
UC Merced
UC Merced Electronic Theses and Dissertations

Title
Classical and quantum resource analysis for the quantum linear systems

Permalink
https://escholarship.org/uc/item/5vp7w105

Author
Inouye, Jon M.

Publication Date
2010-07-22

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5vp7w105
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, MERCED

Classical and Quantum Resource Analysis for the Quantum Linear Systems
Algorithm

A thesis submitted in partial satisfaction of the requirements
for the Master of Science Degree

in

Physics and Chemistry

by

Jon M. Inouye

Thesis Committee:

 Professor Lin Tian, Chairperson
 Professor Raymond Chiao
 Professor Jay Sharping
 Professor Jian-Qiao Sun

July 2010

ii

Copyright

Jon M. Inouye, 2010

All rights reserved.

iii

The thesis of Jon M. Inouye is approved:

Raymond Chiao, PhD

Jay Sharping, PhD

Jian-Qiao Sun, PhD

Lin Tian, PhD

Chair

University of California, Merced

2010

iv

ACKNOWLEDGEMENTS

I would like to express my appreciation to Lin Tian, my advisor, for her patient
guidance; to Ann Kelley and Jay Sharping for introducing me to U.C. Merced.
Department Chairs Sai Ghosh and Linda Hirst provided a relaxed learning
environment.

Thanks to Kevin Mitchell, Professor of Physics, for excellent training in graduate
quantum physics…

To the legendary Raymond Chiao, for giving cutting-edge modern physics the feel of
that old-time yet so true experimental physics. Thanks are also extended to
committee member Jian-Qiao Sun for his willingness to serve on my committee and
for his excellent instruction in advanced classical dynamics…

To Chancellor Steve Kang, for taking a genuine interest in students at all stages of
development…

Finally, I would like to acknowledge Carrie King and De Acker for their
encouragement during moments of stress, and to the tight-knit community of physics
graduate students and Natural Science staff for their support.

v

I dedicate this thesis to Mitsuo Inouye, M.D.

Noted Physician and Educator

My Father

1925-2007

Graduate of U.C. Berkeley (Biochemistry)

and

U.C. San Francisco (Medicine)

He taught me to believe in myself and to never give up.

vi

TABLE OF CONTENTS

Signature Page………………………………………………………………...... iii

Acknowledgements……………………………………………………………... iv

Dedication………………………………………………………………………. v

Table of Contents…………………………………………………….................. vi

List of Figures…………………………………………………………………... viii

List of Tables…………………………………………………………………… ix

Abstract…………………………………………………………………………. x

Chapter 1: Introduction……………………………………………………... 1

Chapter 2: Literature Review……………………………………………….. 7

2.1 Foundations………………………………………………… 7
2.2 Models for Computation: Quantum Turing Machines and
 Quantum Circuits…………………………………………...

11

2.3 Shor’s Factorization and Discrete Log Algorithm.………... 17
2.4 Grover’s Search Algorithm………………………………… 20
2.5 Generalization of Quantum Algorithms: Hidden Subgroup

Problems……………………………………………………

21
2.6 Shor’s Error Correction Algorithm………………………… 22
2.7 Recent Works………………………………………………. 23
2.8 Summary of Literature Review…………………………….. 28

Chapter 3: Shor’s Factorization Algorithm………………………………... 30

3.1 Introduction to the Algorithm……………………………… 30
3.2 Steps of the Algorithm……………………………………... 31

Chapter 4: Grover’s Algorithm…………………………………………… 34

4.1 Introduction to the Algorithm……………………………… 34
4.2 Steps of the Algorithm……………………………………... 34

Chapter 5: The Quantum Linear Algorithm…………………………………. 36

5.1 Introduction to the Quantum Linear Algorithm……………. 36
5.2 Detailed Steps of the Algorithm…………………………… 42

vii

Chapter 6: Analysis of Computational Resources…….…………………….. 47

6.1 Classical vs. Quantum Resources………………………….. 47
6.2 Quantum Circuits…………………………………………... 49
6.3 Resource Analysis: Tracking Classical and Quantum

Objects……………………………………………………...

57

Chapter 7: Summary and Conclusions…………………………………………. 69

References………………………………………………………………………. 71

viii

LIST OF FIGURES

Figure 1 Quantum Circuit for Deutsch Algorithm……………………………. 10

Figure 2 Typical Quantum Gate Notations……………………………………. 13

Figure 3 Matrix Representations of Quantum Gates………………………….. 15

Figure 4 Pseudo-Code for Quantum Linear Systems Algorithm……………… 41

Figure 5 Classical Computer (Client) and Quantum Computer (Server)……... 47

Figure 6 Quantum Fourier Transform Circuit………………………………… 50

Figure 7 Quantum Phase Estimation for Linear System Algorithm…………... 52

Figure 8 Scratchpad Register……………………………………..………….... 56

ix

LIST OF TABLES

Table 1 Summary of Classical Constants Used in Algorithm…...…… 66

Table 2 Summary of Classical and Quantum Resources…………….. 67

Table 3 Summary of Time Complexity………………………………. 68

x

ABSTRACT OF THE THESIS

Classical and Quantum Resource Analysis for the Quantum Linear Systems
Algorithm

by

Jon M. Inouye
Master of Science in Physics and Chemistry

University of California, Merced, 2010
Professor Lin Tian

Recently (2009) a quantum algorithm for solving a system of linear equations

has been proposed. The algorithm by Harrow, Hassidim, and Lloyd has attracted

considerable attention in the quantum algorithms community, due to the broad

potential applications of a rapid linear equations solver. The contribution of this

thesis is to analyze the classical and quantum resources required for implementation.

The thesis has two major tasks. We first survey the field of quantum

algorithms. The papers which established this field (e.g., Feynman and Deutsch) to

recent works are reviewed. Different classes of quantum algorithms are examined,

including those based on the Fourier transform, quantum searching, and quantum

walk.

For the second task, we focus on the algorithm by Harrow, Hassidim, and

Lloyd. The advantages of the algorithm are an exponential performance gain over

classical algorithms (under conditions of sparse operator matrices and few selected

measurements from the solution set), and fewer data registers.

xi

In the second part of the thesis, we study the classical resources required for

implementation of the algorithm. Since classical resources can determine the ultimate

efficiency of the quantum algorithm, the optimal use of classical resources is

mandatory.

We demonstrate how a classical computer may handle certain computations

(e.g., time evolution) and feed these into the quantum circuit implementing the

algorithm. Thus, the classical and quantum resources for implementing the algorithm

are described. Through a detailed analysis of the classical resources, we hope to

understand how these resources may be optimized. This work can therefore

contribute to the design of efficient quantum algorithms.

1

Chapter 1: Introduction

This thesis first surveys the field of quantum algorithms, from inception to

recent works. We then focus on the recent quantum algorithm by Harrow, Hassidim,

and Lloyd [HHL09a]. Our goal is to describe the classical (and related quantum)

computer resources necessary to implement the Harrow-Hassidim-Lloyd algorithm

for solving linear equations.

Classical computation is performed using physical circuits that behave

according to the laws of classical physics. Thus, classical computer algorithms

assume that the steps of each algorithm will be executed on a classical computer

(although, as we will see later, classical computer algorithms can also be executed on

what is known as a quantum computer).

The digital gates of a classical circuit are Boolean, meaning that the inputs and

outputs are in definite states (either 0 or 1). The results (outputs) of a digital gate –

and hence a classical computation – are mostly irreversible, meaning that we cannot

redo or retrace the computation to its original input. The AND and OR gates, for

example, are not reversible, although the NOT gate is indeed reversible.

However, classical computers are not limited to electronic gates. Fredkin and

Toffoli [FT82] modeled a classical computer model based on the perfectly elastic

collisions of billiard balls. Paun created a classical computing model based on the

logical operations of cell membranes [Pau03]. Like classical mechanics, a classical

computer is deterministic in nature, meaning that every input determines a

2

predictable, definite output. No ambiguity or uncertainty exists about the state of a

digital gate.

Alan Turing [Tur36] invented a theoretical model of classical computing

which was independent of physical implementation. The model consisted of a stored

program, a set of finite states (including the start state, qs, and ending state, qh), a

read/write head, and a tape. The read/write head could write or read symbols from

the tape, one cell at a time. The tape could be moved one cell at a time (to the left or

to the right). All the symbols written or read from the tape came from a finite

alphabet defined for the machine. The program lines controlling the operation of the

model were represented by tuples of the form, <q, x, q’, x’, s>, where q was the

current state of the system, x was a symbol read from the tape, q’ was the next state of

the system, x’ was the symbol written onto the tape, and s represented whether the

read/write head moved leftward to the previous cell (L), advanced right to the next

cell (R), or remained stationary at the current cell on the tape (0).

This model later became known as a classical Turing Machine (TM). The

simulation of any classical algorithm could then be followed using the TM; the

behavior of the algorithm could be modeled exactly. Turing’s motivation for the

model was not to design the fastest or most efficient computer to implement the

algorithm. Rather, the TM was used to describe what can and what cannot be

computed.

The Church-Turing thesis asserts that any algorithm that is computable can be

simulated on the Turing machine model. An algorithm that is not computable (such

as the “halting problem”) cannot be simulated on the TM. More formally:

3

The class of functions computable by a Turing Machine
corresponds exactly to the class of functions which we
would naturally regard as being computable by
an algorithm. [NC00].

The Church-Turing Thesis has not been formally proved, because of the

ambiguity of what is meant by the phrase, “naturally regard as being computable.”

For the moment, the thesis is an intuitive rule-of-thumb for what we consider to be

computable or not.

No classical device operating according to classical physics is more powerful

than a Turing Machine (i.e., given enough time the TM can simulate any classical

system). However, a device based on quantum mechanics could be more powerful

than a device based on classical mechanics. The quantum equivalent to a Turing

Machine is the Quantum Turing Machine (QTM). More generally, a Quantum Turing

Machine is more powerful than the classical Turing Machine [BV93]. The quantum

read/write head could write quantum states (a superposition of several states) to the

tape instead of single symbols. The transition between quantum states, as described

by the program lines (tuples), could also include a probability amplitude between

states. The quantum TM uses qubits (quantum bits) instead of bits. Qubits are not

distinct and exist in the quantum mechanical world as a superposition of states.

A qubit has corresponding probability amplitudes for its possible states (|0> or

|1>) and hence is probabilistic (with complex vectors described in Hilbert space)

rather than deterministic in nature. In particular, suppose we have a qubit called q0.

Then:

4

q0 = (c1) |0> + (c2) |1> (1.1)

 The standard operations of a quantum computer are to initialize the

superposition of states, to perform operations on qubits (such as the Hadamard

transform), and to measure qubits for the answer. The operations of the QTM are

always unitary. When measuring the qubit with the amplitudes described above (c1

for state |0> and c2 for state |1>), we may randomly get either a binary digit of 0 or 1.

The probability of digit 0 is |c1c1*|. Digit 1 has a probability of |c2c2*|.

In contrast to a classical computer, a quantum computer is always reversible.

