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Abstract  12 

Global change includes multiple overlapping and interacting drivers: 1) climate change, 2) land use 13 
change, 3) novel chemicals, and 4) the increased global transport of organisms. Recent studies have 14 
documented the complex and counterintuitive effects of these drivers on the behavior, life histories, 15 
distributions, and abundances of insects. This complexity arises from the indeterminacy of indirect, non-16 
additive and combined effects. While there is wide consensus that global change is reorganizing 17 
communities, the available data are limited. As the pace of anthropogenic changes outstrips our ability 18 
to document its impacts, ongoing change may lead to increasingly unpredictable outcomes. This 19 
complexity and uncertainty argue for renewed efforts to address the fundamental drivers of global 20 
change.  21 

22 
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The complexity of global change drivers 23 

Global change in the 21st century involves multiple co-occurring and correlated anthropogenic effects 24 
on insect communities. These include 1) changes in climatic conditions, 2) changes in land use, 3) the 25 
introduction and increased use of novel compounds and chemicals, and 4) the increased transport of 26 
organisms on a continental scale (Fig. 1). Considered separately, each driver of change has multiple 27 
manifestations. Their combined effects and interactions reflect the complexity of global change.  28 

Increases in anthropogenic greenhouse gas emissions have changed the Earth’s climate. The resulting 29 
shifts in temperature and precipitation create perturbations on multiple spatial and temporal scales, 30 
altering both long-term mean trends on a global scale and the variability of short-term events at local 31 
scales. While mean global temperatures are increasing by 0.2° C per decade [1], this long-term warming 32 
trend is also associated with increases in the frequency and intensity of extreme climatic events, 33 
including heatwaves, droughts, floods, wildfires and tropical storms [2,3]. The complexity of global 34 
climate change emerges from the many ways climatic conditions are changing in different regions and 35 
habitats [4], the temporal variability of these changes [2,5], and the interactions between different kinds 36 
of changes [6,7].  37 

Changes in land use include patterns of increasing urbanization, agricultural intensification, and habitat 38 
fragmentation. In many regions, urban warming, air pollution and illumination have created new 39 
conditions for insect ecology and evolution [8–11], while changes in the scale and practice of agriculture 40 
have effects on agroecosystems and connected non-agricultural ecosystems [12–15]. Deforestation, 41 
road-building, and other changes in natural ecosystems reduce and isolate available habitat [16–18]. 42 
These changes in urban, agricultural, and natural ecosystems are connected in heterogeneous habitats, 43 
shaping the distribution and movement of insects in complex ways.  44 

The effects of novel compounds have become increasingly complex as well. Whereas the first-45 
generation synthetic insecticide DDT showed a rapid mode of action, clear bioaccumulation and 46 
environmental persistence, the ecological effects of modern insecticides are more complex. Many of 47 
these compounds are now known to have sublethal and lagged negative effects on insects [19–26], 48 
synergistic effects with other novel compounds [27] and unexpected persistence in belowground and 49 
aquatic habitats [28,29] - characteristics that were detected only after their global deployment and long-50 
term, widespread use [30]. The proliferation of novel synthetics now in wide use creates the potential 51 
for more complex combined effects on insect behavior, populations, and communities. 52 

Global change in the 21st century also includes the dramatically increased transport of organisms outside 53 
their native ranges. This movement of species has profoundly changed the composition of ecological 54 
communities worldwide, with a range of complex outcomes. Introduced species can facilitate or hinder 55 
the establishment of subsequent introductions [31,32], increase or decrease metrics of biodiversity [33], 56 
and can have positive or negative effects on members of the native community [34]. Despite efforts to 57 
identify general patterns in the traits favored by human-mediated dispersal [35] or the kinds of 58 
ecosystems most likely to experience the negative effects of biotic reorganization [36], the increased 59 
global transport of organisms creates a particularly complex driver of global change, reflecting the 60 
unique biological context of each introduction.  61 

