
UC Merced
UC Merced Electronic Theses and Dissertations

Title
Classical and quantum resource analysis for the quantum linear systems

Permalink
https://escholarship.org/uc/item/5vp7w105

Author
Inouye, Jon M.

Publication Date
2010-07-22
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5vp7w105
https://escholarship.org
http://www.cdlib.org/


 
 
 
 

UNIVERSITY OF CALIFORNIA, MERCED 
 
 
 
 
 
 

Classical and Quantum Resource Analysis for the Quantum Linear Systems 
Algorithm 

 
 

A thesis submitted in partial satisfaction of the requirements  
for the Master of Science Degree 

 
in  
 

Physics and Chemistry 
 

 
 

by 
 
 
 

Jon M. Inouye 
 
 
 
 
 
 
 
Thesis Committee: 
 
 Professor Lin Tian, Chairperson 
 Professor Raymond Chiao 
 Professor Jay Sharping 
 Professor Jian-Qiao Sun 
 
 
 

July 2010 



ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright 
 

Jon M. Inouye, 2010 
 

All rights reserved. 



iii 

 
 

The thesis of Jon M. Inouye is approved: 
 
 
 
 
 
 

Raymond Chiao, PhD 
 
 
 

Jay Sharping, PhD 
 
 
 

Jian-Qiao Sun, PhD 
 
 
 

Lin Tian, PhD 

Chair 

 
 
 

University of California, Merced 
 

2010 

 



iv 

 
 
 

ACKNOWLEDGEMENTS 
 
 
I would like to express my appreciation to Lin Tian, my advisor, for her patient 
guidance; to Ann Kelley and Jay Sharping for introducing me to U.C. Merced.  
Department Chairs Sai Ghosh and Linda Hirst provided a relaxed learning 
environment.   
 
Thanks to Kevin Mitchell, Professor of Physics, for excellent training in graduate 
quantum physics… 
 
To the legendary Raymond Chiao, for giving cutting-edge modern physics the feel of 
that old-time yet so true experimental physics.  Thanks are also extended to 
committee member Jian-Qiao Sun for his willingness to serve on my committee and 
for his excellent instruction in advanced classical dynamics… 
 
To Chancellor Steve Kang, for taking a genuine interest in students at all stages of 
development… 
 
Finally, I would like to acknowledge Carrie King and De Acker for their 
encouragement during moments of stress, and to the tight-knit community of physics 
graduate students and Natural Science staff for their support. 
 
 



v 

 
 
 
 
 
 
 
 
 

I dedicate this thesis to Mitsuo Inouye, M.D. 
 

Noted Physician and Educator 
 
 
 

My Father 
 

 
 

1925-2007 
 

Graduate of U.C. Berkeley (Biochemistry) 
 

and 
 

U.C. San Francisco (Medicine) 
 
 

He taught me to believe in myself and to never give up. 
 
 
 
 



vi 

TABLE OF CONTENTS 
 
 
Signature Page………………………………………………………………......  iii
 
Acknowledgements……………………………………………………………... iv
 
Dedication………………………………………………………………………. v
 
Table of Contents…………………………………………………….................. vi
 
List of Figures…………………………………………………………………... viii
 
List of Tables…………………………………………………………………… ix
 
Abstract…………………………………………………………………………. x
 
Chapter 1:       Introduction……………………………………………………... 1

 
Chapter 2:       Literature Review……………………………………………….. 7
 

2.1  Foundations………………………………………………… 7
2.2 Models for Computation:  Quantum Turing Machines and    
       Quantum Circuits…………………………………………... 

 
11

2.3 Shor’s Factorization and Discrete Log Algorithm.………... 17
2.4 Grover’s Search Algorithm………………………………… 20
2.5 Generalization of Quantum Algorithms:  Hidden Subgroup 

Problems…………………………………………………… 
 

21
2.6 Shor’s Error Correction Algorithm………………………… 22
2.7 Recent Works………………………………………………. 23
2.8 Summary of Literature Review…………………………….. 28

 
Chapter 3:       Shor’s Factorization Algorithm………………………………... 30
 

3.1  Introduction to the Algorithm……………………………… 30
3.2  Steps of the Algorithm……………………………………... 31
 

Chapter 4:       Grover’s Algorithm…………………………………………… 34
 

4.1  Introduction to the Algorithm……………………………… 34
4.2  Steps of the Algorithm……………………………………... 34
 

Chapter 5:      The Quantum Linear Algorithm…………………………………. 36
 

5.1  Introduction to the Quantum Linear Algorithm……………. 36
5.2  Detailed Steps of the Algorithm…………………………… 42



vii 

 
Chapter 6:      Analysis of Computational Resources…….…………………….. 47
 

6.1  Classical vs. Quantum Resources………………………….. 47
6.2  Quantum Circuits…………………………………………... 49
6.3 Resource Analysis:  Tracking Classical and Quantum  

Objects……………………………………………………... 
 

57
 

Chapter 7:  Summary and Conclusions…………………………………………. 69
 
References………………………………………………………………………. 71
 
 
 
 
 



viii 

LIST OF FIGURES 
 
 
Figure 1 Quantum Circuit for Deutsch Algorithm……………………………. 10
  
Figure 2   Typical Quantum Gate Notations……………………………………. 13
  
Figure 3   Matrix Representations of Quantum Gates………………………….. 15
  
Figure 4   Pseudo-Code for Quantum Linear Systems Algorithm……………… 41
  
Figure 5   Classical Computer (Client) and Quantum Computer (Server)……... 47
  
Figure 6   Quantum Fourier Transform Circuit………………………………… 50
  
Figure 7 Quantum Phase Estimation for Linear System Algorithm…………... 52
  
Figure 8 Scratchpad Register……………………………………..………….... 56



ix 

LIST OF TABLES 
 
 
 
Table 1 Summary of Classical Constants Used in Algorithm…...…… 66 
   
Table 2 Summary of Classical and Quantum Resources…………….. 67 
   
Table 3 Summary of Time Complexity………………………………. 68 



x 

 
  
 
 

ABSTRACT OF THE THESIS 
 

Classical and Quantum Resource Analysis for the Quantum Linear Systems 
Algorithm 

 
by 
 

Jon M. Inouye 
Master of Science in Physics and Chemistry 

University of California, Merced, 2010 
Professor Lin Tian 

 
 

Recently (2009) a quantum algorithm for solving a system of linear equations 

has been proposed.  The algorithm by Harrow, Hassidim, and Lloyd has attracted 

considerable attention in the quantum algorithms community, due to the broad 

potential applications of a rapid linear equations solver.  The contribution of this 

thesis is to analyze the classical and quantum resources required for implementation. 

The thesis has two major tasks.  We first survey the field of quantum 

algorithms.  The papers which established this field (e.g., Feynman and Deutsch) to 

recent works are reviewed.  Different classes of quantum algorithms are examined, 

including those based on the Fourier transform, quantum searching, and quantum 

walk. 

For the second task, we focus on the algorithm by Harrow, Hassidim, and 

Lloyd.  The advantages of the algorithm are an exponential performance gain over 

classical algorithms (under conditions of sparse operator matrices and few selected 

measurements from the solution set), and fewer data registers. 



xi 

In the second part of the thesis, we study the classical resources required for 

implementation of the algorithm.  Since classical resources can determine the ultimate 

efficiency of the quantum algorithm, the optimal use of classical resources is 

mandatory. 

We demonstrate how a classical computer may handle certain computations 

(e.g., time evolution) and feed these into the quantum circuit implementing the 

algorithm.  Thus, the classical and quantum resources for implementing the algorithm 

are described.   Through a detailed analysis of the classical resources, we hope to 

understand how these resources may be optimized.  This work can therefore 

contribute to the design of efficient quantum algorithms.   
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Chapter 1:  Introduction 

 
This thesis first surveys the field of quantum algorithms, from inception to 

recent works.  We then focus on the recent quantum algorithm by Harrow, Hassidim, 

and Lloyd [HHL09a].  Our goal is to describe the classical (and related quantum) 

computer resources necessary to implement the Harrow-Hassidim-Lloyd algorithm 

for solving linear equations.  

Classical computation is performed using physical circuits that behave 

according to the laws of classical physics.  Thus, classical computer algorithms 

assume that the steps of each algorithm will be executed on a classical computer 

(although, as we will see later, classical computer algorithms can also be executed on 

what is known as a quantum computer).   

The digital gates of a classical circuit are Boolean, meaning that the inputs and 

outputs are in definite states (either 0 or 1).  The results (outputs) of a digital gate – 

and hence a classical computation – are mostly irreversible, meaning that we cannot 

redo or retrace the computation to its original input.  The AND and OR gates, for 

example, are not reversible, although the NOT gate is indeed reversible. 

However, classical computers are not limited to electronic gates.  Fredkin and 

Toffoli [FT82] modeled a classical computer model based on the perfectly elastic 

collisions of billiard balls.  Paun created a classical computing model based on the 

logical operations of cell membranes [Pau03].   Like classical mechanics, a classical 

computer is deterministic in nature, meaning that every input determines a 
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predictable, definite output.  No ambiguity or uncertainty exists about the state of a 

digital gate. 

Alan Turing [Tur36] invented a theoretical model of classical computing 

which was independent of physical implementation.  The model consisted of a stored 

program, a set of finite states (including the start state, qs, and ending state, qh), a 

read/write head, and a tape.  The read/write head could write or read symbols from 

the tape, one cell at a time.  The tape could be moved one cell at a time (to the left or 

to the right).  All the symbols written or read from the tape came from a finite 

alphabet defined for the machine.  The program lines controlling the operation of the 

model were represented by tuples of the form, <q, x, q’, x’, s>, where q was the 

current state of the system, x was a symbol read from the tape, q’ was the next state of 

the system, x’ was the symbol written onto the tape, and s represented whether the 

read/write head moved leftward to the previous cell (L), advanced right to the next 

cell (R),  or remained stationary at the current cell on the tape (0).   

This model later became known as a classical Turing Machine (TM).  The 

simulation of any classical algorithm could then be followed using the TM; the 

behavior of the algorithm could be modeled exactly.  Turing’s motivation for the 

model was not to design the fastest or most efficient computer to implement the 

algorithm.  Rather, the TM was used to describe what can and what cannot be 

computed.   

The Church-Turing thesis asserts that any algorithm that is computable can be 

simulated on the Turing machine model.  An algorithm that is not computable (such 

as the “halting problem”) cannot be simulated on the TM.  More formally: 
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The class of functions computable by a Turing Machine  
corresponds exactly to the class of functions which we  
would naturally regard as being computable by  
an algorithm.  [NC00]. 
 

 
 
The Church-Turing Thesis has not been formally proved, because of the 

ambiguity of what is meant by the phrase, “naturally regard as being computable.”  

For the moment, the thesis is an intuitive rule-of-thumb for what we consider to be 

computable or not. 

