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| INVESTIGATION

Inference of the Distribution of Selection Coefficients
for New Nonsynonymous Mutations Using

Large Samples
Bernard Y. Kim,* Christian D. Huber,* and Kirk E. Lohmueller*,†,‡,1

*Department of Ecology and Evolutionary Biology, †Interdepartmental Program in Bioinformatics, and ‡Department of Human
Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095

ABSTRACT The distribution of fitness effects (DFE) has considerable importance in population genetics. To date, estimates of the DFE
come from studies using a small number of individuals. Thus, estimates of the proportion of moderately to strongly deleterious new
mutations may be unreliable because such variants are unlikely to be segregating in the data. Additionally, the true functional form of
the DFE is unknown, and estimates of the DFE differ significantly between studies. Here we present a flexible and computationally
tractable method, called Fit@a@i, to estimate the DFE of new mutations using the site frequency spectrum from a large number of
individuals. We apply our approach to the frequency spectrum of 1300 Europeans from the Exome Sequencing Project ESP6400 data
set, 1298 Danes from the LuCamp data set, and 432 Europeans from the 1000 Genomes Project to estimate the DFE of deleterious
nonsynonymous mutations. We infer significantly fewer (0.38–0.84 fold) strongly deleterious mutations with selection coefficient
|s| . 0.01 and more (1.24–1.43 fold) weakly deleterious mutations with selection coefficient |s| , 0.001 compared to previous
estimates. Furthermore, a DFE that is a mixture distribution of a point mass at neutrality plus a gamma distribution fits better than
a gamma distribution in two of the three data sets. Our results suggest that nearly neutral forces play a larger role in human evolution
than previously thought.

KEYWORDS deleterious mutations; diffusion theory; population genetics; site frequency spectrum

A fundamental concept in population genetics is the dis-
tribution of fitness effects (DFE) of new mutations. The

DFE refers to the proportion of new mutations that have
particular effects on fitness. The DFE is a crucial quantity in
evolutionary genetics because it determines how selection
affects genetic variation (Eyre-Walker and Keightley 2007),
the conditions under which recombination could evolve
(Keightley and Otto 2006), and the spectrum of mutations
potentially involved in genetic diseases (Eyre-Walker 2010).
Further, an accurate DFE is required for robust inference of
the amount of adaptive evolution across taxa (Boyko et al.

2008; Gossmann et al. 2012; Castellano et al. 2016; Galtier
2016); a topic of widespread interest. Because this distribu-
tion is so important, considerable effort has been put forth
toward estimating it in several species.

In organisms that allow experimental manipulation, the
DFE can be directly estimated. Here, the DFE is either derived
from direct measurements of fitness from a collection of
single-step mutants, or indirectly inferred from observed
changes in population fitness in mutation accumulation
(MA) experiments (Eyre-Walker and Keightley 2007;
Bataillon and Bailey 2014). The first approach, in combina-
tion with high-throughput methods, has been successfully
applied to examine the full spectrum of (evenweak) selection
coefficients of mutations in small mutational target regions
in a number of viral, bacterial, and yeast systems (Fowler
et al. 2010; Hietpas et al. 2011; Boucher et al. 2014). They
frequently report a gamma or unimodal, similarly shaped
distribution of fitness effects (Bataillon and Bailey 2014),
or a bimodal distribution with a second cluster of highly del-
eterious mutations (Acevedo et al. 2014; Bank et al. 2014;
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Boucher et al. 2014). The second approach infers the DFE
from fitness trajectories of a collection of populations over
time in MA experiments, without directly identifying the mu-
tations involved. Assuming that the true DFE is gamma dis-
tributed, they estimate the parameters of a gamma DFE that
best fit to the observed changes in the mean and variance of
fitness among replicate populations (Halligan and Keightley
2009). These studies point to a shape of the DFE that is less
leptokurtic than an exponential distribution, with the mode
different from zero. This could indicate that the true under-
lying DFE is more complex than the gamma distribution
(Halligan and Keightley 2009), or reflect a bias of MA-based
methods toward mutations with large fitness effects (Eyre-
Walker and Keightley 2007). In summary, experimental
estimates of the DFE suggest that a substantial proportion
of new mutations are strongly deleterious. However, due
to the inherent limitations of these methods, inference of
the exact functional form of the genome-wide DFE is
challenging.

A second category of methods to infer the DFE involves
examining patterns of neutral and putatively deleterious ge-
netic variation in natural populations, and finding the model
of demographic history andpurifying selection that canmatch
the observed level of variation. This framework has been
applied to many species including humans (Eyre-Walker
et al. 2006; Keightley and Eyre-Walker 2007; Boyko et al.
2008; Li et al. 2010), Drosophila (Keightley and Eyre-Walker
2007; Kousathanas and Keightley 2013), yeast (Koufopanou
et al. 2015), orangutans (Ma et al. 2013), gorillas (McManus
et al. 2015), and mice (Halligan et al. 2013). Many of these
studies suggest that the DFE has a strongly leptokurtic distri-
bution, conflicting with the MA-based estimates. Consistent
with the bimodal DFE found by many site-directed mutagen-
esis studies (Bataillon and Bailey 2014; Boucher et al. 2014),
they find a large proportion of nearly neutral mutations, as
well as many strongly deleterious mutations. For example,
previous studies in humans (Eyre-Walker et al. 2006; Boyko
et al. 2008) have estimated the parameters of a gamma dis-
tribution for the DFE of new nonsynonymous mutations.
These studies have found �57–61% of new nonsynonymous
mutations to bemoderately to strongly deleterious (|s|$ 1023),
about 15–16% to be weakly deleterious (1024 # |s| , 1023),
and the remainder (24–28%) to be nearly neutral (Figure 1).

The estimates of the DFE from genetic variation data for
humans by Eyre-Walker et al. (2006) and Boyko et al. (2008)
have been widely used in human population genetic studies.
For example, these DFEs were used to estimate differences in
the genetic load across human populations (Henn et al.
2016), to model the ancient introgression of Neanderthal
alleles into humans (Harris and Nielsen 2016), as a model
for the frequency spectrum of deleterious polymorphisms in
simulating data for disease studies (Uricchio et al. 2016), to
evaluate the contribution of background selection to diversity
on the Y chromosome in humans (Wilson Sayres et al. 2014),
and to estimate the strength of selection acting on disease
genes (Moon and Akey 2016). While the Boyko et al. (2008)

study has had considerable impact in the field, it is important
to appreciate that the estimates of the DFEweremade using a
sample of a small number of individuals. As such, most of the
variation segregating in those samples is likely to be neutral
or nearly neutral. Inferences about the proportion of moder-
ately and strongly deleterious mutations largely come from
assuming the gamma distribution approximates the DFE of
new mutations well, and then tabulating the proportion in
those categories predicted by the gamma distribution. In
other words, the second mode of strongly deleterious and
lethal mutations observed by experimental studies is un-
likely to be directly observed in polymorphism data sets,
and these proportions are extrapolated from the long tail
of the DFE.

This extrapolation of the proportion of strongly deleterious
mutations may not be accurate. A more recent study using
exome sequencing data from 200 Danish individuals (Li et al.
2010) estimated a DFE that differs considerably from that
inferred in Boyko et al. (2008) or from the experimental
estimates in lower organisms. Specifically, Li et al. (2010)
found a mixture distribution consisting of a neutral point
mass and gamma distribution fit best to their data (Figure 1).
Additionally, they estimated that only 1% of new mutations
have |s|. 1024 (compared to 57% in Boyko et al. 2008), and
78% of new mutations fall in the 1024 # |s| , 1023 range
(compared to 15% in Boyko et al. 2008). Li et al. (2010) attrib-
uted this difference in the DFEs to their study considering a
larger sample of individuals. As such, they surmised that they
sampled more weakly deleterious variants, allowing more ac-
curate inferences. However, this explanation has not been
tested using simulations or larger data sets. Thus, the propor-
tions of moderately vs. strongly deleterious nonsynonymous
mutations in humans, as well as the functional form of the
DFE, remain elusive.

Due to large-scale genomeand exome sequencing projects,
samples of hundreds to thousands of individuals are available
(Tennessen et al. 2012; Fu et al. 2013; Lohmueller et al.
2013; The 1000 Genomes Project Consortium 2015). These
large data sets should yield more reliable inferences of the
DFE because moderately deleterious polymorphisms should
be segregating, albeit at low frequency, in these samples
(Supplemental Material, Figure S1 in File S1). As such, it
should be possible to determine the functional form of the
DFE and directly estimate the proportion of moderately and
strongly deleterious mutations.

