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ABSTRACT OF THE DISSERTATION

Optimal Control Techniques for Resistive Wall Modes in Tokamaks

by

Mitchell Dobbs Pearson Clement

Doctor of Philosophy in Engineering Sciences (Engineering Physics)

University of California, San Diego, 2017

Professor George Tynan, Chair

Tokamaks can excite kinkmodes that can lock or nearly lock to the vacuum vessel

wall, and whose rotation frequencies and growth rates vary in time but are generally

inversely proportional to the magnetic flux di�usion time of the vacuum vessel wall.

This magnetohydrodynamic (MHD) instability is pressure limiting in tokamaks and is

called the Resistive Wall Mode (RWM). Future tokamaks that are expected to operate as

fusion reactors will be required to maximize plasma pressure in order to maximize fusion

performance. The DIII-D tokamak is equipped with electromagnetic control coils, both

inside and outside of its vacuum vessel, which create magnetic fields that are small by

xiv



comparison to themachine’s equilibrium field but are able to dynamically counteract the

RWM. Presently for RWM feedback, DIII-D uses its interior control coils using a classical

proportional gain only controller to achieve high plasma pressure. Future advanced

tokamak designs will not likely have the luxury of interior control coils and a proportional

gain algorithm is not expected to be e�ective with external control coils. The computer

code VALEN was designed to calculate the performance of an MHD feedback control

system in an arbitrary geometry. VALEN models the perturbed magnetic field from a

single MHD instability and its interaction with surrounding conducting structures using

a finite element approach. A linear quadratic gaussian (LQG) control, or H2 optimal

control, algorithm based on the VALENmodel for RWM feedback was developed for use

with DIII-D’s external control coil set. The algorithm is implemented on a platform that

combines a graphics processing unit (GPU) for real-time control computation with low

latency digital input/output control hardware and operates in parallel with the DIII-D

Plasma Control System (PCS). Simulations and experiments showed that modern control

techniques performed better, using 77% less current, than classical techniques when

using coils external to the vacuum vessel for RWM feedback. RWM feedback based on

VALEN outperformed a classical control algorithm using external coils to suppress the

normalized plasma response to a rotating n = 1 perturbation applied by internal coils

over a range of frequencies. This study describes the design, development and testing

of the GPU based control hardware and algorithm along with its performance during

experiment and simulation.
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Chapter 1

Resistive Wall Modes

To maximize fusion power gain, tokamaks designed to operate as steady state

reactors will need to operate at high plasma pressure. Unfortunately, high plasma pres-

sure also brings with it magnetohydrodynamic (MHD) instabilities, most concerning of

which is the external kink mode slowed down to a timescale commensurate with the flux

di�usion time of a nearby conducting vacuum vessel wall. Normally the ideal kink mode

has a growth rate on the order of an Alfvén time, but the electromagnetic interaction of

the perturbed plasma field with the vessel wall can induce large eddy currents that in turn

slow themode’s growth. This form of the external kink mode is known as the Resistive

Wall Mode (RWM). The stability of a tokamak plasma in the presence of such modes may

be studied using the equations of ideal MHD.

1.1 Ideal Magnetohydrodynamics

One of the simplest models for plasma treats it as a single species, infinitely

conducting fluid and is known as the ideal MHD model. The full derivation from the

1
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two-fluid equations can be found in a number of textbooks[1][3]. The ideal MHDmodel is

expressed by the following coupled equations:

∂ρ

∂t
+

⇀

∇ · (ρ⇀v) = 0 (1.1a)

ρ(
∂

∂t
+

⇀v ·
⇀

∇)
⇀v =

⇀

j×
⇀

B−
⇀

∇p, (1.1b)

which describe the mass andmomentum conservation within a plasma, where ρ is the

mass density, ⇀v is the bulk fluid velocity, p is the pressure,
⇀

j is the current density and
⇀

B is

the magnetic field. From electrodynamics, Ohm’s law relates the current density to the

fluid velocity, magnetic field and electric field
⇀

E, by[4]:

(
⇀

E +
⇀v×

⇀

B)σ =
⇀

j

where σ is the plasma conductivity, andmay also be defined as the inverse of resistivity,

η = 1
σ
. Ideal MHD is concerned with the limit when the plasma is infinitely conductive,

and Ohm’s lawmay be written,
⇀

E +
⇀v×

⇀

B = 0. (1.2)

The spatial and time evolution of the electric andmagnetic fields are given by Faraday’s

and Ampere’s laws fromMaxwell’s equations[4],

⇀

∇×
⇀

E =−∂
⇀

B
∂t

(1.3a)

⇀

∇×
⇀

B = µ0
⇀

j (1.3b)



3

where the low-frequency limit in 1.3b has been assumed in order to drop the displacement

current thatnormally appears inAmpere’s law. The last equationused to couple themodel

is the equation of state; assuming the ratio of specific heats to be γ = 5
3 , the equation of

state is given as
p
ργ

= const. (1.4)

The ideal MHDmodel is primarily concerned with the low-frequency, long-wavelength

magnetic behavior of the plasma and can be used to analyze the stability of various

plasma equilibria so long as some assumptions are valid. These assumptions include:

i) the plasma is charge-neutral; ii) the fluid velocity is much less then the speed of light;

|⇀v| � c; iii) the plasma is collisional, resulting in parallel density and pressure gradients

that allows the assumption Te = Ti to hold; and iv) the time scale is long compared to

the electron and ion cyclotron periods. Even though tokamak plasmas are essentially

collisionless, the MHDmodel is still adequate to describe the plasma’s equilibrium.

1.1.1 MHD Parameters

An important relationship to describe a plasma in the MHD context is the ratio of

hydrodynamic pressure to magnetic pressure. This property is called β and is defined as

β =
2µ0 p
B2 . (1.5)

In tokamaks, a more o�en used variant of β is normalized β[5], βN , and is defined as:

βN =
β

Ip/(r0BT )
, (1.6)
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where Ip is the plasma current in MAmps, r0 is the plasma minor radius in meters and

BT is the toroidal magnetic field in Tesla. To maximize fusion power gain in tokamaks,

high-β plasma is desirable. The scaling law for volumetric fusion power density (Pf /VP)

in tokamaks is given as[6]:
Pf

VP
∝ β

2B4
T , (1.7)

where BT is the toroidal magnetic field.

1.1.2 Ideal MHD Equilibrium in Tokamaks

In the steady state limitwhen fluid velocity and timederivatives are zero, ∂

∂t =
⇀v= 0,

1.1a-1.4 reduce to

⇀

j×
⇀

B =
⇀

∇p (1.8a)

⇀

∇×
⇀

B = µ0
⇀

j (1.8b)

⇀

∇ ·
⇀

B = 0. (1.8c)

Taking the dot product of
⇀

Bwith 1.8a gives
⇀

B ·
⇀

∇p = 0. Similarly, taking the dot product of
⇀

j with 1.8a gives
⇀

j ·
⇀

∇p = 0. These relationships imply that
⇀

B and
⇀

j are each orthogonal to
⇀

∇p and the lines representing these vectors reside on contours of constant pressure, as

shown in figure 1.1. Theoverall fieldbecomeshelical becauseof thepoloidalmagnetic field

generated by the plasma current and the toroidal field created by the toroidal field coils. A

measure of the “twistedness” of the field is known as the safety factor, q, and is the ratio of

poloidalmodenumber and toroidalmodenumber, q=m/n. Edge safety factor relates the

number of times a field line transits the toroidal direction to the number of times it transits

the poloidal direction on a given flux surface. Whenm and n are integer numbers and q is
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Figure 1.1: In a toroidal configuration, both
⇀

j and
⇀

B lie on constant-pressure,
nested flux surfaces[1].

rational, the safety factor at these surfaces becomes important for stability properties of

that equilibrium. Safety factors below 1 are not stable configurations for tokamaks.

1.1.3 Equilibrium Stability

Stability is an important issue when analyzing a system’s equilibrium, where the

important question being whether or not the system will remain at equilibrium in the

presence of small perturbations. The MHD energy principle was first investigated by

Bernstein[7], using a linearized version of the ideal MHDmodel (1.1a-1.4) and analyzing

small displacements away from equilibrium.
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1.1.3.1 Initial Value Formulation

It is assumed that all parameters have an equilibrium value (0 subscript) and a

perturbed value (1 subscript). All quantities are linearized about the background state:

X(
⇀r, t) = X0(

⇀r)+ X̄1(
⇀r, t)with X̄1/X0� 1, where⇀r is a position vector for the coordinate

system . All quantities are expressed in terms of a small displacement vector about the

position ⇀r,
⇀

ξ(
⇀r), where ⇀v1 = ∂

⇀
ξ

∂t or
⇀

ξ =
∫ ⇀v1dt. The aim of this analysis is to express all

perturbed quantities in terms of
⇀

ξ and then obtain a single equation describing the time

evolution of
⇀

ξ[3]. Initial conditions for this analysis are:

⇀

ξ(
⇀r,0) =

⇀

B̄1(
⇀
r̄,0) = ρ̄1(

⇀r,0) = p̄1(
⇀r,0) = 0

∂
⇀

ξ(
⇀r,0)

∂t
≡

⇀
v̄1(

⇀r,0) 6= 0.

Ohm’s law (equation 1.2) and Faraday’s law (equation 1.3a) may be combined to give the

induction equation:
∂

⇀

B
∂t

= ∇× (
⇀v×

⇀

B). (1.10)

The adiabatic relation given in equation 1.4 implies the spatial and temporal derivatives

of density and pressure:
⇀

∇P
P

= γ

⇀

∇ρ

ρ
,

1
P

∂P
∂t

=
γ

ρ

∂ρ

∂t
, (1.11)

which may be combined with the continuity equation (equation 1.1a) to give an equation

to describe the pressure evolution in time:

∂P
∂t

+
⇀v ·

⇀

∇P+ γP
⇀

∇ ·⇀v = 0. (1.12)
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Equations 1.1a, 1.12 and 1.10 can be integrated with respect to time to give perturbed

quantities as functions of the equilibrium quantity and the displacement,
⇀

ξ:

ρ̄1 =−
⇀

∇ · (ρ0
⇀

ξ) (1.13a)

p̄1 =−
⇀

ξ ·
⇀

∇p0− γp0
⇀

∇ ·
⇀

ξ (1.13b)
⇀

Q̄≡
⇀

B̄1 =
⇀

∇× (
⇀

ξ×
⇀

B0). (1.13c)

These perturbed quantities are then inserted into equation 1.8a to give the MHD force

operator:

F(
⇀

ξ) = ρ
∂2

⇀

ξ

∂t2 =
⇀

j×
⇀

B̄1 +
⇀

j̄1×
⇀

B−
⇀

∇p̄1 (1.14)

where the 0 subscripts have been dropped but still denote equilibrium quantities. Using

this formulation for a given perturbation, one may compute the time evolution of a

specific perturbation. However, if the only concern is whether or not a given configuration

is stable or not to perturbations, a better formulation exists and is described in the next

two sections.

1.1.3.2 Variational Formulation

Equation 1.14 may bemore explicitly written as:

F(
⇀

ξ) =
1
µ0

(∇×
⇀

B)×
⇀

Q̄+
1
µ0

(∇×
⇀

Q̄)×
⇀

B+∇(
⇀

ξ ·∇p+ γp∇ ·
⇀

ξ). (1.15)

Next, it is assumed that all perturbed quantities vary as X1 = ℜ(X1e−iωt), so that time

derivatives may be converted as ∂

∂t → ω and equation 1.14 can be written:

−ω
2
ρ
⇀

ξ = F(
⇀

ξ). (1.16)
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1.1.3.3 MHD Energy Principle

Takingequation 1.16 andmultiplyingby
⇀̇

ξ, then integratingover theplasmavolume

and finally integrating with respect to time, gives the change in system potential energy

associated with an arbitrary displacement from⇀r, to⇀r+
⇀

ξ(
⇀r):

δW =−1
2

∫
⇀

ξ ·F(
⇀

ξ)d⇀r. (1.17)

An equilibrium will be stable if δW ≥ 0, otherwise it is unstable to a perturbation. The

calculation of equation 1.17 may be done either with a vacuum surrounding the plasma,

with a conducting wall surrounding the plasma or some combination of the two, as is the

case in tokamaks. More generally, the δW of equation 1.17 may be decomposed like so:

δW = δWF +δWS +δWV , (1.18)

where the subscriptsF , S andV correspond to the fluid, surface andvacuumcontributions.

These components are expressed as:

δWF =
1
2

∫
F

[ ⇀

Q̄
µ0
−

⇀

ξ⊥ · (
⇀

j×
⇀

B)+ γp|
⇀

∇ ·
⇀

ξ|2 +(
⇀

ξ⊥ ·
⇀

∇p)∇ ·
⇀

ξ⊥

]
d⇀r (1.19a)

δWS =
1
2

∫
S
|n̂ ·

⇀

ξ⊥|2n̂ ·
∥∥∥∥∇

(
p+

B2

2µ0

)∥∥∥∥dS (1.19b)

δWV =
1
2

∫
V

|B̂1|2

µ0
d⇀r, (1.19c)

where
⇀

ξ⊥ =
⇀

ξ−
⇀

ξ · b̂0 is the displacement in the direction perpendicular to the unit vector

of the equilibriummagnetic field, b̂0, n̂ is the normal vector to the plasma surface and

‖‖ denotes the jump from vacuum to plasma. A measure of the local curvature of the
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equilibriummagnetic field, ⇀κ, is defined as

⇀
κ = b̂0 ·∇b̂0 (1.20)

and it can be shown that situations in which ⇀
κ is parallel to the gradient in equilibrium

pressure,
⇀

∇p0, that iswhen
⇀
κ ·

⇀

∇p0 > 0, leads tonegative values ofδWF , which is destabiliz-

ing. These modes are called pressure-driven instabilities and are of concern in tokamaks

in which β is to be maximized.