This feature (reversibility) can be exploited in rapidly performing an inverse Fourier

transform. As we will elaborate further in our literature review, a quantized Fourier

transform can be used to rapidly estimate the phase of waveforms that meet certain

criteria, answering certain types of problems that depend on phase (such as the phase

of an eigenvalue).

 Quantum states are not only in superposition, they are also entangled with one

another. In a sense the entangled states can “read” each other. By exploiting the

superposition of states and quantum entanglement, we can achieve a form of massive

parallel processing [Deu85]. Certain quantum algorithms have been discovered that

can achieve exponential performance improvement over classical algorithms (most

significantly, Shor’s algorithm to perform factorization of integers). Other quantum

algorithms have achieved polynomial speedup (e.g., Grover’s search algorithm).

The primary interest in quantum algorithms today is to find new algorithms

that make certain problems tractable that are intractable using classical computers.

5

The implications for fields such as cryptography, computer networks, and database

searching are profound if a practical quantum computer could be built.

We mentioned some of the advantages of quantum computers, i.e., that they

can achieve massive parallelism. But for quantum computers to realize these

benefits, certain difficulties must be overcome. Quantum states are difficult to

maintain due to interference from the outside environment. There is the ongoing

challenge of dealing with noise in constructing an actual quantum computer.

Furthermore, algorithms that are not computable (or undecidable) on a Turing

machine are also not computable on a quantum Turing machine. There are problems

that are equally difficult on a classical as well as quantum computer. If we cannot

find ways to exploit the quantum parallelism in a problem (i.e., if the problem is more

sequential in nature and does not lend itself to being decomposed into parallel pieces),

then running an algorithm on a quantum computer does not offer a clear advantage.

For example, an order processing system for a retail store is highly dependent on real-

time, sequential transactions; a quantum computer to implement the order processing

system may not offer any clear benefit.

Thus far (2010), no practical quantum computer has been built.

Understanding the resources required by quantum algorithms may also provide

insight to the actual requirements of a practical quantum computer.

For instance, some parts of a quantum algorithm may operate using classical

computer resources, while other portions of the algorithm may operate using

quantum circuits. This thesis studies in detail one such quantum algorithm and

6

explores how certain steps may be fulfilled classically, while other steps of the

algorithm are best fulfilled using quantum circuits.

 Let us begin by surveying the seminal papers in the field. The following

literature review is not exhaustive. Rather, the literature review describes those key

papers that contributed to the development of the field of quantum algorithms.

7

Chapter 2: Literature Review

2.1 Foundations

The original motivation for quantum computing was to simulate physical

quantum systems. Feynman [Fey82] pointed out the inherent difficulty of simulating

quantum mechanics using classical computers. As the number of particles in a

quantum system grows (i.e., the number of quantum variables representing the system

expands), the number of possible states increases exponentially. The processing

power of classical computers would be insufficient to simulate this exponential

growth. Feynman suggested that a computer based on the principles of quantum

mechanics itself could successfully simulate quantum systems. Feynman even

asserted, in what later became known as the Feynman Conjecture, that only computer

systems based on quantum mechanics could successfully simulate quantum

mechanics.

 Seth Lloyd showed in a 1996 paper that the Feynman Conjecture was correct

[Llo96]. Lloyd first pointed out that quantum simulation using a quantum computer

induces interactions between physical quantum variables. Lloyd contrasted the

quantum simulator with the classical computer simulations of the physical quantum

system; as the size of the quantum system grows (i.e., the number of quantum

variables is added), the classical computer cannot compensate for exponential growth

in the number of states. However, since a quantum computer mimics the interactions

of the physical quantum system using actual quantum variables, the growth in time

8

complexity (from the viewpoint of the quantum computer) is only linear growth.

Thus, only computer systems using quantum mechanics can successfully simulate

quantum mechanics.

 In addition to the efficacy of the quantum computer as a simulator for

quantum systems, an inevitable question began to emerge: Would it be possible to

use a quantum computer to solve problems not possible (i.e., intractable in terms of

time complexity) on a classical computer?

 In a landmark work, David Deutsch [Deu85] proposed the first quantum

algorithm with a demonstrated performance improvement over a classical algorithm.

In fact, the quantum algorithm was exponentially more efficient than a classical

algorithm. To support his analysis, Deutsch also proposed the Quantum Turing

Machine, a quantum mechanics equivalent of the classical Turing Machine model.

 Deutsch posed a problem with a one-qubit solution. As an illustration of

“Deutsch’s problem”, consider the outstanding example given by Nielsen and Chuang

[NC00]:

Suppose there are two people (Alice in Boston, Bob in Los Angeles) who are

in two-way comunication. Alice sends Bob a number, x, which ranges from 0 to 2n-

1. Bob evaluates f(x), a function with an n-bit domain and one-bit range, which may

return 0 or 1. Bob sends f(x) to Alice. It is assumed by both parties that f(x) is either

constant for any value of x, or f(x) is balanced (contains an equal number of 0’s and

1’s). Alice must query Bob to determine whether f(x) is constant or balanced. In the

worst case, Alice must query Bob 2n/2 + 1 times.

9

 Deutsch’s algorithm is implemented using the quantum circuit in Figure 1.

The gate labeled “Uf” represents a “black box” that implements a unitary

transformation from state |x, y> to state |x, y  f(x)>. The inputs are on the left of the

gate, consisting of a Hadamard gate acting on state |0> for x. Thus the input for x is a

superposition of states |0> and |1>. The input for y is the state |0>, making the output

for y just f(x). The resulting state is |>:

 |> = (|0, f(0)> + |1, f(1)>) / 2 (2.1)

The resulting state contains information on both f(0) and f(1). The Deutsch

algorithm makes use of quantum parallelism: a function, f(x), could be evaluated for

different values of x simultaneously. However, it should be noted that quantum

parallelism differs fundamentally from the classical parallelism that can be

implemented on classical computers (e.g., if we have several classical computers

operating in tandem). In quantum parallelism, two different alternatives (the different

values of x in function f(x)) may interfere with one another to provide a global

property of the function. In classical parallelism, the two alternatives do not interfere

and exclude one another.

Using the quantum circuit, only one query is necessary, thus providing an

exponential speedup over a classical algorithm.

10

Figure 1. Quantum Circuit for Deutsch Algorithm

The original Deutsch algorithm was generalized from 1-bit to n-bits by

Deutsch and Jozsa in 1992, to become known as the Deutsch-Jozsa Algorithm

[DJ92]. The Deutsch-Jozsa algorithm led to a “gold rush” for other algorithms that

could be superior to classical algorithms. Thus, the papers by Feynman and Deutsch

are generally attributed to starting the entire field of quantum computing [Mer07].

However, the Deutsch-Jozsa algorithm itself is rather contrived; it has no known

applications, serving only to demonstrate that exponential speedup is possible using a

quantum computer.

The implications of the original Deutsch paper were further explored by

Berthiaume and Brassard in two papers. “The Quantum Challenge to Structural

Complexity Theory” [BB92a] proved mathematically that there are certain problems

in which a quantum computer could solve in polynomial time, while a classical

computer would require exponential time. “Oracle Quantum Computing” [BB92b]

showed that there existed entities called quantum oracles, which could be used to

(|0> + |1>)/√2 x

y

Uf

|0> y  f(x)

x

|>

11

model quantum algorithms for polynomial time solutions to classically exponential-

time problems. Quantum oracles could be viewed as “black boxes” which perform

unitary transformations, from states such as |0> |x> to states of the form |f(x)> |x>.

Quantum oracles have been described as analogous to the subroutines of classical

computer programs; quantum algorithms call quantum oracles during the processing

of quantum states in the same sense that classical computer programs call subroutines

to perform specific actions. However, unlike classical subroutines, the quantum

oracle has the requirement that the invocation must cost only unit time and that the

quantum oracle must not leave behind any garbage (i.e., excess bits) beyond the

computed answer.

2.2 Models for Computation: Quantum Turing Machines and Quantum Circuits

Significantly, Bernstein and Vazirani showed that there exists an efficient,

universal quantum Turing machine [BV93]. The authors proved that such a universal

quantum Turing machine is more powerful than a classical Turing machine. Since

the QTM is more powerful than a classical TM, then we may also logically conclude

that a classical algorithm can be run on a QTM, although the converse is not true.

That is, we cannot run a quantum algorithm on a classical computer.

 Just as a quantum algorithm can be computed on a QTM, a quantum algorithm

can also be implemented as a quantum circuit, as we saw in the example of the

Deutsch-Jozsa algorithm.

12

 Yao [Yao93] and Deutsch [Deu89] were largely responsible for the quantum

circuit model being used as the basis for modeling quantum algorithms. Modern

quantum algorithms are typically described as low-level iterations acting on qubits

entangled according to the appropriate quantum circuit model. Yao proved that the

quantum circuit model is equivalent in power to a quantum Turing machine. It was

also shown in the paper, “Elementary Gates for Quantum Computation” [BBCD+95]

that a set of gates consisting of a one-bit quantum gate and a two-bit exclusive-OR

gate could serve as a universal gate.

 Figure 2 shows the basic quantum gates that will be used in quantum circuits

(e.g., a quantum Fourier circuit).

13

Figure 2. Typical Quantum Gate Notations

H

X

Hadamard

Pauli - X

Pauli - Y

S Phase Shift

Pauli - Z

/8 T

Y

Z

C-Not

14

 The gates are read from left to right, where input occurs on the line at the left

and output results on the line to the right. The Hadamard gate implements a

Hadamard transform on a single qubit. The Phase Shift, S, implements a shift in

phase on a single qubit. Pauli-X, Pauli-Y, and Pauli-Z implement rotations on a

single qubit about the X, Y, and Z axis respectively. The /8 gate, T, actually

implements a shift of /4 (the name is a historical misnomer that has managed to

persist).

 The C-Not gate, or Controlled-Not, operates on two qubits. One of the qubits

acts as a control, the other serves as data. If the control is set to “ON” then the

operator acts on the data qubit, performing a NOT logical operation. If the control is

not set to “ON”, then the operator leaves the data qubit alone.

 Figure 3 lists the corresponding matrix representations for the gates given in

Figure 2.

15

 Hadamard H =
2

1








11

11

 Shift S = 







i0

01

 Pauli-X X = 







01

10

Pauli-Y Y = 






 
0

0

i

i

Pauli-Z Z = 







10

01

/8 T = 







)4/exp(0

01

i

C-Not



















0100

1000

0010

0001

Figure 3. Matrix Representations of Quantum Gates

Like the classical Turing Machine, the behavior of the Quantum Turing

Machine is represented as a series of tuples containing the mapping between quantum

states, the alphabet, the movement left or right on the quantum tape, etc. Unlike the

classical TM, probability amplitudes are assigned to the state transitions and what is

read or output during each transition. The behavior of the quantum computing device

is probabilistic rather than deterministic in nature. However, the quantum circuit

16

model is frequently used instead of the QTM, since the circuit model is more

convenient and more visual in nature than the (perhaps) more unwieldy QTM

representation. In this thesis we focus on the quantum circuit model.

