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1.0 INTRODUCTION

Recently software safety (the measure of the ability of
a system to avoid safety failures which are the result of
software errors) has assumed a position of importance within
the general area of system safety [GRI81]. Many of the
techniques applied to hardware by safety engineers are
applicable to software. However, because of the differences
between hardware and software, a simple transfer of
technology is not possible. Software does not "wear out",
but errors are a result of the complexity of the software
design and implementation process. Further, software errors

remain even after extensive testing.

This paper will attempt to survey some of the existing
hardware and software techniques which can enhance software
safety and to suggest how these techniques can be
implemented in software. This particular investigation will
be concerned mainly with software design techniques which
enhance the overall safety of the system. It will be
assumed that safe software design is only one part of the
overall safety plan. In particular, it will be assumed
that, prior to the software design phase, preliminary hazard
analysis has been done on the system which the software is
to control. Obviously, the software failure modes which can
lead to safety failures are related to the system being

controlled by the software.
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Furthermore, particular importance will be placed on
the applicability of current system safety techniques to
software. It is important that software safety and system
safety techniques cooperate as closely as possible.
Ideally, software safety techniques should be able to fit
naturally into the entire system safety plan.

\

The paper concludes with a summary of some general
design principles for safe software. Although many of these
techniques are not new, they have been applied in the past
in an ad hoc and machine specific manner. Applied in a
consistent and coherent manner, they can greatly enhance the

safety of real-time critical systems.

2.0 DEFINITIONS

Communication problems are exacer?ated by a lack of
common definitions of terms. For the purpose of this paper,
the following definitions will be used. Where hardware and
software definitions of the same terms differ, the proposed
standard definitions of the IEEE Standards Committee [IEE79]

will be followed.

Hazard - a condition with the potential for causing loss of
life or property.

Software Error - a human action or inaction (during
development or maintenance) which results in software
containing a fault.
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- a manifestation of an error in software. A
fault, if encountered, may cause a failure.

Failure - The inability of a system or system component to
perform a required function within specified limits. A
software failure occurs when the failure is due to a
software fault.

- the probability that a system, including all
hardware and software subsystems, will perform a required

task or mission for a specified time in a specified
environment.

Safety Failure or Mishap - a failure which 1leads to

casualties or serious consequences. A serious consequence
is any undesired event which the designer considers to be as
or more important than the correct (reliable) operation of
the system.

Safety - the ability of the system to avoid safety failures.

Software Safety - the ability of the software system to
avoid safety failures caused by software errors.

State - one for which there are circumstances where
further processing will lead to a safety failure.

Safe System - one which prevents unsafe states from causing
safety failures.

Fail-Safe System - a 'system which 1limits the amount of
damage caused by a fault. No attempt is made to satisfy the

functional specifications except where necessary to ensure
safety.

3.0 SOFTWARE FAILURE MODES

In considering designs to increase software safety, it
is important to understand the dynamics underlying software

failure.

There seems to be some confusion as to whether or not
software fails. Some authors have claimed that software

cannot fail [ERI81, GRI8l]. Their argument is that software
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faults are the result of errors introduced by humans during
the creation of the software and do not arise spontaneously
during execution (as is the case with hardware). Therefore
they conclude that software does not fail and thus does not
have failure modes. The problem with this reasoning is a
confusion between cause and effect. A failure occurs when
the software or hardware does not perform as expected. The
antecedents of the failure may be important for post-failure
analysis and repair but are not important with respect to
whether the failure, caused by incorrect functioning, has

occurred.,

As an example, consider the following hardware box with
inputs A and B and output A + B (logical or).
A-—-=>| |
| C fl&Ee==>A *+ B
Beems | o A
C can be said to have failed when the output is not A + B.
This black box has several failure modes, including no
output at all. Now if box C is replaced by a software
routine to compute the same result, i.e. A + B, the failure
modes remain the same. It is the failure to produce the
correct output which causes the hazard. The definition of
failure then is external to the black box and cannot depend
upon whether the failure was the result of hardware or

software problems within the box.
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According to Hammer, systems failure mode and effect

analysis (FMEA) considers four failure modes:

l. Premature operation of a component (operation not
required [error of commission] or too early)

2. Failure of a component to operate at a prescribed
time (operation 1left out of sequence [error of
omission] or too late)

3. Failure of a component to cease operation at a
prescribed time (calculation takes too long or no

termination condition [infinite loop])

4. Failure of a component during operation, i.e.
incorrect output.

It is clear that software components can exhibit each

of these failure modes. That is, a module can be called at

the wrong time or not at all, it can go into an infinite
loop or take too 1long to execute, and it can produce the

wrong output.