1.2 External Kink Modes

An external mode is one in which the equilibrium position of the plasma-vacuum

interface moves, and is sometimes called a free-boundary mode. Also, these perturba-

tions normally have an associated rational flux surface (see section 1.1.2) in the vacuum

regionbetween theplasmaand vesselwall. As shown in figure 1.2, what is called the “kink”

instability can develop in a cylindrical column of plasma with a toroidal surface current

and toroidal and poloidal magnetic fields. Qualitatively, any perturbation to the plasma

equilibriumwill deform the helical equilibrium field lines, causing the field to become

stronger in the concave region and weaker in the convex region. Normally, the strong

toroidal field is enough to stabilize this instability, but if the pressure profile gradient is

steep enough (high β) or the current profile severe enough, the kink will become unsta-

ble to perturbations and grow. The external kink mode is o�en the limiting instability

in tokamak plasma and the time scale for its growth is on the order of an Alfvén time,

τA = r0
√

ρµ0/BT , where r0 is themachineminor radius, ρ is the plasmamass density, and

BT the toroidal magnetic field. In tokamaks like DIII-D, τA is on the order of microseconds.
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It has been shown that in tokamaks and similar toroidal devices, a safety factor greater

than unity is required for kink stability, q = m
n = aBP

RBT
> 1[8][9].

Figure 1.2: External kink instability can occur in helical equilibrium magnetic
fields[2].

1.3 The Resistive Wall Mode

In most fusion experiments, the plasma is contained in a somewhat close fit-

ting vacuum vessel with some finite conductivity. Any external mode that perturbs the

plasma-vacuum interface will cause a perturbation in magnetic flux through the nearby

conductingwall, and in thewall, currentswill be generated by Lenz’s law[4] to oppose this

flux. These wall eddy currents have a stabilizing e�ect on the instability but owing to the

wall’s resistivity, the currents will decay on the order of the flux di�usion time of the wall,
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τw = Lw/Rw. Here Lw and Rw are the inductance and resistance of the wall, respectively,

and τw is o�en referred to simply as the “wall time.” This temporary stabilization reduces

the growth time scale of the external kink mode frommicroseconds (τA) to milliseconds

(τw). This special case of the external kink mode is called the Resistive Wall Mode (RWM).

Only walls that are impenetrable to changes in flux, i.e. superconducting walls, can stabi-

lize the RWM[10]. This phenomenon implies amaximum theoretical plasma pressure that

may be reached by a tokamak (βideal-wall), which is higher than if the plasma is surrounded

purely by vacuum (βno-wall).

Developing a superconducting vacuum vessel is not very practical, but fortu-

nately other methods exist for stabilizing the RWM. Onemethod is via plasma rotation,

where the electromagnetic torque generated between the wall and the plasma stabi-

lizes the mode[11]. Simulations show that the RWMmay or may not be fully suppressed

by rotation alone in future tokamak devices operating with high performance plasma

conditions[12][13][14][15]. The other method is by providing a stabilizing flux around the

plasma using electromagnetic coils positioned near the plasma-vacuum interface. These

control coils may be either internal or external to the vacuum vessel wall. Coils placed

outside of the vessel, though protected from the intense heat of the plasma and nuclear

environment, will see any imparted flux on the RWM delayed by the vessel wall. Future

Advanced Tokamaks (AT) built to demonstrate burning plasma conditions will likely not

have control coils internal to the vacuum vessel. Simulations andmodeling predict that

classical control techniques such as PID control, used with external coils on the proposed

ITER tokamakmay be ine�ective at stabilizing the RWM or may use excessive current in

doing so[16]. For active feedback, a variety of control schemes have been investigated

to counteract the RWM, including classical control and state-spacemethods[17]. A Lin-
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ear Quadratic optimal controller for RWM feedback on ITER using the in-vessel control

coils has also been proposed[18]. Other fusion experiments have had success in con-

trolling the RWM using largely classical algorithms[19][20], but it is worth noting that

these machines have very long flux di�usion times for their walls compared to other

large scale tokamaks and are not able to reach plasma parameters relevant to ATs. Two

Reverse Field Pinch (RFP) experiments, which are similar in configuration to tokamaks,

have reported using system identification techniques to develop state space models for

RWM feedback[21]. Other tokamaks have reported success in stabilizing the RWM via

active control methods[22]. Simulation of controllers based on lowerer dimensional RWM

models have yielded promising resluts for applications on the DIII-D tokamak[23][24].

Numerical simulations of feedback using Linear Quadratic Gaussian (LQG) control with

external coils and the VALENRWMmodel of the ITER tokamak have also yielded promising

results[16]. The secondmethod of stabilizing the RWMwill be extensively explored in this

dissertation since it allows the problem of stability to be solved by feedback control, or,

more specifically, model-based optimal control.

This chapter contains material which has been accepted for publication in Control

Engineering Practice. Clement, Mitchell; Hanson, Jeremey; Bialek, Jim; Navratil, Gerald.,

International Federation of Automatic Control, 2017. The dissertation author was the

primary investigator and author of this paper.



Chapter 2

Linear Systems: State-Space Methods

and Model Reduction

This chapter is intended to provide the minimum basic knowledge of state-space

linear systems needed to comprehend the subsequent chapters. This chapter also covers

model reduction techniques that reduce the dimensions of linear systemswhile nominally

maintaining the transfer function of the overall system. Classical control typically involves

the analysis of dynamic linear systems through some transform from the time domain to

the frequency domain. Suchmethods will not be covered here.

2.1 State-space Linear Systems

A system governed by linear dynamics in continuous-time (CT) may be charac-

terized by the followingmatrix-vector ordinary di�erential equation andmatrix-vector

13
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equation:

d
dt

⇀x(t) = A(t)⇀x(t)+B(t)⇀u(t) (2.1a)

⇀y(t) = C(t)⇀x(t)+D(t)⇀u(t), (2.1b)

whereA,B,CandDare the system, input, output and feed-forwardmatrices, respectively,

and ⇀y, ⇀u and ⇀x are the measurement, control and state vectors, respectively. For cases

covered in the sections to follow, the feed-forwardmatrixDwill always be zero and all

othermatrices and vectors will be real valued. When all thematrices of equations 2.1a and

2.1b do not varywith time, the system is said to be linear time-invariant (LTI). When time is,

however, discrete (as it is with digital control systems), this system has the discrete-time

(DT) representation characterized by matrix-vector di�erence equations:

⇀xk+1 = F⇀xk +G⇀uk (2.2a)

⇀yk = C⇀xk, (2.2b)

where k is the sample number and thematrices F andG are derived from the CTmatrices

A andB like so:

F = eA∆t (2.3a)

G = F(I− e−A∆t)A−1B, (2.3b)

where ∆t is the sample time and I is the identity matrix.
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2.1.1 System Stability

In the absenceof a control input, the stability of the systemdescribedby equations

2.1a and 2.2a will be governed by the eigenvalues of the systemmatrixA (CT) or F (DT).

For the CT case, if any eigenvalue ofA has a positive real part, or in the DT case, if any

eigenvalue of F is outside the unit circle in the complex plane, the system is unstable and

will grow unbounded in time.

2.1.2 Controllability and Observability

The solution to equation 2.1a is given by[25]:

⇀x(t) = Φ(t, t0)
⇀x0 +

∫ t

t0
Φ(t,τ)B(τ)u(τ)dτ (2.4)

whereΦ is the system’s state transition matrix and is defined asΦ(t, t0) = eA(t−t0). For

discrete time cases, the solution to 2.2a is

⇀x(t) = Φ(t, t0)
⇀x0 +

t−1

∑
τ=t0

Φ(t,τ+1)G(τ)u(τ) (2.5)

A system, or more specifically the pair (A(t), B(t)), is said to be controllable if there exists

some control function u(t), depending on t0 and
⇀x0, and defined on some finite closed

interval [t0, t1], that is able to transfer the state from some arbitrary initial state, ⇀x0, to the

origin (⇀x1 = 0)[25]. A test for controllability is given by whether or not the controllability

gramian,Wc,

Wc(t0, t1) =
∫ t1

t0
Φ(t0,τ)B(τ)BT (τ)ΦT (t0,τ)dτ (2.6)
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is positive definite for some t1 > t0[25]. For discrete time systemsWc is calculated as

Wc(t0, t1) =
t1−1

∑
τ=t0

Φ(t0,τ+1)G(τ)GT (τ)ΦT (t0,τ+1). (2.7)

A systemor the pair (A(t),C(t)) is said to be observable if the initial-state vector ⇀x0 =
⇀x(t0),

can be found from u(t) and y(t) measured over some finite closed interval [t0, t1][26].

Controllability and observability are related concepts and similarly a test for observability

includes determining the positive definiteness of the observability gramianWo,

Wo(t0, t1) =
∫ t1

t0
Φ

T (τ, t0)CT (τ)C(τ)Φ(τ, t0)dτ. (2.8)

For discrete time systems,Wo is calculated as

Wo(t0, t1) =
t1−1

∑
τ=t0

Φ
T (τ, t0)CT (τ)C(τ)Φ(τ, t0). (2.9)

The gramians for controllability and observability are not defined for systems with unsta-

ble eigenvalues.

2.2 Model Reduction

O�en large dimension linear systemswill havemany states that have poor control-

lability and observability. For the sake of real-time computation, these states need not be

retained. Model reduction methods are the means by which higher dimensional state-

spacemodels are reduced in dimension, while still preserving the overall input/output

relationship of the system.
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2.2.1 Balanced Realization

State-space realizations given in 2.1a and 2.2a are not unique. Consider the in-

vertible matrix Twhich can be used to transform a system’s state ⇀x by ⇀xT = T−1⇀x. This

transformation can be applied to any state-space system expressed by 2.1a and 2.1b as

d
dt

⇀xT = T−1AT⇀xT (t)+T−1B⇀u(t) (2.10a)

⇀y(t) = CT⇀xT (t). (2.10b)

An important realizationof such system is one inwhich the states are reorderedbydecreas-

ing controllability and observability, and the system’s observability and controllability

gramians are equal and diagonal[27][28]. A transformation matrix must be found that

will realize this reordering. To do so, first the Cholesky factorization of both gramians are

computed,Wc = GcGH
c andWo = GoGH

o . Next, a newmatrix is defined asH = GH
c Go,

and taking its Singular Value Decomposition gives H = UΣVH . The matrix Σ will be

diagonal and contain the Hankel Singular Values (HSVs) of the system, σ1, ..,σn, with

σ1 ≥ ... ≥ σn ≥ 0. The required transformation matrix T is then given as T = GcUΣ
− 1

2 .

This new balanced system now has the relation,Wc = Wo = Σ, and the system can be

divided into subsystems as

d
dt

⇀x1

⇀x2

=

A11 A12

A21 A22


⇀x1

⇀x2

+
B1

B2

⇀u, Σ =

Σ1 0

0 Σ2

 (2.11a)

⇀y =
[

C1 C2

]⇀x1

⇀x2

+D⇀u, (2.11b)
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whereA11 and Σ1 are r× r (r < n)matrices.

2.2.2 Singular Perturbation Approximation

With the balanced realization given in 2.11a, states beyond the dimension rmay

be disregarded, as they have limited controllability and observability and contribute little

to the overall input-output relationship of the system. A simple method would be to

truncate the system at r states, which implies that σr� σr+1. The Singular Perturbation

Approximation[29] is used tobetter approximate the low frequency input-output response

of the full system. The first step of the approximation requires setting d⇀x2
dt = 0 in 2.11a

and then solving for ⇀x2 and reinserting that into the
⇀x1 subsystem. The resulting reduced

order model is given by

d
dt

⇀x1 = Ā⇀x1 + B̄⇀u

⇀y = C̄⇀x1 + D̄⇀u,
(2.12)

where

Ā = A11−A12A−1
22 A21

B̄ = B1−A12A−1
22 B2

C̄ = C1−C2A−1
22 A21

D̄ = D−C2A−1
22 B2.

(2.13)

2.2.3 Model Reduction of Unstable Systems

Themethods described previously may only be used on stable systems. For unsta-

ble systems, theunstable subsystemmustbeseparatedviaa real Schurdecomposition[30].
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A reduction method is then applied to the stable subsystem and the unstable subsystem

is reinserted into the model[31]. Using the Schur decomposition ofA, the matrices of 2.1a

and 2.1b may be transformed as follows

As = VT AV =

A− Ac

0 A+


Bs = VT B =

B−

B+


Cs = CV =

[
C− C+

]
.

(2.14)

The transformationmatrixV can be chosen so thatA− ∈Rl×l has stable eigenvalues and

A+ ∈ R(n−l)×(n−l) has unstable eigenvalues, where l is the number of stable eigenvalues

of the full system. A decomposed state-space representation of the systemmay now be

written as

d
dt

⇀x− = A−
⇀x−+Ac

⇀x+−B−
⇀u

d
dt

⇀x+ = A+
⇀x++B+

⇀u

⇀y = C−
⇀x−+C+

⇀x+.