No classical device operating according to classical physics is more powerful 

than a Turing Machine (i.e., given enough time the TM can simulate any classical 

system).   However, a device based on quantum mechanics could be more powerful 

than a device based on classical mechanics.   The quantum equivalent to a Turing 

Machine is the Quantum Turing Machine (QTM).  More generally, a Quantum Turing 

Machine is more powerful than the classical Turing Machine [BV93].  The quantum 

read/write head could write quantum states (a superposition of several states) to the 

tape instead of single symbols.  The transition between quantum states, as described 

by the program lines (tuples), could also include a probability amplitude between 

states.  The quantum TM uses qubits (quantum bits) instead of bits.  Qubits are not 

distinct and exist in the quantum mechanical world as a superposition of states. 

A qubit has corresponding probability amplitudes for its possible states (|0> or 

|1>) and hence is probabilistic (with complex vectors described in Hilbert space) 

rather than deterministic in nature.  In particular, suppose we have a qubit called q0.  

Then: 
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q0 = (c1) |0> + (c2) |1>    (1.1) 

 
 
 The standard operations of a quantum computer are to initialize the 

superposition of states, to perform operations on qubits (such as the Hadamard 

transform), and to measure qubits for the answer.  The operations of the QTM are 

always unitary.  When measuring the qubit with the amplitudes described above (c1 

for state |0> and c2 for state |1>), we may randomly get either a binary digit of 0 or 1. 

The probability of digit 0 is |c1c1*|.  Digit 1 has a probability of |c2c2*|. 

In contrast to a classical computer, a quantum computer is always reversible.  

This feature (reversibility) can be exploited in rapidly performing an inverse Fourier 

transform.  As we will elaborate further in our literature review, a quantized Fourier 

transform can be used to rapidly estimate the phase of waveforms that meet certain 

criteria, answering certain types of problems that depend on phase (such as the phase 

of an eigenvalue). 

 Quantum states are not only in superposition, they are also entangled with one 

another.  In a sense the entangled states can “read” each other.  By exploiting the 

superposition of states and quantum entanglement, we can achieve a form of massive 

parallel processing [Deu85].   Certain quantum algorithms have been discovered that 

can achieve exponential performance improvement over classical algorithms (most 

significantly, Shor’s algorithm to perform factorization of integers).  Other quantum 

algorithms have achieved polynomial speedup (e.g., Grover’s search algorithm).   

The primary interest in quantum algorithms today is to find new algorithms 

that make certain problems tractable that are intractable using classical computers.  
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The implications for fields such as cryptography, computer networks, and database 

searching are profound if a practical quantum computer could be built. 

We mentioned some of the advantages of quantum computers, i.e., that they 

can achieve massive parallelism.  But for quantum computers to realize these 

benefits, certain difficulties must be overcome.  Quantum states are difficult to 

maintain due to interference from the outside environment.   There is the ongoing 

challenge of dealing with noise in constructing an actual quantum computer.   

Furthermore, algorithms that are not computable (or undecidable) on a Turing 

machine are also not computable on a quantum Turing machine.  There are problems 

that are equally difficult on a classical as well as quantum computer.  If we cannot 

find ways to exploit the quantum parallelism in a problem (i.e., if the problem is more 

sequential in nature and does not lend itself to being decomposed into parallel pieces), 

then running an algorithm on a quantum computer does not offer a clear advantage.  

For example, an order processing system for a retail store is highly dependent on real-

time, sequential transactions; a quantum computer to implement the order processing 

system may not offer any clear benefit.   

Thus far (2010), no practical quantum computer has been built.  

Understanding the resources required by quantum algorithms may also provide 

insight to the actual requirements of a practical quantum computer.   

For instance, some parts of a quantum algorithm may operate using classical 

computer resources, while other portions of the algorithm may operate using  

quantum circuits.  This thesis studies in detail one such quantum algorithm and 
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explores how certain steps may be fulfilled classically, while other steps of the 

algorithm are best fulfilled using quantum circuits.   

 Let us begin by surveying the seminal papers in the field.  The following 

literature review is not exhaustive.  Rather, the literature review describes those key 

papers that contributed to the development of the field of quantum algorithms. 
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Chapter 2: Literature Review 
 
 
 
2.1 Foundations 
 
 

The original motivation for quantum computing was to simulate physical 

quantum systems.  Feynman [Fey82] pointed out the inherent difficulty of simulating 

quantum mechanics using classical computers.  As the number of particles in a 

quantum system grows (i.e., the number of quantum variables representing the system 

expands), the number of possible states increases exponentially.  The processing 

power of classical computers would be insufficient to simulate this exponential 

growth.  Feynman suggested that a computer based on the principles of quantum 

mechanics itself could successfully simulate quantum systems.  Feynman even 

asserted, in what later became known as the Feynman Conjecture, that only computer 

systems based on quantum mechanics could successfully simulate quantum 

mechanics.   

 Seth Lloyd showed in a 1996 paper that the Feynman Conjecture was correct 

[Llo96].  Lloyd first pointed out that quantum simulation using a quantum computer 

induces interactions between physical quantum variables.   Lloyd contrasted the 

quantum simulator with the classical computer simulations of the physical quantum 

system; as the size of the quantum system grows (i.e., the number of quantum 

variables is added), the classical computer cannot compensate for exponential growth 

in the number of states.  However, since a quantum computer mimics the interactions 

of the physical quantum system using actual quantum variables, the growth in time 
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complexity (from the viewpoint of the quantum computer) is only linear growth.  

Thus, only computer systems using quantum mechanics can successfully simulate 

quantum mechanics. 

 In addition to the efficacy of the quantum computer as a simulator for 

quantum systems, an inevitable question began to emerge:  Would it be possible to 

use a quantum computer to solve problems not possible (i.e., intractable in terms of 

time complexity) on a classical computer?   

 In a landmark work, David Deutsch [Deu85] proposed the first quantum 

algorithm with a demonstrated performance improvement over a classical algorithm.  

In fact, the quantum algorithm was exponentially more efficient than a classical 

algorithm.  To support his analysis, Deutsch also proposed the Quantum Turing 

Machine, a quantum mechanics equivalent of the classical Turing Machine model.   

 Deutsch posed a problem with a one-qubit solution.  As an illustration of 

“Deutsch’s problem”, consider the outstanding example given by Nielsen and Chuang 

[NC00]: 

Suppose there are two people (Alice in Boston, Bob in Los Angeles) who are 

in two-way comunication.   Alice sends Bob a number, x, which ranges from 0 to 2n-

1.  Bob evaluates f(x), a function with an n-bit domain and one-bit range, which may 

return 0 or 1. Bob sends f(x) to Alice.  It is assumed by both parties that f(x) is either 

constant for any value of x, or f(x) is balanced (contains an equal number of 0’s and 

1’s).  Alice must query Bob to determine whether f(x) is constant or balanced.  In the 

worst case, Alice must query Bob 2n/2 + 1 times.   
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 Deutsch’s algorithm is implemented using the quantum circuit in Figure 1.  

The gate labeled “Uf” represents a “black box” that implements a unitary 

transformation from state |x, y> to state |x, y  f(x)>.  The inputs are on the left of the 

gate, consisting of a Hadamard gate acting on state |0> for x.  Thus the input for x is a 

superposition of states |0> and |1>.  The input for y is the state |0>, making the output 

for y just f(x).  The resulting state is |>: 

 
 

   |> = ( |0, f(0)>  +  |1, f(1)> ) / 2    (2.1) 
 
 
 

The resulting state contains information on both f(0) and f(1). The Deutsch 

algorithm makes use of quantum parallelism:  a function, f(x), could be evaluated for 

different values of x simultaneously.  However, it should be noted that quantum 

parallelism differs fundamentally from the classical parallelism that can be 

implemented on classical computers (e.g., if we have several classical computers 

operating in tandem).  In quantum parallelism, two different alternatives (the different 

values of x in function f(x)) may interfere with one another to provide a global 

property of the function.  In classical parallelism, the two alternatives do not interfere 

and exclude one another.   

Using the quantum circuit, only one query is necessary, thus providing an 

exponential speedup over a classical algorithm.   
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Figure 1.  Quantum Circuit for Deutsch Algorithm 

 
 

The original Deutsch algorithm was generalized from 1-bit to n-bits by 

Deutsch and Jozsa in 1992, to become known as the Deutsch-Jozsa Algorithm 

[DJ92].   The Deutsch-Jozsa algorithm led to a “gold rush” for other algorithms that 

could be superior to classical algorithms.  Thus, the papers by Feynman and Deutsch 

are generally attributed to starting the entire field of quantum computing [Mer07].  

However, the Deutsch-Jozsa algorithm itself is rather contrived; it has no known 

applications, serving only to demonstrate that exponential speedup is possible using a 

quantum computer.   

The implications of the original Deutsch paper were further explored by 

Berthiaume and Brassard in two papers.  “The Quantum Challenge to Structural 

Complexity Theory” [BB92a] proved mathematically that there are certain problems 

in which a quantum computer could solve in polynomial time, while a classical 

computer would require exponential time.  “Oracle Quantum Computing” [BB92b] 

showed that there existed entities called quantum oracles, which could be used to 

(|0> + |1>)/√2 x 

y 

Uf 

|0> y  f(x) 

x 

|> 
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model quantum algorithms for polynomial time solutions to classically exponential-

time problems.  Quantum oracles could be viewed as “black boxes” which perform 

unitary transformations, from states such as |0> |x> to states of the form |f(x)> |x>.   

Quantum oracles have been described as analogous to the subroutines of classical 

computer programs; quantum algorithms call quantum oracles during the processing 

of quantum states in the same sense that classical computer programs call subroutines 

to perform specific actions.  However, unlike classical subroutines, the quantum 

oracle has the requirement that the invocation must cost only unit time and that the 

quantum oracle must not leave behind any garbage (i.e., excess bits) beyond the 

computed answer.   

 
 
 
2.2 Models for Computation:  Quantum Turing Machines and Quantum Circuits 
 

Significantly, Bernstein and Vazirani showed that there exists an efficient, 

universal quantum Turing machine [BV93].  The authors proved that such a universal 

quantum Turing machine is more powerful than a classical Turing machine.  Since 

the QTM is more powerful than a classical TM, then we may also logically conclude 

that a classical algorithm can be run on a QTM, although the converse is not true.  

That is, we cannot run a quantum algorithm on a classical computer.   

 Just as a quantum algorithm can be computed on a QTM, a quantum algorithm 

can also be implemented as a quantum circuit, as we saw in the example of the 

Deutsch-Jozsa algorithm.   
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 Yao [Yao93] and Deutsch [Deu89] were largely responsible for the quantum 

circuit model being used as the basis for modeling quantum algorithms.  Modern 

quantum algorithms are typically described as low-level iterations acting on qubits 

entangled according to the appropriate quantum circuit model.  Yao proved that the 

quantum circuit model is equivalent in power to a quantum Turing machine.  It was 

also shown in the paper, “Elementary Gates for Quantum Computation” [BBCD+95]  

that a set of gates consisting of a one-bit quantum gate and a two-bit exclusive-OR 

gate could serve as a universal gate.   