However, amajor roadblock tousing thesenewdata sets for
inference of theDFE is a lack of suitable software for inference
from large samples. Generally, methods to infer the DFE
summarize the allele frequency information of two classes
of sites, one assumed to be neutral and the other selected by
the site frequency spectrum (SFS). Then, they find the DFE
that, under the inferred model of demography fit to the SFS
from neutral sites, fits the observed SFS from selected sites.
The method of Keightley and Eyre-Walker (2007), DFE-
alpha, models demography using a Wright–Fisher transition
matrix. It can only consider demographic models with one or
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two size changes due to computational complexity, and it can
be slow for the two-size-change model. This is particularly
limiting in large samples of human genetic variation since a
single-size-change demographic model is insufficient for
capturing the excess of rare variation in human popula-
tions (Keightley and Eyre-Walker 2007; Kousathanas and
Keightley 2013). Another class of methods to infer the DFE
uses the Poisson random field (PRF) approach (Sawyer
and Hartl 1992; Hartl et al. 1994; Williamson et al. 2005;
Eyre-Walker et al. 2006; Boyko et al. 2008; Li et al. 2010).
This approach has been implemented in the program
PRFREQ (Boyko et al. 2008), but that implementation
becomes numerically unstable when applied to samples
larger than a few hundred individuals. The program @a@i
(Gutenkunst et al. 2009) uses a similar framework, but
implementing a DFE is slow due to the way that the DFE
is repeatedly integrated (Figure S2 in File S1). Thus, there is
a need for a new software tool to infer the DFE from large
samples.

In this study, we first extend the program @a@i to analyze
arbitrary DFEs in a computationally efficient manner. We
implement these features in a module for @a@i, which we call
Fit@a@i. We then use this approach to estimate the DFE of
deleterious, nonsynonymous mutations from multiple large
human data sets. We consider several different functional
forms for the DFE. We find that across the multiple data sets,
a mixture distribution where a proportion of mutations are
neutral and the remainder are gamma distributed fits best.
Analysis of multiple data sets suggests there are fewer
strongly deleterious mutations where |s| . 1022 (0.38–
0.84 fold) than previously estimated in Boyko et al. (2008)
(35%), regardless of the functional form of the DFE. Further,
our results are not consistent with amodel where 99% of new
mutations have a selection coefficient weaker than 1023, as
suggested by Li et al. (2010). Because we anticipate that our
estimates of the DFE will be useful in subsequent simulation
studies, we provide SFS_CODE (Hernandez 2008) and SLiM
(Messer 2013) commands to simulate data where mutations
have fitness effects from these DFEs.

Materials and Methods

Fit›a›i: software to infer the DFE

Here we present our new software, Fit@a@i, to infer distribu-
tions of selection coefficients of new mutations under the PRF
model using the SFS. Fit@a@i is a module that extends the
functionality of the Python package, @a@i (Gutenkunst et al.
2009). Specifically, @a@i uses diffusion theory to compute the
expected SFS for a set of demographic parameters and selec-
tion coefficients. Fit@a@i offers a substantial computational im-
provement over the existing implementation of @a@i formodels
involving more than a single selection coefficient. To do this,
Fit@a@i computes SFSs for a range of selection coefficients and
saves each SFS into an array. Then, subsequent integrations of
the DFE are done using the array of precomputed SFSs. This
process results in a substantial improvement in computational
speed compared to the existing implementation of @a@i, which
recomputes the SFS for each selection coefficient in each step of
the optimization process (Figure S2 in File S1). Fit@a@i also
allows parallel computation of the SFS by using multiple cores
or a cluster. Importantly, Fit@a@i leverages the modular nature
of @a@i to allow the user to define any arbitrary demographic
model and DFE, including DFEs that are complex mixture dis-
tributions. Lastly, we incorporated an optimization routine that
allows for constrained optimization of complex mixture distri-
butions. Below we describe our inference procedure in greater
detail, starting with inference of demography, followed by the
details of Fit@a@i. We then discuss a simulation study to assess
its performance, both under the assumptions of the PRF model
as well as when some are violated, and then the data sets that
we use to infer the DFE in humans.

Inference using the SFS

We inferred demography and selection from segregating sites
in a maximum likelihood framework (Williamson et al. 2005,
Boyko et al. 2008, Gutenkunst et al. 2009). Because both
demography and selection affect patterns of deleterious
mutations, our inference of the DFE begins (as done in
Williamson et al. 2005 and Boyko et al. 2008) by first

Figure 1 Previously inferred DFEs differ across studies.
We rescaled the DFE in terms of the population size as-
sumed or inferred in each study. A population size of
10,000 diploids is used to rescale the distribution of 2Ns
to s for Eyre-Walker et al. (2006). For Boyko et al. (2008)
and Li et al. (2010), we rescale the DFE from 2Ns to s using
population sizes of 25,636 and 52,097 diploids, respec-
tively (see Materials and Methods).
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estimating a demographic model for putatively neutral, syn-
onymous sites. Then, conditional on the demographic param-
eter estimates, we infer the parameters for the DFE of
nonsynonymous mutations.

To do this, we summarized synonymous and nonsynon-
ymous siteswith theSFS. TheSFS canbedescribed as a vector,
X = [X1, X2, . . ., Xn21], in which each entry Xi describes the
number of SNPs at frequency i in a data set of size n chromo-
somes. In the PRF framework, each entry in the SFS is as-
sumed to be comprised of independent sites (Sawyer and
Hartl 1992; Hartl et al. 1994).

Additionally, we folded the SFS to avoid difficulties with
misidentification of the ancestral state (Hernandez et al.
2007). This form of the SFS counts the number of SNPs
of minor allele frequencies (MAFs) 1 to n/2 without taking
the ancestral state into account. The folded SFS has been
shown to perform well at inferring the DFE of deleterious
mutations (Keightley and Eyre-Walker 2007; Boyko et al.
2008; Tataru et al. 2016).

Inference of demography

Ademographicmodel, theparametersofwhicharedenotedas
�D, was fit to the SFS of synonymous sites with @a@i
(Gutenkunst et al. 2009). Here, @a@i uses a diffusion approx-
imation to compute the distribution of allele frequencies
given some demographic model, f(x;�D). Then, the expected
number of SNPs at frequency i in a sample of size n chromo-
somes can be written as:

E½Xi�¼ u

2

Z 1

0
xið12xÞn2if ðx; �DÞdx: (1)

Themultinomial likelihood, computedwith the folded SFS, is
maximized to estimate the demographic parameters:

LðX*j�DÞ¼
Y
i

 
E
�
X*
i

���D
�

P
iE
�
X*
i

���D
�
!X*

i

; (2)

where X*
i denotes the observed count of SNPs at frequency i

in the folded SFS. The multinomial likelihood uses the pro-
portions of SNPs at a particular frequency in the sample
rather than the counts from the model. Therefore, it does
not require an a priori assumption about the mutation rate
or ancestral population size. The mutation rate of synony-
mous sites, denoted uS, was then computed as the scaling
factor difference between the optimized SFS and the data.

When fitting models incorporating periods of rapid expo-
nential growthwith @a@i, we set the program parameter dadi.
Inference.set_timescale_factor=1026, in contrast to the de-
fault setting of 1023. In @a@i, periods of exponential growth
are approximated with a series of instantaneous size changes
and, if the time steps are not small enough, parameters re-
lated to exponential growth will not be inferred correctly.
This causes the demographic model to inaccurately predict
the expected numbers of rare variants, biasing downstream
inference of selection.

Inference of selection

To infer the DFE, we developed the Fit@a@i module, which
uses @a@i and some of the methodological improvements of
Ragsdale et al. (2016). First, we condition on the demo-
graphic model that was fit to synonymous sites using the
procedure described above. Given that demography, @a@i is
used to compute a distribution of allele frequencies f(x;�D, g),
where �D is a vector containing the demographic param-
eters inferred from synonymous sites and g is a single
population-scaled selection coefficient. Specifically, g = 2NAs,
where NA is the ancestral population size, but it is rescaled in
each time period of the demographic model by the fold size
change relative to the ancestral population. A DFE, denoted
g(g), can be incorporated by generating f(x; �D, g) for a
range of g, then weighting the contribution of each of these
frequency spectra by g(g) (Boyko et al. 2008):

E½Xi�¼ u

2

Z N

2N

Z 1

0
xið12xÞn2if ðx; �D; gÞgðgj�DFEÞdxdg:

(3)

In the standard implementation of @a@i, this process is time
consuming because the SFS must be computed repeatedly
during each step of optimization. In other words, f(x;�D, g)
is computed each time a given value of g is evaluated in a
DFE. This process can be especially slow for large ranges of g
and for large sample sizes. Therefore, similar to Ragsdale
et al. (2016), we initially computed the SFS for a range of
selection coefficients, and then cached these results to avoid
recomputing the frequency spectra (Figure S2 in File S1). In
addition, we computed many frequency spectra in parallel
to save time, added compatibility for user-defined DFEs,
modified the optimization routines available in @a@i to work
with cached spectra, and added the option to use constrained
optimization for the inference of complex mixture distribu-
tions. These extensions are part of the Fit@a@i module.