(2.15)

The contribution of the unstable subsystem to the stable subsystemmay be treated by

including it with the input:

d
dt

⇀x− = A−
⇀x−+ B̃ũ

⇀y = C−
⇀x−+ D̃ũ

(2.16)
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with

B̃ =

[
B− Ac

]
, ũ =

 ⇀u

⇀x+

 , D̃ =

[
0 C+

]
.

The truncation techniques of section 2.2.2maybe applied to the systemgiven by equation

2.16 to give a reduced order subsystem

d
dt

⇀x−r = A−r
⇀x−r + B̃rũ, B̃r =

[
B−r Acr

]
⇀y = C−r

⇀x−r + D̃ũ.

(2.17)

Now the unstable subsystem is added back into the system to give the final reduced order

model

d
dt

⇀xr = Ar
⇀xr +Br

⇀u

⇀y = Cr
⇀xr,

(2.18)

where

Ar =

A−r Acr

0 A+

 , ⇀xr =

⇀x−r

⇀x+

 ,

Cr =

[
C−r C+

]
, Br =

B−r

B+

 .
The state-space model methods discussed in section 2.1 will be used in the next

chapter to describe the RWM and its interaction with surrounding conducting structures,

such as in a tokamak, as a LTI state-space system. The model reduction techniques

described in section 2.2 will also be used to considerably reduce the dimension of this

system.



Chapter 3

VALEN

This chapter gives a detailed explanation of the VALEN RWMmodel. In essence,

VALEN models the RWM and the surrounding geometry of arbitrary conducting struc-

tures as a group of coupled circuit equations. This is accomplished by representing the

perturbation of flux caused by the MHDmode as a current on the unperturbed plasma

surface. VALEN requires an input file to define the geometry of conducting structures, a

kinetic equilibrium fit (kinetic EFIT)[32] of the plasma conditions when themode is active

and two user-defined parameters, s and α, where s is the stability parameter and α is the

torque parameter; values for these a�ect the growth and rotation rate of the modeled

mode.

3.1 The VALENModel

VALEN is a finite element computer code, written in FORTRAN, that models the

RWM and its interaction with surrounding conducting structures[33]. The following sec-

tions describe how VALEN formulates the RWM as a current and how this current interacts

21
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with other nearby currents either in the vacuum vessel wall, or in an electromagnetic

control coil; this is the crux of VALEN.

3.1.1 Plasma Circuit Formulation of MHD Perturbations

Once the RWM is expressed as a plasma surface current, the interaction of that

current with surrounding conducting structures is a matter of basic electrodynamics. The

idea is to leverage the definition of magnetic flux,

Φi ≡
∫

fi(θ,φ)
⇀

B ·d⇀a≡ LiIi, (3.1)

to correlate the total perturbedmagnetic field
⇀

B caused by the perturbation to a current
⇀

Ii for the ith mode or perturbation modeled. The eigenfunctions fi(θ,φ) are defined later.

To fully describe the external properties of this perturbation, the normal component

of the perturbation at the surface of the unperturbed plasma must be defined. Using

standard toroidal coordinates (r,θ,φ) and defining the surface of the plasma as r = const.,

the normal component is then equal toJ
⇀

B ·
⇀

∇r, whereJ denotes the Jacobian of the

coordinate system,J ≡ ∂
⇀x

∂r · (
∂
⇀x

∂θ
× ∂

⇀x
∂φ
). In toroidal coordinates,J has units of length

squared,
⇀

B has units of field and
⇀

∇r is a dimensionless unit vector pointing normal to the

unperturbed plasma surface.J
⇀

B ·
⇀

∇r therefore has units of magnetic flux. This normal

component can then be expressed as the linear sum of eigenmodes:

J
⇀

B ·
⇀

∇r =
∞

∑
i=0

Φi(t) fi(θ,φ), (3.2)

where the eigenfunctions fi(θ,φ) are a set of linearly independent basis functions on the

plasmasurface. Theeigenfunctionsareorthogonal andnormalizedsuch that
∫ 2π

0
∫

π

−π
fi f jdθdφ=
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δi j. The eigenfunctions can also be taken to form the weighted sum of an arbitrary dis-

placement
⇀

ξ,
⇀

ξ(θ,φ) =
∞

∑
i=0

ai fi(θ,φ), (3.3)

and from Bernstein’s[7] formulation for the MHD energy principle (section 1.1.3.3), δW

may then be written as

δW =−1
2

∞

∑
i=0

∞

∑
j=0

aia j

∫ a

0

∫ 2π

0

∫
π

−π

⇀

ξi ·F(
⇀

ξ j)dθdφdr (3.4a)

δW =−1
2

∞

∑
i=0

a2
i ω

2
i , (3.4b)

where F is the force operator and the equation of motion is written as an eigenvalue

problem of the form,

−ω
2
i ρ

⇀

ξi = F(
⇀

ξi). (3.5)

δW gives the change in potential energy in the plasma volume and the surrounding

vacuum. Using equation 3.2 and the orthogonality of the eigenfunctions, the fluxΦi may

be written as

Φi =
∫ 2π

0

∫
π

−π

fi(θ,φ)
⇀

B ·d⇀a =
∫ 2π

0

∫
π

−π

fi(θ,φ)
⇀

B ·J
⇀

∇rdθdφ. (3.6)

The next pillar of the VALENmodel is that the perturbedmagnetic field
⇀

B outside of the

plasma may be represented by a surface current distribution on a control surface just
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outside the unperturbed plasma. This surface current
⇀

K(θ,φ) is defined by the equations

⇀

B ·
⇀

∇r = 0

⇀

∇r×
⇀

B = µ0
⇀

K.

This surface current is solenoidal (
⇀

∇ ·
⇀

K = 0), tangential to the control surface and is

expressed as
⇀

K =−
⇀

∇r×
⇀

∇κ, (3.7)

with

κ(θ,φ, t) =
∞

∑
i=0

Ii(t)gi(θ,φ). (3.8)

The weighting functions gi(θ,φ) are chosen to produce the field given by equation 3.2 in

the absence of any other currents, and the functions are normalized by

∫ 2π

0

∫
π

−π

figidθdφ = 1 (3.9)

so that Ii will have units of Amperes. Now the perturbed flux and surface current given by

the ith mode are related by an inductance, Li, defined as

Φi = LiIi. (3.10)

The set of currents defined by the plasma perturbation, Ip
i , may be defined like so,

LiI
p
i =

∞

∑
j
(δi j + siλi j)Φ j, (3.11)
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where si is the stability constant of the ith mode and is defined as si = −ω2
i Li and ω2

i

is from the δW calculation of equation 3.4b. λi j is obtained by normalizing the basis

functions

λi j = (
∫ 2π

0

∫
π

−π

fig jdθdφ)−1

and, based on the normalization given in equation 3.9, λi j = 1 for i = j.

MHD analysis of plasma and plasma modes states that the potential energy re-

leased by an instability is transferred to plasma kinetic energy. That is to say, plasma

kinetic energy is a sink for the mode’s potential energy. To represent this relationship,

the current Ii associated with the ith mode is split into two terms: Ip
i , introduced in the

previous section, and which may be thought of as the part of the current associated with

the plasma’s kinetic energy, and Id
i , a current lying on a dissipative shell existing on the

surface of the plasma and is associated with the potential energy of the instability. The

total current is then expressed as the sum of the plasma perturbation current and the

current on the dissipative shell,

Ii = Ip
i + Id

i . (3.12)

Id is determined from Ohm’s law and the flux rule[4] as

dΦi

dt
=−RiId

i , (3.13)

where Ri is the resistance associated with the dissipative shell. Ri is determined to give

Ri/Li a value that is commensurate with the growth rate of the ideal mode, and in the

case of the ideal kink mode in a tokamak, this is on the order of µs.

Image currents induced in the vacuumvesselwall and currents in feedback control
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coils play an important role in the feedback stabilization of MHD instabilities. The ith

component of flux associated with an external field is expressed on the plasma surface as

Φ
ext
i =

∫ 2π

0

∫
π

−π

fi(θ,φ)
⇀

Bext ·J
⇀

∇rdθdφ =
N

∑
j=0

Mi jIw
j , (3.14)

where Iw
j are the currents in the finite elements of the wall and control coils andMi j is a

mutual inductance between the ith component and jth finite element, of which there are

N total elements. The normal field on the plasma surface for each mode is then given by

Φi = LiIi +Φ
ext
i = LiIi +

N

∑
j=0

Mi jIw
j . (3.15)

The flux through a finite element k of the wall may be written as

Φk =
∞

∑
i=0

LkiIi +
N

∑
j=0

Mk jIw
j , (3.16)

and the time evolution of flux through this finite element is given by Ohm’s law as

dΦk

dt
=−

N

∑
j=0

Rk jIw
j +Vk(t), (3.17)

whereRk j will only be finite if k = j, andVk(t) is the potential applied to the finite element

k, meaning thatVk(t)will only be finite if the element kmodels a control coil connected

to a power supply.

3.1.2 Instantaneous Plasma Response Model

The linear response of a plasma maybe represented by a permeability matrix

Pss′(t). What’s more, the plasma response may be considered instantaneous if the
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permeability can be approximated asPss′(t) ∝ δ(t)[34]. The flux,Φs, associated with a

plasma surface current, Is, can be represented as

⇀

Φs(t) = ∑
s′

Pss′
⇀

Φ
x
s′(t). (3.18)

This flux caused by external currents may be represented by the current potential (stream

function for the current in the dissipative shell[35]), κd(θ,φ, t), defined in equation 3.8.

The current potential is then used to express the energy required to perturb the plasma

as

δW =
1
2

∫ 2π

0

∫
π

−π

κd
⇀

B ·J
⇀

∇rdθdφ (3.19)

and the toroidal torque exerted on the plasma as

τφ =
∫ 2π

0

∫
π

−π

∂κd

∂φ

⇀

B ·J
⇀

∇rdθdφ. (3.20)

In toroidally symmetric plasmas (as is normally the case in tokamaks) the eigenmodes of

δW (equations 3.4band3.19) are twofolddegenerate,whereone is like a sine and theother

a cosine, and displaced by one quarter of a toroidal period from one another[34]. The flux

vector of equation 3.18 may bemore explicitly expressed as
⇀

Φs(t) = [Φ
(cos)
s (t) Φ

(sin)
s (t)]T .

It can be shown[34] that the permeability matrix may be expressed as

Pss′ =−
1

s2
s +α2

s

 ss αs

−αs ss

 Ls

Ls′

∫ 2π

0

∫
π

−π

fs(θ,φ)gs′(θ,φ)dθdφ, (3.21)

where ss is the stability constant defined in equation 3.11, Ls and Ls′ are the inductances

definedbyLs≡ Φs
Is
, thebasis function fs(θ,φ)andgs′(θ,φ)aredefined inequations3.2 and



28

3.8, respectively, and the new dimensionless parameter, αs, is the torque parameter that

quantifies the toroidal torque applied by a stationary eigenmode. The torque parameter

has the form:

αs =
Ωp−Ωs

γv
, (3.22)

whereΩp is the toroidal rotation rate of the plasma,Ωs is the toroidal rotation rate of the

mode, and γv is an e�ective viscosity coe�icient. The ratio of the torque to the energy

associated with an eigenmode is−αss/ss . Calculations of the torque are possible but

the optimal method for determining αs may be from experimental observations[34].

3.1.3 Conducting Structures Circuit Model

With the plasmamode nowmodeled as a circuit, its interaction with the surround-

ing conducting structures of the tokamakmay be studied. To do this, VALENmodels the

induced currents in 3-dimensional conducting structures as a series of coupledR-L circuit

equations[33]. Fields and currents in themodel are simplified to be quasi-static, meaning

that magnetostatic rules apply and coupled circuit equations are valid and no displace-

ment currents exist. Within the 3-dimensional structure, current density is approximated

as
⇀

J(⇀r, t) =
N

∑
j=0

I j(t)
⇀w j(

⇀r). (3.23)

The weight functions ⇀w j(
⇀r) are solenoidal,

⇀

∇ · ⇀w j(
⇀r) = 0, and correspond to macroscopic

loops of circulating current in each “mesh” element. The weight functions have units

of inverse area and define a closed vector path. I j(t) has units of Amperes and is the

current circulating within the closed path. VALEN assumes a thin shell approximation of

conducting structures,meaning that fields and currents do not vary through the thickness
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of the element.