 Figure 2 shows the basic quantum gates that will be used in quantum circuits 

(e.g., a quantum Fourier circuit). 
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Figure 2.  Typical Quantum Gate Notations 

H 

X 
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Pauli - X 

Pauli - Y 

S Phase Shift 

Pauli - Z 

/8 T 

Y 

Z 

C-Not 
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 The gates are read from left to right, where input occurs on the line at the left 

and output results on the line to the right.  The Hadamard gate implements a 

Hadamard transform on a single qubit.  The Phase Shift, S, implements a shift in 

phase on a single qubit.  Pauli-X, Pauli-Y, and Pauli-Z implement rotations on a 

single qubit about the X, Y, and Z axis respectively.  The /8 gate, T, actually 

implements a shift of /4 (the name is a historical misnomer that has managed to 

persist).   

 The C-Not gate, or Controlled-Not, operates on two qubits.  One of the qubits 

acts as a control, the other serves as data.  If the control is set to “ON” then the 

operator acts on the data qubit, performing a NOT logical operation.  If the control is 

not set to “ON”, then the operator leaves the data qubit alone. 

 Figure 3 lists the corresponding matrix representations for the gates given in 

Figure 2.   
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Figure 3.  Matrix Representations of Quantum Gates 
 

 
 
Like the classical Turing Machine, the behavior of the Quantum Turing 

Machine is represented as a series of tuples containing the mapping between quantum 

states, the alphabet, the movement left or right on the quantum tape, etc.  Unlike the 

classical TM, probability amplitudes are assigned to the state transitions and what is 

read or output during each transition.  The behavior of the quantum computing device 

is probabilistic rather than deterministic in nature.  However, the quantum circuit 
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model is frequently used instead of the QTM, since the circuit model is more 

convenient and more visual in nature than the (perhaps) more unwieldy QTM 

representation.   In this thesis we focus on the quantum circuit model. 

 Charles Bennett [BBBV97] summarized both the strengths and weaknesses of 

quantum computing, and tried to establish the upper bounds on time complexity for 

QTMs relative to classical Turing Machines.  In light of the discovery that certain 

quantum algorithms could achieve exponential speedup over classical algorithms, the 

question was asked whether quantum computers could solve problems in the class of 

NP in polynomial time.  Bennett and his co-authors showed that a quantum computer 

could not solve problems in the NP-class in O(2n/2) time.  What was established was 

that there is no black-box technique for solving NP-complete problems in polynomial 

time merely by using quantum mechanical features of the QTM. 

 Dan Simon [Sim94] pointed out that a Hadamard transformation (a special 

case of the more general Fourier transform) could be used to find the hidden period of 

a function.  In the problem described by Simon, we first wish to determine whether a 

function, called f, could be invariant under an exclusive-or mask; if the function is not 

invariant under exclusive-or, then we wish to find a nontrivial period s, such that: 

 

    f(x  s) = f(x)    (2.2) 
 
 
 
where  is the “exclusive-or” operation.  We assume that each string x is n bits in 

length.   
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By applying the Hadamard transformation repeatedly and in sequence, we 

obtain a quantum superposition of all possible binary strings.  In the case where f is 

invariant, s will be a random string.  We can also manage the case where f is not 

invariant and a nontrivial period exists.  A simple evaluation of f(0n) and f(s*) will 

determine whether s is a random string or whether s is the true period. 

 Simon’s algorithm achieved linear time complexity, O(n), compared to the 

exponential growth of its classical counterparts.  While the Deutsch-Josza algorithm 

achieved exponential speedup but had no known applications, the Simon algorithm 

had far more applicability, especially to problems where order-finding was central to 

the problem.  In fact, Simon’s algorithm formed the inspiration for Peter Shor’s 

seminal factorization algorithm.   

 
 
2.3 Shor’s Factorization and Discrete Log Algorithm 
 
 
 Shor [Sho94] proved that well-known problems such as prime number 

factorization and discrete log estimation were reducible to order-finding (of the type 

solved by Simon’s quantum algorithm).  That is, given a large integer N and an 

arbitrary positive integer, x, such that x < N, the order r is defined as the least positive 

integer such that xr mod N = 1.  The integer r is also referred to as the “order” of x 

mod N.   

Shor’s algorithm used Fourier transforms instead of simpler Hadamard 

transformations to determine the order.  An input quantum register was loaded with 

integer candidates for r.  An output quantum register was loaded with the unitary 

transformation on r (xr mod N).  The Fourier transform was then applied to the input 



18 

quantum register, followed by an inverse Fourier transform and measurement of the 

input quantum register.  The result was an estimated phase value, from which order r 

could be approximated.  The order r could then be incorporated into a gcd (greatest 

common divisor) calculation between r and N, performed classically, to obtain the 

factor.   A more complete description of Shor’s algorithm for factorization is given in 

Chapter 3.   

Performing factorization and discrete log estimation were considered to be 

classically hard problems.  In fact, the very intractability of integer factorization was 

the basis for cryptographic algorithms such as RSA.  However, Shor demonstrated 

that by using quantum order-finding, factorization and discrete log estimation could 

be performed in polynomial time.   

 The implications of this result were highly significant.  If a quantum computer 

could be built, Shor’s factorization algorithm would render the current generation of 

cryptographic systems based on RSA obsolete, since any RSA-encrypted code could 

be deciphered in polynomial time. 

 Ekert and Jozsa [EJ96] provided a lucid and highly accessible description of 

Shor’s algorithm.  They discussed the significance of the algorithm both within the 

contexts of computer science and physics, and suggested experiments that would 

contribute to the implementation of the algorithm.  The Ekert and Jozsa paper is 

therefore a recommended companion to the original, groundbreaking work by Peter 

Shor. 

 “Efficient Networks for Quantum Factoring” [BCDP96] analyzes the memory 

and time complexity of a hypothetical quantum computer running the Shor 
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factorization algorithm.  Issues such as garbage collection to preserve memory space, 

and the implementation of quantum gates using the ion trap technique, are also 

discussed.  The paper is notable in that the authors study which classical and quantum 

resources would be required for the Shor algorithm; the authors also discuss how 

some of the classical and quantum resources interrelate (for example, a classical 

subroutine would calculate a new factor using the result from a quantum oracle which 

determined the order).   

Kitaev [Kit95] generalized Shor’s results for factorization and the discrete 

logarithm.  He proved that both factorization and discrete logarithm were special 

cases of what is called the “Abelian Stabilizer Problem” (ASP).   The ASP can be 

described as follows: 

We are given a “black box” function called F, which can operate over an 

arbitrary, finite Abelian group.  Let H = any Abelian group, s  H, and x  any finite 

set.  We are also given that F(s, x) = x, defining the function as periodic.  In the 

stabilizer problem, we wish to find the “stabilizing” element, s, such that: 

 
   F(gh, x) =  F(g, f(h,x)) and    (2.3) 
 

F(gs, x) = F(g, x).   
 

 
It is evident from the above that the action of finding the order, and hence 

factorization and discrete logarithm, are indeed included as instances of ASP.   

Kitaev invented a phase estimation algorithm which broadened the scope of 

Shor’s original algorithm, allowing the algorithm to perform a Fourier transform over 

an arbitrary, finite Abelian group. 
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2.4 Grover’s Search Algorithm 
 
 

In the late 1990s, Lov Grover discovered a way to use quantum mechanics to 

help in searching for data [Gro97].    In Grover’s scheme, the search items were 

represented in a quantum system as a superposition of states, with the same 

probability amplitude for each search item (state).  I.e., given a total of N search 

items, each state had an amplitude of 1/ N .  Rather than using a full-fledged Fourier 

transform, Grover used a simpler phase estimation technique (referred to as a 

“diffusion transformation” in the paper) to alter the phase until the correct item was 

obtained.  Grover’s work was significant, in that he demonstrated how quantum 

computing could be used for a highly pertinent real-world application.   

A primary advantage of Grover’s search algorithm was its relative simplicity: 

the technique can be considered more streamlined and less complicated than a full 

quantum Fourier transform.  A comparative drawback, however, is that the search 

algorithm achieves only polynomial-time improvement rather than an exponential 

speedup.  Given N random search items, a classical search algorithm requires, in the 

worst case, O(N) operations.  Grover’s search algorithm requires O( N ) operations. 

In the paper, “A Fast Quantum Mechanical Algorithm for Database Search” 

[Gro96], Grover extended the search algorithm to include searching on a database.  

We provide the details of Grover’s algorithm in Chapter 4. 

Brassard, Hoyer, Mosca, and Tapp [BHMT00] were able to generalize 

Grover’s algorithm into a concept called “amplitude amplification.”  During each 

iteration of Grover’s algorithm, the pattern of the algorithm was to increase the 
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probability amplitude of certain search criteria, thus increasing the likelihood of 

success in obtaining the search item.  When the probability amplitude was increased 

to a very high value (perhaps close to 1), the final measurement would be performed. 

In “Quantum Counting” [BHT98], the authors extended the amplitude 

amplification process to search algorithms possessing classical heuristics.  Their 

refined amplitude amplification process was called “quantum counting”, or 

alternately, “approximate counting”. 

 

 
2.5 Generalization of Quantum Algorithms:  Hidden Subgroup Problems 
 
 

Other authors noticed the overall patterns emerging from the now widely 

studied Shor factorization algorithm and Grover search algorithm.  Cleve et. al 

[CEMM97] viewed quantum computation as multi-particle interference.  The Shor 

and Grover algorithms were performing phase estimation from the superposition of 

waves in the quantum Fourier transform.   

By the turn of the century, the field of quantum algorithms had advanced to 

the point where the first textbook was written on the topic [NC00].  In the early 

2000s, quantum algorithms could be classified into three general types:  those based 

on Shor’s algorithm using the quantum Fourier transform, those based on Grover’s 

quantum search algorithm, and those algorithms intended for quantum simulation. 

The quantum algorithms based on Shor’s algorithm fell into a more general 

category called solving the “hidden subgroup problem.”   [Sim94] [NC00].  Examples 

of algorithms that solve the hidden subgroup problem include Deutsch’s algorithm, 
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the period-finding or order-finding algorithms, the discrete logarithm, and the Abelian 

stabilizer.  More specifically, we define the hidden subgroup problem as follows: 

Let K be a hidden subgroup within a larger, finite group, G.  Let f be a 

function that maps finite group G to a finite set, X.  That is, f: G  X.  Function f is 

constant and distinct on the cosets of K.  Suppose there is an element g  G, and an 

element h  X.  Given a unitary transform, U |g> |h>  =  |g> |h  f(g)>, where “”  is 

a binary operation on X, the hidden subgroup problem is to find a generating set for 

subgroup K.   