To infer selection,we fixed the demographic parameters to
themaximum-likelihood estimates (MLEs) inferred from syn-
onymous sites, �̂D: Then, we fit a DFE, the parameters of
which are denoted as �DFE, to the folded SFS of nonsynon-
ymous sites by maximizing the Poisson likelihood:

LðX*j�̂D;�DFEÞ¼
Y
i
exp
�
2 E

h
X*
i

���̂D;�DFE

i�

3
E
�
X*
i

���̂D;�DFE
�

X*
i !

: (4)

Unlike the multinomial likelihood, the Poisson likelihood
requires an a priori assumption about the mutation rate for
nonsynonymous sites, uNS. To obtain this, we multiplied our
estimate of uS by an assumed ratio of the nonsynonymous to
synonymousmutation rate, uNS/uS, to obtain uNS. Specifically,
we assumed the ratio to be uNS/uS= 2.31 (Huber et al. 2016),
but also estimated the DFE using uNS/uS = 2.5 to provide a
fair comparison to Boyko et al. (2008).
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Each DFE is defined as an integrable function over a log-
spaced range of 600 selection coefficients over intervals be-
tween |s| = [1028, 0.5]. We considered any portion of
the DFE smaller than |s| = 1028 to be effectively neutral
(|s| = 0), and any variants of |s| . 0.5 to have negligible
probability of being found in polymorphism data (i.e., not
found in the data). Note that here we only consider the del-
eterious DFE but this function can easily be extended to in-
corporate positive selection (Huber et al. 2016).

Fit@a@i includes many of the standard DFEs (Boyko et al.
2008; Kousathanas and Keightley 2013), such as a gamma
distribution and several mixture distributions. Specifically,
we investigated mixture distributions where a proportion of
mutations are neutral; with the rest following a gamma dis-
tribution as well as a mixture distribution where a fraction is
neutral, a fraction is lethal, and the remainder follows an
exponential distribution of fitness effects. Lastly, Fit@a@i in-
cludes arbitrary mixture distributions with a fixed number of
fitness classes, or bins, where each bin can have its own
range of selection coefficients (called the “discrete DFE”).
Fit@a@i infers the proportion of new mutations in each fit-
ness class. For mixture distributions incorporating a point
mass at neutrality or lethality, we define the DFE so it can
be treated as a single integrable function. We add the area
of the point mass to a part of the distribution that is as-
sumed to be neutral or lethal. For example, to add a point
mass of neutral mutations to the “neutral+gamma DFE,”
we add the probability mass of neutral mutations, pneu, to
the |s| = [0, 1028] portion of the distribution. Then, we
integrate the gamma DFE between |s| = [0, 1028] and
sum it with pneu to obtain the total mass of neutral muta-
tions. Additionally, we used the SLSQP algorithm (Kraft
1988) as implemented in SciPy 0.17.1 to perform con-
strained optimization for mixture distributions incorporat-
ing more than two components. Throughout, we will use a
and b to denote the shape and scale parameters of the
gamma distribution, respectively, and l to denote the rate
parameter of the exponential distribution. The DFEs we
report will be scaled by the ancestral population size. To
estimate confidence intervals (C.I.’s) for our data, we Pois-
son resampled the nonsynonymous SFS and refit the DFE
to the resampled data (Boyko et al. 2008). We note these
C.I.’s are likely too narrow because they assume indepen-
dence between all sites and do not account for the uncer-
tainty in the demographic inference.

Simulations

To assess the performance of Fit@a@i, we performed forward-
in-time simulations under different models of selection and
demography. Simulations of independent sites were done
using the program PReFerSIM (Ortega-Del Vecchyo et al.
2016), which simulates unlinked SNPs under the PRF model.
We simulated synonymous sites separately with a population-
scaled mutation rate of uS = 4000 to approximately match
the amount of synonymous genetic diversity in our data sets.We
simulated nonsynonymous sites at a ratio of 2.5 nonsynonymous

to 1 synonymous site, in other words using LNS/LS = 2.5.
These simulations included sample sizes of n = 24 and
n = 2596 chromosomes using a demographic model of
constant size, a twofold instantaneous size change, and
the demography inferred from the LuCamp data. We con-
sidered a variety of DFEs, which are described in more detail
in specific instances below.

Because the PRFmodel makes several restrictive assump-
tions that are likely to not apply to real data sets, we
performed an additional set of forward simulations violating
these assumptions, and assessed the effect on inferences
using Fit@a@i. Specifically, we investigated the effects that
unmodeled linkage, background selection, and population
structure might have on our inference of the DFE. To do this,
we simulated 100–150 Mb regions using the recombination
rate and arrangement of functional elements on human
chromosome 1 (Huber et al. 2016) using the forward simu-
lation program SLiM (Messer 2013). We assumed a gamma
DFE for both nonsynonymous (a = 0.2, b = 200) and con-
served noncoding sites (a = 0.0415, b = 50; see Torgerson
et al. 2009). We assume that 400 generations ago, the an-
cestral population expanded eightfold and split into eight
genetically isolated populations. This population size in-
crease reflects the Neolithic expansion into Europe under
the demic diffusion model (Chikhi et al. 2002; Gazave
et al. 2014). We then sampled 100 chromosomes equally
across the eight populations, combined them together, and
analyzed them as though they were from a single popula-
tion. The ancestral population was simulated for a burn-in
period of 10N generations. To avoid prohibitively slow for-
ward simulations, we simulated with an ancestral effective
population size of 1000 and scaled mutation rate, recombina-
tion rate, selection coefficients, and demographic parameters
accordingly (Aberer and Stamatakis 2013).We thenfit a single
population demographic model (which is the incorrect model)
to the synonymous SNPs in each simulated data set using @a@i.
Then, conditional on these demographic parameters, we
inferred the DFE using Fit@a@i. Our goal with these simula-
tions is to mimic what researchers do in practice; where they
do not know the true demographic model, but try to fit a
simplified model to the data.

Data

Wedownloaded SNP data for 432 unrelated European (EUR)
individuals from the 1000 Genomes Project phase 3 release
(The 1000Genomes Project Consortium2015); 6503 individ-
uals from the National Heart, Lung, and Blood Institute
ESP6500SI-V2 European American (EUR) data set (Tennessen
et al. 2012; Fu et al. 2013); and 2000 Danish individuals from
the LuCamp project (Lohmueller et al. 2013). The 1000 Ge-
nomes phase 3 data were downloaded from the European
Bioinformatics Institute file transfer protocol site http://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/. Re-
lated individuals were removed by sampling onlymothers and
fathers from trios or extended families. Only SNPs from the
phase 3, exome-targeted sequencing which passed the strict
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mask filter were used. The total length of sites considered in
the analysis, LS + LNS, was computed by taking this filter-
ing into account. Variants were annotated using the 1000 Ge-
nomes Project-filtered annotations. The Exome Sequencing
Project (ESP) ESP6400 data set was downloaded from the
Exome Variant Server (http://evs.gs.washington.edu/EVS/).
Only sites with 1800 ormore European individuals sequenced,
according to the site-by-site annotations, were used for the
analysis. The LuCamp data were obtained from Lohmueller
et al. (2013). For computational tractability, a hypergeometric
distribution was used to project the LuCamp and ESP data sets
down to sample sizes of 1298 and 1300 diploids (Gutenkunst
et al. 2009), respectively, after filtering problematic individuals.
All 432 unrelated European individuals from the 1000 Ge-
nomes Project were used. From these data, we assembled
the folded SFS of synonymous and nonsynonymous sites,
which were used for subsequent inference. To examine the
effect of a smaller sample size on inference of demography
and selection, we also projected the data down to a sample
size of 24 chromosomes.

Estimating s from 2Ns

The DFEs inferred using the approach described above were
for the population-scaled selection coefficient, scaled by twice
the ancestral population size (g = 2NAs). Because we were
interested in the distribution of s, we needed to estimate NA.
We computed NA from the value of uS inferred from synony-
mous sites (Table S1 in File S1) using the equation uS =
4NAmLS. Detailed information about these parameters used
for our analysis can be found in Table S2 in File S1. However,
this value ofNA depends on assumptions about the per-base-pair
mutation rate and the ratio of possible nonsynonymous to
synonymous sites, LNS/LS, since these quantities are computed
from the total number of coding sites, LS + LNS. We assumed
the mutation rate to be m = 1.53 1028 to reflect estimates of
the mutation rate in the human exome (Ségurel et al. 2014).
For comparison to results from Boyko et al. (2008), we as-
sumed the mutation rate to be m = 1.8 3 1028. For the re-
analysis of the Boyko et al. (2008) data set, we assumed the
same ancestral population size, N = 7778 diploids, instead of
computing it. To compute the total number of coding sites,
LS + LNS, in each data set, we intersected the coding exons
from the University of California Santa Cruz canonical tran-
script with the relevant filters for each data set. For the
1000 Genomes data, we intersected the phase 3 strict mask,
the exome targets, and the hg19 coding exons. For the analysis
of the ESP data set, we used the intersection of the hg19
coding exons and the site-by-site annotations to count the total
number of coding sites for which n $ 2600 alleles had been
sequenced. For the LuCamp data, we obtained the value of
LS + LNS from Lohmueller et al. (2013).