In this review, we draw a distinction between the complex anthropogenic drivers (i.e., causes) of global 62 
change and the complexity of their effects on ecosystems. The multi-dimensional, multi-scale and 63 
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interactive nature of global change drivers makes establishing simple causation difficult because most 64 
observed patterns of impact will likely emerge from the combined effects of multiple drivers [37,38]. 65 
With multiple global perturbations acting simultaneously and synergistically, simple causation is not only 66 
difficult to establish but also seems unlikely to represent the real complexity of global change effects.   67 

The complexity of global change effects  68 

Global change drivers have direct and indirect effects on insect communities. While it may be possible to 69 
predict some of the direct abiotic effects of warming temperatures on insects based on species- and 70 
stage-specific thermal performance curves [39,40], the indirect effects of warming includes a wide range 71 
of more complex biotic pathways, including changes to host plant quality [6], natural enemy risk [6,41], 72 
and the potential for other novel or altered interactions [42–46]. Despite long-standing interest [47,48], 73 
few studies have attempted to experimentally separate direct and indirect effect pathways and these 74 
studies suggest that the balance of these two effect pathways may sometimes be counterintuitive. For 75 
example, Chen et al. [49] showed that the generally unacknowledged direct effects of rainfall events on 76 
a lepidopteran herbivore increased its development time and reduced its survival (possibly due to 77 
microclimatic cooling), while the more widely studied indirect, plant-mediated effects of rainfall were 78 
unexpectedly small.  79 

Even relatively singular global change drivers can yield complex and counterintuitive outcomes due to 80 
the ramifications of their indirect effects [6]. For example, under ambient temperatures, wolf spiders 81 
suppressed collembola and indirectly increased the fungal decomposition of litter in the Arctic [50]. This 82 
scenario reversed under experimental warming, where higher densities of wolf spiders slowed litter 83 
decomposition, possibly driven by unanticipated effects on the composition of collembolan species or 84 
increases in intraguild predation. Similarly, while the direct effects of warming temperatures were 85 
expected to decrease development time and increase the abundance of aphids in a high elevation 86 
community, warming also advanced and increased predator populations while simultaneously 87 
decreasing the quality of the aphid’s host plant, leading to an indirect decline in aphid densities under 88 
the warming [46].   89 

When their effects are combined, multiple global change drivers can interact in more complex ways 90 
[37,38,51] and the statistical and experimental approaches necessary to disentangle these additively or 91 
non-additively combined effects are still emerging [37,38,52]. Structured observational studies have 92 
grappled with the collinearity of potential explanatory factors using large datasets, multi-model 93 
inference and partial least-squares regression [38,41,53–55], suggesting potential interactions among 94 
factors. Experimental studies aimed at understanding the ecological and physiological mechanisms of 95 
effects may be necessary to improve opportunities for generalization and prediction [52]. For example, 96 
both high [56] and low [57] temperatures can increase pesticide toxicity in insects through different 97 
physiological mechanisms, suggesting that a clearer understanding of these mechanisms [58] may be 98 
necessary to predict the interactive effects of thermal stress and pesticide exposure. 99 

The unreplicated, historical nature of global change also contributes to the complexity of understanding 100 
its effects [59]. Relatively few datasets allow historical comparisons on a relevant scale [60–65], and 101 
their retrospective analysis is always challenging [66,67] and sometimes contentious [68–70]. These 102 
issues are likely to be especially difficult among insects, due to their taxonomic diversity, dynamic 103 
populations and limited long-term monitoring [59,71]. The paucity of historical data presents a 104 
formidable challenge for all studies of global change [59]. The problems of shifting baselines [72] and 105 
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social-ecological mismatches [73] reflect fundamental limitations of direct human experience. The 106 
spatial and temporal scales of global change are difficult to fathom and are easy to underestimate in the 107 
absence of reliable data.  108 