 
 
2.6 Shor’s Error Correcting Algorithm 
 
 

While the theory of quantum algorithms appeared to be rapidly advancing, the 

hardware implementation of quantum computing was (and still is) beset by the 

problem of decoherence.  This thesis will not concentrate on the schemes for 

hardware implementation.  Although error-correcting codes are part of the 

implementation process, we will briefly mention a few significant papers.  

Calderbank and Shor [CS96] showed that good error correcting codes for 

quantum computing can exist, setting the theoretical basis to overcome decoherence 

in quantum superpositions.  In “Fault Tolerant Quantum Computing”, Peter Shor 

[Sho96] introduced the first quantum error correcting codes, and showed how these 

codes could be used in a quantum representation without having to decode (measure) 

the information. 

 In the remainder of the Literature Review, we will discuss recent works (from 

2002 to 2009) in the field of quantum computing. 
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2.7 Recent Works 
 
 
 What is noteworthy about the recent works has been the quest for alternative 

algorithms which are not based on the Fourier transform.  I would like to mention two 

new types of algorithms among those that have appeared since 2002:  those quantum 

algorithms based on the quantum walk and those algorithms based on adiabatic 

quantum computing.   

The paper, “Exponential Speedup by Quantum Walk” [CCDF+02] introduced 

the quantum walk.  In classical thermodynamics, a random walk involves successive 

random steps, modeled by a Markov chain.  The goal of the random walk is to model 

a trajectory that is moving at random (e.g., a molecule in a gas).  A quantum walk is 

analogous to a random walk; the quantum walk can be modeled as a probability 

distribution.  However, the entity that is performing the quantum walk (let us call this 

entity a “quantum walker”) exists in a superposition of states.  Also, the states of a 

quantum walk are defined in Hilbert space.   

Let the states of a quantum walk represent vertices on a graph.  The goal of a 

quantum walk algorithm would be to traverse the entire graph.  The progress of the 

quantum algorithm would be based on queries to a “black box” (quantum oracle), 

asking about the local properties of a vertex.  While a classical random walk 

algorithm would require exponential time complexity to traverse a graph, a quantum 

walk would take only linear time.  As Childs et. al demonstrated, applications such as 

Grover’s search algorithm could be modeled using a quantum walk.   
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In “Spatial Search by Quantum Walk” [CG04], the authors apply a 

continuous-time quantum walk algorithm for multidimensional database searching.  A 

polynomial speedup of O( N ) was obtained over classical probabilistic methods. 

By 2009, the quantum walk had become one of the well-known quantum 

algorithms used for searching.  Childs [Chi09b] showed how the discrete quantum 

walk could be used to estimate the continuous quantum walk, and thus how the 

discrete quantum walk could be used to simulate Hamiltonian dynamics.   

The other type of quantum computing that has been recently proposed, 

adiabatic quantum computing, applies the “adiabatic theorem” of quantum mechanics 

to perform computations [FGGS00].   

The adiabatic theorem states that if a system is in a particular eigenstate (e.g., 

the ground state), and the perturbation on the system is slow, then the system remains 

in that eigenstate.  In addition to the slow perturbation on the system, adiabatic 

computing also requires that large band gaps exist between the eigenvalue 

(corresponding to the eigenstate) and the rest of the Hamiltonian spectrum. 

We desire to evolve the Hamiltonian from an initial, simple Hamiltonian (set 

to the ground state), to a final, more complex Hamiltonian (which is still in the 

ground state).  The final Hamiltonian represents the solution to a given computational 

problem.   

Since the system is always in the ground state during evolution, adiabatic 

computing intends to get around the problem of decoherence.  However, there are still 

problems with adiabatic computing -- outside interference could still tip the ground 

state into the first energy state, ruining the calculation.   
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Aharonov and Ta-Shma [AT03] focused on developing tools to generate 

quantum states by adiabatic evolution.  The authors believed that the notation of 

Hamiltonians and spectral gaps was a “natural” way of expressing adiabatic quantum 

computing.  By focusing on the process of quantum state generation, they believed 

that quantum computing itself could be better understood. 

A recent paper by Gottesman and Irani [GI09] studied the time complexity of 

a class of problems that is invariant under spatial translation.  An analogy was drawn 

between two related problems, one classical and the other quantum mechanical.   

The classical tiling problem involves a set of m tiles, and rules specifying how 

adjacent tiles may be positioned.  The input to the problem is an integer, N, indicating 

an N x N grid that must be tiled according to the rules.  Given the integer N, the 

classical tiling algorithm must find the possible tiling of an r-dimensional grid.   

The quantum problem must approximate the ground state energy of a quantum 

system when the Hamiltonian is invariant under spatial translation.  The interactions 

between particles in the quantum system only occur between neighboring (adjacent) 

particles on an r-dimensional grid.   

Thus, the problems are similar.  In both the classical tiling problem and the 

quantum mechanical problem, the particles (or tiles) are adjacent, and the rules act as 

constraints on the possible states of the systems.  The authors proved that the classical 

tiling problem is NEXP-Complete, and that the quantum problem is QMAexp-

Complete.  (Note:  QMAexp-Complete is the quantum version of NP-Complete).  

Gottesman and Irani pointed out that if we could find an algorithm that could run in 
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polynomial time in N, then this would imply that EXP = NEXP and BQEXP = 

QMAexp. 

Within the past year, a quantum algorithm to solve a system of linear 

equations was proposed by Harrow, Hassidim, and Lloyd [HHL09a][HHL09b].  The 

quantum linear algorithm allows for exponential speedup over classical algorithms.  

Given a system of N linear equations, the algorithm requires O(log(N)) data registers, 

in contrast to O(N) for classical algorithms.  Suppose that a linear system of equations 

has the form A x


 = b


, where A is a Hermitian and unitary operator, and x


 and b


 are 

vectors.  (The quantum linear algorithm represents x


 and b


 as quantum states in 

Hilbert space).  If we are not interested in all values of x


, but only in some special 

feature of x


, such as a particular expectation value, then in the best case the quantum 

linear algorithm may achieve an exponential speedup over the classical algorithm.  

 The quantum linear algorithm first prepares the quantum states for |b>, using 

the technique of Grover and Rudolph [GR02].  Eigenvector |b> is decomposed and 

transformed into the basis states for the operator, A.  Then a conditional Hamiltonian 

time evolution operator is applied to |b>, where the unitary operator, A, is a sparse 

matrix.  We use the techniques of Hamiltonian simulation [BACS06] to apply 

operator A to the eigenvector |b>.  Then the phase estimation algorithm is applied, 

using the discrete Fourier transform to obtain a multi-qubit estimation for the phase of 

the eigenvalue for A.  We add a qubit and rotate about the basis state established by 

the phase, measure the last qubit, and determine the inverse phase conditioned on the 

state, |1>, of the added qubit.  The result of the inverse phase is our desired solution 

set:   
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   |x> = A-1|b>    (2.4) 
 
 
 
Until the eigenstates for |x> are measured, however, the solutions will be 

unknown.  As indicated above, we must measure only certain properties of |x>, rather 

than all values of |x>, otherwise the quantum linear algorithm offers no performance 

gain over the classical algorithms for solving linear systems.   

Andrew Childs [Chi09a] pointed out some of the implementation problems to 

the quantum linear system algorithm.  The preparation for the states in eigenvector 

|b> must be quick.  If the data for |b> is given explicitly in terms of classical data, 

then preparation may not be rapid.  The Hermitian operator, A, must be sparse, as 

measured by a small condition number, .  If the matrix for A is non-sparse, the 

algorithm loses its advantage over classical methods.  Although the potential 

applications of a quantum linear system algorithm are broad, no specific task has yet 

been proposed (as of this writing in mid-2010) for which the quantum linear system 

algorithm of Harrow-Hassidim-Lloyd would outperform classical linear equation 

solvers.   
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2.8 Summary of Literature Review 
 
 
 In summary, we have discussed the seminal papers which defined the field of 

quantum algorithms.  The algorithms which use the quantum Fourier transform to 

perform phase estimation form a broad category of quantum algorithms to solve what 

was called the “hidden subgroup problem.”  These algorithms included the Deutsch 

algorithm, the Shor factorization and discrete log algorithms, order-finding, period-

finding, and the Abelian Stabilizer.  The other types of algorithms were based on 

Grover’s search algorithm, which do not use the Fourier transform, but rather use 

techniques intended to increase the probability amplitude of selected states, thus 

converging to a solution.  We mentioned recent algorithms (2002-2009) which were 

not based on the hidden subgroup problem:  the quantum walk, which was based on 

quantum oracle queries over a quantum graph; and the adiabatic quantum computer, 

which performs computation by taking advantage of the adiabatic theorem of 

quantum mechanics.  We briefly mentioned quantum simulation, and error-correcting 

codes for quantum computing. 

 Finally, we discussed a significant recent algorithm (by Harrow, Hassidim, 

and Lloyd), which uses quantum computing to solve a system of linear equations.  

The quantum linear system algorithm is a phase estimation method.  The algorithm 

can achieve polynomial and even exponential speedup over classical computing under 

certain conditions (i.e., sparse operator matrices, and measurement of final quantum 

states performed only locally).   We also discussed some of the implementation 

problems of the algorithm. 



29 

In the remainder of the thesis, we will discuss in detail Shor’s factorization 

algorithm and Grover’s search algorithm.  We will also cover the quantum linear 

system algorithm, and we will perform an analysis on the classical and quantum 

resources needed to implement the algorithm. 
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Chapter 3:  Shor’s Factorization Algorithm  
 
 

 

3.1 Introduction to the Algorithm 

 In this chapter, we will provide a detailed description of Shor’s Factorization 

Algorithm [Sho94].   

Given an integer, N, a prime factorization algorithm decomposes the integer 

into a product of prime numbers.  Classical prime factorization algorithms require 

exponential time complexity to factor large integers.  In fact, the security of an 

encryption algorithm called RSA [RSA78] is based on the hardness of factorizing 

integers.  However, Shor’s factorization algorithm exploits the massive parallelism of 

quantum computing and can factorize large integers in polynomial time.  The 

actualization of a practical quantum computer therefore has serious implications for 

cryptography as well as other areas of science. 

Suppose we desire to factor a positive integer, N.  We are given a randomly 

selected number, x, such that x < N.  It is trivial for us to check if x and N have a 

common factor by using Euclid’s algorithm, prior to running our quantum algorithm.  

If x and N have a common factor, then we have found a factor of N and are done.  

However, for purposes of demonstration, let us assume that x and N do not have a 

common factor.  Then we desire to find the least integer, r > 0, such that: 

 
xr mod N = 1     (3.1) 
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 This least integer, r, is called the “order” of  x mod N.  Shor proved that the 

factorization problem is reducible to finding the order of x mod N.  Once r has been 

determined, we can find the factor through using the classical greatest common 

divisor algorithm. 

 The input to the quantum algorithm is the classical integer, N.  The output is a 

prime number factor to N.  Two quantum registers are used to represent binary 

integers; the first register is used as input, the second register is used as output.  Also 

required is a scratchpad used as temporary workspace.  The workspace is cleared after 

each subroutine of the algorithm.   