Data availability

This research uses previously published data sets obtained as
previously described. The Fit@a@i software is available at
https://github.com/LohmuellerLab/fitdadi.

Results

Validation of Fit›a›i by comparison to
previous analyses

We first examined the performance of Fit@a@i by fitting a
demographic model and DFE to the African-American SFS
from Boyko et al. (2008). Fit@a@i produces similar estimates
of the shape and scale parameters of the gamma distribution
compared to Boyko et al. (2008) (Boyko: a = 0.184, b =
2488; Fit@a@i: a = 0.179, b = 3161). Additionally, Fit@a@i
produced similar estimates of the proportions of mutations in
different bins of the DFE (Table S3 in File S1).

Performance on simulated data

We further investigated the performance of Fit@a@i by per-
forming forward simulations under the PRF model (see
Materials and Methods). We first considered the best-fit DFE
of Boyko et al. (2008), rescaled to have an ancestral popula-
tion size of N = 10,085 diploids (a = 0.184, b = 3226).
Fit@a@i is able to accurately infer the DFE from our simulated
data sets (Table 1). Predictably, the variance of our estimates
of the most deleterious portion of the DFE (|s| . 1022) is
five- to sixfold greater for the small (n = 24) samples. How-
ever, for the samples of size n = 2596, the variance in the
estimates of this portion of the DFE is significantly reduced
and overall estimates of the proportions of the DFE where
|s| . 1023 are accurate. Therefore, this sample size should
allow us to accurately infer the most deleterious portions of
the DFE.

Because it is not certain that the DFE is truly gamma
distributed, we simulated data sets of 2596 chromosomes
with other DFEs. Again, we scaled these DFEs to an ancestral
population size of 10,085diploids.We considered themixture
distribution of Li et al. (2010), which consists of 20% neutral
and 80% gamma-distributed (a = 4, b = 2.148) selection
coefficients (the neutral+gamma DFE).We also considered a
mixture distribution consisting of five bins, (the discrete DFE)
with breaks at |s| = [0, 1025, 1024, 1023, 1022, 1]. Within
each bin, the values of s were uniformly distributed. We ex-
amined three weighting schemes for this distribution. First,
we computed the probability mass in each bin from the mix-
ture distribution of Li et al. (2010). Then, we computed the
probability mass in each bin from a gamma distribution with
parameters a = 0.203 and b = 1082.1, but where the mass
in the |s| = [1022, 1] bin was placed into the |s| = [1023,
1022) bin, and the opposite case where the mass in the |s| =
[1023, 1022) bin was placed into the |s| = [1022, 1] bin.
This was done to evaluate whether we could distinguish be-
tween these discrete DFEs and to evaluate our ability to dis-
tinguish strongly deleterious mutations from moderately
deleterious mutations in a large sample.

We find that if the true underlying DFE is distributed
according to the Li et al. (2010) neutral+gamma distribution,
the discrete DFE is able to estimate the true DFE, albeit with
some limitations (Figure 2, A and B). For example, when the
true DFE follows Li et al. (2010), our inference under the
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discrete DFE correctly estimates a negligible fraction of mod-
erately or strongly deleterious new mutations (|s| . 1023),
and correctly infers a mode of weakly deleterious mutations
(1024 # |s| , 1023). However, estimates of the proportion
of nearly neutral and neutral mutations (|s|, 1024) are less
accurate (Figure 2A). When we simulate with the discretized
distribution of Li et al. (2010), our estimates of the propor-
tions of the discrete DFE are unbiased (Figure 2B). Addition-
ally, we can distinguish between DFEs with varying
proportions of moderately and strongly deleterious muta-
tions (Figure 2, C and D). Although it is unlikely that the
DFE of any natural population is discretized in this manner,
these results show that the discrete DFE can help to approx-
imate the general form of the underlying DFE, even if the true
DFE is multimodal. This mimics what would be done in prac-
tice, where the precise functional form of the DFE is not
known a priori. Therefore, fitting the discrete DFE should
provide a general idea of the true DFE, especially if the true
DFE is significantly multimodal. Notably, the discrete distri-
bution can distinguish between strongly and moderately del-
eterious mutations at our sample size of 2596 chromosomes.

Simulations with linkage and population structure

The procedure of first inferring demography from the synon-
ymous SFS and then selection from the nonsynonymous SFS
provides unbiased estimates of selection, even in the presence
of linkage (Boyko et al. 2008; Messer and Petrov 2013;
Comeron 2014). In other words, this methodology controls
for the effects of selection at linked sites. However, it is un-
clear what effect population structure might have on infer-
ence of the DFE. It is well known that such cryptic structure
affects the SFS and may bias demographic inference (Ptak
and Przeworski 2002; Gazave et al. 2014). Further, large
human resequencing data sets may contain cryptic popula-
tion structure (Novembre and Ramachandran 2011). For ex-
ample, the 1000 Genomes European sample is comprised of
five different subpopulations. To examine the performance of
Fit@a@i when applied to data sets where the assumptions
of the PRF model and a single, unstructured population are
violated, we performed forward simulations including back-
ground selection and population structure (seeMaterials and
Methods). We fit a single population, single-size-change de-
mographic model to synonymous sites; and then, conditional

on the size-change demographic model, a gamma DFE to
nonsynonymous sites for each simulation replicate. Even when
using the incorrect demographic model, we accurately infer se-
lection from simulated data in the presence of linkage and pop-
ulation structure (Figure 3). Importantly, the single-size-change
demographic model provides a reasonable approximation to the
SFS when there are both population expansions and structure
(Figure 3A). This in turn allows for the accurate estimation
of both the shape and scale parameters of the gamma DFE
(Figure 3B).

Therefore, simulations and a comparison to existing em-
pirical data suggest that Fit@a@i can reliably infer the DFE in
the presence of complex demographic scenarios. Below we
present additional simulation scenarios to examine the per-
formance of Fit@a@i with varying sample sizes and when the
assumed demography and DFE are misspecified.

Demographic inference

We begin by fitting a demographic model to the synonymous
SFS of each of the three data sets (LuCamp, ESP, and 1000
Genomes) using @a@i. Briefly, this demographic model incor-
porates an out-of-Africa bottleneck, a recovery period, and
recent exponential population growth (Figures S3 and S4 in
File S1). Our estimates of demography as well as the inferred
population sizes are presented in Tables S1 and S2 in File S1.
Predictably, the parameter describing the magnitude of re-
cent population expansion is harder to infer when using a
sample size of 24 chromosomes than when using the larger
sample sizes (n = 2596 chromosomes). Although the demo-
graphic model we infer is biased by linked selection, this step
controls for these effects when inferring selection (Boyko
et al. 2008; Kousathanas and Keightley 2013; Messer and
Petrov 2013; Huber et al. 2016).

Inference of the DFE from large data sets

Herewe estimate theDFE for newnonsynonymousmutations
using large samples. First, like previous studies, we fit a
gamma distribution to the DFE (Table S4 in File S1). We infer
a strongly leptokurtic distribution where there are many neu-
tral and nearly neutral mutations (i.e., 34–37% of new mu-
tations have |s| , 1024), as well as a class of strongly
deleterious mutations (i.e., 15–22% of new mutations have
|s| . 1022). Interestingly, the estimates from the three

Table 1 Performance of Fit›a›i on simulated data sets

Demography nchr a (shape) b (scale) 0 £ |s| < 1025 1025 £ |s| < 1024 1024 £ |s| < 1023 1023 £ |s| < 1022 1022 £ |s|

Truea — 0.184 3266b 0.182 0.096 0.146 0.219 0.357
Constant

size
2596 0.180 6 0.010 3712.2 6 980.2 0.186 6 0.009 0.095 6 0.002 0.144 6 0.006 0.213 6 0.013 0.363 6 0.016

24 0.185 6 0.028 3613.1 6 4196.7 0.182 6 0.017 0.097 6 0.009 0.148 6 0.023 0.221 6 0.043 0.353 6 0.060
Two-fold

expansion
2596 0.191 6 0.007 2606.0 6 410.7 0.178 6 0.008 0.098 6 0.002 0.152 6 0.004 0.230 6 0.009 0.341 6 0.010

24 0.187 6 0.023 3259.8 6 2612.6 0.181 6 0.016 0.097 6 0.008 0.149 6 0.019 0.223 6 0.036 0.350 6 0.050
LuCamp 2596 0.182 6 0.008 3411.9 6 558.5 0.184 6 0.008 0.096 6 0.001 0.145 6 0.004 0.216 6 0.008 0.358 6 0.009

24 0.186 6 0.027 3435.4 6 3249.9 0.182 6 0.017 0.097 6 0.009 0.148 6 0.022 0.222 6 0.042 0.351 6 0.060

95% intervals were estimated as 6 1.96 SD of 100 replicates in each simulation set. chr, chromosome.
a Values show the true DFE used to simulate the data.
b Here the simulation was scaled to an ancestral population size of N = 10,085 diploids.
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different data sets are generally concordant, though the 95%
C.I.’s sometimes do not overlap. While this may suggest that
the differences cannot be attributable to limited amounts of
data in the SFS, we caution that these C.I.’s are likely too
narrow because they do not account for the nonindepen-
dence of SNPs or the uncertainty of demographic estimates.