One important thing to note is that failure of a
component to recognize a hazardous condition requiring
corrective action would also be considered as a failure of

the component during its operation.

In summary, there seems to be 1little doubt that

software can fail and has identifiable failure modes.
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4.0 SYSTEM SAFETY TECHNIQUES

In system safety five basic techniques are used to
enhance design safety. These are hazard elimination, hazard
limitation, lockouts, 1lockins, and interlocks, fail-safe
design, and failure minimization, The applicability of

these techniques to software will be examined in turn.

4,1 HAZARD ELIMINATION

During the design phase of a system, when a hazard is
discovered, elimination of the hazard should first be

attempted. It could be argued that it is not possible to

eliminate the hazard through software because a hazard is

very hardware or environment dependent. For example an
airplane has the hazard of crashing because it is in the
air. The only way to remove the hazard is to get the plane
on the ground, and this cannot be accomplished exclusively
through the software. The Kkey word is "exclusively".
Software may be used in conjunction with the hardware to
help eliminate the hazard, in this case, to issue the
commands to the hardware which are necessary to land the

plane.

Just as software and hardware have similar failure
modes, as argued above, hazards need not be limited to

hardware. In the terms defined above, a hazard was a
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condition which could 1lead to a mishap or safety failure.
In software terms, this is an unsafe state. Further a
hazard or unsafe state 1is the result of a critical fault
which in turn stems from a «critical error. Thus to
eliminate hazards in software, it is necessary to eliminate

critical errors or critical faults.

Eliminating all «critical errors is probably an
unrealistic goal. But many techniques have been developed
in software engineering and system safety to aid in this
process. These techniques on the software engineering side
include formal requirements and specification languages,
design techniques and tools, and project management
techniques. System safety techniques include preliminary
hazard analysis (PHA), failure modes and effects analysis

(FMEA) , fault tree analysis (FTA), etc.

Some critical faults can be eliminated through program
verification and validation techniques and tools, including
program debugging, automated testing, independent test and
evaluation, and proof of correctness., It may also be
possible to minimize the number of remaining critical faults
by changing as many as possible to non-critical faults, that
is, to design such that non-critical functions are separated
from critical functions and such that non-critical modules
are in turn prevented from causing a safety failure. For

example, non-critical modules might be prevented from
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accessing critical resources or the system might be designed
so that an error in a non-critical module cannot bring down
the entire system. This latter might involve the use of
watchdog timers, dynamic system reconfiguration, and strict

independence of modules.

4.2 HAZARD LEVEL LIMITATION

In many instances in system safety the hazards cannot
be eliminated but the level of the hazard may be reduced.
For example, there may be certain parameters (radiation,
temperature, pressure) that can be monitored for their
safety level. Monitoring could be used to keep track of
safety critical parameters. If these parameters exceed
certain levels, the monitoring program could invoke a
procedure that returns the parameter to a safe level. For
example, in an intensive care unit, if the level of oxygen
was too 1low the monitor could react and activate oxygen
pumps in the area. The key in hazard level limitation is to
detect the hazardous condition at a level low enough to
ensure enough time to take action. If the hazard 1level
became too high the monitoring program could have the option

to fail-safe.
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Monitors can be employed to indicate [HAM72]:

1. whether or not a specific condition exists

2. whether the system is ready for operation or is
operating satisfactorily as programmed

3. if the required input is being provided
4, if the output is being generated

5. 1if the limit is being met or exceeded

6

. Wwhether the measured parameter is abnormal.

These monitoring functions may be implemented in software.

Monitoring by itself is of no use. It must be coupled
with a means of applying corrective action. The four
principal steps in this process are detection, measurement,

interpretation, and response.