 We determine a constant number, q, which is a power of 2 such that N2  q < 

2N2.  We also choose an arbitrary positive integer x, such that x < N.  Thus, N, x, and 

q will be constant throughout the algorithm.  Let the number, a, represent the order of 

x mod N.   

With the order-finding algorithm serving as the core, we describe the steps of 

Shor’s factorization algorithm as follows. 

 

3.2 Steps of the Algorithm 

Step Zero:  Preprocessing.  We first check to see if a factor can be 
trivially determined. 

 
  If N is even, return the number 2. 
 
  Use Euclid’s algorithm to check if x, N have a common factor. 
   If yes, return the common factor. 
 

   Otherwise, proceed to Step One. 
 

Step One:  Initialize the first register with the superposition of states 
labeled by a, and clear the second register. 
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(1/q1/2)





1

0

|
q

a

a |0>   (3.2) 

 
 

Step Two:  Compute xa (mod N) into the second register.  Leave |a> in 
the first register (so the computation is reversible): 

 
 

(1/q1/2)





1

0

|
q

a

a |xa (mod N)>  (3.3) 

 
 

Step Three:  Apply the Fourier Transform to the first register, mapping 
states |a> to |c>: 

 

|a>  =  (1/q1/2)




1

0

q

c

exp(2iac/q)|c> (3.4)  

  
 
  Illustrating both the first and second registers, we now have: 
 
         (3.5) 

(1/q)




1

0

q

a





1

0

q

c

exp(2iac/q)|c> |xa (mod N)>   

 
 

Step Four:  Apply the Inverse Fourier Transform on the first register.  
Then measure the first register. 
 
       (3.6) 

   = c/q =  | (1/q)




1

0

q

a

exp(-2iac/q) |2 

 

 

Using Shor’s paper [Sho96], we get the relation that |c/q – d/r|  
1/(2q), where r is the order, with r < N. 

 

Step Five:  We know both the values of c and q.  Expand the fraction 
c/q using the classical continued fraction algorithm.  Round c/q to the 
nearest fraction close to d/r.  (Note:  This classical algorithm requires 
polynomial time complexity).  We wind up with some d’/r’  d/r.  If r 
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is odd, return r.  The gcd(r, N) can later be used to determine the 
factor.  Otherwise… 
 
Step Six:  When r is even and xr/2  -1 (mod N), compute: 
 
   
  gcd(xr/2 – 1, N) and   (3.7) 
  gcd(xr/2 + 1, N). 
 
 
If one of these is a non-trivial factor, return the factor. 
Otherwise, the algorithm fails. 
   

 

 Steps One through Five comprise the Order-Finding Algorithm using the 

Fourier transform to find the phase estimation. 

 In the next section, we examine a quantum algorithm used to search for data.  

The Grover algorithm does not use a Fourier transform technique but, rather, a 

simplified form of amplitude amplification. 
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Chapter 4:  Grover’s Search Algorithm 
 
 
4.1 Introduction to the Algorithm 
 
 Grover’s search algorithm [Gro97] uses quantum mechanics to perform a 

search on data.  The algorithm does not use a full Fourier transform like earlier 

quantum algorithms.  Rather, the search algorithm uses a combination of Hadamard 

transforms and phase rotations to increase or decrease the amplitudes of the quantum 

states representing the search items.  After each iteration of the algorithm, the 

amplitude of the desired state is increased until it stands apart from the average 

amplitude of the other search items. 

 The primary advantage of the algorithm is its relative simplicity of 

implementation compared to the Fourier transform methods.  Given N search items, 

Grover’s algorithm requires O( N ) time complexity to locate the desired search 

item, a polynomial time speedup compared to the O(N) time complexity required of 

classical search algorithms.  The simpler Hadamard and phase rotation matrices 

comprise what the author calls a “Diffusion transform.”  The Diffusion transform 

causes the amplitude of the search item to be inverted about the average amplitude of 

the other search items.   

 

4.2 Steps of the Algorithm 

 We now list the steps of the Grover Algorithm. 
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Step One.  Initialization.  For N search items, we create a 

superposition of N quantum states, each with N1 amplitude.  For 
each quantum state, there is also a corresponding location in classical  
memory with contents describing the properties of the state. 

 
  Step Two.  Amplitude amplification.  
 

   Repeat N times. 
 
    Assume the system is in state |S>. 
   

If a desired property of (S) (from the classical memory 
contents) matches the search criterion,  

    ROTATE the phase by  radians; 
 
    Otherwise, leave the system unaltered.   
 

Apply the Diffusion Transform matrix, D, to the state 
as follows: 

 
    Dij = 2/N if i  j and Dii = -1 + 2/N.   
    

Note:  The Diffusion matrix can be implemented as a 
product of three matrices:   

 
 D = HRH 
 

…where H is the Hadamard transformation, and R is a 
rotation matrix. 

    
Step Three.  Perform measurement of the resulting state.  The 
measurement will return the desired search item with a probability of 
at least 50%.   

   
 
 In the next chapter, we will discuss in detail the quantum algorithm for 

solving a system of linear equations.  Unlike the Grover search algorithm, the 

algorithm of Harrow, Hassidim, and Lloyd uses a full Fourier transform for phase 

estimation.   
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Chapter 5:  The Quantum Linear  
    Algorithm 
 
 
5.1 Introduction to the Quantum Linear Algorithm 
 
 

In their paper, “Quantum Algorithm for Linear Systems of Equations,” 

Harrow, Hassidim, and Lloyd [HHL09a] proposed a quantum algorithm for solving a 

system of N linear equations with N unknowns.  Solving a linear system of equations 

entails finding a vector, x , that solves the linear system A x  = b , where A is a given 

matrix operator and b  is a given vector with constant coefficients. 

 Quantum states are used to represent b  and x .  Operator A is sparse, unitary 

and Hermitian.  For example, a 2 x 2 system of linear equations would be represented 

as: 

 

    |b> = 


2

1j

bj |j>    (5.1) 

 

    A = 







A

A

0

0
     (5.2) 

 
|x> = (unknown states)   (5.3) 
 

 
 
 The sparseness of matrix A is measured by the condition number, , defined 

as the ratio between A’s largest and smallest eigenvalues.  A small  indicates a 

sparse matrix.  Using Hadamard gates, a given |bj> would be rotated into the basis 
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states of operator A.  Let |uj> be the basis vectors of A, where j = 1…N.  Then the 

states |b> would be represented in the A basis as: 

 

    |b> = 


N

j 1

j |uj>    (5.4) 

 
 We define the state, |0> to be: 
 
 

   |0> =    
T

2
 





1

0

T



sin 



 

T

)21(
 |>  (5.5) 

 
 

for a large period T.  We apply a conditional Hamiltonian time evolution operator, 






1

0

T



|> <|  exp(i A  t0/T), to the tensor |0>  |b>, with t0 = O(/).   Using j as 

the eigenvalue of the operator, and j |uj> as the target state, the result of the 

Hamiltonian for a specific j is: 

 
 
 

   
T

2
 





1

0

T



 exp(i j  t0/T) sin 



 

T

)21(
 |> j |uj> (5.6) 

 
 
 
 Phase estimation is then performed using a black box version of the Fourier 

transform circuit (see the diagram of the quantum Fourier circuit in the next chapter).  

The multi-qubit phase represents the eigenvalue for a particular solution state 

(indexed by j).  Phases are calculated for each j as follows: 
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          (5.7) 

|>  |u>  = 
T

2 


N

j 1





1

0

T







1

0

T

k

exp(i 
T


(jt0 – 2k)) sin 



 

T

)21(
|k> j |uj> 

 
 
 Once the phase estimation has been obtained, we set k  = 2  k/t0 and relabel 

the |k> basis state as the |k> basis state.  A qubit is added for each j, and a rotation 

conditioned on |k> is performed.  We then undo the phase estimation and uncompute 

|k>.  Assume we have a perfect phase estimation, such that… 

 
 
If j  =  k then… 

 

T

2
 





1

0

T



 exp(i 
T


(jt0 – 2  k)) sin 



 

T

)21(
 = 1 (5.8) 

 
  …with Equation 5.8 being 0 otherwise. 
 
 

 

We measure the last qubit, and obtain j
-1 (by conditioning on seeing 1).  We 

thus have the form: 

 

   |x>  =  


N

j 1

j
-1 j |uj>     (5.9) 

 
 
  
 |x> contains the solution to the linear system as a superposition of states in the 

A-basis vectors.  We may then measure one of the properties of |x>, obtaining the 

expectation of that property.   
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 We use the algorithm from Berry et. al [BACS06] to simulate Hamiltonian 

time evolution.  According to the error analysis in [HHL092b], to simulate the 

evolution of eiAt with an error less than , we require that the time tH be: 

 
 
   tH = O(log2(N)2t0)     (5.10) 
 
 
 

Phase estimation is assumed to be the dominant source of error.  When A is 

sparse, phase estimation can be done with error  in time proportional to t2(t/)O(1).  

This can be approximated as O(2t0).  Since there are log2(N) data registers, the total 

time required for error  is tH = O(log2(N)2t0).  That is, the Hamiltonian time 

evolution must not occur beyond tH for a desired error, . 

 In the Literature Review we mentioned that log(N) data registers are required, 

rather than N, since a data register consists of qubits.  Since there are log(N) data 

registers,  the algorithm has exponential performance improvement, O(log N),  over 

classical algorithms. The authors point out that exponential speedup over classical 

algorithms is possible when A is sparse and a single measurement of a property in |x> 

is performed (rather than multiple measurements).  However, if our goal was to 

obtain all N measurements from |x>, the performance would degrade to O(N), on a 

par with classical algorithms. 

 The initial preparation of matrix |b> must be performed in a way that is not 

too time-consuming.  If |b> must explicitly reflect classical data, there is no 

performance advantage over classical methods.  However, if one implicitly creates 
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|b> using amplitudes that are probability distributions, a performance gain over 

classical methods is possible [GR02]. 

 In addition to the log2(N) data registers,  a single quantum register implements 

the unitary operations for all data registers.  The state of this unitary operations 

register does not itself change.   

A scratchpad register is also used as a temporary storage location.  The 

scratchpad register is partitioned into log(N) sections, one for each of the logical N 

quantum variables of the state |x>.  Each partition is accessed by the jth data register.   

 Now that we have provided a general description on some of the features of 

the algorithm, let us describe the exact steps of the quantum algorithm for linear 

systems.  Figure 4 gives pseudo-code for the algorithm.  Section 5.2 provides a 

detailed description. 
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Pseudo-Code Description of Quantum Linear Systems Algorithm 

 
Step One.   Initialize data registers with |0>  |bj>. 
 

Let s() = 
T

2
 sin 



 

T

)21(
,  held constant. 

 
    A given data register contains s() j |uj>. 

 
Step Two.   Apply Hamiltonian evolution operator with  held constant, and 

apply the Fourier transform with |k> basis states.   
 