 Charles Bennett [BBBV97] summarized both the strengths and weaknesses of

quantum computing, and tried to establish the upper bounds on time complexity for

QTMs relative to classical Turing Machines. In light of the discovery that certain

quantum algorithms could achieve exponential speedup over classical algorithms, the

question was asked whether quantum computers could solve problems in the class of

NP in polynomial time. Bennett and his co-authors showed that a quantum computer

could not solve problems in the NP-class in O(2n/2) time. What was established was

that there is no black-box technique for solving NP-complete problems in polynomial

time merely by using quantum mechanical features of the QTM.

 Dan Simon [Sim94] pointed out that a Hadamard transformation (a special

case of the more general Fourier transform) could be used to find the hidden period of

a function. In the problem described by Simon, we first wish to determine whether a

function, called f, could be invariant under an exclusive-or mask; if the function is not

invariant under exclusive-or, then we wish to find a nontrivial period s, such that:

 f(x  s) = f(x) (2.2)

where  is the “exclusive-or” operation. We assume that each string x is n bits in

length.

17

By applying the Hadamard transformation repeatedly and in sequence, we

obtain a quantum superposition of all possible binary strings. In the case where f is

invariant, s will be a random string. We can also manage the case where f is not

invariant and a nontrivial period exists. A simple evaluation of f(0n) and f(s*) will

determine whether s is a random string or whether s is the true period.

 Simon’s algorithm achieved linear time complexity, O(n), compared to the

exponential growth of its classical counterparts. While the Deutsch-Josza algorithm

achieved exponential speedup but had no known applications, the Simon algorithm

had far more applicability, especially to problems where order-finding was central to

the problem. In fact, Simon’s algorithm formed the inspiration for Peter Shor’s

seminal factorization algorithm.

2.3 Shor’s Factorization and Discrete Log Algorithm

 Shor [Sho94] proved that well-known problems such as prime number

factorization and discrete log estimation were reducible to order-finding (of the type

solved by Simon’s quantum algorithm). That is, given a large integer N and an

arbitrary positive integer, x, such that x < N, the order r is defined as the least positive

integer such that xr mod N = 1. The integer r is also referred to as the “order” of x

mod N.

Shor’s algorithm used Fourier transforms instead of simpler Hadamard

transformations to determine the order. An input quantum register was loaded with

integer candidates for r. An output quantum register was loaded with the unitary

transformation on r (xr mod N). The Fourier transform was then applied to the input

18

quantum register, followed by an inverse Fourier transform and measurement of the

input quantum register. The result was an estimated phase value, from which order r

could be approximated. The order r could then be incorporated into a gcd (greatest

common divisor) calculation between r and N, performed classically, to obtain the

factor. A more complete description of Shor’s algorithm for factorization is given in

Chapter 3.

Performing factorization and discrete log estimation were considered to be

classically hard problems. In fact, the very intractability of integer factorization was

the basis for cryptographic algorithms such as RSA. However, Shor demonstrated

that by using quantum order-finding, factorization and discrete log estimation could

be performed in polynomial time.

 The implications of this result were highly significant. If a quantum computer

could be built, Shor’s factorization algorithm would render the current generation of

cryptographic systems based on RSA obsolete, since any RSA-encrypted code could

be deciphered in polynomial time.

 Ekert and Jozsa [EJ96] provided a lucid and highly accessible description of

Shor’s algorithm. They discussed the significance of the algorithm both within the

contexts of computer science and physics, and suggested experiments that would

contribute to the implementation of the algorithm. The Ekert and Jozsa paper is

therefore a recommended companion to the original, groundbreaking work by Peter

Shor.

 “Efficient Networks for Quantum Factoring” [BCDP96] analyzes the memory

and time complexity of a hypothetical quantum computer running the Shor

19

factorization algorithm. Issues such as garbage collection to preserve memory space,

and the implementation of quantum gates using the ion trap technique, are also

discussed. The paper is notable in that the authors study which classical and quantum

resources would be required for the Shor algorithm; the authors also discuss how

some of the classical and quantum resources interrelate (for example, a classical

subroutine would calculate a new factor using the result from a quantum oracle which

determined the order).

Kitaev [Kit95] generalized Shor’s results for factorization and the discrete

logarithm. He proved that both factorization and discrete logarithm were special

cases of what is called the “Abelian Stabilizer Problem” (ASP). The ASP can be

described as follows:

We are given a “black box” function called F, which can operate over an

arbitrary, finite Abelian group. Let H = any Abelian group, s  H, and x  any finite

set. We are also given that F(s, x) = x, defining the function as periodic. In the

stabilizer problem, we wish to find the “stabilizing” element, s, such that:

 F(gh, x) = F(g, f(h,x)) and (2.3)

F(gs, x) = F(g, x).

It is evident from the above that the action of finding the order, and hence

factorization and discrete logarithm, are indeed included as instances of ASP.

Kitaev invented a phase estimation algorithm which broadened the scope of

Shor’s original algorithm, allowing the algorithm to perform a Fourier transform over

an arbitrary, finite Abelian group.

20

2.4 Grover’s Search Algorithm

In the late 1990s, Lov Grover discovered a way to use quantum mechanics to

help in searching for data [Gro97]. In Grover’s scheme, the search items were

represented in a quantum system as a superposition of states, with the same

probability amplitude for each search item (state). I.e., given a total of N search

items, each state had an amplitude of 1/ N . Rather than using a full-fledged Fourier

transform, Grover used a simpler phase estimation technique (referred to as a

“diffusion transformation” in the paper) to alter the phase until the correct item was

obtained. Grover’s work was significant, in that he demonstrated how quantum

computing could be used for a highly pertinent real-world application.

A primary advantage of Grover’s search algorithm was its relative simplicity:

the technique can be considered more streamlined and less complicated than a full

quantum Fourier transform. A comparative drawback, however, is that the search

algorithm achieves only polynomial-time improvement rather than an exponential

speedup. Given N random search items, a classical search algorithm requires, in the

worst case, O(N) operations. Grover’s search algorithm requires O(N) operations.

In the paper, “A Fast Quantum Mechanical Algorithm for Database Search”

[Gro96], Grover extended the search algorithm to include searching on a database.

We provide the details of Grover’s algorithm in Chapter 4.

Brassard, Hoyer, Mosca, and Tapp [BHMT00] were able to generalize

Grover’s algorithm into a concept called “amplitude amplification.” During each

iteration of Grover’s algorithm, the pattern of the algorithm was to increase the

21

probability amplitude of certain search criteria, thus increasing the likelihood of

success in obtaining the search item. When the probability amplitude was increased

to a very high value (perhaps close to 1), the final measurement would be performed.

In “Quantum Counting” [BHT98], the authors extended the amplitude

amplification process to search algorithms possessing classical heuristics. Their

refined amplitude amplification process was called “quantum counting”, or

alternately, “approximate counting”.

2.5 Generalization of Quantum Algorithms: Hidden Subgroup Problems

Other authors noticed the overall patterns emerging from the now widely

studied Shor factorization algorithm and Grover search algorithm. Cleve et. al

[CEMM97] viewed quantum computation as multi-particle interference. The Shor

and Grover algorithms were performing phase estimation from the superposition of

waves in the quantum Fourier transform.

By the turn of the century, the field of quantum algorithms had advanced to

the point where the first textbook was written on the topic [NC00]. In the early

2000s, quantum algorithms could be classified into three general types: those based

on Shor’s algorithm using the quantum Fourier transform, those based on Grover’s

quantum search algorithm, and those algorithms intended for quantum simulation.

The quantum algorithms based on Shor’s algorithm fell into a more general

category called solving the “hidden subgroup problem.” [Sim94] [NC00]. Examples

of algorithms that solve the hidden subgroup problem include Deutsch’s algorithm,

22

the period-finding or order-finding algorithms, the discrete logarithm, and the Abelian

stabilizer. More specifically, we define the hidden subgroup problem as follows:

Let K be a hidden subgroup within a larger, finite group, G. Let f be a

function that maps finite group G to a finite set, X. That is, f: G  X. Function f is

constant and distinct on the cosets of K. Suppose there is an element g  G, and an

element h  X. Given a unitary transform, U |g> |h> = |g> |h  f(g)>, where “” is

a binary operation on X, the hidden subgroup problem is to find a generating set for

subgroup K.

2.6 Shor’s Error Correcting Algorithm

While the theory of quantum algorithms appeared to be rapidly advancing, the

hardware implementation of quantum computing was (and still is) beset by the

problem of decoherence. This thesis will not concentrate on the schemes for

hardware implementation. Although error-correcting codes are part of the

implementation process, we will briefly mention a few significant papers.

Calderbank and Shor [CS96] showed that good error correcting codes for

quantum computing can exist, setting the theoretical basis to overcome decoherence

in quantum superpositions. In “Fault Tolerant Quantum Computing”, Peter Shor

[Sho96] introduced the first quantum error correcting codes, and showed how these

codes could be used in a quantum representation without having to decode (measure)

the information.

 In the remainder of the Literature Review, we will discuss recent works (from

2002 to 2009) in the field of quantum computing.

23

2.7 Recent Works

 What is noteworthy about the recent works has been the quest for alternative

algorithms which are not based on the Fourier transform. I would like to mention two

new types of algorithms among those that have appeared since 2002: those quantum

algorithms based on the quantum walk and those algorithms based on adiabatic

quantum computing.

The paper, “Exponential Speedup by Quantum Walk” [CCDF+02] introduced

the quantum walk. In classical thermodynamics, a random walk involves successive

random steps, modeled by a Markov chain. The goal of the random walk is to model

a trajectory that is moving at random (e.g., a molecule in a gas). A quantum walk is

analogous to a random walk; the quantum walk can be modeled as a probability

distribution. However, the entity that is performing the quantum walk (let us call this

entity a “quantum walker”) exists in a superposition of states. Also, the states of a

quantum walk are defined in Hilbert space.

Let the states of a quantum walk represent vertices on a graph. The goal of a

quantum walk algorithm would be to traverse the entire graph. The progress of the

quantum algorithm would be based on queries to a “black box” (quantum oracle),

asking about the local properties of a vertex. While a classical random walk

algorithm would require exponential time complexity to traverse a graph, a quantum

walk would take only linear time. As Childs et. al demonstrated, applications such as

Grover’s search algorithm could be modeled using a quantum walk.

24

In “Spatial Search by Quantum Walk” [CG04], the authors apply a

continuous-time quantum walk algorithm for multidimensional database searching. A

polynomial speedup of O(N) was obtained over classical probabilistic methods.

By 2009, the quantum walk had become one of the well-known quantum

algorithms used for searching. Childs [Chi09b] showed how the discrete quantum

walk could be used to estimate the continuous quantum walk, and thus how the

discrete quantum walk could be used to simulate Hamiltonian dynamics.

The other type of quantum computing that has been recently proposed,

adiabatic quantum computing, applies the “adiabatic theorem” of quantum mechanics

to perform computations [FGGS00].

The adiabatic theorem states that if a system is in a particular eigenstate (e.g.,

the ground state), and the perturbation on the system is slow, then the system remains

in that eigenstate. In addition to the slow perturbation on the system, adiabatic

computing also requires that large band gaps exist between the eigenvalue

(corresponding to the eigenstate) and the rest of the Hamiltonian spectrum.