Insects may also be particularly sensitive to the effects of global change. The diversity of insects includes 109 
many relatively specialized species that may be especially prone to co-extinction [71]. The vast majority 110 
of insect biodiversity is located in tropical to mid-latitudes, where the effects of global warming are 111 
expected to erode thermal buffers and increase heat stress on ectotherms [40]. Warming conditions 112 
increase the metabolic costs of ectotherms while potentially limiting their thermal activity windows and 113 
reducing the availability of resources overall, creating the potential for “metabolic meltdown” [7]. In 114 
addition, because of their shared physiology, non-target insects are especially vulnerable to the effects 115 
of new insecticides, and these novel compounds are readily capable of moving across habitat 116 
boundaries in complex, changing landscapes [74].  117 

In order to more closely examine the complexity of global change effects on insects, we here focus on 118 
three broad and overlapping categories of effects: 1) effects on behavior, 2) effects on phenology and 119 
life histories, and 3) effects on species distributions and abundance. 120 

Effects on behavior 121 

Global change is affecting insect behavior in both straightforward, predictable ways, and more complex, 122 
less predictable ways (Fig. 2). For example, current rates of global warming are likely to increase insect 123 
movement rates generally, but these proximate effects often lead to more complex downstream effects 124 
on dispersal, foraging and species interactions [75]. Similarly, warming is expected to affect courtship 125 
signaling and increase mating frequency in insects, but these changes may have more complicated 126 
impacts on species recognition and hybridization [42]. While fragmented, heterogenous environments 127 
often limit insect movement and recolonization [76], behavioral avoidance of low-quality matrix habitats 128 
can also accelerate spatial spread through altered landscapes [77]. Thus, while some broad patterns of 129 
behavioral responses to global change may be predictable based on physiological first principles, the 130 
results of these changes seem likely to remain context dependent (Fig. 2).  131 

Climate change and land use changes are increasingly affecting the structure, propagation, and 132 
perception of both insect signals and environmental cues. For example, polarized light from roads can 133 
derail the flights of aquatic insects navigating along rivers and creeks [78]. Artificial light at night affects 134 
several aspects of insect behavior, including development, movement, predation and herbivory [79,80], 135 
and may be an important overlooked contributor to insect population declines [80]. Changes in 136 
temperature can also directly affect the emission and perception of chemically mediated signals in 137 
insects [81,82], and many acoustic signals involved in insect courtship and mating are thermally sensitive 138 
as well [42]. Anthropogenic noise can drive both adaptive and maladaptive responses in acoustically 139 
signaling insects. For example, some cricket species adaptively modulate their responses to novel road 140 
noise stimuli [83], while others show maladaptive responses [84]. 141 

Novel compounds have unexpectedly complex effects on insect behavior, with ramifications for entire 142 
interaction networks. Although they were initially thought to present a low risk for non-target effects 143 
and long-term environmental toxicity [85–87], neonicotinoids have important negative effects on insect 144 
behavior, unexpected persistence in soil and water, and potentially more complex effects when 145 
combined with other stressors [27,30,88]. Recent studies suggest that the neonicotinoid imidacloprid 146 
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impairs olfactory learning and memory [21], vision [22,23], flight [24], and navigation [25,26] in a wide 147 
range of insects. These sublethal effects on insect behavior have been associated with detrimental 148 
effects on the recruitment and abundance of diverse insect populations [19,20,89,90].  Other pollutants, 149 
including heavy metals and metalloids [91], ozone and airborne free radicals [11], and respirable 150 
suspended particulates [10] are also relatively novel anthropogenic stressors that alter insect stress, 151 
foraging, predation avoidance, habitat selection and other behaviors.  152 

Effects on phenology and life histories 153 

Global change drives phenological shifts in many organisms (Fig. 3a), and ecologists are increasingly 154 
grappling with the complex ways in which these shifts can alter seasonal life histories [5]. These include 155 
phenological changes in the autumn and winter [92–94] and changes in voltinism [95–97]. For example, 156 
changes in the timing of diapause induction can have a strong effect on overwinter survival [98,99], 157 
while changes in voltinism can present either “demographic bonanzas” [e.g., 100] or “developmental 158 
traps” [e.g., 96] for insects responding to global change [95,96]. 159 