VALEN’s circuit equations are derived by substitution into the equation for mag-

netic and electric field expressed as potentials[4],

⇀

E +
⇀̇

A+
⇀

∇φ = 0, (3.24)

where
⇀

∇×
⇀

A =
⇀

B. Each term in equation 3.24 may be expressed in terms of mesh cur-

rent and weight functions from equation 3.23. Using Ohm’s law, the electric field,
⇀

E, is

expressed by

⇀

E = η
⇀

J = η

N

∑
j=0

I j(t)
⇀w j(

⇀r) (3.25)

and the magnetic vector potential
⇀

A is written using the Coulomb gauge,
⇀

∇ ·
⇀

A = 0, as

⇀

A(⇀r) =
µ0

4π

∫
V ′

⇀

J(⇀r′)
|⇀r−⇀r′|

d3r′ =
µ0

4π

∫
V ′

∑
N
j=0 I j(t)

⇀w j(
⇀r′)

|⇀r−⇀r′|
d3r′. (3.26)

Multiplying equation 3.24 by ⇀wi(
⇀r) and integrating over the volume of all elements gives

∫
V

⇀wi(
⇀r) ·

(
η

N

∑
j=0

I j(t)
⇀w j(

⇀r)+
µ0

4π

∫
V ′

∑
N
j=0 İ j(t)

⇀w j(
⇀r′)

|⇀r−⇀r′|
d3r′+

⇀

∇φ

)
dr = 0. (3.27)

To define theR and Lmatrices, I(t) and İ(t) are not dependent on the position vector⇀r

and somay be taken out of their respective integrands to give,

Li j =
µ0

4π

∫
V

∫
V ′

⇀wi(
⇀r) · ⇀w j(

⇀r′)
|⇀r−⇀r′|

d3r′d3r (3.28a)

Ri j =
∫

V
η

⇀wi(
⇀r) · ⇀w j(

⇀r)d3r, (3.28b)
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where equation 3.28a has a similar form to Nuemann’s formula for inductance[4] and

equation 3.28b is the definition of lumped resistance. If element i is connected to a power

supply, then

Vi(t) =−
∫

V

⇀wi(
⇀r) ·∇φ(t)d3r. (3.29)

OtherwiseVi(t) = 0. The coupled equations of 3.27 can be cast into a block matrix-vector

equation of the form

Lww Lw f

L f w L f f

 d
dt

Iw

I f

=−

Rw 0

0 R f


Iw

I f

+
 0

Vf

 , (3.30a)

⇀

Φ =

[
Mw M f

]Iw

I f

 , (3.30b)

where the subscript w denotes a wall element and f denotes a feedback coil element.

The vector
⇀

Φ represents the fluxmeasured bymagnetic sensors near the wall and coil ele-

ments. A simple schematic showing DIII-D’s wall and control coils divided into conducting

finite elements is shown in figure 3.1.

3.1.4 Single Mode VALEN

At present, VALEN is equipped to handle a single plasmamode only. In this single

mode limit, equations 3.11, 3.15 and 3.16 have the form

Φw = LwIW +MwpId +MwpIp (3.31)

Φ = MpwIw +LId +LIp (3.32)

Φ = LpIp 1
1+ s

. (3.33)
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Figure3.1: TheDIII-D tokamak’swall andexternal C-coils divided into conducting
finite elements.

Using these equations, current on the plasma surface, Ip, may be defined as

Ip =−1+ s
sLp

(MpwIw +LpId). (3.34)
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This substitution allows Ip to be removed from the coupled equations when new induc-

tance matrices are defined like so

Lww = Lw−
1+ s
sLp

MwpMpw (3.35a)

Lwp = Mwp−
1+ s

s
Mwp (3.35b)

Lpw =−1
s

Mpw (3.35c)

Lp =−
1
s

Lp (3.35d)

and coupled with the time evolution of flux given by equations 3.13 and 3.17. VALEN is

now given in block matrix form as:

Lww Lwp

Lpw Lp

 d
dt

Iw

Id

=−

Rw 0

0 Rp


Iw

Id

+
Vw

0

 , (3.36a)

⇀

Φ =

[
Mw Mp

]Iw

Id

 . (3.36b)

3.1.5 VALEN Incorporates DCON

The Direct Criterion of Newcomb, or DCON[36], is an MHD stability code that ana-

lyzes a given axisymmetric toroidal equilibrium, and by a δW calculation (section 1.1.3.3),

determines the stabilityof theequilibrium. DCONbuildson the techniquesofNewcomb[37],

which analyzes the stability of cylindrical plasma, and extends them to axisymmetric

toroidal plasma. VALEN uses a DCONmode pattern plot, which provides the 3D structure

of themode on the plasma surface by defining the perturbedmagnetic field normal to the

plasma surface, δBn. The mode pattern plot also defines the eigenvalue basis functions
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of equations 3.1 and 3.2. The displacement vector,
⇀

ξ, of equation 3.3 is now represented

as a Fourier series:

ξs

ξr

= (r,θ,φ)
∞

∑
m=−∞

∞

∑
n=−∞

ξ̄s

ξ̄r

∣∣∣∣∣
m,n

(r)× ei(mθ−nφ), (3.37)

where ξs and ξr represent the surface and normal displacements, respectively. In practice,

the infinite sums in equation 3.37 are truncated at some finite numberM of components.

An example mode pattern plot is shown in figure 3.2, which shows the cosine component

of the mode (section 3.1.2). The single mode in VALEN is represented as two currents in

VALEN as
⇀

Id = [Ic Is]T , where Ic and Is are the cosine and sine components, respectively.
B
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Figure 3.2: Normal magnetic field, δBn, on the plasma surface of the cosine
component of the most unstable plasmamode as computed by DCON.

The largest plasma physics approximation used in coupling an ideal MHD stability

code like DCON to the lumped element circuit model of VALEN is to assume that the δW

eigenmode geometry computed by DCON, which has no conducting structure around

the plasma equilibrium, is not significantly altered by the presence of the surrounding

passive conducting structure andactive control coil fields. In otherwords, the no-wall kink
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eigenmode structure is “rigid” when used in the VALEN state-space model. For tokamaks

like DIII-D, with relatively sparse kink-mode spectra, this assumption has held up very

well in experiments[38][39] where the internal kink mode radial structure was found to

be in good agreement with the no-wall MHD code calculated eigenmode structure. This

means turning on a control coil does not significantly alter the kink-mode geometry and

therefore dynamically change the mutual inductive coupling between the mode and the

control coil. If this were not the case, RWM feedback control would be a very complex

non-linear problem tomodel and likely an intractable one.

3.2 State-Space VALEN

When more explicitly expressed as in equation 3.36a, the VALEN model with

plasmamode in block matrix form is given by


Lww Lw f Lwp

L f w L f f L f p

Lpw Lp f Lp


d
dt


Iw

I f

Id

=−


Rw 0 0

0 R f 0

0 0 Rp




Iw

I f

Id

+


0

Vf

0

 , (3.38a)

⇀

Φ =

[
Mw M f Mp

]


Iw

I f

Id

 . (3.38b)

To get VALEN into standard state space control form (described in section 2.1),

d
dt

⇀x = A⇀x+B⇀u (3.39)
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the inductance matrix is inverted andmultiplied through the right side of the equation

d
dt

⇀

I =−L−1R
⇀

I +L−1 ⇀

Vf , (3.40)

where

A =−L−1R =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,B = L−1 =


b11

b21

b31

 . (3.41)

The output equation given by 3.38b does not require any transformation because it

already has the form of equation 2.2b. The input to the system is the applied potential

on the control coil set being used for feedback. In single mode VALEN, the stability of

the mode, and therefore the systemmatrix,A, is a function of VALEN’s parameters s and

α. The eigenvalue ofAwith the largest real part determines the mode’s growth rate, γ,

and that eigenvalue’s imaginary part determines the rotation rate,ω. Figures 3.3 and 3.4

show the growth rate and rotation rate as functions of s and α, respectively, for a given

equilibrium. The equilibrium used is from DIII-D discharge 133103 at 3330ms.

3.2.1 Voltage Control VALEN

The feedback control problem is straightforward when the Audio Amplifiers (AAs,

section 5.2.2) are used. The AAs amplify the input signal and the voltage calculated by

the control law is multiplied by the inverse of the AA gain. The AAs then in turn amplify

the signal by a gain and deliver the required voltage to the control coils.



36

Figure 3.3: Mode growth rate, γ, as a function of s and α. The growth rate is
determined as γ = ℜ(λmax), where λmax is the eigenvalue of A from equation
3.39 with the largest real part.

3.2.2 Current Control VALEN

Use of the VALENmodel becomesmore complex when used with the Switching

Power Amplifiers (SPAs, section 5.2.1). The SPAs attempt to emulate a current source.

Figure 3.5 shows the block diagram of the SPA internal dynamics. The gainsGp,Gi and

Gd are set by potentiometer positions located physically on the SPA itself. The transfer

function governing this system is linear and a state space model approximating the SPA’s

dynamics may be easily constructed from input/output data from the SPA and control

coils. From figure 3.5, a generic state space model for the SPAs can be expressed as a two

state system

d
dt

 I

V

= A

 I

V

+BIcom. (3.42)
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Figure 3.4: Mode rotation rate,ω, as a function of s and α. The rotation rate is
determined as ω = ℑ(λmax), where λmax is the eigenvalue of A from equation
3.39 with the largest real part. The blue line shows growth rates for α equal to 0.

To estimate the system and input matrices,A and B, a least squares fit of experimental

data is done

d
dt

 I

V




I

V

Icom


+

=

[
A B

]
, (3.43)

where in this case I, V and Icom represent a time series of data, + indicates the Moore-

Penrose pseudo-inverse[30] andA andB are composed of elements

A =

α11 α12

α21 α22

 ,B =

β11

β21

 . (3.44)

AC waveform testing of SPA1 connected to C79/C259 (C-coil pairs) from shot 153236 is

shown in figure 3.6 and is the experimental data set used for identifying the SPA1 model.

Similar data sets were used for SPA2 and SPA3. This new model for the SPAs is now
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Figure 3.5: Laplace transformed block diagram of a Switching Power Amplifier
(SPA).

inserted into the existing state-space VALENmodel. VALEN already includes the current

on feedback coils. Because the internal controller of the SPA will now regulate current on

the control coil, the row associated with current on that coil is zeroed out and necessary

components from the SPAmodel are then inserted. Also, the state of VALEN is augmented

to include potential on the control coil. This modified VALENmodel now has the block

matrix form

d
dt



Iw

I f

Id

Vf


=



a11 a12 a13 b11

0 α11 0 α12

a31 a32 a33 b31

0 α21 0 α22





Iw

I f

Id

Vf


+



0

β11

0

β21


Icom, (3.45)

and the output equation for VALEN is now

⇀

Φ =

[
Mw M f Mp 0

]


Iw

I f

Id

Vf


. (3.46)
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Figure 3.6: AC waveform testing for SPA1->C79/C259. (a) shows the Pulse Width
Modulated (PWM) signal of potential (V). (b) shows the SPA command in red with
the actual SPA current (A) in black. Frequencies for the commanded sinusoidal
waveforms are 5, 10, 20 and 50 Hz.

Similarly to voltage control, the current calculated by the control law is multiplied by the

inverse of the SPA gain. The SPAs in turn amplify the signal by their gain and the internal

PID controller delivers the required voltage to the control coils.

VALEN requires four items from the user to generate the ordinary di�erential

equation and output equation given by 3.38a and 3.38b, respectively. These items are:

thegeometryof conducting structures,whichdoesnot change forDIII-D, aδBn distribution

on the plasma surface for the δW eigenmode computed from an equilibrium for the target

discharge by an MHD stability code such as DCON, and the parameters s and α. The model
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reduction techniques described in section 2.2 are used to reduce the state dimension of

VALEN from approximately 1400 states to 32 (section 6.2). The selection of parameters s

and α from experimental data is described in section 7.2.1. The next chapter described

the techniques that are used to design a feedback control system using a state-space

linear system such as VALEN in state-space form.

This chapter containmaterial which has been submitted for publication inNuclear

Fusion. Clement, Mitchell; Hanson, Jeremey; Bialek, Jim; Navratil, Gerald., International

Atomic Energy Agency, 2017. The dissertation author was the primary investigator and

author of this paper.



Chapter 4

Optimal Control

Optimal control theory is concerned with the stabilization of linear systems as

described in chapter 2. The objective of the optimal control problem is to regulate a

system’s output to some desired value (zero is perfectly acceptable). The output or

measurement of this systemmay also be corrupted by noise. To achieve this, optimal

control theory seeks to optimize, that is to say minimize, a cost function quadratic in

state and control, as well as error between actual system state and an estimated state

using measurements corrupted by zero-mean Gaussian noise. This is o�en called Linear

Quadratic Gaussian (LQG) control as the system dynamics are Linear, the cost function is

Quadratic and the noise is Gaussian. LQG control will also minimize theH2-norm of the

system’s transfer function. For this reason optimal control, specificallyH2 optimal control,

is o�en used interchangeably with LQG control. These terms will be used synonymously

herein. This chapter outlines the fundamentals of optimal control required to design

controllers and state estimators necessary for VALEN-based feedback.