           Consider separately the cases where  = 0, 1, 2, tH. 
 

|> s() |u>  = 


N

j 1





1

0

T

k

exp(i 
T


(jt0 – 2k))  |k> s()  j |uj> 

 
  Step Three. Apply inverse Fourier transform to obtain |j>. 
 

Step Four. Relabel |k> with |k>.  Add a qubit for jth variable. Rotate qubit 
conditioned on |k>.  

 

 Let k|j = exp(i 
T


(jt0 – 2k)).  Then: 

 




N

j 1





1

0

T

k

k|j |k> s() j |uj>  (
2

2

1
k

C


 |0> + 

k

C


|1> ). 

 
  Step Five. Uncompute |k> and determine -1.   
 
    If  k = j, then k|j = 1, otherwise k|j = 0.  Result is: 
 

    


N

j 1

 s() j |uj>  ( 2

2

1
j

C


 |0> + 

j

C


|1>) 

 
    Measure the last qubit, condition on 1.   
 

    -1 = 
j

C

 22

1

2

2

)(||

||





sBC j

N

j

j

 

   |x>  = 


N

j 1

s() j -1 |uj> 

     
  Step Six.  Measure for the desired property, M:    <x| M |x>. 
 
 
   

Figure 4.  Pseudo-Code for Quantum Linear Systems Algorithm 
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5.2 Detailed Steps of the Algorithm 

 

We assume that the matrix A is already sparse (with  sufficiently 

low), and that the states |b> have already been prepared.  There are log2(N) 

data registers, representing each unknown variable.  We calculate the optimal 

time for running the Hamiltonian time evolution operator, tH = O(log(N) 2 

t0), and use this time as the upper bound on simulation time.    

There is a separate quantum circuit implementing phase estimation for 

 = 0,  = 1,  = 2, ….,  = tH.  The quantum circuit implementing phase 

estimation will serve as a “snapshot” of particular times and phases. 

Resource issues such as garbage collection, and the classical and 

quantum variables associated with each step, will be covered in our resource 

analysis in Chapter 6. 

 
 
Step One:  For each quantum data register, establish states:  |0>  |b>. 
 
The qubits representing a particular |bj> are loaded into the quantum circuit.  
A Hadamard transformation is performed, decomposing |bj> and rotating |b> 
into basis states of operator A.  Thus, |bj> is transformed into j |uj>.  
 

Let s() = 
T

2
 sin 



 

T

)21(
,  held constant. 

 
   The unitary operators in the circuitry act on s() j |uj>. 

 
 

Step Two:  The conditional Hamiltonian is applied on |0>  |b> for constant 
.  Also apply the Fourier transform on the conditional Hamiltonian, adding 
the basis states, |k>.  The Hamiltonian and Fourier transform are implemented 
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in the quantum circuit performing phase estimation (see diagrams in Chapter 
6). 
 
We have a separate quantum circuit for each time, .  We consider only the 
cases where  = 0,  = 1,  = 2,  = tH. 
 
In general, the quantum circuit estimates the phase of the eigenvalue, |>, by 
using 5.11a: 
 

|> s() |u>  = 


N

j 1





1

0

T

k

exp(i 
T


(jt0 – 2k)) |k> s()  j |uj> (5.11a) 

 
Or, alternately: 
 

|>  = 


N

j 1





1

0

T

k

exp(i 
T


(jt0 – 2k))  |k>   (5.11b) 

 
For case  = 0: 
 

T

2 


N

j 1





1

0

T

k

exp(i (0)/T(jt0 – 2k)) sin 



 

T

)210(
|k> j |uj> 

 

=
T

2 


N

j 1





1

0

T

k

sin 





T

)21(
|k> j |uj> 

 

Let s(0) be a constant, such that s(0) = 
T

2
 sin 





T

)21(
. 

 
Then:  

|> s(0)  |u> =  


N

j 1





1

0

T

k

|k>  s(0) j |uj>.   (5.11c) 

 
For case  = 1: 
 

Let s(1)  =  
T

2
 sin 





T

)23(
.  Then: 

 

T

2 


N

j 1





1

0

T

k

exp(i T-1 (jt0 – 2k)) sin 





T

)2/3(
|k> j |uj> 
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= 


N

j 1





1

0

T

k

exp(i T-1 (jt0 – 2k)) |k>  s(1) j |uj>.   (5.12) 

 
For case  = 2: 
 

Let s(2)  =  
T

2
 sin 





T

)25(
.  Then: 

 

 
T

2 


N

j 1





1

0

T

k

exp(i 
T

2
(jt0 – 2k)) sin 





T

)2/5(
|k> j |uj> 

 

 =   


N

j 1





1

0

T

k

exp(i 
T

2
(jt0 – 2k)) |k>  s(2) j |uj>.   (5.13) 

 
For case  = tH:   
 

Let s(tH) = 
T

2
 sin 



 

T

tH )21(
.  Then: 

 
 

T

2 


N

j 1





1

0

T

k

exp(i tH/T(jt0 – 2k)) sin 



 

T

tH )21(
|k> j |uj> 

 

= 


N

j 1





1

0

T

k

exp(i 
T

tH
(jt0 – 2k)) |k>  s(tH) j |uj>.   (5.14) 

   
 

Step Three:  Apply the inverse Fourier transform to obtain the multi-qubit 
state |j>, estimating the phase.  Refer to the diagram for phase estimation in 
Chapter 6.  To apply the inverse Fourier transform, we start with the multi-
qubit result on the right, and read through the diagram backwards, from right 
to left, through the inverse unitary operators and through the inverse 
Hadamard transform.  The leftmost result is the multi-qubit representation of 
the phase.  The phase for the jth data register is: 
 
   |> = |01…t-1>  

 
When measured, the multi-qubit state gives the phase value. 
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Step Four:  Add a qubit and rotate conditioned on |k>. 
 

Define k|j = exp(i 
T


(jt0 – 2k)). 

 
First we replace |k> with |k> by setting k = 2  k / t0.  We add a qubit 
associated with the jth variable.  Then we rotate conditioned on |k, giving us 
the result: 
 




N

j 1





1

0

T

k

k|j |k> s() j |uj>  (
2

2

1
k

C


 |0> + 

k

C


|1> ) (5.15) 

 
 

Step Five:  Undo the phase estimation, |k>, measure the last qubit, and then 
determine the inversion factor, -1. 
 
Under an ideal phase estimation, k|j = 1 whenever k = j.  k|j = 0 otherwise.  
We assume an ideal phase and drop |k>.  The result is: 
 




N

j 1

 s() j |uj>  (
2

2

1
j

C


 |0> + 

j

C


|1>)  (5.16) 

 
Now we measure the last qubit, and condition on 1.  This results in the state: 
 

222

1

2 ||/)(||

1

jj

N

j
sBC  

 


N

j 1

s()  j
j

C


|uj>  (5.17) 

 

Equation 5.17 corresponds to |x>  = 


N

j 1

s() j  -1 |uj>.   

 
 
 

Step Six. We have “solved” for |x> in Step Five, but the values are 
unknown until measured.  We now measure for a single 
property, M, of |x>.  Perform <x| M |x>, obtaining 
probability(M) for that property. 

 
 Example:  We can obtain <px> from <x| pop |x>.   
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In the next chapter we will analyze the classical and quantum resources for the 

algorithm.  Classical and quantum variables, garbage collection, and the associated 

quantum circuits will be considered. 
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Chapter 6: Analysis of Computational  
   Resources  
 
 
 
6.1 Classical vs. Quantum Resources 
 
 
 In this chapter we distinguish the parts of the quantum linear algorithm that 

are performed classically and the parts that are performed by quantum circuitry.   We 

refer to the quantum objects as quantum numbers or quantum variables.  The familiar 

classical objects are referred to as classical numbers or classical variables. 

 A classical computer serves as the central control of the implementation, 

calling the oracular services of quantum circuitry as needed.  Quantum “oracles” 

(represented as the black-box operators in quantum circuitry) are the quantum 

equivalent of subroutines. 

 

Figure 5:  Classical Computer (Client) and Quantum Computer (Server) 

Classical Computer 

Quantum Computer 
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Classical computers are used as the control mechanism, rather than quantum 

computers, due to a relatively fast clock speed.  Quantum clock speeds are 

considerably slower than classical clock speeds, since quantum circuit technology is 

still in its infancy.  The slower quantum clock speeds may well be the case in the 

near-term future [BCDP96].   

 In general, the classical computer maps the results of quantum computing 

(i.e., the measurements of quantum states) into classical memory space, and cross-

references the classical and quantum variables.  The classical computer also deals 

with index or control variables that regulate the loop or calling of subroutines.  For 

example, the classical computer may send output to a quantum computer in the form 

of a program to control the circuitry. 

The classical computer may perform the calculations that determine the initial 

amplitudes of quantum states.  (An ongoing design issue is to decide which 

calculations should be performed classically, and which computations should be 

incorporated into the quantum circuitry).   

 To fully analyze the classical and quantum resources, we will track classical 

and quantum objects at each step of the quantum linear algorithm.  We will also 

indicate when garbage collection becomes necessary during the algorithm, and will 

discuss the intermediate steps required to eliminate excess quantum states.   

The total time to complete a step is the sum of both the classical and the 

quantum time requirements.  The time complexity of each step, and the resulting total 

time complexity of the entire algorithm, will be estimated. 
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6.2 Quantum Circuits 

Before analyzing the classical and quantum resources of the algorithm, let us 

first describe the details of a generic quantum Fourier circuit.  Figure 6 shows the 

quantum Fourier transform circuit.  This circuit is designed for only one eigenvalue (a 

single quantum variable, and not a system of equations).  The diagram is followed 

from left (input) to right (output).  The box labeled “H’ represents the Hadamard 

transform on the input qubit.  The boxes labeled “Rk” represent the unitary transforms 

of the circuit: 

 

Rk  = 







kie 2/20

01
     (6.1) 

 

The output at the top wire of the diagram represents the least significant qubit, 

and those wires at the lower portion represent the most significant qubits.  Thus, the 

order of the qubits must be reversed by a swap gate (not shown).  Also not shown in 

Figure 6 are the normalization factors for 
2

1
.   
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Figure 6:  Quantum Fourier Transform Circuit 

 
 

The quantum Fourier transform of Figure 6 may also be represented by an 

equivalent product representation and summation representation.   