In some cases, phenological shifts lead to phenological mismatch: changes in the relative phenologies of 160 
interacting species (Fig. 3b). Studies aiming to understand the causes of phenological mismatch are 161 
increasingly focused on the mechanisms of phenological cueing. Phenological mismatch can result from 162 
differences in the environmental changes experienced by different organisms (environmental 163 
mechanisms) and differences in their sensitivity to environmental cues (organismal mechanisms) [101]. 164 
Thus, some observed phenological mismatches are likely to be largely explained by organisms 165 
experiencing different aspects of global change, as may be the case with habitat specialist butterflies 166 
[102]. On the other hand, other mismatches occur when global change exposes previously hidden 167 
differences in cue sensitivity and integration [103]; these differences could explain diverging 168 
phenological responses of plants and pollinators to increasing urbanization [104]. The ways in which 169 
these two mechanisms combine to generate observed variation in phenological responses remains to be 170 
determined.  171 

Relatively few studies have been able to quantify the effects of phenological mismatches relative to 172 
appropriate historical baselines [105]. Phenological mismatches have the potential to disrupt species 173 
interactions, but their impacts on fitness and population will likely depend on the nature and specificity 174 
of the interaction (Fig. 3c). Some studies suggest that mismatches may be less likely to occur in 175 
mutualistic (e.g., plant-pollinator) [34,44,106] or highly specialized (e.g. host-parasitoid) interactions 176 
[99,107] where selection under historical environmental variability would be expected to have favored 177 
the evolution of more robust phenological cueing strategies in one or both interactors [44]. Whereas the 178 
disruption of mutualistic interactions is costly for both interactors, the disruption of antagonistic 179 
interactions is more likely to create phenological winners and losers. One possibility is that the incidence 180 
of mismatches might be lowest among specialist species that have the most to lose, while the impacts of 181 
mismatches are lowest among generalist species with more diffuse interactions. However, phenological 182 
mismatches could occur more broadly if global change continues to increase the variability of 183 
phenological shifts [108,109], or increase rapidly if the limits of adaptive plasticity are met [103,110].  184 

When we expand phenological mismatches to a community scale (Fig. 3d-e), their consequences 185 
become harder to predict. As changes in emergence phenology, developmental rate, voltinism, and 186 
diapause induction stretch the bounds of adaptive plasticity [107], the resulting variability of 187 
phenological responses has the potential to rewire temporally explicit interaction networks [111] and 188 
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increase the complexity of phenological impacts in a community context [5,112]. Studies that have 189 
attempted to quantify how an organism’s expected fitness changes throughout the year suggest that 190 
these seasonal fitness landscapes reflect multiple interactions in a community, often including both top-191 
down and bottom-up effects. For example, the fitness landscape of cavity-nesting bees was likely 192 
influenced by a combination of floral resource availability and parasitoid phenologies [113], seasonal 193 
windows of opportunity for monarch development were likely to be influenced by both host plant traits 194 
and natural enemy activity [114], and the impacts of warming-mediated advances in aphid phenology 195 
reflected the combined effects of both host plant and predator phenologies [46]. The effects of these 196 
phenological changes likely extend to the ecosystem scale as well. For example, the timing of terrestrial 197 
insect prey inputs into an aquatic stream directly affected fish and indirectly affected aquatic insect 198 
prey, with subsequent effects on litter decomposition and nutrient cycling [115].  199 

Effects on species distributions and abundance 200 

Insect species ranges have both expanded and contracted in response to multiple global change drivers 201 
(Fig 4a). In a study of 58 Orthopteran species in Germany, land-use change was the primary driver of 202 
range contractions before 1990, especially in habitat specialist species, while more mobile and more 203 
thermophilic species expanded their ranges after 1990, likely reflecting the increased protection of 204 
remaining habitat patches and warming conditions [116]. Similarly, range expansions have been 205 
observed among thermophilic dragonfly species in Europe [117], and the range of the bumblebee 206 
Bombus haematurus increased by 20% relative to its historical range, probably due to warming winter 207 
conditions [118]. Conversely, densities of the meadow spittlebug (Philaenus spumarius) have declined at 208 
both the southern and northern ends of its range in California, likely reflecting drier conditions in coastal 209 
grasslands [119]. Recent studies suggest multiple factors that could have contributed to the dramatic 210 
contraction of the American burying beetle (Nicrophorus americanus) range, including the reduced 211 
availability of preferred resources, increased exposure to pesticides, changes in land use, and negative 212 
interactions with large grazing vertebrates [120].  213 