41
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4.1 Linear Quadratic Regulator

4.1.1 The Regulation Problem

In control theory the regulation problem involves regulating a system’s output,

⇀y(t) (equation 2.1b), to some desired output,⇀r(t). From these two vectors, an error may

be defined as

⇀e(t) = ⇀r(t)−⇀y(t). (4.1)

Thus, the control objective is to determine a control ⇀u(t) such that the error defined in

4.1 is as close to
⇀

0 as possible[40]. A perfectly acceptable desired output is
⇀

0, which from

2.1b implies that the desired state is either
⇀

0 or in the nullspace of the system’s output

matrixC (equation 2.1b). The nullspace ofC is any vector⇀z that satisfiesC⇀z =
⇀

0, where

⇀z 6=
⇀

0[30]. In the case when the desired state is
⇀

0, it can be seen from equation 2.1a that in

the absence of control ⇀u(t),
⇀

0 is an equilibrium of the system. This means that, starting

from the initial condition ⇀x0 =
⇀

0, the systemwill not depart from this state. Consequently,

the regulator problemmay be stated as: given any state, ⇀x0 of the plant 2.1a at t0, form a

control input, ⇀u(t) for t ≥ t0, based on
⇀x(t), which is able to move the state ⇀x0 to

⇀

0[25]. In

most cases, the state of a system is not directly measured, but rather linear combinations

or projections of it. This means that ⇀u(t1)must be determined from the knowledge of ⇀y(t)

for t ≤ t1. The problem is broken into two steps to accomplish this: (1) computation of the

“best approximation” x̂(t1) of the state
⇀x(t1) from the knowledge of ⇀y(t) for t ≤ t1, and (2)

computation of ⇀u(t1) given x̂(t1)[25].
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4.1.2 State Variable Feedback

Given the state-space equations of 2.1a and 2.1b, a stabilizing control law is given

by:

u(t) =−K⇀x(t), (4.2)

which results in equation 2.1a taking the form:

d
dt

⇀x(t) = (A−BK)x(t). (4.3)

The matrixKmay be constructed to place the eigenvalues of the square matrix (A−BK)

in desirable locations, meaning that all the eigenvalues have real parts less than 0. Now,

the remaining challenge is how to constructK. To do this in the discrete time case, first a

cost function quadratic in state and control input is chosen having the form:

J =
1
2

N

∑
k=0

[
⇀xT

k Q⇀xk +
⇀uT

k R⇀uk]. (4.4)

This cost function is for a discrete-time system (section 2.1), where k is the sample number

and N is the number of samples. The infinite time horizon regulation problem deals with

the limit when N→ ∞ and will be assumed for the discussion that follows. Equation 4.2,

subject to the constraint that equation 4.4 is minimized, is called the Linear Quadratic

Regulator (LQR). A complete derivation of the LQR is available in [41]. The control input ⇀uk

will be chosen so that equation 4.4 is minimized[41]. The matricesQ andR are selected

based on the relative importance of states and controls and must be symmetric and

nonnegative definite. The selection of “penalty”matricesQ andR is done by the designer

and is covered in detail in section 6.4. Another way of stating the optimal control problem
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given by the discrete time plant of 2.2a and the cost given by 4.4, is tominimize 4.4 subject

to the constraint,

−⇀xk+1 +F⇀xk +G⇀uk = 0, k = 0,1...N. (4.5)

Lagrange multipliers may be used to solve this constrained-minima problem. This La-

grangemultiplier will be called
⇀

λk+1 for each k and is o�en times referred to as the costate

or adjoint. Now the cost is rewritten as

J ′ =
N

∑
k=0

[1
2

⇀xT
k Q⇀xk +

1
2

⇀uT
k R⇀uk +

⇀

λ
T
k+1(−

⇀xk+1 +F⇀xk +G⇀uk)
]

(4.6)

and the minimum of J ′ is found with respect to ⇀xk,
⇀uk, and

⇀

λk by di�erentiation with

respect to each vector and leads to the following three equations:

∂J ′

∂
⇀uk

=
⇀uT

k R+
⇀

λ
T
k+1G = 0 (4.7a)

∂J ′

∂
⇀

λk+1

=−⇀xk+1 +F⇀xk +G⇀uk = 0 (4.7b)

∂J ′

∂
⇀xk

=
⇀xT

k Q−
⇀

λ
T
k +

⇀

λ
T
k+1F = 0. (4.7c)

The adjoint equation of 4.7c may be rearranged as a backward di�erence equation,

⇀

λk = FT
⇀

λk+1 +Q⇀xk. (4.8)

The control input is given by rearranging 4.7a, which yields,

⇀uk =−R−1GT
⇀

λk+1. (4.9)
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Equations 4.7b, 4.8 and 4.9 form a set of coupled di�erence equations that may be used

to solve for ⇀xk,
⇀uk, and

⇀

λk so long as suitable boundary conditions are specified. From

equation 4.4 it can be inferred that ⇀uN = 0 in order to minimize J . With ⇀uN = 0 inserted

into 4.7a we have
⇀

λN+1 = 0, that with equation 4.8 gives
⇀

λN = Q⇀xN . The initial state,
⇀x0,

must be specified by the problem statement as an initial condition. It is helpful to assume

the following relationship between the state and adjoint (costate)

⇀

λk = Xk
⇀xk (4.10)

which transforms the two-point boundary-value problem in ⇀x and
⇀

λ into a single-point

boundary-value problem inX. In the infinite time horizon, as k→ ∞, the solution ofX is

constant. By using the definition of equation 4.10 and combining it with equations 4.7a,

4.8 and 2.2a, the following matrix equation results

X = FT XF−FT XG(GT XG+R)−1GT XF+Q (4.11)

and is called the Discrete Time Algebraic Riccati equation. Many computational routines

exist to solve 4.11 forX and the time-invariant optimal control gainK from equation 4.2

is given by

K = (R+GT XG)−1GT XF. (4.12)

4.2 Optimal State Estimation

The previous section 4.1.2 was concerned with determining a stabilizing control

law, assuming perfect knowledge of the system state, ⇀x. This situation is hardly the case,
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and the next step of the optimal control problem is determining an optimal state estimate,

x̂, based on what is measured from the system, ⇀y. In reality the equations that define

the discrete-time plant and output equations, 2.2a and 2.2b, are corrupted by noise and

maybe written as

⇀xk+1 = F⇀xk +G⇀uk +
⇀wk (4.13a)

⇀yk = C⇀xk +
⇀vk, (4.13b)

where ⇀wk and
⇀vk are the process andmeasurement noise, respectively, are zero-mean,

E [
⇀wk] = E [

⇀vk] = 0,

are “white” or uncorrelated in time, meaning

E [
⇀wi

⇀wT
j ] = E [

⇀vi
⇀vT

j ] = 0 if i 6= j,

and have covariances

E [
⇀wk

⇀wT
k ] = Qo

E [
⇀vk

⇀vT
k ] = Ro.

In the preceding equations, E [·] denotes the expected value of a random variable, which,

if explicitly stated, is E [
⇀x] = 1

N ∑
N
i=1 xi pi, where pi is the probability of occurrence of xi. An

optimal state estimate would be one that minimizes the error between the state estimate,
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x̂, and the actual state, ⇀x[41]. This may be quantified as the estimation error covariance,

Pe = E [(x̂−⇀x)(x̂−⇀x)T ]. (4.14)

4.2.1 The Kalman Filter

State estimation using discrete measurements is a dynamic process and the state

estimate may be updated in time based on new measurements and known system

dynamics[42]. All the measurements up to and including time k may be used to esti-

mate the system state, andwill be denoted ⇀x+k . However, if only themeasurements before,

but not including, time k are available, then the estimate is written ⇀x−k . The estimation

error covariance of 4.14 can be similarly denoted

P−k = E [(x̂−k −
⇀xk)(x̂−k −

⇀xk)
T ]

P+
k = E [(x̂+k −

⇀xk)(x̂+k −
⇀xk)

T ].

The following equations are used to update the state estimate and estimation error

covariance in time

x̂−k = Fx̂+k−1 +G⇀uk−1 (4.15a)

P−k = FP+
k−1FT +Qo (4.15b)

and are called the time update equations. Similarly, the state estimate and estimation

error covariance may be updated by using the measurement, ⇀yk at time k. The estimation
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error covariance is updated like so

P+
k = ((P−k )

−1 +CT RoC)−1 (4.16)

and the state estimate is updated as

Kk = P+
k HT R−1

o (4.17a)

x̂+k = x̂−k +Kk(
⇀yk−C⇀x−k ), (4.17b)

whereK is the estimator gain but commonly referred to as the Kalman gain. These are

called the measurement update equations. By increasing the time index by one in 4.15a

and inserting 4.16, a single equation can be used for the state estimate:

x̂−k+1 = F(x̂−k +Kk(
⇀yk−Cx̂−k ))+G⇀uk. (4.18)

The same technique may be applied to the estimation error covariance by combining

4.15b and 4.16 to give

P−k+1 = F((P−k )
−1 +CT RoC)−1FT +Qo. (4.19)

Usually, on the infinite time horizon, the estimation error covariancewill stabilize to some

steady-state value, that is to say, as k becomes large enough, Pk+1 = Pk. The estimation

error covariance equation now becomes

P = FPFT −FPCT (CPCT +Ro)
−1CPFT +Qo (4.20)
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which has almost identical form to equation 4.11. This steady-state estimation error

covariance may be used to calculate the Kalman gain of equation 4.17a. This steady-state

formulation saves computing new gains and covariances at every time step, which may

be impossible if the system state size is su�iciently large. The full derivation of the Kalman

Filter (KF) can be found in [42]. The near identical forms of 4.11 and 4.20 are why the

optimal control and optimal estimation problems are duals and may be solved using

similar pre-packaged computer routines.

A LQR coupled with the state estimate provided by a KF completes the LQG con-

trol problem. In the LQG control problem: the dynamics are linear, the cost function is

quadratic and the noise is gaussian. The techniques described here are used to design

the VALEN-based feedback algorithm that is described further in chapter 6.



Chapter 5

Control Hardware on DIII-D

This chapter gives an overview of systems on the DIII-D tokamak that are used for

feedback control of MHDmodes.

5.1 Magnetics and 3D Field Coils

DIII-D canmeasure low frequency (<20kHz) toroidal modes with toroidal mode

number, n > 0, with 34 poloidal can-type probe di�erence pairs arranged in five toroidal

arrays, and radial magnetic field with 38 saddle loop di�erence pairs arranged in six

toroidal arrays[43]. BothBp andBr arrays span 360 degrees of toroidal angle. A simple

schematic of DIII-D with coil and sensor configurations is shown in figure 5.1. Sensors

located at, above and below the low field side midplane are used and their respective

locations are shown in figure 5.1. DIII-D is equipped with 2 sets of electromagnetic control

coils for creating 3Dmagnetic fields. The I-coils, which are interior to the vacuum vessel,

are arranged in two rows of six, above and below the midplane. The C-coils, which

are external to the vacuum vessel, are arranged in a single row of six coils located on

50
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Figure 5.1: Simple cross sectional view and schematic of DIII-D sensors and 3D
control coils.

the midplane. Not shown in figure 5.1 are the axisymmetric coils responsible for the

equilibriummagnetic field that is much larger than the fields produced by the control

coils. These 3D coils are used primarily for Error Field Correction (EFC)[44] and other

3D field control[45]. Error fields arise from small errors in the symmetry of a tokamak’s

magnetic field, usually as a result of imperfect coil and vessel fabrication. The I and

C-coils are typically configured in n = 1 quartets or pairs, respectively, for feedback on

the n = 1 component of the RWM, which is expected to be dominant. This translates

to three control commands to amplifiers connected to the lead coil in each quartet or

pair. Vacuum coupling between sensors and coils, i.e. poloidal field coils, needs to be

accounted for and eliminated prior to using sensor measurements for feedback. System

latency should be kept well below the lowest expected RWM growth time, 2.5ms. The

I-coils are typically used for RWM feedback due to their proximity to the plasma edge and

because they are not encumbered by the relatively lengthy magnetic flux di�usion time

through the vacuum vessel. The present algorithm for RWM feedback uses Proportional

Integral Derivative (PID) control, using only some of the available poloidal field sensors,

to determine voltages or currents to be applied to the coils[45].
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Within the vacuum vessel of future tokamaks that are expected to operate as

reactors will be a nuclear environment, an environment in which feedback control coils

may not survive for the lifetime of the machine. For this reason, feedback techniques

using control coils located outside of the vacuum vessel will be essential and due to the

delay on flux from external coils, more advanced control algorithms than PID will be

needed.

5.2 Power Supplies

At present, two power supplies are available to drive DIII-D’s 3D field coils. The

Switching Power Amplifiers (SPAs) and Audio Amplifiers (AAs). The main di�erence be-

tween these two supplies is the input signal. The SPAs attempt to emulate a current

source and take a desired current as input. The AAs simply amplify a voltage signal and

were designed originally to drive audio equipment. Specifications for each follow.

5.2.1 Switching Power Amplifiers (SPAs)

The Robicon Corporation System Line-up 5000A Power Supplies, or more com-

monly referred to as the SPAs, are the primary power supplies for 3D fields. There are four

sets of SPAs, SPA1 through SPA4. Additionally, they may be subdivided into sub SPAs, e.g.

SPA1a, SPA1b and SPA1c. Because the SPAs take an input of desired current, and current is

proportional to magnetic field, they are primarily used for EFC with either the I or C-coils.

To act as a current source, the SPAs have an internal control circuit that measures current

on the control coil and then creates an error signal for use by a Proportional Integral

Derivative (PID) controller to regulate voltage on the coil. Gains for the PID controller

are set by potentiometer positions physically located on the SPA itself. This potential is
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Pulse Width Modulated (PWM) between -300 and +300VDC by a switching circuit. PWM is

a modulation technique used to get the results of an analog signal by pulsing a signal

between on and o�. An example of the SPA’s modulated voltage signal is shown in the

upper plot of figure 3.6. When operated in full groups, the SPAs are rated to 2800A from

.5 to 15Hz and for 3733A from 15 to 100Hz. When operated as sub SPAs, the ratings for

each sub SPA are e�ectively one third of each full SPA. The gain for the input signal is

500A/V[46].

5.2.2 Audio Amplifiers (AAs)

The Techron 7700 Series Power Supply Amplifiers, or more commonly known

as the Audio Amplifiers, are single channel industrial amplifiers that provide precision

amplification from DC to 40kHz. Although the AAs may be used in controlled current

mode, at DIII-D they are used in controlled voltage mode. This means no internal control

loop is used and the amplifiers merely amplify the input signal received with fixed, flat

gain over a specified bandwidth. Three groups of eight amplifiers are operated in parallel

to power a pair or quartet lead coil. The AAs are rated to approximately 1500A per group.

The gain for the input signal is roughly 30V/V[47].