Detection must be very sensitive and capable of sensing
specific parameters. There are several ways of sensing:
continuously, continually but intermittently, or
intermittently at the desire of an operator or procedure.
The method used will depend on the rate of change of the
parameter and its importance with respect to safety. It is
very important to be able to detect abnormal conditions at
as low levels as possible to permit corrective actions to be

taken in time.
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Measurement and interpretation are closely related.
There are different ways of measuring parameters, and it is
the purpose of interpretation to make clear what the
measurements mean so that operators or programs can take
appropriate action. If the information taken 1is being
displayed to a human operator, it is very important that it
be done in a concise and useful manner. Studies are
currently being done to aid in design of systems with human
interaction [ROU81]. Models have been proposed for
different types of human-computer interactions. Some models
can be used to determine the variables to be displayed and

the appropriate format for the display. Some of the

techniques have even been used to evaluate alternate

instrument display formats for the Boeing 737. 1In the study
of the Boeing 737, a pictorial display was determined to

have many advantages over the more traditional display.

In normal situations no response is required; however,
when an abnormal situation is detected responsible operators
must be notified quickly. After notification, either

recovery or fail-safe measures will be taken.

When designing monitoring programs it is important to
note several things. Monitors themselves must be highly
reliable and the checking and cross-checking of the monitor
may be very critical. Monitors should be independent so

that a failure of a part of the program will not cause a
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failure in the monitor. Also the system should be designed
so that a failure of the monitor will not cause a failure of
the entire program. Along with monitoring parameters,
critical actions might be monitored to ensure correct

performance (buddy system).

Besides monitoring hardware, monitors can be used to
detect unsafe states in the software. This might include
using assertions to check important parameters. It is
important to detect hazardous conditions, i.e. unsafe
states, while there is enough time to prevent a safety
failure, Thus the earlier a fault is found the better, and

continual or intermittent monitoring is important.

Warnings can be used in conjunction with monitoring
programs. Warnings ‘serve to focus attention on the hazard.
Warnings may be sent to human monitors or may be in the form
of messages sent to other procedures to point out abnormal
conditions. The warnings would be used to avoid a
potentially dangerous action or to initiate fail-safe

procedures.

One further way to limit hazards in software is to
minimize the amount of time an unsafe state exists. For
example, a program might not send the command to arm a
missile until it is near its target. This might reduce the

hazard of the missile being detonated too close to its
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launch site or having the shutdown or fail-safe procedures
fail. 1In general, this example illustrates the principle of
starting out 1in a safe state and later having the software
signal a switch to a possibly unsafe state instead of
starting in an unsafe state(e.g. armed for detonation) and
later possibly switching to a safe state (e.g. shutdown) if

a hazard is detected.

4.3 LOCKOUTS, LOCKINS, AND INTERLOCKS

Lockouts, lockins, and interlocks are based on two

principles: [HAM72]

l. isolating a hazard once it has been recognized
2. preventing incompatible events from occurring, from
occurring at the wrong time, or from occurring in
the wrong sequence.
Methods to deal with these problems can improve software
safety since many software failures are caused by omission,
commission or timing errors. One type of software error
that has not been studied in detail is that of commission
(doing what is not required). Software has been very
intensively tested to make sure that it does what it is
specified to do but due to its complexity it may be able to
do a great deal more. Means to limit the actions of the

software are needed.



APPLYING EXISTING SAFETY DESIGN TECHNIQUES Page 13
TO SOFTWARE SAFETY

A lockout prevents an event from occurring or prevents
something from entering an unsafe state. A lockin maintains
an event or keeps something from leaving a safe state. One
way that operating systems have incorporated these concepts

is in the use of capabilities [DVH66].

Capabilities have been proposed to handle the problem
of shared files and memory. Essentially a capability is a
permission to use certain objects or procedures. It can be
implemented in the form of a list of permissible actions
associated with each process (program in execution). The
main principle here is that each process should have no
capability beyond what is required to perform its task.
Capabilities must be explicitly given, so that the default
is to have no access. This could be useful in real-time
critical applications by allowing only routines with the
proper authorization to access safety critical modules. An
example might be that only a few routines would have access
to a routine that launches a missile. Using capabilities
would rule out other routines accessing the launch routine

by a mistake in coding.