We desire to evolve the Hamiltonian from an initial, simple Hamiltonian (set

to the ground state), to a final, more complex Hamiltonian (which is still in the

ground state). The final Hamiltonian represents the solution to a given computational

problem.

Since the system is always in the ground state during evolution, adiabatic

computing intends to get around the problem of decoherence. However, there are still

problems with adiabatic computing -- outside interference could still tip the ground

state into the first energy state, ruining the calculation.

25

Aharonov and Ta-Shma [AT03] focused on developing tools to generate

quantum states by adiabatic evolution. The authors believed that the notation of

Hamiltonians and spectral gaps was a “natural” way of expressing adiabatic quantum

computing. By focusing on the process of quantum state generation, they believed

that quantum computing itself could be better understood.

A recent paper by Gottesman and Irani [GI09] studied the time complexity of

a class of problems that is invariant under spatial translation. An analogy was drawn

between two related problems, one classical and the other quantum mechanical.

The classical tiling problem involves a set of m tiles, and rules specifying how

adjacent tiles may be positioned. The input to the problem is an integer, N, indicating

an N x N grid that must be tiled according to the rules. Given the integer N, the

classical tiling algorithm must find the possible tiling of an r-dimensional grid.

The quantum problem must approximate the ground state energy of a quantum

system when the Hamiltonian is invariant under spatial translation. The interactions

between particles in the quantum system only occur between neighboring (adjacent)

particles on an r-dimensional grid.

Thus, the problems are similar. In both the classical tiling problem and the

quantum mechanical problem, the particles (or tiles) are adjacent, and the rules act as

constraints on the possible states of the systems. The authors proved that the classical

tiling problem is NEXP-Complete, and that the quantum problem is QMAexp-

Complete. (Note: QMAexp-Complete is the quantum version of NP-Complete).

Gottesman and Irani pointed out that if we could find an algorithm that could run in

26

polynomial time in N, then this would imply that EXP = NEXP and BQEXP =

QMAexp.

Within the past year, a quantum algorithm to solve a system of linear

equations was proposed by Harrow, Hassidim, and Lloyd [HHL09a][HHL09b]. The

quantum linear algorithm allows for exponential speedup over classical algorithms.

Given a system of N linear equations, the algorithm requires O(log(N)) data registers,

in contrast to O(N) for classical algorithms. Suppose that a linear system of equations

has the form A x


 = b


, where A is a Hermitian and unitary operator, and x


 and b


 are

vectors. (The quantum linear algorithm represents x


 and b


 as quantum states in

Hilbert space). If we are not interested in all values of x


, but only in some special

feature of x


, such as a particular expectation value, then in the best case the quantum

linear algorithm may achieve an exponential speedup over the classical algorithm.

 The quantum linear algorithm first prepares the quantum states for |b>, using

the technique of Grover and Rudolph [GR02]. Eigenvector |b> is decomposed and

transformed into the basis states for the operator, A. Then a conditional Hamiltonian

time evolution operator is applied to |b>, where the unitary operator, A, is a sparse

matrix. We use the techniques of Hamiltonian simulation [BACS06] to apply

operator A to the eigenvector |b>. Then the phase estimation algorithm is applied,

using the discrete Fourier transform to obtain a multi-qubit estimation for the phase of

the eigenvalue for A. We add a qubit and rotate about the basis state established by

the phase, measure the last qubit, and determine the inverse phase conditioned on the

state, |1>, of the added qubit. The result of the inverse phase is our desired solution

set:

27

 |x> = A-1|b> (2.4)

Until the eigenstates for |x> are measured, however, the solutions will be

unknown. As indicated above, we must measure only certain properties of |x>, rather

than all values of |x>, otherwise the quantum linear algorithm offers no performance

gain over the classical algorithms for solving linear systems.

Andrew Childs [Chi09a] pointed out some of the implementation problems to

the quantum linear system algorithm. The preparation for the states in eigenvector

|b> must be quick. If the data for |b> is given explicitly in terms of classical data,

then preparation may not be rapid. The Hermitian operator, A, must be sparse, as

measured by a small condition number, . If the matrix for A is non-sparse, the

algorithm loses its advantage over classical methods. Although the potential

applications of a quantum linear system algorithm are broad, no specific task has yet

been proposed (as of this writing in mid-2010) for which the quantum linear system

algorithm of Harrow-Hassidim-Lloyd would outperform classical linear equation

solvers.

28

2.8 Summary of Literature Review

 In summary, we have discussed the seminal papers which defined the field of

quantum algorithms. The algorithms which use the quantum Fourier transform to

perform phase estimation form a broad category of quantum algorithms to solve what

was called the “hidden subgroup problem.” These algorithms included the Deutsch

algorithm, the Shor factorization and discrete log algorithms, order-finding, period-

finding, and the Abelian Stabilizer. The other types of algorithms were based on

Grover’s search algorithm, which do not use the Fourier transform, but rather use

techniques intended to increase the probability amplitude of selected states, thus

converging to a solution. We mentioned recent algorithms (2002-2009) which were

not based on the hidden subgroup problem: the quantum walk, which was based on

quantum oracle queries over a quantum graph; and the adiabatic quantum computer,

which performs computation by taking advantage of the adiabatic theorem of

quantum mechanics. We briefly mentioned quantum simulation, and error-correcting

codes for quantum computing.

 Finally, we discussed a significant recent algorithm (by Harrow, Hassidim,

and Lloyd), which uses quantum computing to solve a system of linear equations.

The quantum linear system algorithm is a phase estimation method. The algorithm

can achieve polynomial and even exponential speedup over classical computing under

certain conditions (i.e., sparse operator matrices, and measurement of final quantum

states performed only locally). We also discussed some of the implementation

problems of the algorithm.

29

In the remainder of the thesis, we will discuss in detail Shor’s factorization

algorithm and Grover’s search algorithm. We will also cover the quantum linear

system algorithm, and we will perform an analysis on the classical and quantum

resources needed to implement the algorithm.

30

Chapter 3: Shor’s Factorization Algorithm

3.1 Introduction to the Algorithm

 In this chapter, we will provide a detailed description of Shor’s Factorization

Algorithm [Sho94].

Given an integer, N, a prime factorization algorithm decomposes the integer

into a product of prime numbers. Classical prime factorization algorithms require

exponential time complexity to factor large integers. In fact, the security of an

encryption algorithm called RSA [RSA78] is based on the hardness of factorizing

integers. However, Shor’s factorization algorithm exploits the massive parallelism of

quantum computing and can factorize large integers in polynomial time. The

actualization of a practical quantum computer therefore has serious implications for

cryptography as well as other areas of science.

Suppose we desire to factor a positive integer, N. We are given a randomly

selected number, x, such that x < N. It is trivial for us to check if x and N have a

common factor by using Euclid’s algorithm, prior to running our quantum algorithm.

If x and N have a common factor, then we have found a factor of N and are done.

However, for purposes of demonstration, let us assume that x and N do not have a

common factor. Then we desire to find the least integer, r > 0, such that:

xr mod N = 1 (3.1)

31

 This least integer, r, is called the “order” of x mod N. Shor proved that the

factorization problem is reducible to finding the order of x mod N. Once r has been

determined, we can find the factor through using the classical greatest common

divisor algorithm.

 The input to the quantum algorithm is the classical integer, N. The output is a

prime number factor to N. Two quantum registers are used to represent binary

integers; the first register is used as input, the second register is used as output. Also

required is a scratchpad used as temporary workspace. The workspace is cleared after

each subroutine of the algorithm.

 We determine a constant number, q, which is a power of 2 such that N2  q <

2N2. We also choose an arbitrary positive integer x, such that x < N. Thus, N, x, and

q will be constant throughout the algorithm. Let the number, a, represent the order of

x mod N.

With the order-finding algorithm serving as the core, we describe the steps of

Shor’s factorization algorithm as follows.

3.2 Steps of the Algorithm

Step Zero: Preprocessing. We first check to see if a factor can be
trivially determined.

 If N is even, return the number 2.

 Use Euclid’s algorithm to check if x, N have a common factor.
 If yes, return the common factor.

 Otherwise, proceed to Step One.

Step One: Initialize the first register with the superposition of states
labeled by a, and clear the second register.

32

(1/q1/2)





1

0

|
q

a

a |0> (3.2)

Step Two: Compute xa (mod N) into the second register. Leave |a> in
the first register (so the computation is reversible):

(1/q1/2)





1

0

|
q

a

a |xa (mod N)> (3.3)

Step Three: Apply the Fourier Transform to the first register, mapping
states |a> to |c>:

|a> = (1/q1/2)




1

0

q

c

exp(2iac/q)|c> (3.4)

 Illustrating both the first and second registers, we now have:

 (3.5)

(1/q)




1

0

q

a





1

0

q

c

exp(2iac/q)|c> |xa (mod N)>

Step Four: Apply the Inverse Fourier Transform on the first register.
Then measure the first register.

 (3.6)

  = c/q = | (1/q)




1

0

q

a

exp(-2iac/q) |2

Using Shor’s paper [Sho96], we get the relation that |c/q – d/r| 
1/(2q), where r is the order, with r < N.

Step Five: We know both the values of c and q. Expand the fraction
c/q using the classical continued fraction algorithm. Round c/q to the
nearest fraction close to d/r. (Note: This classical algorithm requires
polynomial time complexity). We wind up with some d’/r’  d/r. If r

33

is odd, return r. The gcd(r, N) can later be used to determine the
factor. Otherwise…

Step Six: When r is even and xr/2  -1 (mod N), compute:

 gcd(xr/2 – 1, N) and (3.7)
 gcd(xr/2 + 1, N).

If one of these is a non-trivial factor, return the factor.
Otherwise, the algorithm fails.

 Steps One through Five comprise the Order-Finding Algorithm using the

Fourier transform to find the phase estimation.

 In the next section, we examine a quantum algorithm used to search for data.

The Grover algorithm does not use a Fourier transform technique but, rather, a

simplified form of amplitude amplification.

34

Chapter 4: Grover’s Search Algorithm

4.1 Introduction to the Algorithm

 Grover’s search algorithm [Gro97] uses quantum mechanics to perform a

search on data. The algorithm does not use a full Fourier transform like earlier

quantum algorithms. Rather, the search algorithm uses a combination of Hadamard

transforms and phase rotations to increase or decrease the amplitudes of the quantum

states representing the search items. After each iteration of the algorithm, the

amplitude of the desired state is increased until it stands apart from the average

amplitude of the other search items.

 The primary advantage of the algorithm is its relative simplicity of

implementation compared to the Fourier transform methods. Given N search items,

Grover’s algorithm requires O(N) time complexity to locate the desired search

item, a polynomial time speedup compared to the O(N) time complexity required of

classical search algorithms. The simpler Hadamard and phase rotation matrices

comprise what the author calls a “Diffusion transform.” The Diffusion transform

causes the amplitude of the search item to be inverted about the average amplitude of

the other search items.

4.2 Steps of the Algorithm

 We now list the steps of the Grover Algorithm.