Human activities have dramatically increased the global transport of insects [35], contributing to the 214 
reorganization of recipient communities [121]. In recent years, ecologists have grappled with the 215 
complexity of this reorganization and its implications. For example, it is increasingly clear that microbial 216 
associates can have complex effects in biological invasions by acting as mutualists that benefit the 217 
invading species, novel pathogens that negatively impact the native biota, or symbionts with more 218 
complex or poorly understood effects [122,123]. On a larger spatial scale, recent studies have sought to 219 
explain why established populations of introduced species seem more likely to serve as sources for 220 
subsequent invasions, creating the potential for an accelerating, positive feedback loop [35,124]. While 221 
there is continued debate about the aims of invasion biology [125], insights from the study of 222 
introduced species are also being applied more broadly to improve our understanding of climate-223 
mediated range shifts [126]. 224 

Against this background, a growing number of studies have documented declining insect abundances at 225 
sites around the world [60–62,90,127–129], though the extent and breadth of these declines remains 226 
uncertain [59,68,121,130–135]. Key questions remain. First, are observed insect population declines 227 
representative of a broader global pattern? While there is ample evidence that some insect populations 228 
are declining, others appear to be increasing [121,130,132,136]. Second, are insects especially likely to 229 
experience population declines? It has been suggested that traits common to insects (e.g., ectothermy, 230 
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specialization) make them particularly vulnerable to global change [71,137], but this question remains 231 
largely unresolved. Third, what are the drivers of insect declines? Establishing clear causation is likely to 232 
be difficult, though the combined effects of multiple global change drivers may be a key part of the 233 
explanation [51,132]. Finally, given current uncertainty and the limitations of available data, what can be 234 
done? An emerging consensus emphasizes efforts to increase, broaden, and modernize the collection of 235 
insect population data [59], while parallel efforts contend that we already know enough to advocate 236 
more immediate policy changes to address the most likely drivers of widespread declines [138,139].  237 

In some cases, differential changes in insect abundance could restructure the way communities and 238 
ecosystems function (Fig. 4b). For example, global change in the Arctic is generally increasing herbivore 239 
and parasitoid populations while decreasing detritivore populations, creating potential impacts on 240 
herbivory, top-down control, decomposition and nutrient cycling [140]. In particular, the Arctic has 241 
experienced dramatic declines in the abundance of flies [128] but increasing populations of butterflies 242 
and moths [141]. These changes in abundance are likely to result in broadly increased rates of herbivory 243 
and reduced insect pollination [141]. These differential changes in the abundance of Diptera and 244 
Lepidoptera have driven corresponding changes in Diptera-specific and Lepidoptera-specific parasitoid 245 
assemblages [141], illustrating how the indirect effects of global change drivers could further influence 246 
key processes that regulate communities and ecosystems. Broadly, the reorganization of biodiversity on 247 
earth seems certain to affect species interactions and ecosystem function in complex ways; predicting 248 
the nature of these changes for specific communities will likely be challenging.    249 

Conclusions 250 

There is wide consensus that global change is reorganizing insect communities, but the scope and 251 
implications of this reorganization remain uncertain. Are we in the midst of a widespread “insect 252 
apocalypse” [59,133,142–144]? Are there traits of insects that make them especially sensitive or robust 253 
to the effects of global change [34,62,99,141,145]? Will the limits of adaptive plasticity become more 254 
evident with mounting changes [95,103,110]? Global change is ongoing, and understanding the complex 255 
changes wrought by multiple overlapping and interacting drivers will likely require a more mechanistic, 256 
dynamic and integrated view of ecology [3,5,37,146].  257 