The summation representation can be expressed as: 

|j1…jn>    




12

0

2/2

n
n

k

ijke  |k>    (6.2) 

…where |j1…jn> represents the multi-qubit final phase state, and |k> is the 

Fourier basis state.  The equivalent product of qubits representation is: 

 

 

 

H |j1> 

 
 
 

 
 
 

 

     

|0> + exp(2i0.j2…jn) |1> 

R2 Rn-1 Rn

|j2> H    

|0> + exp(2i0.jn-1jn) |1> 

|0> + exp(2i0.jn) |1> H 

Rn-2 Rn-1 

H R2 

|0> + exp(2i0.j1j2…jn) |1> 

|jn> 

|jn-1> 

 

 
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         (6.3) 

|j1…jn>    (|0> +  njie .02
|1>)   (|0> + nn jjie 1.02 

|1>)           (|0>  + njjjie ....02 21
|1>) 

2n/2 

 

The quantum Fourier transformation can be generalized into a phase 

estimation.  In Figure 7, we replace the Rk operators with black box unitary 

transformations.  As mentioned earlier, a black box is also called an “oracle” (the 

quantum equivalent of a subroutine).  The advantage of representing operations as 

oracles is that the oracles simplify the representation.  Oracles free us from the 

specifics of implementation, allowing us to focus on the problem at hand.   

A major difference between Figure 6 and Figure 7 should be noted.  Figure 6 

deals with only a single result (a single phase).  Figure 7 deals with N phases, since it 

implements the phase estimations for the N x N linear system of equations. 

Again referring to Figure 7, there are log2(N) data registers which contain the 

data (represented as unmeasured quantum states) for all N linear equations and N 

quantum variables in the system.  The index variable, j, refers logically to the jth 

quantum variable (ranging from 1 to N), although implementation-wise there are 

log(N) registers.   

There is only one register implementing both the unitary transformations and 

Hamiltonian evolution; the register consists of as many qubits as required to perform 

the operations.  The quantum circuit contains the normalization factors and time 

constant, s().  The one register performing the unitary transformations is interfaced
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Figure 7.  Quantum Phase Estimation for Linear System Algorithm 
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to all the data registers and can perform the unitary transformations in parallel for the 

N linear equations, taking advantage of quantum entanglement among the data 

registers.  However, the register that performs unitary operations does not itself 

change state. 

The unitary operator for the phase estimation will have eigenvector |u>, in the 

A-operator basis, and eigenvalue e2ik.   is the phase to be estimated by the quantum 

circuit.  There are N phases to be determined. The unitary operator is implemented by 

the “black boxes” labeled 
02U , 

12U , 
22U ,…, 

12 t

U .  A given phase is estimated 

by t qubits.  The number of qubits required is predicated on how much accuracy we 

want and the probability for success.  The greater the t, of course, the higher the level 

of accuracy and probability for success.   

Although the Hamiltonian evolution operators ideally work with a time 

sequence, we implement the evolution as a “snapshot” of quantum circuit behavior.  

The unitary operators are designed to operate with a constant time, .  I.e., there is a 

separate quantum circuit for each .  For illustration purposes, we will consider the 

behavior of the circuit for  = 0, 1, 2, and tH (with tH being the upper bound on time). 

 Not shown in Figure 7 are the normalization factor 
2/2

1
t

and the time factor 

s() (with  held constant), for the cases  = 0, 1, 2, tH.   

 The summation expression equivalent to Figure 7 for a particular phase, j 

(this time including the normalization factor) is: 
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|1, 2, …t>j    
2/2

1
t 





12

0

2
t

j

k

kie  |k>   (6.4) 

 

 Equation 6.5 gives the equivalent multi-qubit product representation for a 

particular j:          

          (6.5) 

|1, 2, …t>j     (|0> +  tie  .02 |1>)   (|0> + ttie  1.02  |1>)           (|0>  + tie  ....02 21 |1>) 

2t/2 

  

 We can express the generic phase, j, in terms of the phase for our application, 

j.  Since we are holding  constant, let c = /T.  Then, using equation 5.11b, for a 

particular phase estimation of eigenvalue j: 

 

    
2/2

1
t

ki je 2  =  
2/2

1
t

)2( 0 ktic je      (6.6) 

     

 Solving for j by taking the natural log of both sides: 

 

     j =  c 







1

2
0

k

tj



   (6.7) 

 Now solving for j using equation 6.7: 

 

     j  = 





 1

2 0

0 ct

k 
   (6.8)  
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Each data register consists of an input buffer to the quantum circuitry, which 

we label |>in, and an output buffer to store the results of the quantum circuit, which 

we denote as |>out.   

A single scratchpad register is used by all data registers to store the temporary 

results of calculations, to allow reversibility, and to assist in garbage collection (see 

Figure 8).  The scratchpad is split into log(N) partitions, one for each data register.  

Each partition is variable in length (of some xt qubits, x 1).  Logically, however, 

there are N partitions in the scratchpad, with the jth partition accessible by the jth data 

register, with 1  j  N.  A given partition is in turn broken up into two regions, one 

called the “Scratch” region and the other called “Copy”.  The region labeled 

“Scratch” contains the intermediate or temporary results of calculations.  It may 

contain garbage which must be cleared.  The region labeled “Copy” is used to copy 

the final result of a unitary transformation.  When garbage collection occurs, the 

“Scratch” region is cleared and a permanent result is stored in the “Copy” region for 

future reference.  The output in the Copy region, when used along with the input 

buffer of a data register, insures reversibility for that data register. 
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Figure 8.  Scratchpad Register 

 

 
 In the following section (6.3) we list the classical and quantum resources 

required for each step of the linear systems algorithm.  The time complexity for the 

step is also estimated.  Upon completion of the algorithm, we determine the order 

(“Big-O”) for the entire algorithm.   

 We do not estimate space complexity for the algorithm, but note that the total 

number of qubits used is (t + 1) log(N), excluding the scratchpad, where t is the 

number of qubits required by each data register. 

 At the end of this chapter, Table 1 summarizes the constants used in the 

algorithm.  Table 2 summarizes the classical and quantum variables used.  Table 3 

summarizes the time complexity of each step, and the total time complexity of the 

entire algorithm. 
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6.3 Resource Analysis:  Tracking Classical and Quantum Objects 
 

Classical Inputs to the Algorithm: 
 
 N Number of rows or columns of linear system; 
  the “size” of the problem.  Constant. 
 
 T A sufficiently large time constant; can be assigned to 
  tH, the maximum value to keep error  .  
 

  A time value held constant for each case of  = 0, 1, 2, tH. 
 

tH The maximum time value to keep error  . 
 
t0 Initial time, a constant.   

 
 s() Constant coefficient; see Step One of Pseudo-Code, Chapter 5.
    
 j An index referring to data register or row. 
 
 j Amplitude of operator A basis states.   
 
 
Classical Outputs from the Algorithm: 

 
 -1 Inverse eigenvalue for solution. 
 
 
Quantum Inputs to the Algorithm: 
 

 |bj> Basis states of vector b . 
 
 |x> Unknown states, to be determined and measured. 
 
 |uj> Basis states of A unitary operator. 
 
 j |uj> Vector |b> in the A-basis. 
 
 
Intermediate Quantum Variables: 
 
 |k> Fourier basis states 
 
 |j> Phase state for eigenvalue of jth data register.  
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Final Quantum Output: 
 
 |x> Solution states are obtained but are 
  unknown until measured. 

 
 

Step One.  Initialize data registers with |0>  |bj>. 
 

 Classical:  As given above in Classical Inputs. 
 
 Quantum:  As given above in Quantum Inputs. 
 

We first clear all data registers:  |0>1 |0>2 … |0>N. 
 

After input, a given data register contains s() j |uj>. 
 

Time Complexity:   
 

Let c0 be the constant time to clear data registers; let c1 be the 
time to initialize a data register with s() j |uj>. 
 
We assume that c0 << 1 << N and c1 << 1 <<N.  Then: 
 
Time for Step One = c0 + c1 log(N). 
 

 
 Step Two.  Apply Hamiltonian with  constant; apply Fourier transform. 
 
  Classical:   
 
   t The maximum number of qubits for each data register j;  

based on the desired accuracy.  
    
   j Eigenvalue associated with phase for data register j. 
 
  Quantum:   
 

|k> The Fourier transform basis states for data register j. 
|j> The multi-qubit phase estimation state. 

 
We consider the cases where  = 0, 1, 2, tH.  Refer to the detailed 
explanation of Step Two in Chapter 5, and Figure 7.  Assume that 
there is a separate quantum circuit for each .  Thus, each circuit 
operates independently and in parallel to the other circuits.  We note 
that: 
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Equation 5.11c describes the phase estimation for  = 0.   
Equation 5.12 describes the phase estimation for  = 1. 
Equation 5.13 describes the phase estimation for  = 2. 
Equation 5.14 describes the phase estimation for  = tH. 
 
We ignore garbage collection for Step Two but incorporate garbage 
collection in Step Three.  We include the time estimates for garbage 
collection in Step Three. 

 
  Time Complexity:    
 

Let c2 be the time for a given data register to complete the 
Fourier transform, where c2 << 1. 
 
Time for Step Two = c2 log(N). 
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Step Three.  Inverse Fourier transform. 
 
  Classical: Same as previously described. 
 
  Quantum:  |jk>, the phase for data register j, for the final 
    k basis state. 
 
    |>in, the input buffer for data register j. 
 

  |>out, the output buffer for data register j. 
 
  |>scratch, the Scratchpad region of Scratchpad j. 
 
  |>copy, the Copy region of Scratchpad j. 
 
  f(jk), the result of the Fourier transform. 
 
  g(jk), the garbage from the Fourier transform. 
  

f-1(f(jk)), or just jk, result of the inverse Fourier 
transform, where f-1 is the inverse Fourier transform. 

 
g-1(f(jk)), resulting garbage from inverse Fourier 
transform, where g-1 is the garbage generated by the 
inverse Fourier transform. 

 
For every data register j, we trace backward through the quantum 
phase diagram (Figure 7).  For each qubit, we start from the right and 
move to the left, through the inverse unitary operator (which now takes 
the log), through the inverse Hadamard gate, and out to the left side.  
Thus, |j > is the multi-qubit result of the inverse Fourier transform. 
 
The process of performing the inverse Fourier transform was given as 
a series of oracular black boxes in Figure 7.  The exact details on how 
the scratchpad was used is kept hidden.  However, we assume that the 
inverse Fourier transform has generated garbage.  Let f(jk) be the 
result of the Fourier transform, and g(jk) be the garbage generated by 
the Fourier transform.  Let f-1(f(jk)), or just jk, be the result of the 
inverse Fourier transform.   Let g-1(f(jk)) be the garbage generated by 
the inverse Fourier transform.   
 
We use the technique of garbage collection described by Beckman et. 
al [BCDP96].  Let |>in be the input buffer of data register j.  Let |>out 
be the output buffer of data register j.  Also, |>scratch and |>copy are the 
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scratchpad and copy regions respectively of partition j in the 
scratchpad register (see Figure 8).   

 
Let F be a unitary operation. Copy is an operation which copies the 
contents of |>out to |>copy.  The composite operation: 
 

F-1  Copy(|>out, |>copy)   F   (6.9) 
 
…acts to implement the unitary operation, perform garbage collection, 
and save both the result and original state (for reversibility). 
 
Let F be the discrete quantum Fourier transform of Step Two.   