Interlocks are mechanisms provided to avoid timing
failures. They prevent events from occurring inadvertently
by requiring a preliminary action to have taken place first.
Again to prevent an unexpected missile launch the system

might be designed so that two procedures must be activated



APPLYING EXISTING SAFETY DESIGN TECHNIQUES Page 14
TO SOFTWARE SAFETY

in sequence. The first might be a procedure to ready the
launch and the second actually would be the command to
launch, The second would need the information that the
first had already been activated before it would continue.
This could also eliminate mistakes due to the accidental
call of a single critical procedure. If there are two
conditions or actions that should not take place together,
an interlock can be used to isolate the two events in time.
Guard gates at a railroad crossing keep pedestrians from the
track when a train is near. After the train has passed the
pedestrians can continue. 1In like manner checks can be put
into procedures to determine if it is safe to continue. " §
one critical function is not occurring then others can

proceed.

When the sequence of events is critical, an interlock
can be used to ensure the correct sequencing. In some
situations certain valves must be opened before filling a
tank. If the pumping begins first, the tank may become
overstressed by the unrelieved pressure. An addition can be
made to modules to check whether the prerequisite actions
have already taken place and then to signal when the

resulting actions have been accomplished.

Many mechanisms along these lines have been developed
for computer operating systems [SHA74] to deal with the

problems of concurrency and synchronization. Mechanisms
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which have been proposed to deal with these problems include
semaphores [DIJ68), monitors [HOA74], and kernels [WUL75].
Real-time critical applications software in many respects
has more in common with operating systems than with other
types of applications such as business programs. Thus it
seems reasonable that many of the techniques used 1in
designing operating systems are more applicable for critical
applications than the techniques used to design more

pedestrian applications software.

4.4 FAIL-SAFE DESIGN

To date one area of software safety that has not
received much systematic attention is that of fail-safe
design. In hardware systems safety, fail-safe design is
recognized as important because of the recognition of the
inevitability of hardware failure due to fatigue.
However ,there has been an optimistic outlook in software for
a long time that if only the proper design techniques can be
developed, software design errors could eventually be
removed. Recently, some software engineers are taking a
more sober look and realizing that software is probably much
too complex to really conquer using purely fault-avoidance
techniques [AVI75]. Wulf has said that it is much more
important to be able to recover from failures than to
prevent them [WUL75]. Fault-tolerance has begun to play a

bigger role in design, yet this alone is still inadequate.
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Fault-tolerant techniques may fail and provision must be

made to handle these failures.

Fail-safe designs try to ensure that the occurrence of
a failure will 1leave the system unaffected or that the
system can be put into a state in which no damage or injury
could result. Fail-safe design can be categorized into

three types [HAM72]:

l. fail-passive
2, fail-active

3. fail-operational

The goal of a fail-passive design is to reduce a system
to its 1lowest energy level in the event of a failure. An
example of a fail-passive design is a fuse for the
protection of electrical circuits. When the system is
overloaded, the fuse blows and inactivates the system, thus
preventing further damage. It 1is possible to write such
"software fuses" that disable parts of a system when a
hazardous condition is detected. This has been used for
some time in systems with a very large energy content such
as missiles and nuclear generating stations, but their use
has not been systematic or thorough. This should be an

important component of all software safety systems.
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There are some systems that you may not be able simply
to "turn off" in the event of a failure. To maintain safety
the damaged system itself must be kept in its energized
condition, though it may continue operating with reduced
function. Maintaining this situation is the goal of
fail-active (fail-soft) design. Fail-active components may
also initiate measures to eliminate the possibility of an
accident caused by a failure. With a good understanding of
the basic system, fail-active requirements can also be

designed into software,

In the past, the simplicity of the systems has caused a

tendency towards fail-passive design, but because of today's

great dependence on software in many 1life sustaining
situations, fail-active design may be of more importance.
In the design of fail-active systems the software must be
carefully divided into modules that can be reconfigured
after a failure is detected. This will help to avoid a

total "crash" of the system.