5.3 Tesibius

Tesibius is a feedback control system built to perform advanced RWM control

using a Graphical Processing Unit (GPU). The system described herein is largely based

on the system installed at the HBT-EP tokamak[48], as it demonstrated the concept of

using a GPU for fast real-time control computation in the microsecond regime, a task

that is non-traditional in the relatively young field of GPU computing[49][50]. GPUs are
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programmed in conventional programming languages like C, and therefore can leverage

all the benefits of digital control such as decision-making or logic flow and extremely

flexible control programs[41]. Major di�erences between DIII-D’s and HBT-EP’s system

are host computer architecture, 64bit (DIII-D) versus 32bit (HBT-EP) host, a superior GPU

and the use of an LQG algorithm for MHDmode control. Tesibius integrates the following

components into a low latency, high performance system:

• NVIDIA Tesla K20c GPU, 5 GB RAM GPU.

• D-TACQ Solutions ACQ196 96 channel, 16bit digitizer.

• D-TACQ Solutions AO32 32 channel, 16bit analog output module.

• National Instruments PXI-PCIe8362, MXI-Express, 2 Port PCIe host bus adapter.

• Supermicro X9DAI-0 Motherboard running 64bit CentOS 6.5 with kernel 2.6.32.

The GPU resides in a PCIe-x16 slot on the motherboard in the same root complex as the

National Instruments Host Bus Adapters (HBAs). The HBAs each connect via cable to

a Rear Transition Module (RTM-T) attached to either the ACQ196 or AO32. The ACQ196,

AO32 and both RTM-Ts are housed in a 2U Compact Peripheral Component Interconnect

(CPCI) chassis. When memory bu�ers on the GPU are allocated for input and output,

their physical addresses on the system are found with NVIDIA’s GPUDirect Remote Direct

Memory Access (RDMA) framework[51]. These physical addresses are passed to the RTM-T

device drivers in the operating system’s kernel for real-time streaming of data to the

GPU’s onboard memory. On every sample, new data are streamed from the digitizer, the

algorithm operates on that data and writes its command to the output bu�er. The output

bu�er is read by the outputmodule and does a zero order hold, i.e. the value in the output
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bu�er is maintained throughout the sample interval. A diagram of the control system is

shown in figure 5.2.

Table 5.1: Pointnames of signals teed from the DIII-D Plasma Control System to
Tesibius

Magnetics Probes Coil Currents Plasma Current

ESLD079 F6A IP_PROBES

ESLD139 F7A

ESLD199 F6B

ISLD079U F7B

ISLD139U IU30

ISLD199U IU90

MPID067U IU150

MPID097U BCOIL

MPID127U

MPID157U

USILD079

UISLD139

UISLD199

LISLD079

LISLD139

LISLD199

UMPID037

UMPID097

UMPID157

LMPID037

LMPID097

LMPID157

MPID66M020

MPID66M200

Due to space constraints, Tesibius only temporarily has access to 24 of the 72 total di�er-

encepairs ofmagneticsprobesandsaddle loops. Magnetics signals are themeasurements

used by the VALENmodel described in chapter 3. In addition to magnetics, Tesibius gets

signals for selected poloidal field coils, lead I-coils (n = 1 quartet configuration), toroidal

field coil current and plasma current. The toroidal field current and plasma current can

be used for EFC. Table 5.1 lists the pointnames that Tesibius tees from the DIII-D Plasma

Control System (PCS).
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Figure 5.2: Control system (Tesibius) diagram. Tesibius operates in parallel with
DIII-D’s Plasma Control System (PCS).

5.4 Input/Output Latency

To test Tesibius’ input/output latency, a 10kHz sine wave was teed to an oscillo-

scope and the input of the ACQ196 digitizer. The output of the AO32 was then sent to the

same oscilloscope. A simple program that uses the output bu�er as the input bu�er was

run to directly feedback the sine wave to the oscilloscope. This way, the cross-phase can

be calculated by Fourier transforming the signals and then, based on the frequency, the

time-delay between sine waves can be used to estimate the time required for analog to

digital (A/D) and digital to analog (D/A) conversion. Because the host uses the same bu�er

for input and output, there should be no time wasted on the host for extraneous memory

transfers. This was repeated for sample times from 2µs to 11µs. A sample time of 3µs

yielded the shortest latency of approximately 12µs, as can be seen in figure 5.3. Results of

all the runs are shown in figure 5.4. A linear fit of latency for sample times greater than

or equal to 5µs is also shown in figure 5.4. The non-linearity below 5µs indicates that

the AO32 is pulling data from thememory bu�er before the digitizer has sent new data
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Figure 5.3: Illustration of input/output latency measurement. The control input
is a 10kHz sine wave (black trace), which is passed unchanged as the control
output (blue trace). Fourier analysis is used to determine the latency between
traces. Sample time used for this plot is 3µs.

to the bu�er and so the AO32 lags behind by a sample period. The o�set of the linear

fit, approximately 5µs, indicates the time required for the AO32 to pull data from the

bu�er and for the D/A conversion because input and output data are pushed and pulled

at the same time. For the 13µs sample time presently used for the LQG algorithm (section

B.2.2), the latency is approximately 25µs. This is acceptable as 25µs≪ 2.5ms, which is

the expected growth time of the RWM, and is comparable with the latency observed on

the control system at HBT-EP[49][50].
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Figure 5.4: Sample times from 2µs to 11µs are plotted against their associated
latency. The dashed line shows a linear fit of the data for sample times of 5µs
and greater.

This chapter contains material which has been accepted for publication in Control

Engineering Practice. Clement, Mitchell; Hanson, Jeremey; Bialek, Jim; Navratil, Gerald.,

International Federation of Automatic Control, 2017. The dissertation author was the

primary investigator and author of this paper.



Chapter 6

LQG Design for Real-Time Feedback

6.1 Parameter Selection

As discussed in chapter 3, s and α determine the state-space stability of VALEN’s

systemmatrix, A. This means that the unstable mode modeled by VALEN will grow in

time as b(t) = b0et(γ+iω), where the growth rate is γ = ℜ(λmax), ω is the rotation rate

ω = ℑ(λmax) and λmax is the largest eigenvalue ofA. Figure 6.1 shows the mode’s growth

rate as a function of s, while α = 0. The curve in blue of figure 6.1 is the same as the blue

line shown in figure 3.3 and using this figure, values of s can be determined to give realistic

mode growth rates. All controllers used in simulations and experiments described in

chapters 7 and 8 were designed withα = 0. Routines in the so�ware package SLICOT[52],

exposed through the Python-Controlmodule[53], were used to perform the balanced

realization and model reduction of VALEN and for computation of the controller and

observer gains.

59



60

observed growth rate = .25ms-1

�w
-1 = .4ms-1

s=
4

.5
x

1
0

-2

s=
6

.1
1

x
1

0
-2

i1ga.HANSONwcc.2015.#1

i2v.o133103_3330.008

s parameter

g
ro

w
th

 r
a
te

 [
m

s

�

1
]

s=5.67x10-2

0.10 0.05 0.00 0.05 0.10
0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 6.1: The growth rate, γ, of the modemodeled by VALEN as a function of s
with α = 0. The observed growth rate is determined in section 6.3. The curve
shown in blue is the blue line shown in figure 3.3. The region highlighted in gray
shows the range of s values used in the experiment described in section 7.1.

6.2 Model Reduction

Because VALEN is a large model (approximately 1400 states), it is not conducive to

real-time control. Therefore, a singular perturbation approximation balanced realization

(section 2.2.2) of VALEN is used for the LQG algorithm that runs on Tesibius (described in

section 5.3). A�er a VALENmodel has been produced by the FORTRAN executables and

converted into state space form, the model is balanced and reduced[16][54]. Figure 6.2

shows the Hankel Singular Values (HSVs, defined in section 2.2.1) of a balanced realization
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of a VALENmodel up to the first 32 transformed states. When given code to execute by

0

Figure 6.2: (a) plot of Hankel Singular Values (HSVs) for the first 32 states of
the balanced realization version of the VALEN DIII-D model. (b) log of HSVs.
Truncating themodel at 32 states allows for HSVs up to 1×10−6 to be accounted
for. This ensures a good approximation of the full VALEN model is retained in
much fewer states.

many threads, the GPU partitions threads into groups of 32 threads, called warps, which

are then scheduled for execution[55]. The balanced VALEN DIII-D model is truncated at

32 in order to align nicely with warps and thread scheduling and doing so allows for HSVs

up to 1×10−6 to be accounted for. Truncation at a warp boundary allows for threads to

diverge with little penalty on computation speed[55]. With the model reduced to a more

computationally manageable size, observer and controller gains may be designed by the

methods described in chapter 4.
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6.3 Observer Design

The separation principle allows for separate design of the observer gainKo and

controller gain Kc[41]. Estimates of the measurement noise,
⇀v, and the process noise,

⇀w, are required to design an optimal observer. Analysis of the observed dynamics of an

RWM in DIII-D were used as the basis for estimating measurement noise. The dynamics

of the n = 1 fit (appendix A) of the midplane poloidal field probes (MPID66M) for shot

154941, which terminated abruptly and prematurely due to an RWM, are shown in figure

6.3. The time series shown is during the early stages of the RWM and growth is assumed

to be exponential. A�er taking the log of the n = 1 fit of MPID66M and doing a linear fit of

the points, one standard deviation from the linear fit is taken as the standard deviation

of the Gaussian measurement noise vector. One standard deviation for measurement

noise is estimated at 4.86×10−5 Tesla. This value is then used to build a measurement

noise covariance matrix and is also used for the addedmeasurement noise for the sim-

ulations described in section 7.3. Tuning of the process noise standard deviation was

done in simulation by gradually and incrementally increasing the scalar value, qo, to

make a covariance matrix,Qo = qoI and identifying a value which makes the simulation

unstable: that is to say, a point at which there is too much uncertainty in the system

model to adequately do feedback. A value of 1×10−6 Amps is used for qo. The process

and measurement noise covariance matrices along with the system and output matrices,

F andC, are used to solve the Discrete Time Algebraic Riccati Equation (DARE) needed

for calculating the observer gain,Ko[41].
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Figure 6.3: (a) n = 1 fit of MPID66M array (Bp toroidal midplane array) during
shot 154941. (b) logofn= 1 fit (black), linear fit (blue), andone standarddeviation
from linear fit (red). One standard deviation of linear fit was used for covariance
ofmeasurement noise in Kalman filter and for noise in the simulations of section
7.3.

6.4 Controller Design

Design of the controller gain, Kc, is determined by parameters in the LQG cost

function,

J =
1
2

N

∑
k=0

[
⇀xT

k Qc
⇀xk +

⇀uT
k Rc

⇀uk]. (6.1)

The selection of state and control penalty matrices,Qc andRc, respectively, is a matter

of trial and error[41]. Bryson’s rule is used as a first step to identify reasonable values for
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Qc andRc[41]. Both penalties are required to be positive definite matrices, and thus they

will be diagonal with positive elements. ForRc, the diagonal is selected to have elements

like so,

Rc1,1 =
1

u2
1max

,Rc2,2 =
1

u2
2max

, ...Rcm,m =
1

u2
mmax

, (6.2)

where ummax is the maximum control input that um may reasonably actuate. In the case of

the amplifiers that command voltage to control coils, ummax is chosen to be 100 Volts. For

Qc, a similar approach is taken, where a new penalty is defined as, Q̄c, that is related to

Qc as,

Qc = HT Q̄cH, (6.3)

whereH has the same dimensions asC. This form is taken so that states enter the cost

via the important outputs[41]. ThereforeH is defined as,

H1,1 = 1, ...Hn,n = 1 (6.4)

and all other elements are equal 0. This parameter n is changeable up to the maximum

number of outputs. The diagonal of Q̄c is chosen as,

Q̄c1,1 =
1

y2
1max

, Q̄c2,2 =
1

y2
2max

, ...Q̄cp,p =
1

y2
pmax

, (6.5)

where ypmax is the maximum allowable measurement deviation frommeasurement yp

and ypmax is taken to be 1×10−3 Tesla (10 Gauss). The cost defined in equation 6.1 may be

rewritten as,

J =
1
2

N

∑
k=0

[ρ
⇀xT

k HT Q̄cH⇀xk +
⇀uT

k Rc
⇀uk], (6.6)
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where ρ is a scalar multiplier between state and control terms that may serve as a free

parameter to be scanned in control development experiments. From the selection ofQc

andRc along with the system and input matrices, F andG, the DAREmay be solved to

give the controller gain,Kc[41].

This chapter contains material which has been accepted for publication in Control

Engineering Practice andmaterial which has been submitted for publication in Nuclear

Fusion. Clement, Mitchell; Hanson, Jeremey; Bialek, Jim; Navratil, Gerald., International

Federation of Automatic Control, 2017. Clement, Mitchell; Hanson, Jeremey; Bialek, Jim;

Navratil, Gerald., International Atomic Energy Agency, 2017. The dissertation author was

the primary investigator and author of these papers.



Chapter 7

System Identification and Simulations

with VALEN

VALEN may used to simulate the e�ectiveness of RWM feedback schemes and

algorithms. As discussed in chapter 3, VALEN has two free parameters, s and α, which

determine the stability of the RWM. The growth rate of the mode is determined by s, the

stability parameter, and the rotation rate by α, the torque parameter. In order to run

simulation of control experiments, determination of VALEN’s free parameters is neces-

sary. These perturbation experiments are expected to yield a combination of s, and α,

that gives a stable, damped RWM. This chapter summarizes the results of an evening

experiment session that lasted approximately two hours in January 2016, the techniques

used to determine VALEN’s free parameters from these experiments and the simulation

of experiments using the identified response model.