When compared directly to Boyko et al. (2008), the best-fit
gamma DFEs inferred from all three data sets are generally
shifted toward neutrality (Table 2 and Tables S4 and S5 in
File S1), even when matching the mutation rates to those of
Boyko et al. (2008) (m = 1.8 3 1028 and LNS/LS = 2.5). We
infer 19.2–22.9% of new mutations have a selection coeffi-
cient |s|, 1025, compared to the 18.3% observed by Boyko

et al. (2008). This corresponds to a 1.05- to 1.25-fold in-
crease. Additionally, we infer 24.5–29.8% of new mutations
are strongly deleterious (|s|. 1022), which corresponds to a
0.69- to 0.84-fold decrease of the 35.5% inferred by Boyko
et al. (2008). Taken together, when assuming a gamma dis-
tribution for the DFE, all three data sets suggest fewer
strongly deleterious mutations than seen in Boyko et al.
(2008).

Next, we explored the fit of complex DFEs to these large
samples. Using the same combination of mutation rates as
with the gamma, we fit the neutral+gamma mixture distri-
bution; a mixture distribution of a point mass of neutral, a
point mass of lethal, and exponentially distributed new

Figure 3 Inference of the DFE is robust to misspecifica-
tion of the demographic model and background selec-
tion. Points show the MLEs of the (A) demographic
parameters and (B) DFE parameters inferred from
100 simulated data sets with linkage and population
structure. Red lines denote the true values and the yel-
low dots denote the median estimates across the
100 data sets. Estimates of time of expansion (T1) and
the ratio of current to ancestral population size (N1/NANC)
tend to be biased because demography is incorrectly
modeled due to background selection, but estimates
of the DFE are unbiased.

Figure 2 The discrete DFE can recover the approximate form of the DFE from simulated data. The distributions of the proportions of mutations with
different selective effects, as inferred by the discrete DFE for 100 simulated data sets, are shown. Each simulation set assumed the demographic model
fit to the LuCamp synonymous SFS. A red point depicts the true proportions of the simulated DFE. The true DFE for each set is: (A) the continuous neutral+gamma
distribution of Li et al. (2010) (pneu = 0.2, a = 4, b = 1.0653 1024), (B) the discretized version of that distribution, (C–F) a gamma DFE (a = 0.215, b = 567.1), but
where (C and E) the mass of the 1023 # |s| , 1022 bin was added to the 1022 # |s| bin, and (D and F) where the mass of the 1022 # |s| bin was
added to the 1023 # |s| , 1022 bin. The data sets simulated for (C) and (D) had sample sizes of n = 2596 chromosomes, while the data sets for (E)
and (F) had sample sizes of n = 24 chromosomes.
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mutations (the “neutral+exp+lethal” DFE); and the dis-
crete DFE described previously. The MLEs, as well as the
proportion of mutations with varying selection coefficients
predicted by these distributions, are depicted in Table 2,
Table 3, and Table S4 in File S1.

When we assume m= 1.53 1028 and LNS/LS = 2.31, the
neutral+gamma DFE fit best to the LuCamp and ESP data
sets as reflected by the highest log-likelihood and Akaike
information criterion (AIC) score (Table 3 and Table S4 in
File S1). The gamma still fit best to the 1000 Genomes data
set. Compared to the gamma DFEs inferred previously for
two data sets, our best-fitting DFEs predict slightly fewer
(0.92–0.98 fold) newmutationswith |s|. 1022, and slightly
more (1.06–1.18 fold) new mutations of |s| , 1025.
When we matched the mutation rates of Boyko et al. (2008)
with m = 1.8 3 1028 and LNS/LS = 2.5, the discrete DFE fit
best to the LuCamp data set (Table 3 and Table S4 in File S1).
However, the gammaDFE continued to fit best to the 1000 Ge-
nomes and ESP data sets under these assumptions. The best
fitting DFEs are depicted in Figure 4 and Figure S5 in File S1,
and a comparison of the model to the SFS of the data are
shown in Figure S6 in File S1. When using the larger mutation
rate, we find the discrete DFE to fit best to the LuCamp data
set, which predicts significantly fewer (0.54 fold) new muta-
tions of |s| , 1022 than the gamma DFE fit using the same
mutation rate.

One concern is that biases in SNP calling may affect these
inferences.Oneway to test for this is bymasking the singletons
in the analysis, since singletonsmaybeenriched for false SNPs
due to sequencing errors (Boyko et al. 2008). We fit the
gamma and neutral+gamma DFEs while masking the single-
ton category in the SFS and find little difference in the
inferred DFEs (Table S6 in File S1). This finding suggests
our inferences are robust to potential errors in SNP calling
in these data sets.

TheDFEswehave inferred thus far differ from that inferred
in Boyko et al. (2008). In that study, 35.5% of new nonsynon-

ymous mutations were inferred to be strongly deleterious in
African-Americans, and 37.9% in Europeans. We infer fewer
new strongly deleterious nonsynonymous mutations, even
when matching the mutation rates used in Boyko et al.
(2008) (Figure 4 and Figure S5 in File S1). Furthermore,
the distribution of 2Ns also shows fewer strongly deleterious
mutations (27.1–36.9% of mutations with 2Ns . 100)
than seen in Boyko et al. (2008) (40.4% of mutations with
2Ns . 100; Figure S5 in File S1). Our results remain consis-
tent across data sets and assumed forms of the DFE.

Additionally, our estimates of the DFE differ substantially
from the estimates provided by Li et al. (2010). Specifically, Li
et al. (2010) infer almost no strongly or moderately delete-
rious new nonsynonymous mutations. That is, 1% of new
nonsynonymous mutations have selection coefficients of
1023 , |s| , 1022 and 0% have a selection coefficient
|s| . 1022 (Figure 1). All of our estimates infer that at least
�30% of new nonsynonymous mutations have a selection
coefficient |s|. 1023, even when the assumedmutation rate
is small (Figure 4 and Table 3). Our simulations suggest if the
true underlying DFE follows that suggested by Li et al.
(2010), we should be able to estimate those proportions us-
ing both the neutral+gamma and the discrete DFE (Figure 2,
A and B). The fact that our inferences did not show similar
estimates to those inferred by Li et al. (2010) suggests that
our data and analyses are not consistent with the distribution
inferred by Li et al. (2010) (Table S5 in File S1). In the fol-
lowing sections, we explore several reasons why the different
studies infer different DFEs.