The most desirable design is one that allows the system
to function fully and safely until corrective action is
possible. Hammer calls this fail-operational and is closely
related to fault-tolerant design,i.e. trying to keep the
total system going at all costs. Fault-tolerance will be

discussed in detail in the section on redundancy.
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It is important to note at this point that these issues
of fail-safe design are what cause software safety to differ
significantly from reliability. Fail-passive and
fail-active designs really do not add much, if anything, to
the reliability of a system (i.e. the accomplishment of its
mission), and in some practical cases it may reduce the
total reliability of the system. One example might be a
nuclear generator whose software has been making some
crucial calculations. The calculations result in an answer
that makes no sense and the only alternative to keep the
generator going may be to try another routine to do the

calculations by a different method. At this point the

fail-safe monitoring program may come in and determine there

is not enough time to redo the calculation before a safety
critical point is reached so the safety monitor initiates
the reactor shutdown routines to avoid catastrophe. This
raises another issue in which software safety differs from
reliability in that the system may be functioning perfectly,
yet a safety monitoring program may detect an external
condition that is unsafe and invoke safety shutdown. Here
no reliability technique could be used to increase the
safety. Reliability (redundancy) alone is not adequate but
redundancy used together with fail-safe design may be very

important in the trade-offs between performance and safety.
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4.5 FAILURE MINIMIZATION

There are some systems that are so critical that even a
fail-safe arrangement is less preferable than a system that
will fail only rarely. For these systems, failure
minimization will be the guiding design principle. 1In an
air traffic control system a fail-safe action may be to stop
all departing aircraft and to divert all arriving aircraft
to other operational airports. One can see that this could
be a very expensive action (passenger inconvenience) and
therefore should not happen often. A combination of failure

minimization and fail-safe techniques is therefore required.

Failure rate reduction methods try to 1limit failure
during system operation. This might not seem to be
applicable to software because software does not "wear out"
as do hardware comﬁonents. This is true for some hardware
methods such as derating (using components whose capacity is
greater than required to 1lessen wear out) and timed
replacements (replacing components before they wear out).
Screening may be partially applicable by means of extensive
testing. Redundancy also would seem to have no usefulness
in software, but when modified it can be applied in several
ways. In fact most (if not all) work on fault-tolerant
software has been concerned with various forms of

redundancy.
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In hardware there are two general types of redundancy
employed - @parallel redundancy and switching redundancy.
First it is necessary to see how these are used in hardware

and then how they have been modified for software.

In parallel redundant design, several components
perform the same function at the same time. This is also
known as masking redundancy since the multiple components
are used to mask the errors of any one component by looking
at the results of all components and determining a correct
value. The masking of the fault thus occurs instantly and

automatically. There are several methods for determining

the resulting value (median select or voting). This type of

redundancy has been used in systems requiring continuous
operations within a specific time period. 1In hardware this
has mainly been implemented through replication of
individual electrical components or triple modular
redundancy (TMR). An example of the latter is the computer
to control the Saturn V, which was divided into seven parts,

each part using TMR [CB71].

Switching redundancy uses standby units which are ready
to take over when an operating unit fails. The key points
of this design are the failure detection and the switchover
(with recovery) to standby units. Examples of this method
are the telephone's electronic switching system (ESS) and

the self testing and repair (STAR) computer [AVI75].
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Hardware redundancy techniques cannot be applied
without some changes. The primary problem is that it does
no good to have several copies of the same software running
redundantly, because all copies will fail at the same place.
Software failures are due to design errors and not component
wear out, Thus the failures are deterministic and not
random., Overcoming this problem requires several different
implementations of a given specification. These
implementations can be run in parallel to mask failures., Of
course, 1if the specification is ambiguous or contains
errors, redundancy still will not help. Before comparing
the two methods of redundancy it- would be helpful to see how

they have been applied to software,

Algirdas Avizienis and his colleagues at UCLA have been
the main proponents of using parallel redundancy in software
(N-version programming). In [CA78], N-version programming
is defined as "the independent generations of N>= 2
functionally equivalent programs, called 'versions', from
the same initial specification. Chen and Avizienis state
that this specification should be in a formal specification

language and should define:

1. the function to be implemented by an N-version unit

2, data formats for special mechanisms: comparison
vectors (c-vectors), comparison status indicators
(cs-indicators), synchronization mechanisms.

3. the cross-check points (cc-points) for c-vector
generation
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4, the comparison algorithm
5. the response to the possible outcomes of
comparison,

After specification the individual units are developed.