35

Step One. Initialization. For N search items, we create a

superposition of N quantum states, each with N1 amplitude. For
each quantum state, there is also a corresponding location in classical
memory with contents describing the properties of the state.

 Step Two. Amplitude amplification.

 Repeat N times.

 Assume the system is in state |S>.

If a desired property of (S) (from the classical memory
contents) matches the search criterion,

 ROTATE the phase by  radians;

 Otherwise, leave the system unaltered.

Apply the Diffusion Transform matrix, D, to the state
as follows:

 Dij = 2/N if i  j and Dii = -1 + 2/N.

Note: The Diffusion matrix can be implemented as a
product of three matrices:

 D = HRH

…where H is the Hadamard transformation, and R is a
rotation matrix.

Step Three. Perform measurement of the resulting state. The
measurement will return the desired search item with a probability of
at least 50%.

 In the next chapter, we will discuss in detail the quantum algorithm for

solving a system of linear equations. Unlike the Grover search algorithm, the

algorithm of Harrow, Hassidim, and Lloyd uses a full Fourier transform for phase

estimation.

36

Chapter 5: The Quantum Linear
 Algorithm

5.1 Introduction to the Quantum Linear Algorithm

In their paper, “Quantum Algorithm for Linear Systems of Equations,”

Harrow, Hassidim, and Lloyd [HHL09a] proposed a quantum algorithm for solving a

system of N linear equations with N unknowns. Solving a linear system of equations

entails finding a vector, x , that solves the linear system A x = b , where A is a given

matrix operator and b is a given vector with constant coefficients.

 Quantum states are used to represent b and x . Operator A is sparse, unitary

and Hermitian. For example, a 2 x 2 system of linear equations would be represented

as:

 |b> = 


2

1j

bj |j> (5.1)

 A = 







A

A

0

0
 (5.2)

|x> = (unknown states) (5.3)

 The sparseness of matrix A is measured by the condition number, , defined

as the ratio between A’s largest and smallest eigenvalues. A small  indicates a

sparse matrix. Using Hadamard gates, a given |bj> would be rotated into the basis

37

states of operator A. Let |uj> be the basis vectors of A, where j = 1…N. Then the

states |b> would be represented in the A basis as:

 |b> = 


N

j 1

j |uj> (5.4)

 We define the state, |0> to be:

 |0> =
T

2
 





1

0

T



sin 



 

T

)21(
 |> (5.5)

for a large period T. We apply a conditional Hamiltonian time evolution operator,






1

0

T



|> <|  exp(i A  t0/T), to the tensor |0>  |b>, with t0 = O(/). Using j as

the eigenvalue of the operator, and j |uj> as the target state, the result of the

Hamiltonian for a specific j is:

T

2
 





1

0

T



 exp(i j  t0/T) sin 



 

T

)21(
 |> j |uj> (5.6)

 Phase estimation is then performed using a black box version of the Fourier

transform circuit (see the diagram of the quantum Fourier circuit in the next chapter).

The multi-qubit phase represents the eigenvalue for a particular solution state

(indexed by j). Phases are calculated for each j as follows:

38

 (5.7)

|>  |u> =
T

2 


N

j 1





1

0

T







1

0

T

k

exp(i
T


(jt0 – 2k)) sin 



 

T

)21(
|k> j |uj>

 Once the phase estimation has been obtained, we set k = 2  k/t0 and relabel

the |k> basis state as the |k> basis state. A qubit is added for each j, and a rotation

conditioned on |k> is performed. We then undo the phase estimation and uncompute

|k>. Assume we have a perfect phase estimation, such that…

If j = k then…

T

2
 





1

0

T



 exp(i
T


(jt0 – 2  k)) sin 



 

T

)21(
 = 1 (5.8)

 …with Equation 5.8 being 0 otherwise.

We measure the last qubit, and obtain j
-1 (by conditioning on seeing 1). We

thus have the form:

 |x> = 


N

j 1

j
-1 j |uj> (5.9)

 |x> contains the solution to the linear system as a superposition of states in the

A-basis vectors. We may then measure one of the properties of |x>, obtaining the

expectation of that property.

39

 We use the algorithm from Berry et. al [BACS06] to simulate Hamiltonian

time evolution. According to the error analysis in [HHL092b], to simulate the

evolution of eiAt with an error less than , we require that the time tH be:

 tH = O(log2(N)2t0) (5.10)

Phase estimation is assumed to be the dominant source of error. When A is

sparse, phase estimation can be done with error  in time proportional to t2(t/)O(1).

This can be approximated as O(2t0). Since there are log2(N) data registers, the total

time required for error  is tH = O(log2(N)2t0). That is, the Hamiltonian time

evolution must not occur beyond tH for a desired error, .

 In the Literature Review we mentioned that log(N) data registers are required,

rather than N, since a data register consists of qubits. Since there are log(N) data

registers, the algorithm has exponential performance improvement, O(log N), over

classical algorithms. The authors point out that exponential speedup over classical

algorithms is possible when A is sparse and a single measurement of a property in |x>

is performed (rather than multiple measurements). However, if our goal was to

obtain all N measurements from |x>, the performance would degrade to O(N), on a

par with classical algorithms.

 The initial preparation of matrix |b> must be performed in a way that is not

too time-consuming. If |b> must explicitly reflect classical data, there is no

performance advantage over classical methods. However, if one implicitly creates

40

|b> using amplitudes that are probability distributions, a performance gain over

classical methods is possible [GR02].

 In addition to the log2(N) data registers, a single quantum register implements

the unitary operations for all data registers. The state of this unitary operations

register does not itself change.

A scratchpad register is also used as a temporary storage location. The

scratchpad register is partitioned into log(N) sections, one for each of the logical N

quantum variables of the state |x>. Each partition is accessed by the jth data register.

 Now that we have provided a general description on some of the features of

the algorithm, let us describe the exact steps of the quantum algorithm for linear

systems. Figure 4 gives pseudo-code for the algorithm. Section 5.2 provides a

detailed description.

41

Pseudo-Code Description of Quantum Linear Systems Algorithm

Step One. Initialize data registers with |0>  |bj>.

Let s() =
T

2
 sin 



 

T

)21(
,  held constant.

 A given data register contains s() j |uj>.

Step Two. Apply Hamiltonian evolution operator with  held constant, and

apply the Fourier transform with |k> basis states.

 Consider separately the cases where  = 0, 1, 2, tH.

|> s() |u> = 


N

j 1





1

0

T

k

exp(i
T


(jt0 – 2k)) |k> s() j |uj>

 Step Three. Apply inverse Fourier transform to obtain |j>.

Step Four. Relabel |k> with |k>. Add a qubit for jth variable. Rotate qubit
conditioned on |k>.

 Let k|j = exp(i
T


(jt0 – 2k)). Then:




N

j 1





1

0

T

k

k|j |k> s() j |uj> (
2

2

1
k

C


 |0> +

k

C


|1>).

 Step Five. Uncompute |k> and determine -1.

 If k = j, then k|j = 1, otherwise k|j = 0. Result is:

 


N

j 1

 s() j |uj> (2

2

1
j

C


 |0> +

j

C


|1>)

 Measure the last qubit, condition on 1.

 -1 =
j

C

 22

1

2

2

)(||

||





sBC j

N

j

j

 

  |x> = 


N

j 1

s() j -1 |uj>

 Step Six. Measure for the desired property, M: <x| M |x>.

Figure 4. Pseudo-Code for Quantum Linear Systems Algorithm

42

5.2 Detailed Steps of the Algorithm

We assume that the matrix A is already sparse (with  sufficiently

low), and that the states |b> have already been prepared. There are log2(N)

data registers, representing each unknown variable. We calculate the optimal

time for running the Hamiltonian time evolution operator, tH = O(log(N) 2

t0), and use this time as the upper bound on simulation time.

There is a separate quantum circuit implementing phase estimation for

 = 0,  = 1,  = 2, ….,  = tH. The quantum circuit implementing phase

estimation will serve as a “snapshot” of particular times and phases.

Resource issues such as garbage collection, and the classical and

quantum variables associated with each step, will be covered in our resource

analysis in Chapter 6.

Step One: For each quantum data register, establish states: |0>  |b>.

The qubits representing a particular |bj> are loaded into the quantum circuit.
A Hadamard transformation is performed, decomposing |bj> and rotating |b>
into basis states of operator A. Thus, |bj> is transformed into j |uj>.

Let s() =
T

2
 sin 



 

T

)21(
,  held constant.

 The unitary operators in the circuitry act on s() j |uj>.

Step Two: The conditional Hamiltonian is applied on |0>  |b> for constant
. Also apply the Fourier transform on the conditional Hamiltonian, adding
the basis states, |k>. The Hamiltonian and Fourier transform are implemented

43

in the quantum circuit performing phase estimation (see diagrams in Chapter
6).

We have a separate quantum circuit for each time, . We consider only the
cases where  = 0,  = 1,  = 2,  = tH.

In general, the quantum circuit estimates the phase of the eigenvalue, |>, by
using 5.11a:

|> s() |u> = 


N

j 1





1

0

T

k

exp(i
T


(jt0 – 2k)) |k> s() j |uj> (5.11a)

Or, alternately:

|> = 


N

j 1





1

0

T

k

exp(i
T


(jt0 – 2k)) |k> (5.11b)

For case  = 0:

T

2 


N

j 1





1

0

T

k

exp(i (0)/T(jt0 – 2k)) sin 



 

T

)210(
|k> j |uj>

=
T

2 


N

j 1





1

0

T

k

sin 





T

)21(
|k> j |uj>

Let s(0) be a constant, such that s(0) =
T

2
 sin 





T

)21(
.

Then:

|> s(0)  |u> = 


N

j 1





1

0

T

k

|k> s(0) j |uj>. (5.11c)

For case  = 1:

Let s(1) =
T

2
 sin 





T

)23(
. Then:

T

2 


N

j 1





1

0

T

k

exp(i T-1 (jt0 – 2k)) sin 





T

)2/3(
|k> j |uj>

44

= 


N

j 1





1

0

T

k

exp(i T-1 (jt0 – 2k)) |k> s(1) j |uj>. (5.12)

For case  = 2:

Let s(2) =
T

2
 sin 





T

)25(
. Then:

T

2 


N

j 1





1

0

T

k

exp(i
T

2
(jt0 – 2k)) sin 





T

)2/5(
|k> j |uj>

 = 


N

j 1





1

0

T

k

exp(i
T

2
(jt0 – 2k)) |k> s(2) j |uj>. (5.13)

For case  = tH:

Let s(tH) =
T

2
 sin 



 

T

tH)21(
. Then:

T

2 


N

j 1





1

0

T

k

exp(i tH/T(jt0 – 2k)) sin 



 

T

tH)21(
|k> j |uj>

= 


N

j 1





1

0

T

k

exp(i
T

tH
(jt0 – 2k)) |k> s(tH) j |uj>. (5.14)

Step Three: Apply the inverse Fourier transform to obtain the multi-qubit
state |j>, estimating the phase. Refer to the diagram for phase estimation in
Chapter 6. To apply the inverse Fourier transform, we start with the multi-
qubit result on the right, and read through the diagram backwards, from right
to left, through the inverse unitary operators and through the inverse
Hadamard transform. The leftmost result is the multi-qubit representation of
the phase. The phase for the jth data register is:

 |> = |01…t-1>

When measured, the multi-qubit state gives the phase value.