Assessing the role of sample size and model
misspecification using simulations

One possibility for the distinct estimates of the DFE is that the
three studies used different sample sizes. Larger samples will
have more moderately and strongly deleterious variants seg-
regating than will smaller data sets (Figure S1 in File S1). To
investigate the effect of sample size on our ability to infer the

Table 2 MLEs of various DFEs

Data set DFE Parameter MLEs Log-likelihood AIC |DAIC|a

LuCamp Gamma a = 0.215, b = 562.1 23334.7 6673.4 13
Neu+gamma pneu = 0.164, a = 0.338, b = 367.7 23327.2 6660.4 0
Neu+exp+let pneu = 0.304, pexp = 0.613, l = 66.56 23337.8 6681.6 21.2
Discreteb p1 = 0.309, p2 = 0.024, p3 = 0.247, p4 = 0.372 23334.1 6676.2 15.8

1kG EUR Gamma a = 0.186, b = 875.0 21450.5 2905.0 0
Neu+gamma pneu = 0.031, a = 0.199, b = 820.6 21450.8 2907.6 2.6
Neu+exp+let pneu = 0.312, pexp = 0.509, l = 41.48 21472.0 2950.0 45
Discreteb p1 = 0.286, p2 = 0.099, p3 = 0.222, p4 = 0.305 21453.4 2914.8 9.8

ESP EUR Gamma a = 0.169, b = 1327.4 23012.6 6029.2 2.6
Neu+gamma pneu = 0.092, a = 0.207, b = 1082.3 23010.3 6026.6 0
Neu+exp+let pneu = 0.341, pexp = 0.504, l = 63.90 23071.6 6149.2 122.6
Discreteb p1 = 0.334, p2 = 0.041, p3 = 0.201, p4 = 0.306 23029.5 6067.0 40.4

These results are reported assuming LNS/LS = 2.31 and m = 1.531028. See Table S4 in File S1 for additional information. The shape and scale parameters of the gamma
distribution are denoted with a and b, respectively, and the rate parameter of the exponential distribution is denoted with l. Neu, neutral; exp, exponential; let, lethal; 1kG,
1000 Genomes.
a Change in AIC relative to the model with the lowest AIC.
b In terms of |s|, these parameters correspond to the ranges of |s| corresponding to: [0, 1025), [1025, 1024), [1024, 1023), and [1023, 1022), respectively. The mass in the [1022, 1]
range is the complement of the total mass of the four aforementioned categories.
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DFE, we simulated 200 data sets, without linkage, of sample
sizes n= 12, 24, 100, 250, and 500 chromosomes. Each data
set was simulated using the demographic model and gamma
DFE inferred from the LuCamp data set.

First, we simulated neutral synonymous sites and inferred
the demographic parameters from each data set. This was
done in twoways. First,we estimated the parameters from the
full demographic model that was used to generate the data
(herein the “full”model). Second, we inferred the parameters
in a demographic model with only three instantaneous size
changes (herein the “three-epoch” model). This is meant to
mimic the situation in Boyko et al. (2008), where the true
demography of the European population was likely complex,
but simpler three-epoch demographic models could accu-
rately fit the synonymous SFS. Next, as done in our inference
and in previous studies, we estimated the parameters of a
gamma distribution for the DFE of nonsynonymous muta-
tions, conditioning separately upon the two demographic
models.

When the full demographic model was fit to the simulated
data sets, we found the variance of our estimates, both of
demography and selection, decreased as sample size in-
creased (Figure S7 in File S1). We were unable to correctly
infer the magnitude of recent population growth with small
sample sizes, consistent with previous work (Keinan and
Clark 2012; Nelson et al. 2012; Tennessen et al. 2012; Fu
et al. 2013). However, this did not affect the inference of
selection as long as the demographic model fit reasonably
well to synonymous sites (Figure S7 in File S1). At small
sample sizes, the three-epoch model could fit the synony-
mous SFS well and thus estimates of selection were also un-
biased. However, we found that for sample sizes .100
chromosomes, the three-epoch model increasingly became
unable to account for the excess of rare variants caused by
recent growth. The inability to account for the rare variants in
the sample then biased the estimates of both the shape and
scale parameters of the gamma distribution. However, this
effect seems to be negligible at a sample size of 24 chromo-
somes (Figure S7 in File S1).

As long as the demographic model fits the observed SFS of
synonymous sites, small sample sizes can estimate the param-
eters in a gammadistributedDFE, evenwhen the demographic
model is not the correct one. The accuracy of the estimates
increases with sample size, especially for the scale parameter,
and notably provides better estimates of the strongly deleteri-
ous portion of the DFE (Figure S7B in File S1 and Table 1).
Thus, the results of Boyko et al. (2008) are unlikely to be
affected by misspecification of demography due to small sam-
ple size.

Another possibility for the varying estimates of the DFE is
that the DFE itself may be misspecified. Although parametric
distributions are convenient for approximating the DFE, the
true formof theDFE is unknown.Additionally,wehave shown
that the neutral+gamma DFE and the discrete DFE can fit
large data sets better than the gamma DFE. To investigate an
example of what would happen if the DFE is misspecified, weTa
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simulated 100 data sets without linkage for the best-fit
neutral+gammaDFEinferredfromtheLuCampdataset, scaled
to an ancestral population size of 10,085 diploids (pneu=0.164,
a = 0.338, b = 358.8). We also downsampled each data set to
n=24chromosomes. Then,wefit a gammaandneutral+gamma
DFE to each full and downsampled data set.

When the true DFE is neutral+gamma distributed, infer-
ence of the DFE from small samples overestimates the pro-
portion of strongly deleteriousmutations (Figure 5).When the
DFE is correctly specified, we obtain unbiased estimates of the
DFE even from small samples. However, at a sample size of n=
24 chromosomes, both the gamma and neutral+gamma dis-
tributions have a similar log-likelihood (Figure 5A). This was
also observed in Boyko et al. (2008). Then, the extra parame-
ter in the neutral+gamma distribution penalizes the true DFE
when choosing the best-fit DFE by AIC score. This leads one to
choose the gamma distribution as the best-fit DFE to the small
sample, even when the true DFE follows a neutral+gamma
distribution. Fitting the gamma distribution yields a DFE with
more new mutations with |s| . 1022 and a decrease in the
proportion of newmutations with |s|, 1025 compared to the
true DFE (Figure 5B).

Assessing the role of sample size using real data

Next, we investigated the role that sample size has on in-
ference of theDFE from real data. To do this, we projected our
synonymous and nonsynonymous frequency spectra down to
a sample size of n = 24 chromosomes to match the sample
size of Boyko et al. (2008), then fit a demographic model and
DFEs as previously described. Here we used themutation rate
assumptions m = 1.5 3 1028 and LNS/LS = 2.31, but
also matched the mutation rate of Boyko et al. (2008)
(m = 1.8 3 1028 and LNS/LS = 2.5). Then, we fit the
gamma, neutral+gamma, and discrete DFEs—which were

the best-fitting distributions to the full data—to the down-
sampled data sets.

As predicted by our simulations, there is generally little
difference in the fit of the different DFEs to the downsampled
data sets in terms of log-likelihood (Table S5 in File S1). The
neutral+gamma and discrete DFEs often fit better than the
gamma, but the difference in log-likelihood is small (0.1–0.6
log-likelihood units). Thus, the gamma DFE is selected as the
best-fit DFE for all downsampled data sets by AIC. These
results mimic what was observed in our simulations, al-
though the pattern is not wholly consistent across data sets
and mutation rates. When we assume m = 1.8 3 1025 and
LNS/LS = 2.5, the gamma DFE fits best to both the full and
downsampled 1000 Genomes and ESP data sets (Figure 4
and Table S5 in File S1). There also appears to be little dif-
ference between the gamma DFE fit to the full and down-
sampled data. By contrast, the discrete DFE fits best to the
LuCamp data under these mutation rates. Additionally, the
neutral+gamma fit best to the full ESP and LuCamp data
when we assume m = 1.5 3 1025 and LNS/LS = 2.31. The
gamma DFE fit to the downsampled versions of these data
sets predicts more strongly deleterious (|s| . 1022) and
more nearly neutral (|s| , 1025) new mutations (Figure 4
and Table S5 in File S1). The DFE fit to the 1000 Genomes
data using the lower mutation rates does not follow this pat-
tern. The gammaDFE fits best to both versions of the data set,
yet the estimates from the small data set still predict more
strongly deleterious new mutations. These results seem to
corroborate the results from our simulations. That is, fitting
a DFE using a small sample may result in misspecification of
the DFE, which, in turn, may cause inaccuracies in the
inferred proportions of the DFE. We believe this may explain
some of the differences between the findings of Boyko et al.
(2008) and the findings in this study.

Figure 4 The distribution of selection coefficients of new mutations under our best-fit DFEs compared to Boyko et al. (2008). Results are presented for
the best-fit DFE to each full data set and the best-fit DFE when the data were projected down to n = 24 chromosomes. C.I.’s were estimated by Poisson
resampling the nonsynonymous SFS and fitting a DFE 200 times. C.I.’s for the DFE fit to the Boyko et al. (2008) European data set were unavailable. Note
that our models predict more nearly neutral mutations (0 # |s| , 1025) and fewer strongly deleterious mutations (1022 # |s|) than Boyko et al. (2008),
across all mutation rates. Top panel denotes our favored mutation rate while the bottom panel denotes the mutation rate used by Boyko et al. (2008).
See Figure S5 in File S1 for a comparison of the population-scaled selection coefficients (2Ns).
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Assessing the role of the likelihood function
using simulations

Next, we investigated the performance of the multinomial vs.
Poisson likelihoods at inferring the DFE. In this study, as well
as in Boyko et al. (2008), we fit the DFE using the Poisson
likelihood, which uses an a priori estimate of the population-
scaled mutation rate, u, to fit the curvature of the SFS as well
as the total number of SNPs. Too few segregating variants
would suggest the presence of strongly deleterious variants
that are not segregating in the sample (Boyko et al. 2008).