Several special mechanisms are required for N-version
programming. Cross-check points (cc-points) are places in
the programs where c-vectors are generated. After
generation, the c-vectors are used in the comparison
algorithms. Contained in the c-vectors are comparison
variables and status flags which indicate if results matched
and what resulting actions should be taken. Some possible

actions are:

l. continuation
2. termination of one or more versions

3. continuation after update of some c-vectors.

When cc-points have been reached by a unit, synchronization
mechanisms are used to signal the driver that the
calculation is completed and the c-vector is ready for
comparison, This eliminates the problem of comparison
before all versions are finished. A supervisor program
(driver) is also needed to coordinate the execution of the N

versions and to compare their results.
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Brian Randell and his colleagues at the University of
Newcastle upon Tyne have applied switching or standby
redundancy to software in what they call "recovery blocks"

[RAN75] .

A recovery block consists of a regular programming
language block (called the primary block), an acceptance
test, and a sequence of alternate blocks. The acceptance
test is a logical expression which is evaluated to determine
if the result of a block is correct. If a primary or
alternate block does not complete (because of an error or
expiration of time limit) or fails the acceptance test, the
state is restored to that just prior to entering the
recovery block, and the next alternate (if there is one) is
entered. If all alternates fail to pass the acceptance
test, recovery 1is attempted at the 1level of the next
enclosing recovery block. If the acceptance test is passed,
control is passed to the statement after the recovery block.
Prior states to be wused for rollback are stored in a

"recovery cache",

The recovery block scheme gives general solutions to
the problems of switching to the spare component and
structuring the software system so that the extra software
does not add to the overall complexity of the system. One
difference of recovery blocks from hardware standby sparing

is that once a procedure fails, it is not permanently
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disabled. Instead the failure is treated as a transient
fault as in hardware, so that the succeeding times the
recovery block is called the sequence of modules to use is
the same. This seems to be an unfortunate choice for
software since design errors are relatively permanent
without human intervention. For recovery blocks which are
repeatedly executed much wasted time may result. Even
worse, the assertion testing in recovery blocks is fallible
and errors may sneak through with repeated execution of an
erroneous recovery block. An alternative which avoids this

problem will be described below.

In comparing the N-version programming and recovery
blocks, it is helpful to look at the primary weak points of
each., The main limitation of N-version programming is that
all versions originate from the same specification. Besides
not being able to determine if a specification is
unambiguous, it 1is very difficult to tell if one is
complete. Recent experience in software engineering has 60%
of software errors due to an inadequate specification
[LIP79]. Also if a problem has multiple distinct
intermediate or final solutions, there would be no way to

compare the different versions correctly.

The limitations of the recovery block involve the use
of acceptance tests and the restoration of the system state

after a faulty block. It may be very hard to design an
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acceptance test that is complete, and Randell admits that in
practice an incomplete test might have to suffice due to
cost and complexity [RAN75]. The problem of restoring the
system state is one of overhead. All values that are reset
during a block must be saved until the block has been
accepted, otherwise the initial values must be restored. To
handle this efficiently, special hardware will be needed.
There have been some experiments with a hardware recovery

cache [RAN75].

N-version programming, because of its parallelism,
would be more time efficient than recovery blocks.
N-version programming's error detection seems to be simpler
and more complete because an error is signalled whenever the
versions do not match., This offers much broader coverage
than the acceptance test in recovery blocks. Recovery
blocks do seem to have a finer application than N-version
programming. N-version programming has usually been
employed at a grosser level (replication of entire programs)
than at the block 1level, causing much more program
development costs than necessary. However, Chen and
Avizienis have experimented using N-version programming at a
finer level [CA78]. Recovery blocks may also be a little
less expensive to develop since the alternate version do not
need to be completely independent. This opens the way to
use older (perhaps more stable) versions of programs to back

up newer versions.
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Overall there are many tradeoffs between these methods.
The particular application has to be carefully considered
before one method is chosen. In the future most benefit
would seem to come from providing redundancy only at the
points that are safety critical and by providing that type
of fault-tolerance which is most appropriate for the

particular critical function being handled.

Because of the many disadvantages of N-version
programming and recovery blocks, a new type of mechanism to
support software redundancy should be devised. A

preliminary study of this problem has determined several

requirements and proposed some solutions.