 
Initially (prior to operation F), we have the following situation among 
registers: 
 

|jk>in  |0>out  |0>scratch  |0>copy. 
 
After the F is performed:   
 

|jk>in  |f(jk)>out  |g(jk)>scratch  |0>copy. 
 

where g(jk) is the garbage generated by F(jk), and f(jk) is the result 
of the unitary operation. 
 
To perform garbage collection, we first use Copy to duplicate the 
contents of |>out  to  |>copy.   
 
Copy(|>out, | >copy) results in the following: 
 

|jk >in |f(jk)>out |g(jk)>scratch |f(jk)copy>. 
 
We then use F-1 (jk) to clear the output buffer and scratch partition, 
leaving the input buffer and copy region alone: 
 

|jk>in |0>out |0>scratch |f(jk)>copy. 
 
The effect is to get rid of the garbage, g(jk), and to save the useful 
output to the copy region for future reference. 
 
As mentioned earlier, we assumed that the garbage collection 
requirements for Step Two were minimal and did not include the time 
requirements for garbage collection in Step Two. 
 
For Step Three, we incorporate the garbage collection time 
requirements in our time estimation.   
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Now let F be the inverse Fourier transform, f-1.   
 
Prior to F being applied to |f(jk)>, the following situation exists 
among the registers: 
 

|f(jk)>in  |0>out  |0>scratch  |0>copy. 
 
  After F is applied: 
 

|f(jk)>in  |jk>out  | g
-1(f(jk))>scratch  |0>copy. 

 
  After Copy is applied: 
 

|f(jk)>in  |jk>out  | g
-1(f(jk))>scratch  |jk>copy. 

 
  Finally, F-1 is applied: 
 

|f(jk)>in  |0>out  |0>scratch  |jk>copy. 
 
 

Time Complexity: 
 

Let c3 be the time required to perform the inverse Fourier 
transform on a data register, j. 

 
Let cg be the time required to perform garbage collection for 
data register, j, where cg  O(t2), with t being the length in 
qubits of the data register j. 

 
Then for a particular data register j, the time required to 
perform the inverse FT and garbage collection is c3 + cg.  Since 
there are log(N) data registers: 

 
Total time for Step Three = (c3 + cg) log(N). 
 

 
Step Four.  Relabel |k> with |k>.  Add a qubit for the jth variable.   

                               Rotate qubit conditioned on |k>. 
 

Classical:   The address map between classical memory and 
quantum variables is updated for relabeled name. 

 
New amplitudes for added qubit after rotation: 
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2

2

1
j

C


  for state |0>. 

 

    
j

C


 for state |1>. 

 
    j Classical eigenvalue for jth data register. 
 

  C  O(1/).  A coefficient for probability amplitudes. 
 
  Quantum:   New qubit established for jth data register. 
    |k> used as pivot for rotation operation. 

     
Relabeling |k> with |k> is achieved using the classical computer, 
which controls the mapping between main memory and corresponding 
quantum variable.  We simply rename the quantum variable, |k>, with 
|k> in the classical address mapping. 
 
Adding a qubit is a quantum operation, repeated physically log(N) 
times in the quantum circuit.  Logically, a qubit is added for each of 
the N data registers. 

 
Rotation is achieved using a rotation quantum oracle (not shown in 
Figure 7).   This results in a new probability amplitude for the qubit, 
and also garbage in the scratchpad partition for data register j. 

 
  For each data register: 
 

Let F = Rotate(|k>).  Also, let F-1 = Rotate-1(|k>).  Perform both the 
rotation and garbage collection using the garbage collection routine 
described in Step Three as follows: 

 
    F-1 Copy(|>out, |>copy) F(|k>). 
 

Let k|j = exp(i 
T


(jt0 – 2k)).  Then, after the rotation (using  

Equation 5.15 again): 
 




N

j 1





1

0

T

k

k|j |k> s() j |uj>  (
2

2

1
k

C


 |0> + 

k

C


|1> ). 

 
The result of the rotation is stored in |>copy, while the original state is 
kept in |>in to insure reversibility: 
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|k>in  |0>out  |0>scratch  |Rotate(k)>copy. 
 

 
Time Complexity: 
 

Let c4 be the time required to add a single qubit to jth data 
register, a quantum operation. 
 
Let cL be the classic time required to relabel |k> with |k>.   
 
Let cr be the time overhead for rotation, including the time 
required for garbage collection.  Time cr has a classical part 
(cr’) and a quantum part (cr’’), where cr = cr’ + cr’’.  Classical 
time cr’ involves updating the classical amplitudes and cr’’ 
involves the quantum circuit overhead. 

 
Total time for Step Four = (c4 + cL + cr) log(N). 
 

 
Step Five.  Uncompute |k> and determine -1. 

 
Our resources are described as: 

 
  Classical:   Measured probabilities of new qubit,  
    conditioned on |1>.       
 

-1 Calculated inverse eigenvalue for solution of jth data 
register. 

        
  Quantum:   
 

|x> Solution set vector to the linear system. 
   Unknown until measured. 

 
Referring to Equation 5.15 again, we assume an ideal phase estimation.  When 
index k = j, then k|j = 1, otherwise k|j = 0.   
 
In terms of classical and quantum resources, we erase those |k> states 
whenever k  j.  We set |k> to unity, thus uncomputing |k>.  We leave just 
the j eigenvalues in the amplitudes for |0> and |1>. 
 
After we get rid of |k>:  

 




N

j 1

 s() j |uj>  ( 2

2

1
j

C


 |0> + 

j

C


|1>) 
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Then we selectively measure the last qubit of all N data registers.  We then  
condition on state |1> and perform a classical calculation to find j

-1.  After we 
condition on state |1> the result is: 

 

222

1

2 ||/)(||

1

jj

N

j
sBC  

 


N

j 1

s()  j
j

C


|uj>   

 

This state corresponds to |x>  = 


N

j 1

s() j  -1 |uj>.   

  
  Time Complexity: 
 
   Let cm be the time taken to measure the new qubit.   

This time has a classical time (cm’) for calculating probabilities 
due to measurement, and a quantum time (cm’’) for performing 
the quantum measurement, where cm = cm’ + cm’’. 

 
   Let c5 be the total time to uncompute |k>, perform 

required garbage collection, and calculate -1.  c5 has a classical 
time (c5’) to update the classical address table and to calculate 
-1, and a quantum time (c5’’) to uncompute |k> and perform 
garbage collection.  Note that c5 = c5’ + c5’’.   

 
   Total time for Step Five = (cm + c5) log(N). 
 

Step Six.  Measurement. 
 
  We measure for property M, such that <x|M|x> gives us  
  an expectation value for M. 
 
  Classical: M, an operator.   
 

Example: M = p̂ op, such that <x| p̂ op|x> = <px>. 
 
  Quantum: Bra-kets for state x.   
 
  Time Complexity:   
 
   Let c6 be the time required for quantum measurement and 

classical table update, where where c6 << 1.  c6 consists of a 
time for classical table update (c6’) and a time for quantum 
measurement (c6’’).  Note that c6 = c6’ + c6’’. 
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Total Time for Step Six = c6 log(N). 
 

Total Time for Steps One to Six         
 
=  c0 + c1 log(N) + c2 log(N) +  

(c3 + cg) log(N) + (c4 + cL + cr) log(N) + (cm + c5)  

log(N) + c6  log(N) 
 

= c0 + (c1 + c2 + c3 + cg + c4 + cL + cr + cm + c5 + c6) 
log(N) 

 
= O(log(N)). 

 
       
 

Table 1.  Summary of Classical Constants used in Algorithm 
 

Constant Description 
T Large length of time (seconds) 
 Constant time index in Hamiltonian 
t0 Initial time 

s() Evaluates to constant coefficient: 
N Input size: number of rows or columns  
tH Maximum time value to keep error   
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Table 2.  Summary of Classical and Quantum Resources 

 
Step Classical 

Variables 
Quantum 
Variables 

Comments 

One j, j A, |u> j is index to quantum 
variable; A is Hermitian 
operator; |u> represents 
A-basis vectors; 
j is probability 
amplitude of |uj>; 

Two j |u>, |k>, |j> |k> are Fourier basis 
states; |j> is multi-
qubit phase estimation.  
j is eigenvalue for 
phase. 

Three (same) In/Out buffers 
for reg j; 
Scratchpad 

Quantum I/O buffers 
and Scratchpad used. 

Four C Added qubit for 
jth variable;  
|k> 

|k> is relabeled Fourier 
basis state;  C = O(1/), 
coefficient in amplitude 
for added qubit, 
resulting from rotation 
about |k>. 

Five -1 |k> , |x> -1 is inverse phase 
factor; |k> is 
uncomputed; 
|x> are the solution 
quantum states; 

Six M |x> M is some desired 
property of data; 
<x|M|x> results in 
expectation of property 
M. 
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Table 3.  Summary of Time Complexity 
 

 
 
 

Step Classical Time Quantum Time Total = Classical + Quantum 
One N/A c0 + c1log(N) c0 + c1log(N) 
Two N/A c2 log(N) c2 log(N) 
Three N/A (c3 + cg) log(N) (c3 + cg) log(N) 
Four (cL + cr’) log(N) (c4 + cr’’) log(N) (c4 + cL + cr) log(N) 
Five (cm’ + c5’) log(N) (cm’’ + c5’’) log(N) (cm + c5) log(N) 
Six c6’ log(N) c6’’ log(N) c6 log(N) 
Total O(log(N)) O(log(N)) O(log(N)) 
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Chapter 7:  Summary and Conclusions 
 
 This thesis first provided a literature review, covering both the background 

and recent progress in the field of quantum algorithms.   We then focused on a new 

quantum algorithm that has recently (late 2009) attracted considerable attention in the 

quantum algorithms community.  The quantum algorithm proposed by Harrow, 

Hassidim, and Lloyd can be categorized as a phase estimation technique (using the 

Fourier transform as a mechanism for estimating the phase).   The algorithm is novel 

in that it uses the principles of quantum mechanics to solve a system of N x N linear 

equations.  Under optimum conditions (i.e., when we do not desire a readout of all N 

quantum variables), the algorithm offers exponential time speedup over classical 

algorithms.     

 A quantum algorithm that could rapidly solve a system of linear equations has 

broad applications to a variety of fields. 

 The contribution of this thesis was to analyze the classical (and related 

quantum) resources required to implement this quantum algorithm.  The analysis 

clearly distinguished between the tasks required by the classical part of the quantum 

algorithm, and the quantum resources built into the quantum circuits which 

implement phase estimation.   We determined that the time complexity of the 

algorithm (including both classical and quantum requirements) for an N x N system 

of linear equations was O(log(N)), as predicted.  Such an analysis may assist future 

experimentalists in implementing the algorithm.   
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Furthermore, by analyzing the classical resources, we hope to gain a better 

understanding on how these resources may be optimized.  As classical resources can 

determine the ultimate efficiency of quantum algorithms, optimizing these resources 

will assist us in designing more efficient quantum algorithms.   
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