The multinomial likelihood fits the curvature of the SFS
while conditioning on the total number of SNPs. As such, the
number of SNPs provides no additional information. The
multinomial inference is similar to how the DFE was inferred
by Li et al. (2010) in that they only used information from the
curvature of the SFS. Note, however, Li et al. (2010) fit the
population frequency spectrum using a least-squares approach
while the multinomial likelihood fits the sample frequency
spectrum. As such, the multinomial likelihood function does
not strictly mirror the procedure of Li et al. (2010). Using the
multinomial likelihood is convenient because it does not
require any prior assumptions about the population scaled
mutation rate, u, yet may be underpowered when trying to
identify the proportion of strongly deleterious mutations, un-
less such variants are segregating in the sample.

To compare the two likelihood methods at varying sample
sizes, we fit the fullmodel to simulated data sets of n=12, 24,
50, 100, 150, 200, and 250 chromosomes using both the

multinomial and Poisson likelihoods (Figure S8 in File S1).
Again, we simulated 200 data sets at each sample size with
the LuCamp demography and a gamma DFE with parameters
a = 0.203 and b = 1082.1. In general, the accuracy of our
shape parameter estimate improves as the sample size in-
creases, and we find the multinomial and Poisson likelihoods
can both be used to reliably estimate the shape parameter.
While this trend holds true for the scale parameter using the
Poisson likelihood, we find that we are unable to accurately
infer the scale parameter using the multinomial likelihood,
even for a sample of n = 250 chromosomes. For example,
nearly 50% of all the parameter estimates lie close to the max-
imum bound and 25% lie close to theminimum bound allowed
during optimization.We found that this result can be explained
by the likelihood surface being exceptionally flat with respect
to the scale parameter. In other words, we cannot estimate the
strength of purifying selection using only the curvature of the
SFS with these sample sizes. Therefore, because Li et al. (2010)
fit only the curvature of the SFS and excluded rare variants
(,2% MAF) in a sample of size of n = 400 chromosomes,
the power to detect strongly deleterious variants may be
quite low, resulting in different parameter estimates from
those in Boyko et al. (2008) and our present work.

Discussion

Wedevelopedacomputationalmethodto infer theDFEofnew
mutations from large data sets, and then estimated the DFEs

Figure 5 Small sample size and misspecification of the DFE can explain some of the differences between previous estimates and our estimates. Gamma
and neutral+gamma DFEs were fit to 100 simulated data sets of sample sizes n = 24 and n = 2596 chromosomes, where the true DFE was neutral+
gamma distributed (pneu = 0.164, a = 0.338, b = 358.8). (A) The distributions of the difference in log-likelihood between the gamma and neutral+gamma
distributions. When the sample size is large (n = 2596) the neutral+gamma distribution has a higher log-likelihood than the gamma distribution. However,
the small samples (n = 24) are unable to distinguish between the gamma and neutral+gamma distributions. (B) The estimated proportions of new mutations
having different selective effects when fitting the gamma and neutral+gamma distributions. Note that when n = 24, the gamma distribution overpredicts
the proportion of strongly deleterious mutations (|s| $ 0.01). Red dots denote the true proportion of mutations in each bin. The boxes cover the first and
third quartiles, and the band represents the median. The whiskers cover the highest and lowest datum within 1.5 times the interquartile range from the first
and third quartiles. Lastly, any data outside that region are plotted as outlier points.
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fornonsynonymousmutationsusingtheSFSof432Europeans
from the 1000 Genomes Project, 1300 Europeans from the
ESP, and 1298 Europeans from the LuCamp project. The new
DFEs suggest there are fewer strongly deleterious mutations
than previously estimated (Figure 4). Although we find a
neutral+gamma mixture DFE fits best to the ESP and
LuCamp data sets, a gamma DFE seems to be a better fit to
the 1000 Genomes data (Table 3). Nevertheless, our best-fit
DFEs predict 0.38 to 0.84 as many strongly deleterious new
mutations compared to the current, widely used estimates
of Boyko et al. (2008). Additionally, these findings are ro-
bust to assumptions about the mutation rate or the assumed
functional form of the DFE. We show small sample size can
lead to incorrect estimates of the DFE, specifically when the
DFE is approximated with a parametric distribution that is
not the true distribution (Figure 5). Therefore, our esti-
mates provide an important update to previous studies of
the DFE that used smaller sample sizes. Our current esti-
mates of the DFE, particularly the estimates of the propor-
tion of moderately and strongly deleterious mutations,
should bemore reliable and precise than previous estimates.
To facilitate their utility for future researchers, we provide
scripts for implementing these models on GitHub (see
Materials and Methods).

Our results suggestmisspecificationof theDFEmayexplain
some of the differences in the DFEs we infer from small and
large data sets. This is particularly relevant because the true
DFE is almost certainly not a parametric distribution. At small
sample sizes, different forms of the DFE tended to similarly fit
the data in terms of log-likelihood (Table S5 in File S1).
Therefore, the DFE that had fewer parameters (i.e., gamma)
was selected as the best-fit DFE. Additionally, we infer more
strongly deleterious (|s| . 1022) new mutations from the
downsampled data sets. We showed through simulations
that even if the true DFE is neutral+gamma distributed, a
gamma DFE is selected as the best fit to a small sample.
Furthermore, this leads to inaccuracy in recovering the true
proportions of the DFE (Figure 5).While the neutral+gamma
distribution is also unlikely to be the true DFE, our simula-
tions reproduce the patterns observed when downsampling
the real data. Therefore, large sample size not only helps to
improve the precision of the estimated DFEs, but also helps to
approximate the correct form of the DFE. We expect this
question to be better resolved as additional and larger se-
quencing data sets continue to be generated in the future.

A gamma or similarly shaped distribution of deleterious
mutations is well supported by experimental estimates of the
DFE in laboratory organisms (Martin and Lenormand 2006;
Bataillon and Bailey 2014), although some studies suggest
more complex distributions (Halligan and Keightley 2009;
Hietpas et al. 2011; Jacquier et al. 2013). A number of theo-
retical models also predict the functional form of the DFE
(Huber et al. 2016). Most progress in this regard comes from
phenotype fitness-landscape models such as Fisher’s geomet-
ric model (FGM) (Martin and Lenormand 2006; Chevin et al.
2010; Lourenço et al. 2011; Tenaillon 2014; Huber et al.

2016) and biophysical models of protein stability (Cherry
1998; Goldstein 2013; Serohijos and Shakhnovich 2014).
Under fairly general assumptions, the predicted DFE under
these models for a perfectly adapted population is gamma
distributed (Martin and Lenormand 2006; Martin 2014;
Serohijos and Shakhnovich 2014), and a strongly leptokurtic
shape would suggest that most mutations have low pleiot-
ropy (Martin and Lenormand 2006; Lourenço et al. 2011).
However, our finding of a neutral+gamma distribution sug-
gests that the general FGM is inadequate, since it does not
predict the neutral pointmass. Alternatively, our support for a
neutral point mass might not reflect truly neutral mutations,
but rather slightly beneficial mutations that behave effec-
tively neutral under the historically small human population
size (Huber et al. 2016). Since these mutations would segre-
gate at frequencies similar to neutral mutations, and since we
do not explicitly model the effect of beneficial mutations on
the SFS, our method would place these mutations at the
neutral point mass. Such slightly beneficial mutations are
predicted under FGM when deleterious mutations fix and
move the population away from the optimal phenotype
(Lourenço et al. 2011). Slightly deleterious mutations can
fix in the population when the effect of drift is large, i.e.,
the effective population size is small. Thus, our support for
the neutral+gamma distribution might be consistent with a
large effect of drift in the relatively small human population
(Huber et al. 2016). Alternatively, a recent change in the
selective environment could have moved the human popula-
tion away from the phenotypic optimum atmany genes, lead-
ing to a similar increase of the proportion of slightly beneficial
mutations (Martin and Lenormand 2006; Chevin et al. 2010;
Lourenço et al. 2011; Bank et al. 2014).