In considering the addition of any mechanism to
increase safety, safety engineers must carefully evaluate
any added complexity. Any increase in complexity usually
has a harmful effect on safety, so one goal in adding a new
mechanism would be to increase the simplicity of the
software design as a whole. Also the more simple the
mechanism is, the easier it is to modify if there are

changes in requirements.

Closely related to the goal of simplicity is that of
reliability. 1E the mechanisms supporting software
redundancy are themselves unreliable, then the advantages of

redundancy are lost, It would be beneficial if this
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redundancy mechanism could be standardized and be used in
many software safety programs, Finally, if the
responsibility for fail-safe decisions can be centralized,

this would increase the understandability of the software.

To respond to some of the above goals, a safety
executive kernel has been suggested. The general notion of
a kernel is a group of basic data structures and procedures
that can be used to produce larger and more complex pieces
of software. The Hydra operating system [WLH81] is an
example of building an operating system from a set of kernel
primitives that were validated and thoroughly tested. The
details for a safety executive kernel would be different but
many principles are applicable. The major functions of the
executive kernel would be fault-tolerance, safety

monitoring, and fail-safe operation.

In providing for fault-tolerance, the executive would
employ a task list that specifies the execution sequence of
procedures. Along with the execution sequence, the task
list would also contain information about how the procedures
are to be executed (e.g. parallel or switching redundancy).
Each procedure would be written in a normal manner but would
include assertions and other internal checks in order to
return information on the routine's success to the

executive.
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Once a procedure has returned its status, the executive
would be responsible for determining the appropriate
response. If there were no problems, the execution sequence
in the task list could be continued. Other possible actions
would be to rearrange the order of tasks (make a faulty
primary procedure the alternate in switching redundancy) or

to disable a procedure that has taken too much time).

Using a task list for program structuring also enhances
the ability to tune a program, Changes in where
fault-tolerance is required or in how it is wused would
merely require changes in some tables within the executive
program, The individual modules would not need to be
altered, thus 1limiting the number of possible errors
introduced while maximizing the possibility of making
changes after the 'system is operational. For example,
during testing or operation, it may become apparent that a
critical module is 1less reliable than was originally
estimated. New fault-tolerant or fail-safe procedure can

then easily be implemented without major recoding efforts.

In parallel with the execution of the main procedure
sequence, several safety monitoring processes can also be
executing. These processes monitor critical parameters to
ensure that an unsafe state is discovered and/or that an
unsafe state does not lead to a safety failure. The type of

monitoring done would depend on the parameter, but these
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monitoring processes would communicate with the executive by
interrupts to warn of unsafe situations. The executive
would handle the interrupts and modify the task 1list to

continue safe operation.

By using this interrupt driven structure, the executive
would be responsible for initiating any fail-safe
procedures., Thus the logic and responsibility for
fail-safety 1is centralized and can be given top priority.
The fail-safe code is separated from the main procedures and
this increases the maintainability of the fail-safe

procedures.

An experimental system exploring the above ideas will
be developed. This system would help determine the
practicality of the ideas and the merits in comparison to

the other forms of software redundancy.

5.0 RECOMMENDATIONS AND GUIDELINES

The following is a summary of a few recommended
techniques for designing safe software. All of them must be
carefully considered when designing a system that is safety

critical.
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General software engineering practices, such as

structured design and modular programming, should be used.

Faults found through testing or methods such as fault

tree analysis should be eliminated if possible.

If faults cannot be eliminated, then measures should be
taken to limit the level of the hazard. This can be done by
monitoring safety critical parameters and, when an unsafe
state is detected, initiating recovery activities or issuing

warnings.

Start out in a safe state and only enter an unsafe

state ( e.g. arming a missile) when absolutely necessary.

Use capabilities to limit access to safety critical

functions.

Specify a safety sequence so that any safety critical
operation must be preceded by several prerequisite actions

to avoid accidental activation.

Use operating systems techniques ( e.g. semaphores,
monitors, kernels) to avoid problems of concurrency and

synchronization.
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When there is still a possibility of failure use

fail-safe design.

l., Fail-passive design reduces a system to its lowest
energy level in the event of a failure ( e.g.
disarming a missile after a certain period of
time).

2, Fail-active (fail-soft) design should be used in
systems when the system activity must be maintained
to some degree to remain safe. Malfunctioning
components may be terminated (reconfigurations).

