore seabird breeding habitat on Hawadax Island by removing introduced 
Norway rats using aerially applied cereal-based bait containing  brodifacoum32. This was the first aerial rat eradi-
cation program conducted in  Alaska32. Monitoring teams conducted biological surveys from June 1–20, 2008 
(pre-eradication), and May 31–June 10, 2013 and June 1–16, 2019 (post-eradication), to coincide with early 
seasonal breeding activity for most native island bird species.

The protocols used in this study were approved by the Institutional Animal Care and Use Committee (IACUC) 
of the University of California, Santa Cruz (protocols Crold1004 and Crold1303). The research was performed in 
strict accordance with the guidelines and regulations in these protocols. Observers did not engage in any contact 
with the animals while recording their natural behavior and no biological samples were collected.
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Intertidal community. Photo plots. We conducted surveys to describe the community structure of inter-
tidal flora and fauna. We used methods similar to those developed by  Kurle71, who previously conducted stud-
ies to document the impacts of Norway rats on marine bird densities and rocky intertidal communities in the 
Aleutian Islands, including Hawadax Island. In 2008 and 2013, we conducted surveys on eight beaches: five on 
the north side of the island, and three on the south side. In 2019, we revisited seven of the original eight beaches; 
due to time constraints, we were unable to survey Beach 6 on the south side of the island (Fig. 2).

At each beach, we conducted two transects in both the low and mid intertidal zones. The lower intertidal 
zones were dominated by algae from the genera Alaria and Laminaria, whereas the mid zones were dominated 
by algae from the genera Fucus and Halosaccion. For each 30 m transect, we took digital photos of seven, 365 
 cm2 quadrats, located at 5 m intervals. We took two photos every quadrat: the first of the surface coverage, and 
a second photo after the overlying algal layer was removed to reveal the understory community (Fig. 4).

Seasonal, logistic, financial, and low-tide constraints all limited our field time, precluding lengthy field identi-
fication of invertebrates to species. Our major goal with this limited field time was to get clear and accurate photos 
of our study plots to best replicate the earlier study of Kurle et al.12. As a result, we were not able to confidently 
identify our metrics to species, but instead relied upon the broader taxonomic categorization. While potentially 
interesting to have more taxonomic detail, the conclusions in our manuscript based upon the broad taxonomic 
categories are, we feel, robust.

We analyzed 2008 and 2013 intertidal photos using Adobe Photoshop 6.0. We used Adobe Photoshop Ele-
ments 2019 to analyze all digital photos taken in 2019. We followed the same data analysis protocols in 2008, 
2013, and 2019. For all years, on each photo, we overlaid a digital 6 × 9 rectangular grid and calculated percent 
cover as the ratio of the number of each species lying below an intersection of the gridline to the total number 
of intersections within each grid. We calculated percent cover of sessile organisms (barnacles, sponges, and 
tunicates). We estimated the percent cover of larger algae (coralline algae and all fleshy algal species) by count-
ing the percent cover of stipes that remained after the removal of the algal blades. We counted the number of 
individual mobile invertebrates (anemones, snails, limpets, mussels, urchins, and sea stars) in each photo to 
estimate density. We pooled data by beach for statistical analyses and compared the mean percent cover and 
mean number of individuals per  m2 pre- (2008) and post- (2013 and 2019) eradication using t-tests (α = 0.05).

Beach transects. Shorebirds, such as Black Oystercatchers and Glaucous-winged Gulls, are important 
predators of intertidal  organisms53–56. To assess their relative abundance, we conducted beach surveys along 
the entire length of all accessible beaches (n = 16; Fig. 2) on Hawadax Island. Detailed methods are presented 
in Croll et al.33 and are briefly summarized here. An observer slowly walked along each beach transect during 
morning hours whenever possible (0700–1100), counting all birds seen or heard between the water’s edge and 
50 m inland from the storm tide line. For each species, observers recorded aural and visual detections separately. 
Observers recorded the time and GPS location at the start and end of each transect. We measured the length of 
each transect following the contour of the beach between waypoints using ArcGIS 10.772. We conducted four to 
five replicate surveys of each of the 16 beach transects to minimize effects of variation in time and sampling con-
ditions. We calculated the relative abundances for Black Oystercatchers and Glaucous-winged Gulls by dividing 
the total count of birds detected per beach transect by the length of the transect (birds  km−1). We then averaged 
the five replicate surveys for each beach and used the averaged counts for each beach each year as a sample. We 
then compared pre- (2008) and post-eradication (2013, 2019) results using nonparametric Van der Waerden 
tests, α = 0.05.

Assessing status of rocky intertidal community recovery. An island community may be considered 
recovered if the components are not significantly different from an unperturbed reference  island73. To assess 
the degree to which the rocky intertidal on Hawadax Island may have recovered following rat eradication, we 

Figure 4.  Example of digital photos of intertidal quadrats. A digital photo was taken first of the surface 
coverage of the plot (A). A second photo of the exact plot (B) was taken after the algal layer was removed to 
reveal the under-story community. Photos by J. Curl.
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compared the percentage change over time for abundances and percent cover values of intertidal organisms and 
shorebirds on Hawadax Island pre- vs. post-rat eradication to those observed between islands with and without 
rats surveyed for Kurle et al.12.

Received: 16 September 2020; Accepted: 3 February 2021
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