45

Step Four: Add a qubit and rotate conditioned on |k>.

Define k|j = exp(i
T


(jt0 – 2k)).

First we replace |k> with |k> by setting k = 2  k / t0. We add a qubit
associated with the jth variable. Then we rotate conditioned on |k, giving us
the result:




N

j 1





1

0

T

k

k|j |k> s() j |uj> (
2

2

1
k

C


 |0> +

k

C


|1>) (5.15)

Step Five: Undo the phase estimation, |k>, measure the last qubit, and then
determine the inversion factor, -1.

Under an ideal phase estimation, k|j = 1 whenever k = j. k|j = 0 otherwise.
We assume an ideal phase and drop |k>. The result is:




N

j 1

 s() j |uj> (
2

2

1
j

C


 |0> +

j

C


|1>) (5.16)

Now we measure the last qubit, and condition on 1. This results in the state:

222

1

2 ||/)(||

1

jj

N

j
sBC  

 


N

j 1

s() j
j

C


|uj> (5.17)

Equation 5.17 corresponds to |x> = 


N

j 1

s() j -1 |uj>.

Step Six. We have “solved” for |x> in Step Five, but the values are
unknown until measured. We now measure for a single
property, M, of |x>. Perform <x| M |x>, obtaining
probability(M) for that property.

 Example: We can obtain <px> from <x| pop |x>.

46

In the next chapter we will analyze the classical and quantum resources for the

algorithm. Classical and quantum variables, garbage collection, and the associated

quantum circuits will be considered.

47

Chapter 6: Analysis of Computational
 Resources

6.1 Classical vs. Quantum Resources

 In this chapter we distinguish the parts of the quantum linear algorithm that

are performed classically and the parts that are performed by quantum circuitry. We

refer to the quantum objects as quantum numbers or quantum variables. The familiar

classical objects are referred to as classical numbers or classical variables.

 A classical computer serves as the central control of the implementation,

calling the oracular services of quantum circuitry as needed. Quantum “oracles”

(represented as the black-box operators in quantum circuitry) are the quantum

equivalent of subroutines.

Figure 5: Classical Computer (Client) and Quantum Computer (Server)

Classical Computer

Quantum Computer

48

Classical computers are used as the control mechanism, rather than quantum

computers, due to a relatively fast clock speed. Quantum clock speeds are

considerably slower than classical clock speeds, since quantum circuit technology is

still in its infancy. The slower quantum clock speeds may well be the case in the

near-term future [BCDP96].

 In general, the classical computer maps the results of quantum computing

(i.e., the measurements of quantum states) into classical memory space, and cross-

references the classical and quantum variables. The classical computer also deals

with index or control variables that regulate the loop or calling of subroutines. For

example, the classical computer may send output to a quantum computer in the form

of a program to control the circuitry.

The classical computer may perform the calculations that determine the initial

amplitudes of quantum states. (An ongoing design issue is to decide which

calculations should be performed classically, and which computations should be

incorporated into the quantum circuitry).

 To fully analyze the classical and quantum resources, we will track classical

and quantum objects at each step of the quantum linear algorithm. We will also

indicate when garbage collection becomes necessary during the algorithm, and will

discuss the intermediate steps required to eliminate excess quantum states.

The total time to complete a step is the sum of both the classical and the

quantum time requirements. The time complexity of each step, and the resulting total

time complexity of the entire algorithm, will be estimated.

49

6.2 Quantum Circuits

Before analyzing the classical and quantum resources of the algorithm, let us

first describe the details of a generic quantum Fourier circuit. Figure 6 shows the

quantum Fourier transform circuit. This circuit is designed for only one eigenvalue (a

single quantum variable, and not a system of equations). The diagram is followed

from left (input) to right (output). The box labeled “H’ represents the Hadamard

transform on the input qubit. The boxes labeled “Rk” represent the unitary transforms

of the circuit:

Rk = 







kie 2/20

01
 (6.1)

The output at the top wire of the diagram represents the least significant qubit,

and those wires at the lower portion represent the most significant qubits. Thus, the

order of the qubits must be reversed by a swap gate (not shown). Also not shown in

Figure 6 are the normalization factors for
2

1
.

50

Figure 6: Quantum Fourier Transform Circuit

The quantum Fourier transform of Figure 6 may also be represented by an

equivalent product representation and summation representation.

The summation representation can be expressed as:

|j1…jn>  




12

0

2/2

n
n

k

ijke  |k> (6.2)

…where |j1…jn> represents the multi-qubit final phase state, and |k> is the

Fourier basis state. The equivalent product of qubits representation is:

H |j1>









  

|0> + exp(2i0.j2…jn) |1>

R2 Rn-1 Rn

|j2> H   

|0> + exp(2i0.jn-1jn) |1>

|0> + exp(2i0.jn) |1> H

Rn-2 Rn-1

H R2

|0> + exp(2i0.j1j2…jn) |1>

|jn>

|jn-1>





51

 (6.3)

|j1…jn>  (|0> + njie .02
|1>) (|0> + nn jjie 1.02 

|1>)    (|0> + njjjie02 21
|1>)

2n/2

The quantum Fourier transformation can be generalized into a phase

estimation. In Figure 7, we replace the Rk operators with black box unitary

transformations. As mentioned earlier, a black box is also called an “oracle” (the

quantum equivalent of a subroutine). The advantage of representing operations as

oracles is that the oracles simplify the representation. Oracles free us from the

specifics of implementation, allowing us to focus on the problem at hand.

A major difference between Figure 6 and Figure 7 should be noted. Figure 6

deals with only a single result (a single phase). Figure 7 deals with N phases, since it

implements the phase estimations for the N x N linear system of equations.

Again referring to Figure 7, there are log2(N) data registers which contain the

data (represented as unmeasured quantum states) for all N linear equations and N

quantum variables in the system. The index variable, j, refers logically to the jth

quantum variable (ranging from 1 to N), although implementation-wise there are

log(N) registers.

There is only one register implementing both the unitary transformations and

Hamiltonian evolution; the register consists of as many qubits as required to perform

the operations. The quantum circuit contains the normalization factors and time

constant, s(). The one register performing the unitary transformations is interfaced

52

Figure 7. Quantum Phase Estimation for Linear System Algorithm

H |0>













|0>

H

|0>

02U
12U

22U
12 t

U

H

|0> +)2(2 1
N

tie  

|1>

|0> +)2(2 2
Nie 

|1> H

|0> +
)2(2 1

Nie 
|1>





|0> +
)2(2 0

Nie 
|1>

|0>

j = N

j = 2

|0>

j = 1

|0>









  

|0> +)2(2 2
1 tie |1> H

|0> +)2(2 2
2ie |1>

|0> +
)2(2 2

1ie |1>

|0> +
)2(2 2

0ie |1>

H

H

|0> +)2(2 1
1 tie |1>

|0> +)2(2 1
2ie |1>

|0> +
)2(2 1

1ie |1>

|0> +
)2(2 1

0ie |1>

H

H

H

H

H

|0>

|0>

|0>

|0>

|0>

|0>

|u> |u>

53

to all the data registers and can perform the unitary transformations in parallel for the

N linear equations, taking advantage of quantum entanglement among the data

registers. However, the register that performs unitary operations does not itself

change state.

The unitary operator for the phase estimation will have eigenvector |u>, in the

A-operator basis, and eigenvalue e2ik.  is the phase to be estimated by the quantum

circuit. There are N phases to be determined. The unitary operator is implemented by

the “black boxes” labeled
02U ,

12U ,
22U ,…,

12 t

U . A given phase is estimated

by t qubits. The number of qubits required is predicated on how much accuracy we

want and the probability for success. The greater the t, of course, the higher the level

of accuracy and probability for success.

Although the Hamiltonian evolution operators ideally work with a time

sequence, we implement the evolution as a “snapshot” of quantum circuit behavior.

The unitary operators are designed to operate with a constant time, . I.e., there is a

separate quantum circuit for each . For illustration purposes, we will consider the

behavior of the circuit for  = 0, 1, 2, and tH (with tH being the upper bound on time).

 Not shown in Figure 7 are the normalization factor
2/2

1
t

and the time factor

s() (with  held constant), for the cases  = 0, 1, 2, tH.

 The summation expression equivalent to Figure 7 for a particular phase, j

(this time including the normalization factor) is:

54

|1, 2, …t>j 
2/2

1
t 





12

0

2
t

j

k

kie  |k> (6.4)

 Equation 6.5 gives the equivalent multi-qubit product representation for a

particular j:

 (6.5)

|1, 2, …t>j  (|0> + tie  .02 |1>) (|0> + ttie  1.02  |1>)    (|0> + tie 02 21 |1>)

2t/2

 We can express the generic phase, j, in terms of the phase for our application,

j. Since we are holding  constant, let c = /T. Then, using equation 5.11b, for a

particular phase estimation of eigenvalue j:

2/2

1
t

ki je 2 =
2/2

1
t

)2(0 ktic je   (6.6)

 Solving for j by taking the natural log of both sides:

 j = c 







1

2
0

k

tj



 (6.7)

 Now solving for j using equation 6.7:

 j = 





 1

2 0

0 ct

k 
 (6.8)

55

Each data register consists of an input buffer to the quantum circuitry, which

we label |>in, and an output buffer to store the results of the quantum circuit, which

we denote as |>out.

A single scratchpad register is used by all data registers to store the temporary

results of calculations, to allow reversibility, and to assist in garbage collection (see

Figure 8). The scratchpad is split into log(N) partitions, one for each data register.

Each partition is variable in length (of some xt qubits, x 1). Logically, however,

there are N partitions in the scratchpad, with the jth partition accessible by the jth data

register, with 1  j  N. A given partition is in turn broken up into two regions, one

called the “Scratch” region and the other called “Copy”. The region labeled

“Scratch” contains the intermediate or temporary results of calculations. It may

contain garbage which must be cleared. The region labeled “Copy” is used to copy

the final result of a unitary transformation. When garbage collection occurs, the

“Scratch” region is cleared and a permanent result is stored in the “Copy” region for

future reference. The output in the Copy region, when used along with the input

buffer of a data register, insures reversibility for that data register.

56

Figure 8. Scratchpad Register

 In the following section (6.3) we list the classical and quantum resources

required for each step of the linear systems algorithm. The time complexity for the

step is also estimated. Upon completion of the algorithm, we determine the order

(“Big-O”) for the entire algorithm.

 We do not estimate space complexity for the algorithm, but note that the total

number of qubits used is (t + 1) log(N), excluding the scratchpad, where t is the

number of qubits required by each data register.

 At the end of this chapter, Table 1 summarizes the constants used in the

algorithm. Table 2 summarizes the classical and quantum variables used. Table 3

summarizes the time complexity of each step, and the total time complexity of the

entire algorithm.