It seems clear that global change will create both winners and losers, but widespread community 258 
turnover and homogenization also threaten to erode ecological intuition and understanding. Whereas 259 
ecologists often use adaptive explanations to inform null expectations, these expectations may be less 260 
justified in communities with shorter coevolutionary histories where species are responding to non-261 
stationary conditions without historical analog. The proliferation and complexity of global change drivers 262 
raises interesting ecological questions, but also threatens to fundamentally alter our ability to 263 
accumulate ecological knowledge. The accelerating pace of change in the global ecosystem risks 264 
outstripping our ability to document those changes, and to place them into a baseline context. Over 265 
time, these changes threaten to unmoor ecology from fundamental assumptions, eroding an important 266 
source of ecological and evolutionary information, understanding and prediction.  267 

Although the complexity of global change is widely recognized, grappling with this complexity in 268 
ecological studies remains difficult. In many respects, the clearest message to emerge from recent 269 
studies of global change is about the limitations of available data and understanding.  A secondary 270 
theme concerns our limited ability to reverse the complex effects of multiple interacting drivers. In 271 
combination, these key limitations suggest that efforts to address the core drivers of global change will 272 
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provide a clearer path forward than attempts to repair their myriad effects further downstream. While 273 
the pace and complexity of global change presents a profound challenge for ecology [146], this reality 274 
does not preclude action to address the underlying drivers of global change. Even as ecologists work to 275 
understand a changing planet, we already know enough to mitigate the root causes of climate change, 276 
limit habitat loss, slow the global transport of organisms, and regulate novel compounds in ecologically 277 
meaningful ways. While the complexity of global change will limit ecological understanding, it should not 278 
limit our willingness to address the fundamental drivers of global change.  279 
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Figure 1. a) Climate change, b) land use change, c) the increased global transport of organisms and d) 725 
novel chemicals and compounds are co-occurring and overlapping drivers of global change. Much of the 726 
complexity of global change arises from this multiplicity of interacting drivers. 727 

Figure 2. Global change drivers often have complex downstream effects on insect communities via more 728 
‘proximate’ behavioral pathways. a) Polarized light signatures from roads disrupt mayfly flight navigation 729 
resulting in egg deposition on desiccation-prone surfaces. b) The biological invasion of Argentine ants 730 
resulted in reduced genetic and microbial symbiont diversity in the introduced range, which is 731 
associated with less costly interspecific conflict. c) Warming increases the chirp frequencies of male field 732 
crickets, leading to increased opportunities for hybridization. d) Exposure to pesticides can impair 733 
learning and memory in bees, contributing to population declines.  734 

Figure 3. Curves represent the phenological distribution of a species; different hues represent different 735 
species and lighter curves of the same hue with dotted outlines represent the phenological distribution 736 
of a species at a prior time.  a) Phenological shifts are changes in the seasonal timing of life history 737 
processes relative to calendar dates. b) Phenological mismatches are differences in the relative 738 
phenologies of interacting species. c) Phenological mismatches have the potential to disrupt species 739 
interactions, potentially affecting the fitness and abundance of the mis-matched species. d) The indirect 740 
effects of disrupted species interactions could impact other species in a broader community, as 741 
illustrated in the hypothetical example in panel e).   742 

Figure 4. Representations of shifts in distribution, abundance, and community composition due to global 743 
change. a) Insect species may shift their range poleward (or up in elevation), shift their range toward the 744 
equator (or down in elevation), or have no shift in their range center. Concurrently, they may shift in 745 
their abundance: decreasing through fragmentation, decreasing through range contraction, staying 746 
stable, or increasing through range expansion. b) The composition of communities can change due to 747 
the direct and indirect effects of range shifts, global transport of insects, and declining insect 748 
abundances. In this example, the local extinction of a butterfly decreases the total number of floral 749 
visitors, while an invasive grasshopper increases the total number of herbivores in the community, 750 
changing ecosystem function. 751 