3. Fail-operational design (fault-tolerance) is used
to ensure full system functionality in the event of
a failure. Use redundancy (parallel or switching)

for critical modules that are required to maintain
safety.

Parallel (N-version programming) or switching (recovery
blocks) redundancy may be more appropriate depending on the
application. A combination of both techniques (using a

safety executive kernel) may be useful.

6.0 PROGRAMMING LANGUAGE CONSIDERATIONS

There have been claims that Ada is not a reliable
language and should not be used in safety critical
applications [HOAS81]. To evaluate this claim, it is
necessary to understand how a programming language affects

the reliability of the resulting system.
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Faults enter a program by: 1) incomplete or ambiguous
specifications, 2) program designers overlooking
interactions among various parts of the systenm, 3)
programmers misinterpreting the specifications, design
algorithms, or data structures, 4) programmers writing a
program which does not do what the programmer thinks it will
do, 5) programmers misunderstanding some aspects of their
programming language, or 6) mechanical errors occurring
during coding, transcription, or entry. Of these, only the
fourth and fifth involve features of the programming
language itself. The others can be handled through
management and development tools which are independent of

the particular programming language being used.

Although it is not possible to prove that particular
programming language features will enhance the reliability
of the programming process, some empirical evidence has been
collected and speculation abounds. Actual experiments have
looked at particular language features, e.g. semicolon as
separator versus terminator or typed versus typeless
languages (for a summary see HOR79). We are unaware of any
experiments which have compared "small" versus "large"

languages, e.g. Fortran versus PL/1.

There has been speculation, however, that certain
language attributes will enhance reliability. These include

masterability, fault-proneness, understandability,
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maintainability, and error-checking [HOR79]. It seems
reasonable that the programmer should have mastered the
language constructs and know how to use them effectively.
The language should not be so complex that the programmers
do not wunderstand it in its entirety. This has been the
major objection to Ada. But simplicity is not the only or
even a sufficient 1language feature for reliability. Even
more important is that the language must encourage the
production of simple programs. The most powerful weapon
against erroneous programs is readability. Ada, with its
powerful abstraction, information hiding, and modularization
facilities, should allow and even promote readable programs.
Ada further encourages, and even demands, a "constructive"
approach to programming and directly supports software
development |[BN81]. These features should also enhance the

maintainability of Ada programs.

Thus although Ada can be criticized as being too large
a language, there are other features of Ada which will
enhance program reliability and safety. Further, it is
possible to program in Ada without using all the features
available. Although subsets are discouraged in order to
enhance portability, the programmers need not use all the

features that the compiler can handle.
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7.0 CONCLUSION

The application of system safety techniques to software
safety has been explored, and some resulting guidelines and
recommendations for software design in 1light of this
discussion presented. More research has to be done on the
cost analysis, tradeoffs, and reliability and/or safety of
these methods in practice. Some general conclusions can,

however, be made.

Most software development methodologies in existence
today increase reliability and hence presumably will enhance
software safety. Software is certainly safer if is contains
fewer errors, which is the goal of most software development
procedures. However, some new techniques, or perhaps new
emphasis on old techniques, are necessary to include in
these methodologies. For example, critical real-time
software is more similar to operating systems than to
application programs, and the methodologies must be adjusted
accordingly. More emphasis on potential errors is needed in
the early requirements and design stages. Design techniques
are needed which emphasize fail-safe procedures, provide
redundancy at safety critical points, and allow the
flexibility to provide different types of fault-tolerance
depending on what is most appropriate for the particular
function being handled. The particular technique for safe

design proposed in this paper is currently under study and
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development, and further results should be available

shortly.

In conclusion, with regard to programming languages,
Ada seems to have some features which will enhance software
safety and some which will not. Although it is an
interesting exercise to criticize Ada and to argue about the
ways it could be improved, the important question to the
potential user of the language is whether any better
alternatives exist. 1In the opinion of the authors, they do
not., No perfect 1language has been designed which will
guarantee that programming errors will not be made. In
comparison with other available 1languages, Ada comes out
well. Further, the arguments against the use of Ada appear
particularly ludicrous when one considers that much of the
software for critical real-time software systems is now
being written in assembly language which is by most measures

the least safe language to use,
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