Scratch

Copy

Scratch

Copy

j = 1 j = 2

  

xt

Copy

Scratch

j = N

57

6.3 Resource Analysis: Tracking Classical and Quantum Objects

Classical Inputs to the Algorithm:

 N Number of rows or columns of linear system;
 the “size” of the problem. Constant.

 T A sufficiently large time constant; can be assigned to
 tH, the maximum value to keep error  .

 A time value held constant for each case of  = 0, 1, 2, tH.

tH The maximum time value to keep error  .

t0 Initial time, a constant.

 s() Constant coefficient; see Step One of Pseudo-Code, Chapter 5.

 j An index referring to data register or row.

 j Amplitude of operator A basis states.

Classical Outputs from the Algorithm:

 -1 Inverse eigenvalue for solution.

Quantum Inputs to the Algorithm:

 |bj> Basis states of vector b .

 |x> Unknown states, to be determined and measured.

 |uj> Basis states of A unitary operator.

 j |uj> Vector |b> in the A-basis.

Intermediate Quantum Variables:

 |k> Fourier basis states

 |j> Phase state for eigenvalue of jth data register.

58

Final Quantum Output:

 |x> Solution states are obtained but are
 unknown until measured.

Step One. Initialize data registers with |0>  |bj>.

 Classical: As given above in Classical Inputs.

 Quantum: As given above in Quantum Inputs.

We first clear all data registers: |0>1 |0>2 … |0>N.

After input, a given data register contains s() j |uj>.

Time Complexity:

Let c0 be the constant time to clear data registers; let c1 be the
time to initialize a data register with s() j |uj>.

We assume that c0 << 1 << N and c1 << 1 <<N. Then:

Time for Step One = c0 + c1 log(N).

 Step Two. Apply Hamiltonian with  constant; apply Fourier transform.

 Classical:

 t The maximum number of qubits for each data register j;

based on the desired accuracy.

 j Eigenvalue associated with phase for data register j.

 Quantum:

|k> The Fourier transform basis states for data register j.
|j> The multi-qubit phase estimation state.

We consider the cases where  = 0, 1, 2, tH. Refer to the detailed
explanation of Step Two in Chapter 5, and Figure 7. Assume that
there is a separate quantum circuit for each . Thus, each circuit
operates independently and in parallel to the other circuits. We note
that:

59

Equation 5.11c describes the phase estimation for  = 0.
Equation 5.12 describes the phase estimation for  = 1.
Equation 5.13 describes the phase estimation for  = 2.
Equation 5.14 describes the phase estimation for  = tH.

We ignore garbage collection for Step Two but incorporate garbage
collection in Step Three. We include the time estimates for garbage
collection in Step Three.

 Time Complexity:

Let c2 be the time for a given data register to complete the
Fourier transform, where c2 << 1.

Time for Step Two = c2 log(N).

60

Step Three. Inverse Fourier transform.

 Classical: Same as previously described.

 Quantum: |jk>, the phase for data register j, for the final
 k basis state.

 |>in, the input buffer for data register j.

 |>out, the output buffer for data register j.

 |>scratch, the Scratchpad region of Scratchpad j.

 |>copy, the Copy region of Scratchpad j.

 f(jk), the result of the Fourier transform.

 g(jk), the garbage from the Fourier transform.

f-1(f(jk)), or just jk, result of the inverse Fourier
transform, where f-1 is the inverse Fourier transform.

g-1(f(jk)), resulting garbage from inverse Fourier
transform, where g-1 is the garbage generated by the
inverse Fourier transform.

For every data register j, we trace backward through the quantum
phase diagram (Figure 7). For each qubit, we start from the right and
move to the left, through the inverse unitary operator (which now takes
the log), through the inverse Hadamard gate, and out to the left side.
Thus, |j > is the multi-qubit result of the inverse Fourier transform.

The process of performing the inverse Fourier transform was given as
a series of oracular black boxes in Figure 7. The exact details on how
the scratchpad was used is kept hidden. However, we assume that the
inverse Fourier transform has generated garbage. Let f(jk) be the
result of the Fourier transform, and g(jk) be the garbage generated by
the Fourier transform. Let f-1(f(jk)), or just jk, be the result of the
inverse Fourier transform. Let g-1(f(jk)) be the garbage generated by
the inverse Fourier transform.

We use the technique of garbage collection described by Beckman et.
al [BCDP96]. Let |>in be the input buffer of data register j. Let |>out
be the output buffer of data register j. Also, |>scratch and |>copy are the

61

scratchpad and copy regions respectively of partition j in the
scratchpad register (see Figure 8).

Let F be a unitary operation. Copy is an operation which copies the
contents of |>out to |>copy. The composite operation:

F-1  Copy(|>out, |>copy)  F (6.9)

…acts to implement the unitary operation, perform garbage collection,
and save both the result and original state (for reversibility).

Let F be the discrete quantum Fourier transform of Step Two.

Initially (prior to operation F), we have the following situation among
registers:

|jk>in |0>out |0>scratch |0>copy.

After the F is performed:

|jk>in |f(jk)>out |g(jk)>scratch |0>copy.

where g(jk) is the garbage generated by F(jk), and f(jk) is the result
of the unitary operation.

To perform garbage collection, we first use Copy to duplicate the
contents of |>out to |>copy.

Copy(|>out, | >copy) results in the following:

|jk >in |f(jk)>out |g(jk)>scratch |f(jk)copy>.

We then use F-1 (jk) to clear the output buffer and scratch partition,
leaving the input buffer and copy region alone:

|jk>in |0>out |0>scratch |f(jk)>copy.

The effect is to get rid of the garbage, g(jk), and to save the useful
output to the copy region for future reference.

As mentioned earlier, we assumed that the garbage collection
requirements for Step Two were minimal and did not include the time
requirements for garbage collection in Step Two.

For Step Three, we incorporate the garbage collection time
requirements in our time estimation.

62

Now let F be the inverse Fourier transform, f-1.

Prior to F being applied to |f(jk)>, the following situation exists
among the registers:

|f(jk)>in |0>out |0>scratch |0>copy.

 After F is applied:

|f(jk)>in |jk>out | g
-1(f(jk))>scratch |0>copy.

 After Copy is applied:

|f(jk)>in |jk>out | g
-1(f(jk))>scratch |jk>copy.

 Finally, F-1 is applied:

|f(jk)>in |0>out |0>scratch |jk>copy.

Time Complexity:

Let c3 be the time required to perform the inverse Fourier
transform on a data register, j.

Let cg be the time required to perform garbage collection for
data register, j, where cg  O(t2), with t being the length in
qubits of the data register j.

Then for a particular data register j, the time required to
perform the inverse FT and garbage collection is c3 + cg. Since
there are log(N) data registers:

Total time for Step Three = (c3 + cg) log(N).

Step Four. Relabel |k> with |k>. Add a qubit for the jth variable.

 Rotate qubit conditioned on |k>.

Classical: The address map between classical memory and
quantum variables is updated for relabeled name.

New amplitudes for added qubit after rotation:

63

2

2

1
j

C


 for state |0>.

j

C


 for state |1>.

 j Classical eigenvalue for jth data register.

 C  O(1/). A coefficient for probability amplitudes.

 Quantum: New qubit established for jth data register.
 |k> used as pivot for rotation operation.

Relabeling |k> with |k> is achieved using the classical computer,
which controls the mapping between main memory and corresponding
quantum variable. We simply rename the quantum variable, |k>, with
|k> in the classical address mapping.

Adding a qubit is a quantum operation, repeated physically log(N)
times in the quantum circuit. Logically, a qubit is added for each of
the N data registers.

Rotation is achieved using a rotation quantum oracle (not shown in
Figure 7). This results in a new probability amplitude for the qubit,
and also garbage in the scratchpad partition for data register j.

 For each data register:

Let F = Rotate(|k>). Also, let F-1 = Rotate-1(|k>). Perform both the
rotation and garbage collection using the garbage collection routine
described in Step Three as follows:

 F-1 Copy(|>out, |>copy) F(|k>).

Let k|j = exp(i
T


(jt0 – 2k)). Then, after the rotation (using

Equation 5.15 again):




N

j 1





1

0

T

k

k|j |k> s() j |uj> (
2

2

1
k

C


 |0> +

k

C


|1>).

The result of the rotation is stored in |>copy, while the original state is
kept in |>in to insure reversibility:

64

|k>in |0>out |0>scratch |Rotate(k)>copy.

Time Complexity:

Let c4 be the time required to add a single qubit to jth data
register, a quantum operation.

Let cL be the classic time required to relabel |k> with |k>.

Let cr be the time overhead for rotation, including the time
required for garbage collection. Time cr has a classical part
(cr’) and a quantum part (cr’’), where cr = cr’ + cr’’. Classical
time cr’ involves updating the classical amplitudes and cr’’
involves the quantum circuit overhead.

Total time for Step Four = (c4 + cL + cr) log(N).

Step Five. Uncompute |k> and determine -1.

Our resources are described as:

 Classical: Measured probabilities of new qubit,
 conditioned on |1>.

-1 Calculated inverse eigenvalue for solution of jth data
register.

 Quantum:

|x> Solution set vector to the linear system.
 Unknown until measured.

Referring to Equation 5.15 again, we assume an ideal phase estimation. When
index k = j, then k|j = 1, otherwise k|j = 0.

In terms of classical and quantum resources, we erase those |k> states
whenever k  j. We set |k> to unity, thus uncomputing |k>. We leave just
the j eigenvalues in the amplitudes for |0> and |1>.

After we get rid of |k>:




N

j 1

 s() j |uj> (2

2

1
j

C


 |0> +

j

C


|1>)

65

Then we selectively measure the last qubit of all N data registers. We then
condition on state |1> and perform a classical calculation to find j

-1. After we
condition on state |1> the result is:

222

1

2 ||/)(||

1

jj

N

j
sBC  

 


N

j 1

s() j
j

C


|uj>

This state corresponds to |x> = 


N

j 1

s() j -1 |uj>.

 Time Complexity:

 Let cm be the time taken to measure the new qubit.

This time has a classical time (cm’) for calculating probabilities
due to measurement, and a quantum time (cm’’) for performing
the quantum measurement, where cm = cm’ + cm’’.

 Let c5 be the total time to uncompute |k>, perform

required garbage collection, and calculate -1. c5 has a classical
time (c5’) to update the classical address table and to calculate
-1, and a quantum time (c5’’) to uncompute |k> and perform
garbage collection. Note that c5 = c5’ + c5’’.

 Total time for Step Five = (cm + c5) log(N).

Step Six. Measurement.

 We measure for property M, such that <x|M|x> gives us
 an expectation value for M.

 Classical: M, an operator.

Example: M = p̂ op, such that <x| p̂ op|x> = <px>.

 Quantum: Bra-kets for state x.

 Time Complexity:

 Let c6 be the time required for quantum measurement and

classical table update, where where c6 << 1. c6 consists of a
time for classical table update (c6’) and a time for quantum
measurement (c6’’). Note that c6 = c6’ + c6’’.

66

Total Time for Step Six = c6 log(N).

Total Time for Steps One to Six

= c0 + c1 log(N) + c2 log(N) +

(c3 + cg) log(N) + (c4 + cL + cr) log(N) + (cm + c5)

log(N) + c6 log(N)

= c0 + (c1 + c2 + c3 + cg + c4 + cL + cr + cm + c5 + c6)
log(N)

= O(log(N)).