Additionally, our results show that estimates of theDFE are
sensitive to themutation rate. Foranygivendata set, assuming
a higher nonsynonymous mutation rate will result in the
inference of stronger purifying selection due to the increased
number of SNPs expected (but not observed) relative to the
nonsynonymous mutation rate. There are two assumptions
that factor into the calculation of the nonsynonymous muta-
tion rate: First, it is unclear what the true mutation rate is.
Whole genome, pedigree-based estimates suggest a mutation
rate of about 1028 per base pair per generation, exome-based
estimates suggest rates of 1.5 3 1028, and phylogenetic
estimates suggest a mutation rate in the range of 2.0–2.5 3
1028 (Ségurel et al. 2014). Second, we infer a mutation rate
from synonymous sites, but use that mutation rate tomake an
a priori assumption about the nonsynonymousmutation rate.
Many studies have the nonsynonymous mutation rate at 2.5
times the synonymous mutation rate, but we believe 2.31 to
be a more accurate estimate, as this takes into account the
CpG mutational bias and a 3:1 transition:transversion ratio
(Huber et al. 2016). These two factors combined can result in
large differences in the DFE. For example, the gamma DFE fit
to the LuCamp data predicts 15% of mutations to be strongly
deleterious (|s| . 1022) when assuming uNS/uS = 2.31 and
m = 1.5 3 1028, but 25% of new mutations to be strongly
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deleterious when assuming uNS/uS = 2.5 and m= 2.531028.
Although our results remain qualitatively consistent across
the range of mutation rates, uncertainty about the true rate
leads to uncertainty in estimating the DFE.

Another importantaspectof our results is the consistencyof
our estimates of the DFE between data sets. Our estimates of
the DFE suggest a skew toward neutrality compared to pre-
vious studies, andwe infer a consistent rangeof neutral (|s|,
1025, 24–26%), moderately deleterious (1023, |s|, 1022,
25–33%), and strongly deleterious (|s| , 1022, 14–22%)
new mutations between the three data sets. The consistency
of our results across data sets suggests our inferences are
accurate and robust to sampling from different populations,
sequencing, bioinformatic processing, and sample size. This
suggests the DFEs we have inferred are reliable updates to
the DFEs inferred by Eyre-Walker et al. (2006) and Boyko
et al. (2008).

It is also worth noting that our methodology has key dif-
ferences from that of Li et al. (2010). Li et al. (2010) esti-
mated the DFE using the population frequency spectrum
excluding rare variants (MAF , 2%), under a constant size
demographic model using a least-squares method, and fit
the curvature of the SFS while not considering the total
number of SNPs in the sample. The extent to which these
methodological differences as well as differences in se-
quencing or bioinformatic processing of the data between
their study and our present study contribute to the different
estimated DFEs remains unclear. However, we have shown
that for small and moderately sized samples, fitting only the
curvature of the SFS is insufficient for estimating the scale
parameter of the DFE. In other words, for smaller samples,
the number of SNPs in the data must be considered to esti-
mate the proportions of moderately and strongly deleteri-
ous newmutations, sincemoderately to strongly deleterious
mutations are unlikely to be found in the sample.

Fit@a@i infers the DFE for new mutations rather than seg-
regating variants. Interestingly, even inference using themul-
tinomial likelihood function, which only uses the frequencies
of segregating variants, still infers the DFE for new muta-
tions. We used simulations to compare the DFE of new
mutations to that of segregating variants (Figure S9 and
Table S7 in File S1). The DFE of segregating variants de-
pends on the sample size and is shifted to be more neutral
than that of new mutations. Approximating the DFE of
segregating variants using a gamma distribution reveals
a different shape parameter than that of new mutations
(Table S7 in File S1); confirming that Fit@a@i, when ap-
plied to segregating variants, estimates the DFE of new
mutations. While long-tailed distributions such as the
gamma do not directly capture the mode of very strongly
deleterious new mutations observed by many experimen-
tal studies (Eyre-Walker and Keightley 2007), the propor-
tion could be extrapolated from the DFEs we inferred. For
example, for a gamma-distributed DFE, the proportion of
new mutations that is lethal would be computed as themass
of the distribution greater than |s| . 1.

Our results argue that, provided thedemographicmodelfit
to the data can adequately match the SFS of neutral synon-
ymous sites, inference of the DFE should be robust to cryptic,
unmodeled, population structure. In other words, the skew in
the frequency spectrum due to demography must be repro-
duced accurately, but inference of selection is relatively robust
to the way the skew is modeled. This result is consistent with
thework ofMa et al. (2013). Alternately, other studies rescale
the entries of the nonsynonymous SFS independently to
match the skew of the synonymous SFS from the standard
neutral model (Eyre-Walker et al. 2006; Galtier 2016; Tataru
et al. 2016). However, this method is not always accurate for
demographies including recent, rapid expansions since the
skew on neutral and selected sites may differ (Eyre-Walker
et al. 2006). Further, fitting many independent scaling pa-
rameters to large samples can be problematic (Tataru et al.
2016). Thus, Fit@a@i offers an advantage over the rescaling
methods in these contexts.

Although Fit@a@i was developed to work with large se-
quencing data sets, it still has several limitations. The infer-
ence framework we use becomes increasingly slower for
larger samples and requires significant computational re-
sources and time to initially generate the SFS for the range
of selection coefficients. Additionally, the frequency spectrum
becomes difficult to compute for larger selection coefficients
(2Ns. 10,000). This is mainly because finer integration grids
must be used to accurately estimate low frequency variants.
Also, like the method of Boyko et al. (2008), our method
assumes additive selective effects and should be interpreted
as averaging of selection over all heterozygotes and genetic
backgrounds. Nevertheless, we anticipate that our method
will be useful for estimating the DFE across the tree of life
as polymorphism data sets from different species continue to
accumulate.

Our results suggest that there may be more weakly and
moderately deleterious nonsynonymousmutations thanpre-
viously appreciated. This has a number of important impli-
cations for medical genetic studies. These variants could
possibly contribute to disease risk.However, thesemutations
could also confound statistical tests that compare observed
levels of variation to those predicted by population genetic
models. For example, using the DFE of Boyko et al. (2008)
would predict fewer segregating deleterious variants be-
cause more new mutations were estimated to be strongly
deleterious and would not segregate in the sample. How-
ever, if those mutations were instead only moderately dele-
terious, some could drift up in frequency and actually
segregate in the sample. Further, a common approach to
modeling how deleterious variants affect complex traits
(Eyre-Walker 2010) assigns mutational effects on a trait as
a function of their effects on fitness. This approach has been
widely used to quantify the architecture of complex traits
(Morris et al. 2012; Mancuso et al. 2016), to study the ef-
fects of demography on traits (Lohmueller 2014a; Simons
et al. 2014), and to assess the power of rare variant associ-
ation tests (Uricchio et al. 2016). The accuracy and realism
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of these models depend on having accurate estimates of
the DFE.

Additionally, the DFE determines the extent to which
background selection affects patterns of neutral variation.
Accurately characterizing the reduction in diversity (i.e., ef-
fective population size Ne) should reduce bias when trying to
learn the true demography of a population using sites linked
to selected variants (Ewing and Jensen 2016; Schrider et al.
2016). We used a deterministic approximation (Nicolaisen
and Desai 2013) of the models of Zeng and Charlesworth
(2011) to contrast the effects of background selection pre-
dicted from the DFE of Boyko et al. (2008) and the DFEs we
inferred in our study (Figure S10 in File S1). We computed
the reduction in Ne (i.e., increase in the rate of coalescence)
as a function of time due to background selection for the two
different mutation rates used in our inferences (m = 1.5 3
1028, LNS/LS = 2.31; m = 1.8 3 1028 and LNS/LS = 2.5) as
well as the higher deleterious mutation rate of McVicker et al.
(2009): m= 7.43 1028, also assuming LNS/LS = 2.5. Impor-
tantly, all the DFEs predict that background selection will
reduce diversity and skew the SFS toward an excess of rare
variants compared to models of constant population size
(Figure S10 in File S1). However, DFEs with fewer strongly
deleterious mutations, like the best fit DFEs to the ESP EUR
and LuCamp data sets, predict less of an overall reduction in
neutral diversity compared to Boyko et al. (2008). Further,
the change in coalescent rates over time varies across DFEs,
suggesting that the degree to which background selection
affects the curvature of the SFS does depend on the specific
DFE.

More broadly, our results have important implications for
understanding and quantifying deleterious variants across
human populations (Lohmueller et al. 2008; Lohmueller
2014b; Simons et al. 2014; Do et al. 2015). Specifically, the
fate of strongly deleterious mutations is relatively insensitive
to population demography. The fate of weakly and moder-
ately deleterious mutations, however, is linked more closely
with effective population size (Henn et al. 2016). Human
evolution in particular is influenced by nearly neutral
processes due to relatively small effective population sizes.
Then, a DFE containing fewer strongly deleterious new muta-
tions suggests the nature of purifying selection in humans may
be different from what is currently understood. For example,
larger proportions of moderately and weakly deleterious mu-
tations may suggest greater differences in the proportion of
segregating deleterious mutations and genetic load between
human populations (Henn et al. 2016). Accurate inferences of
the DFE are critical in this regard as researchers begin to use
explicit models of demography and selection to quantify dif-
ferences in the amounts of deleterious variants across popula-
tions (Brandvain and Wright 2016; Gravel 2016).
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