66
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7.1 Controller Development

Experiments were conducted to develop and evaluate the performance of con-

troller parameters used in the VALEN-based control algorithm. Because the RWM is nearly

impossible toprovokeondemandwith a knowngrowthand rotation rate, for thiswork it is

necessary to actively stimulate the RWM using the internal I-coil set. The upper and lower

I-coil set were paired with 240◦ phase di�erence to apply an n=1 field rotating at 20Hz and

lasting 200ms. The goal of these perturbations is to drive an n=1 plasma response that

has the same structure and dynamics of the RWM, in a plasma that is otherwise stable to

the RWM. This perturbation is thenmeasured by the control algorithmwhich then does

feedback on the plasma response by driving the external C-coils. The intent of the phase

di�erence in the upper and lower I-coils is to drive the plasma response so that it has

the same “barber pole” style pitch as the normal magnetic field of a RWM as shown in

figure 3.2. During a period of nearly constant plasma parameters, lasting approximately

1.4s, four such perturbations were applied. To establish a reference for comparison, a

few shots were conducted without any feedback from the C-coils. A plot of raw signals

from one such discharge is shown in figure 7.1 and shows the current in a single I-coil, a

single Bp sensor and a single Br sensor. The RWM is assumed to have a growth rate that

grows on the order of the inverse of a wall time, τw, where τw is the inductance divided

by the resistance, L/R, of DIII-D’s wall. A generally accepted value of τw is 2.5ms, which

corresponds to an RWM growth rate, γw, of 400s-1. By keeping α = 0, VALEN’s stability

parameter, s, can now be chosen to give an RWM with the desired growth rate. Four

di�erent values of swere used: 4.5×10−2, 5.11×10−2, 5.67×10−2 and 6.11×10−2, which

correspond to approximate growth rates of 250s-1, 333s-1, 400s-1 and 490s-1, respectively.
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Figure7.1: Rawsignals fromopen loopcontroller developmentexperimentswith
n=1 I-coil perturbation at 20Hz. These experiments are described in section 7.1.
(a) Current in a single lead I-coil (IU90). (b) Poloidal (BP) field in a singleBp sensor
(MPID067U). (c) Radial (Br) field in a single Br sensor (ISLD079U). Perturbations
by the I-coils cause perturbations to the plasma equilibrium in both the poloidal
and radial directions.
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This range of s is shown in gray in figure 6.1. This assumed growth rate is manifested as

the real part of the most unstable eigenvalue of state-space VALEN’s systemmatrix,A.

During each perturbation, a new controller based on one of the listed growth rates was

used. In this manner the robustness of the VALENmodel was investigated.

Figure 7.2 shows the fast Fourier transforms (FFTs) of the n = 1 fit (appendix A) of

midplane poloidal field probes and the n = 1 fit of I-coil currents. The FFT of themidplane

poloidal field probes shows that the dominant frequency of the plasma response is

at 20Hz, the applied perturbation frequency. A meaningful figure of merit for these

1.0

Figure 7.2: (a) Fast Fourier transforms of n=1 plasma response of MPID66M array
(Bp poloidal midplane array); (b) n=1 I-coil perturbation. The highlighted region
corresponds to 20Hz.

perturbation experiments and simulation is the normalized plasma response: that is to
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say, the magnetics response at the perturbation frequency, divided by the I-coil current.

For example, in figure 7.2 the normalized plasma response is calculated by dividing the

3.99G of poloidal field response at 20Hz by the .67kA of I-coil current at 20Hz, which

gives a normalized plasma response of 5.9G/kA. The normalized plasma response was

calculated for every I-coil perturbation cycle along with time averaged βN over time

averaged plasma inductance, li, for feedback-o� (reference) shots and feedback-on shots.

These normalized plasma responses versus βN/li are plotted and shown in figure 7.6 for all

open and closed loop discharges. Feedback reduced the average figure of merit between

cases by approximately 32%. This reduction in figure of merit indicates that feedback is

e�ective at dampening the plasma response to the applied perturbation. This method

can be used to compare feedback algorithms controlling the external coils at various

frequencies of the applied perturbation.

7.2 DeterminationofVALENParameters fromExperiments

Magnetic measurements of the plasma response can be directly simulated using

VALEN. A similar technique has been used to determine the s andα parameters in a single-

mode response model on NSTX[56]. The python package mpfit[57], which implements

the Levenberg-Marquardt[58][59] technique of least-squares minimization, was used

to determine these parameters from experimental measurements of the driven, stable

plasma response to applied n=1 perturbations.

7.2.1 Frequency Domain VALEN

The n=1 fits (appendix A) of the poloidal and radial field probes and the lead I-coils

were Fourier transformed during the four 200ms perturbations of open loop shots (164816
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and 164817, from January 2016 experiments),



Bc
p(t)

Bs
p(t)

Bc
r(t)

Bs
r(t)


= FVALEN

⇀y(t),
Bp(ω) = F (Bp(t) = Bc

p(t)+ iBs
p(t))

Br(ω) = F (Br(t) = Bc
r(t)+ iBs

r(t))
(7.1)

Ic(t)

Is(t)

= Fic


IIU30(t)

IIU90(t)

IIU150(t)

, I(ω) = F (I(t) = Ic(t)+ iIs(t)). (7.2)

Where ⇀y(t) is a vector of poloidal and radial field magnetics measurements, IIUXX(t) is the

time signal of currents in a particular lead I-coil and FVALEN and Fic are fitting matrices, de-

fined in appendix A, used to determine the n=1 sine and cosine components of magnetics

signals or I-coil currents. The perturbation frequency, 20Hz for these shots, was used to

identify the applicable bins for the Fast Fourier Transforms (FFTs) of magnetics and lead

I-coil currents. The ratio of these complex numbers is the normalized plasma response

expressed in G/kA,

B̃p(ω
∗) = Bp(ω

∗)/I(ω∗)

B̃r(ω
∗) = Br(ω

∗)/I(ω∗)
,



B̃c
p(ω
∗)

B̃s
p(ω
∗)

B̃c
r(ω
∗)

B̃s
r(ω
∗)


=



ℜ(B̃p(ω
∗))

ℑ(B̃p(ω
∗))

ℜ(B̃r(ω
∗))

ℑ(B̃r(ω
∗))


= ỹobserved(ω

∗), (7.3)

whereω∗ indicates the perturbation frequency. The sine and cosine components of ỹobserved

in equation 7.3 are averaged for the eight perturbation cycles. For plots of normalized
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plasma response, |B̃p(ω
∗)| or |B̃r(ω

∗)| is used.

The VALEN state-space equations 3.39 are Fourier transformed as follows:

F
(

d
dt

⇀

I(t) = A
⇀

I(t)+B
⇀

V (t)
)

(7.4a)

iω
⇀

I(ω) = A
⇀

I(ω)+B
⇀

V (ω) (7.4b)
⇀

Iw(ω)

⇀

I f (ω)

⇀

Id(ω)

=
⇀

I(ω) = (Iiω−A)−1B
⇀

V (ω), (7.4c)

where
⇀

V (ω) and
⇀

I(ω) are now phasors and functions of the perturbation frequency, 20Hz,

and I is the identity matrix. During experiments, the SPAs were used to command 675A at

20Hz through the lead coils and phase shi�ed by 60◦in adjacent coils. Because VALEN’s

inputs are voltages on each control coil andnot current on the coil, in order to simulate the

I-coil perturbation, an appropriate amplitude for the voltage phasormust be found to give

the correct amplitude for the current phasor. A routine using the Levenberg-Marquardt

technique of least-squaresminimizationwas used to find this voltage amplitude using the

form of equation 7.4c, except that the matricesA andB are constructed from the vacuum

matrices L andR generated by the VALEN pre-processor CUPR13. This is essentially the

finite elementmodel of conducting structures in vacuum, i.e., with no plasma. In equation

7.4c,
⇀

V (ω) takes the form

⇀

V (ω) =−V


e−i π

6

e−i π

2

e−i 5π

6

 , (7.5)

whereV is the amplitude from least squares fitting. The output measurement of Fourier
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transformed state-space VALEN is now

Bp(ω)

Br(ω)

= FVALEN
⇀y(ω) = FVALENC

⇀

I(ω), (7.6)

where
⇀

I(ω) is found from equation 7.4c and FVALEN is the complex version of the fitting

matrix from equation 7.1. The I-coil currents may be extracted from the phasor
⇀

I(ω) like

so:

Iic(ω) = Fic
⇀

I f (ω), (7.7)

B̃p(ω) = Bp(ω)/Iic(ω)

B̃r(ω) = Br(ω)/Iic(ω),

(7.8)

where Fic is the complex version of the fitting matrix from equation 7.2 and
⇀

I f (ω) is deter-

mined from equation 7.4c. Now the normalized plasma response for Fourier transformed

state-space VALEN is calculated as:



B̃c
p(ω
∗)

B̃s
p(ω
∗)

B̃c
r(ω
∗)

B̃s
r(ω
∗)


=



ℜ(B̃p(ω))

ℑ(B̃p(ω))

ℜ(B̃r(ω))

ℑ(B̃r(ω))


= ỹVALEN(ω

∗). (7.9)

With observedmeasurements from experiments (equation 7.3), measurements

from Fourier transformed VALEN (equation 7.9) and an estimate for measurement error, a

chi-squared distribution can be used to test the goodness of fit between observed data
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and a VALENmodel composed of a given s and α. The chi-squared is given as:

χ
2 =

m

∑
i=1

(ỹobserved(ω)i− ỹVALEN(ω)i)
2

σ2 , (7.10)

where σ2 is the variance in the measurement error. Here, the variance is estimated by

averaging the quantities in the Fourier bins adjacent to the perturbation frequency. The

Levenberg-Marquardt algorithm will iterate over s and α in order to minimize the χ2

value. In theory, the routine converges and terminates when no changes in the model

parameters can decrease χ2 any further. The i2 file used to generate VALEN during this

iterative process is basedon a DCONmodepattern plot (section 3.1.5) froma similar plasma

equilibrium. Least squares fitting converged on values of s and α of 2.433× 10−2 and

−1.255× 10−1, respectively. These values correspond to the red triangles shown in

figures 3.3 and 3.4.

7.3 Simulation

Using the convergeduponvaluesof sandα, a VALENmodel canbebuilt to simulate

experiments. This model will henceforth be referred to as “the plant”, i.e., the system

to be controlled, as is the standard in control engineering terminology. This model is

converted from continuous to discrete time and the plant is run for 200ms with a sample

time of 13µs, as is done in practice.
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7.3.1 Open Loop Simulation

First, the open loop case, i.e., with no feedback, is described. The simulation is

run as a for loop using the discrete timemodel:

⇀x f = A′⇀xp +B′
⇀

ik

⇀yk = M⇀x f +
⇀
ν

⇀xp =
⇀x f ,

(7.11)

where the variable ⇀
ν is zero-mean, white, Gaussian noise as determined in section 6.3.

The matrices A′ and B′ are the 13µs discrete time versions of matrices A = L−1
eff R and

B = L−1
eff whereLeff andR are from equation 3.38a. B′ is the input matrix for the I-coils.

M is from equation 3.38b. Variables ⇀x f and
⇀xp are the future and past states of the plant

and are initially zero at the start of simulations. The subscript k indicates the for loop

index, and for 200ms discretized at 13µs, there are 15385 indexes in the loop. The variable
⇀

ik is the sinusoidal voltage waveform for the I-coil perturbation and is a 3 by 15385 matrix

array. The variable ⇀yk is a 24 by 15385 array used to store measurements at each time

step for later plotting. Open loop simulation results are shown in figure 7.3. Normalized

plasma response is calculated in the samemanner as described in section 7.1 using the

measurements stored in ⇀yk. Plots of the Fourier transformed signals for the open loop

simulation are shown in figure 7.4.