Table 1. Summary of Classical Constants used in Algorithm

Constant Description
T Large length of time (seconds)
 Constant time index in Hamiltonian
t0 Initial time

s() Evaluates to constant coefficient:
N Input size: number of rows or columns
tH Maximum time value to keep error  

67

Table 2. Summary of Classical and Quantum Resources

Step Classical

Variables
Quantum
Variables

Comments

One j, j A, |u> j is index to quantum
variable; A is Hermitian
operator; |u> represents
A-basis vectors;
j is probability
amplitude of |uj>;

Two j |u>, |k>, |j> |k> are Fourier basis
states; |j> is multi-
qubit phase estimation.
j is eigenvalue for
phase.

Three (same) In/Out buffers
for reg j;
Scratchpad

Quantum I/O buffers
and Scratchpad used.

Four C Added qubit for
jth variable;
|k>

|k> is relabeled Fourier
basis state; C = O(1/),
coefficient in amplitude
for added qubit,
resulting from rotation
about |k>.

Five -1 |k> , |x> -1 is inverse phase
factor; |k> is
uncomputed;
|x> are the solution
quantum states;

Six M |x> M is some desired
property of data;
<x|M|x> results in
expectation of property
M.

68

Table 3. Summary of Time Complexity

Step Classical Time Quantum Time Total = Classical + Quantum
One N/A c0 + c1log(N) c0 + c1log(N)
Two N/A c2 log(N) c2 log(N)
Three N/A (c3 + cg) log(N) (c3 + cg) log(N)
Four (cL + cr’) log(N) (c4 + cr’’) log(N) (c4 + cL + cr) log(N)
Five (cm’ + c5’) log(N) (cm’’ + c5’’) log(N) (cm + c5) log(N)
Six c6’ log(N) c6’’ log(N) c6 log(N)
Total O(log(N)) O(log(N)) O(log(N))

69

Chapter 7: Summary and Conclusions

 This thesis first provided a literature review, covering both the background

and recent progress in the field of quantum algorithms. We then focused on a new

quantum algorithm that has recently (late 2009) attracted considerable attention in the

quantum algorithms community. The quantum algorithm proposed by Harrow,

Hassidim, and Lloyd can be categorized as a phase estimation technique (using the

Fourier transform as a mechanism for estimating the phase). The algorithm is novel

in that it uses the principles of quantum mechanics to solve a system of N x N linear

equations. Under optimum conditions (i.e., when we do not desire a readout of all N

quantum variables), the algorithm offers exponential time speedup over classical

algorithms.

 A quantum algorithm that could rapidly solve a system of linear equations has

broad applications to a variety of fields.

 The contribution of this thesis was to analyze the classical (and related

quantum) resources required to implement this quantum algorithm. The analysis

clearly distinguished between the tasks required by the classical part of the quantum

algorithm, and the quantum resources built into the quantum circuits which

implement phase estimation. We determined that the time complexity of the

algorithm (including both classical and quantum requirements) for an N x N system

of linear equations was O(log(N)), as predicted. Such an analysis may assist future

experimentalists in implementing the algorithm.

70

Furthermore, by analyzing the classical resources, we hope to gain a better

understanding on how these resources may be optimized. As classical resources can

determine the ultimate efficiency of quantum algorithms, optimizing these resources

will assist us in designing more efficient quantum algorithms.

71

References

[AT03] D. Aharonov and A. Ta-Shma. Adiabatic Quantum State Generation

and Statistical Zero Knowledge. arXiv:quant-ph/0301023v2.
Submitted 6-7-2003.

[BBCD+95] A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus,

P. Shor, T. Sleator, J. Smolin and H. Weinfurter. Elementary Gates
for Quantum Computation. Physical Review A 52, 3457:3467, 1995.

[BCDP96] D. Beckman, A.N. Chari, S. Devabhaktuni and J. Preskill. Efficient

Networks for Quantum Factoring. Physical Review A 54, 1034:1063,
1996.

[BBBV97] C. Bennett, E. Bernstein, G. Brassard and Umesh Vazirani. Strengths

and Weaknesses of Quantum Computing. SIAM Journal on
Computing 26, 1510:1523, 1997.

[BV93] E. Bernstein and U. Vazirani. Quantum Complexity Theory. In 25th

ACM STOC, 1993.

[BACS06] D.W. Berry, G. Ahokas, R. Cleve and B.C. Sanders. Efficient

Quantum Algorithms for Simulating Sparse Hamiltonians.
arXiv:quant-ph/0508139v2. Submitted 2-8-2006.

[BB92a] A. Berthiaume and G. Brassard. The quantum challenge to structural

complexity theory. In Proceedings of the 7th IEEE Conference on
Structure in Complexity Theory, 1992.

[BB92b] A. Berthiaume and G. Brassard. Oracle quantum computing. In

Proceedings of the Physics of Computation, Dallas, 1992.

[BHT98] G. Brassard, P. Hoyer, and A. Tapp. Quantum Counting. arXiv:

quant-ph/9805082v1. Submitted 5-27-1998.

[BHMT00] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp. Quantum Amplitude

Amplification and Estimation. arXiv: quant-ph/0005055v1.
Submitted 5-15-2000.

72

[CS96] A.R. Calderbank and P.W. Shor. Good Quantum Error-Correcting

Codes Exist. Physical Review A, 54:1098, 1996. arXiv:quant-
ph/9512032.

[Chi09a] A.M. Childs. Equation Solving by Simulation. Nature Physics, Vol.

5, 861, December 2009.

[Chi09b] A.M. Childs. On the Relationship Between Continuous and Discrete-

Time Quantum Walk. arXiv:quant-ph/0810.0312v3. Submitted 10-
21-2009.

[CCDF+02] A.M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann and D.A.

Spielman. Exponential Algorithmic Speedup by Quantum Walk.
arXiv:quant-ph/0209131v2. Submitted 10-25-2002.

[CG04] A.M. Childs and J. Goldstone. Spatial Search by Quantum Walk.

arXiv: quant-ph/0306054v2. Submitted 8-25-2004.

[CEMM97] R. Cleve, A. Ekert, C. Macchiavello and M. Mosca. Quantum

Algorithms Revisited. Philosophical Transactions of the Royal
Society of London, A (1996). arXiv: quant-ph/9708016v1. Submitted
8-8-1997.

[Deu85] D. Deutsch. Quantum Theory, the Church-Turing Principle and the

Universal Quantum Computer. Proceedings of the Royal Society of
London, Series A, 449, 669:677, 1985.

[Deu89] D. Deutsch. Quantum Computational Networks. Proceedings of the

Royal Society of London, Series A, 425:473, 1989.

[DJ92] D. Deutsch and R. Jozsa. Rapid solution of problems for quantum

computation. Proceedings of the Royal Society of London, Series A,
439:553, 1992.

[EJ96] A. Ekert and R. Jozsa. Quantum Computation and Shor’s Factoring

Algorithm. Reviews of Modern Physics, Vol. 68, No. 3, July, 1996.

[FGGS00] E. Farhi, J. Goldstone, S. Gutmann and M. Sipser. Quantum

Computation by Adiabatic Evolution. arXiv:quant-ph/0001106.
Submitted in 2000.

[Fey82] R. P. Feynman. Simulating Physics with Computers. International

Journal of Theoretical Physics, Vol. 21, No. 6/7, 1982.

73

[FT82] E. Fredkin and T. Toffoli. Conservative Logic. International Journal
of Theoretical Physics, 21, 219:253, 1982.

[GI09] D. Gottesman and S. Irani. The Quantum and Classical Complexity of

Translationally Invariant Tiling and Hamiltonian Problems.
arXiv:quant-ph/0905.2419v1. Submitted 5-14-2009.

[Gro96] L.K. Grover. A Fast Quantum Mechanical Algorithm for Database

Search. In Proceedings of the 28th Annual ACM Symposium on the
Theory of Computation, ACM Press, New York, 1996.

[Gro97] L.K. Grover. Quantum Mechanics Helps in Searching for a Needle in

a Haystack. Physical Review Letters, 79(2):325, 1997. arXive e-print
quant-ph/9706033.

[GR02] L.K. Grover and T. Rudolph. Creating Superpositions That

Correspond to Efficiently Integrable Probability Distributions.
arXiv:quant-ph/0208112v1. Submitted 8-15-2002.

[HHL09a] A.W. Harrow, A. Hassidim and S. Lloyd. Quantum Algorithm for

Linear Systems of Equations. Physical Review Letters, PRL 103,
150502, October, 2009.

[HHL09b] A.W. Harrow, A. Hassidim and S. Lloyd. Supplementary online

material for the paper Quantum Algorithm for Linear Systems of
Equations.

 EPAPS Document No. E-PRLTAO-103-055942.
http://www.aip.org/pubservs/epaps.html.

[Kit95] A.Y. Kitaev. Quantum Measurements and the Abelian Stabilizer

Problem. arXive e-print quant-ph/9511026, 1995.

[Llo96] S. Lloyd. Universal Quantum Simulators. Science, Vol. 273,

1073 :1078, August, 1996.

[Mer07] N.D. Mermin. Quantum Computer Science: An Introduction.

Cambridge University Press, Cambridge, UK, 2007.

[NC00] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum

Information. Cambridge University Press, Cambridge, U.K., 2000, pp.
120-122.

[Pau03] G. Paun. Membrane Computing. In Lecture Notes in Computer

Science, Fundamentals of Computation Theory, Vol. 2751, 177:220,
Springer, Berlin, 2003.

74

[RSA78] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems. Communications
of the ACM 21 (2), 120:126, 1978.

[Sho94] P.W. Shor. Polynomial-Time Algorithms for Prime Factorization and

Discrete Logarithms on a Quantum Computer. In Proceedings of the
35th Annual Symposium on the Foundations of Computer Science,
Santa Fe, NM, 124:134, IEEE Computer Society Press, Nov. 20-22,
1994.

[Sho96] P.W. Shor. Fault Tolerant Quantum Computation. In Proceedings of

the 37th Annual Symposium on Fundamentals of Computer Science,
56:65, IEEE Press, Los Alamitos, CA, 1996.

[Sim94] D. R. Simon. On the Power of Quantum Computation. In

Proceedings of the 35th Annual IEEE Symposium on the Foundations
of Computer Science, 116:123, 1994.

[Tur36] A. Turing. On Computable Numbers, with An Application to the

Entscheidungsproblem. In Proceedings of the London Mathematical
Society 2, 42:230, 1936.

[Yao93] A.C. Yao. Quantum Circuit Complexity. In Proceedings of the 34th

Annual IEEE Symposium on Foundations of Computer Science,
352:361, 1993.

	Frontspiece
	Chapter 1 Introduction
	Chapter 2 Literature Review
	Chapter 3 Shors Factorization Algorithm
	Chapter 4 Grovers Algorithm
	Chapter 5 Quantum Linear Algorithm
	Chapter 6 Analysis of Resources
	Chapter 7 Conclusions
	References