7.3.2 Closed Loop Simulation

Closed loop simulations were also done to evaluate the e�ectiveness of feedback

schemes employing the C-coils. In the simulation, the outputs of the plant are used
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0

Figure 7.3: Open loop simulation of controller development experiments with
n=1 I-coil perturbationat 20Hz. (a) lead I-coil currents (A). (b)midplaneBp sensors.
(c) midplane Br sensors. These experiments are described in section 7.1. This
figure compares open loop simulation results to experimental results shown in
figure 7.1.
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Figure 7.4: (a) Fourier transformed signals of the n=1 fits of the midplane Bp
(MPID66M) array. (b) FFT of n = 1 fit of upper I-coils. The normalized plasma
response is the value of the black diamond divided by the red diamond.
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to inform the feedback signal to the C-coils. Two types of feedback algorithms were

used for simulations. The current method for RWM feedback in use by the DIII-D PCS is

proportional gain control. The algorithm is a variation of the widely used Proportional

Integral Derivative (PID) controller, with some smoothing filters incorporated. The transfer

function for this PID controller is written as,

⇀u(s) =
1

1+ sτp

(
Gp +Gi

1
1+ sτi

+Gd
sτd

1+ sτd

)
F⇀y(s), (7.12)

where Gp, Gi and Gd are the proportional, integral and derivative gains, respectively,

and τp, τi and τd are their respective filter time constants[60].
⇀y is a vector of magnetics

signals and F is a fit matrix that maps poloidal field sensors to control coils and is based

on the discharge’s helicity. This matrix enables the PID algorithm to be coupled with a

MIMO system. To implement this in discrete time, equation 7.12 is z-transformed to give

the following:

⇀zp
k = cp1(F

⇀yk +F⇀yk−1)− cp2
⇀zp

k−1, (7.13a)

⇀zi
k = ci1(

⇀zp
k +

⇀zp
k−1)− ci2

⇀zi
k−1, (7.13b)

⇀zd
k = cd1(

⇀zp
k −

⇀zp
k−1)+ cd2

⇀zd
k−1, (7.13c)

where k denotes the time index. Filter coe�icients are defined as,

cp1 =
δt/(2τp)

δt/(2τp)+1
, cp2 =

δt/(2τp)−1
δt/(2τp)+1

, (7.14a)

ci1 =
δt/(2τi)

δt/(2τi)+1
, ci2 =

δt/(2τi)−1
δt/(2τi)+1

, (7.14b)

cd1 =
1

δt/(2τd)+1
, cd2 =

δt/(2τd)−1
δt/(2τd)+1

, (7.14c)
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where δt is the sample time. Finally, the control input is computed as

⇀uk = Gp
⇀zp

k +Gi
⇀zi

k +Gd
⇀zd

k . (7.15)

Equations 7.13a-7.13c are simple, single pole low-pass filters. Typical values used by the

PCS forGp range from 20-80 Vcom/Vs, where Vs is the digitizer voltagemeasurement of

the field and Vcom is the commanded voltage. This method uses only the magnetics

signals from the MPID66M (mid-plane poloidal field) array, meaning that ⇀yk of equation

7.13a is composed only of Bp probes. For proportional gain only control,Gi andGd are

set to zero. A range of proportional gains was used in simulation ranging from 200 to

700Vcom/Vs and τp=0.05ms. Simulations may be done with either current or voltage

control VALEN models for the plant, as described in section 3.2, for either PID or LQG

control. Design of the LQG observer and controller are described in chapter 6 and are

based on an unstable VALENmodel that has been reduced in system dimension using

model reduction techniques (section 2.2). This controller model is not the samemodel as

the plant, as they have di�ering values of s and α, but are built from identical equilibria,

meaning the 3D structure of the mode is identical. Similarly to the open loop simulation,
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the closed loop simulation is run in a for loop as:

⇀x f = A′⇀xp +B′
⇀

ik +B′′⇀u

⇀yk =
⇀y = M⇀x f +

⇀
ν

#PID feedback #LQG feedback

⇀e f = F⇀y, x̂ f =ΦΦΦx̂p +Ko
⇀y

⇀zp
f = cp1(

⇀e f +
⇀ep)− cp2

⇀zp
p,

⇀uk =
⇀u =−Kcx̂ f

⇀zi
f = ci1(

⇀zp
f +

⇀zp
p)− ci2

⇀zi
p, x̂p = x̂ f

⇀zd
f = cd1(

⇀zp
f −

⇀zp
p)+ cd2

⇀zd
p

⇀uk =
⇀u = Gp

⇀zp
f +Gi

⇀zi
f +Gd

⇀zd
f

⇀ep =
⇀e f ,

⇀zp
p =

⇀zp
f ,

⇀zi
p =

⇀zi
f ,

⇀zd
p =

⇀zd
f

⇀xp =
⇀x f ,

(7.16)

where variable ⇀u is the voltage feedback command to the C-coil and F is the fit matrix of

equations 7.12 and 7.13a. The vectors ⇀e and⇀z are from equations 7.13a-7.13c. The scalars c

are from equations 7.14a-7.14c. B′′ is the plant’s input matrix for the C-coils. The matrices

Kc andKo are the controller and observer gains built from the unstable, reduced VALEN

controller model described by A′r, B′′r and Mr. ΦΦΦ is the closed loop dynamics matrix,

A′r−B′′r Kc−KoMr. Variables x̂ f and x̂p are the future and past observer state estimates

and are initialized as zero vectors. The variable ⇀uk is a 3 by 15385 array used to store the

input at each time step. All other variables are the same as in equation 7.11. For the closed

loop cases, the normalized plasma response is also calculated as described in section

7.1 using ⇀yk and I-coil currents extracted from the state, ⇀xp. For the feedback voltages

calculated by the feedback algorithm, the commanded voltage and current in each lead
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coil can be studied to ensure it is within the capability of the power supply driving the

coil. An example of coil feedback, along with current, as extracted from VALEN’s state, for

LQG voltage control feedback is shown in figure 7.5.

Time (ms)

0

Figure 7.5: Voltage control closed loop feedback coil voltage (commanded) and
current (extracted from VALEN state) for 20Hz I-coil perturbation. C79, C139 and
C199 are the lead C-coils in each C-coil pair. (a) C-coil voltage command in each
lead coil (V). (b) C-coil current in each lead coil (A). The C-coil feedback identifies
the perturbation frequency and suppresses the plasma response.

7.3.3 Comparison with Control Development Experiments

Open and closed loop simulations done at 20Hz can be directly compared to

experiments done with 20Hz perturbations (discharges 164816-164819, from January

2016). The LQG controller used for simulation was identical in design to one used in

discharges 164818 and 164819, described in section 7.1. This controller used VALEN param-

eters s=5.67e-2 and α=0 with controller parameters n=5, ρ=1×10−3, tset=70ms, qc=1×106

and rc=1×10−4. The closed loop simulation of normalized plasma response well repli-

cates the experimental results and are shown in figure 7.6. VALEN does not simulate
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βN divided by plasma inductance, βN/li; therefore, the simulation result of normalized

plasma response spans the entire horizontal axis.

3.2

Figure 7.6: Comparison of open and closed loop simulations results with con-
trol development experiments (164816-164819) with 20Hz I-coil perturbation.
Simulations described in sections 7.3.1 and 7.3.2 well replicate the experimental
results of section 7.1. VALEN does not simulate βN divided by plasma inductance,
βN/li; therefore, the simulation result of normalized plasma response spans the
entire horizontal axis.

7.3.4 Frequency Response Simulations

Because of the good correlation between experiment and simulation seen in

section 7.3.3 and figure 7.6, this technique was used to scan controller parameters to find

a controller that minimized closed loop plasma response while commanding voltages
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and currents that arewithin the capability of coil power supplies. The controller used here

and in experiments from February 2017 (section 8.1), was designed in this way, largely

by trial and error methods. This controller used VALEN parameters α=0 and s=5.667e-2,

with controller parameters, n=18, ρ=3×10−3, tset=70ms, qc=1×106 and rc=1×10−4. The

VALEN model used for the controller was also built from the same i2 file as the VALEN

model used to simulate the plant. Proportional controllers may be tested in a similar

fashion, with proportional gain of 200Vcom/Vs and τp=0.05ms, as shown in figure 7.7. Open

and closed loop simulations were run at several perturbation frequencies, and in this

way, the performance of each type of controller can be evaluated against the open loop

case. Results of these simulations for positive and negative frequencies are shown in

figure 7.7. A negative frequency indicates that the helicity of the perturbation is reversed.

Simulations donewith large proportional gain (≥ 500Vcom/Vs) reveals a system resonance

in the -30 to -40Hz range, as shown by the magenta line in figure 7.7. The cause for this

resonance is not completely understood, but may have some connection to the selection

of filter parameters in equations 7.14a.

7.3.5 Current Control Simulations

No experiments were done with LQG current control, but simulation results are

included to validate the current control modifications that may be done to the VALEN

model described in section 3.2.2. For the LQG current controller used in simulation, VALEN

parameterswereα=0 and s=9.e-2, with controller parameters, n=24, ρ=1×10−3, tset=70ms,

qc=1×106 and rc=4.4×10−7. Results of these simulations are shown in figure 7.8. Current

control feedback is capable of suppressing plasma response, but is not as e�ective as

voltage control feedback simulations (section 7.3.2). This is likely due to the slow internal
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Open loop
Closed loop - LQG

wall frequency(τw
-1)

Figure 7.7: Simulation of both open loop and voltage control closed loop feed-
back using LQGandproportional gain over several perturbation frequencies. The
large proportional gain used, 500Vcom/Vs, shown in magenta, reveals a resonant
frequency between -30 and -40Hz. These simulations reveal that all feedback
algorithms are most e�ective in all cases at lower positive frequencies, where
the low-pass filtering e�ects of the vacuum vessel wall are less severe.
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PID control loop inside the current control amplifier (section 5.2.1) which controls current.

Figure 7.8: Simulation of both open loop and closed loop feedback using LQG
current control over several perturbation frequencies. Current control feedback
is capable of suppressing plasma response, but is not as e�ective as voltage
control feedback. This is likely due to the slow internal PID control loop inside
the current control amplifier (section 5.2.1) which controls current.

This chapter contains material which has been accepted for publication in Control

Engineering Practice andmaterial which has been submitted for publication in Nuclear

Fusion. Clement, Mitchell; Hanson, Jeremey; Bialek, Jim; Navratil, Gerald., International

Federation of Automatic Control, 2017. Clement, Mitchell; Hanson, Jeremey; Bialek, Jim;
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Navratil, Gerald., International Atomic Energy Agency, 2017. The dissertation author was

the primary investigator and author of these papers.



Chapter 8

Experimental Results

This chapter summarizes the results of experiments fromMarch 2016 and February

9th and 13th 2017. The February 2017 experiments were dedicated solely to supporting

this dissertation. In the March 2017 experiment, feedback using the VALEN-based LQG

algorithmwas done in “piggy back”.

8.1 Frequency Scan Experiments

Using the same experimental technique described in section 7.1, the e�ect of the

frequency of the I-coil perturbations was investigated. The target discharge was also

tailored to allow for up to six perturbations during flat-top vice four used in previous exper-

iments. Also, during the interim between experiment days, simulations of this experiment

were conducted in VALEN, as described in chapter 7, to design amore optimized controller.

This optimized LQG controller was then used to attempt C-coil control of perturbation

experiments. For comparison purposes, a proportional controller using DIII-D’s plasma

control system (PCS) was used for feedback as well. Values forGp and τp were 100V/V and

87
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0.05ms, respectively. A true PID controller designed by Dr. Erik Olofsson and using system

identification techniques was also used for comparison. An interesting characteristic of

the proportional controller feedback was that the controller o�en applied significant

C-coil current in the -30 to -40Hz range regardless of the I-coil perturbation frequency.

Furthermore, more o�en than not, this application of current at what is suspected to

be a resonant frequency or harmonic of the system drovemore plasma response than

the I-coil perturbation itself. An example of this phenomenon is shown in figure 8.1. The

1.0

Figure 8.1: (a) Fast Fourier transforms of n=1 plasma response of MPID66M array
(Bp poloidal midplane array). (b) n=1 I-coil perturbation and n=1 C-coil feedback
for proportional only controller. Proportional controller applies significant cur-
rent at -35Hz (spike in blue), which is not the I-coil perturbation frequency of
-240Hz (spike in red). As a result, the C-coils drive more plasma response at
-35Hz than the I-coils at -240Hz. The proportional controller drove more plasma
response at the resonant frequency than at the perturbation frequency in over
half cases.
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bottom plot of figure 8.1 shows the I-coil perturbation current at -240Hz (red trace) which

is also reflected by the spike at -240Hz in the top plot showing the n = 1 poloidal field

(Bp) response. Figure 8.1 also shows the C-coil feedback current (blue trace) is greater at

-35Hz than at -240Hz, which causes a spike in plasma response at -35Hz as shown in the

top plot. The spike in plasma response at -35Hz is greater than at -240Hz. This resonance

was also predicted by VALEN simulations with high proportional gain (GP=500Vcom/Vs),

as shown in figure 7.7. A more conservative calculation of normalized plasma response

may also be used in which the measured plasma response at the frequency of maximum

plasma response is used, even if that di�ers from themeasurement at the perturbation

frequency (as used in section 7.1). This method is used in the discussion that follows and

is denoted asmax plasma response in the figures.

The normalized plasma response versus perturbation frequency is shown in figure

8.2 for open loop (no feedback) and closed loop (with feedback) discharges. The points

highlighted above the entire data set have been filtered for 3.7≤ βN/li < 3.8. The filtering

on time-averaged βN/li is done in order to isolate and compare similar discharges, as

normalized plasma response is proportional to βN/li. The vertical red lines in figure

8.2, and labeledwall frequency, are the angular frequency inverse wall times,±63.7Hz=

1/(τw2π), where τw = 2.5ms. At frequencies above this value, the flux from the C-coils

is e�ectively screened out because the vacuum vessel wall acts as a low-pass filter and

thus feedback at higher frequencies is not expected to have as much of an impact on

suppressing plasma response as it does at lower frequencies. LQG feedback wasmost

successful at suppressing plasma response at frequencies below the wall frequency as

can be seen by the trend of black diamonds in figure 8.2. Open loop and LQG closed loop

simulation results, using VALEN parameters fit from experiments described in section
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wall frequency (τw
-1)

PID closed loop(max PR)

open loop

LQG closed loop

E.Olof closed loop

Figure 8.2: Normalized plasma response (G/kA) versus I-coil perturbation fre-
quency (Hz) foropen loop (blue), LQGclosed loop (black) andproportional closed
loop (red) for the timeaveraged3.7≤ βN/li< 3.8. The filteringon time-averaged
βN/li is done in order to isolate and compare similar discharges, as normalized
plasma response is proportional to βN/li. LQG feedback was most successful at
suppressing plasma response at frequencies below the wall frequency as can be
seen by the trend of black diamonds.



91

7.1, of normalized plasma response versus perturbation frequency is shown in figure 8.3,

along with open loop (no feedback) and closed loop (with feedback) for discharges with

time-averaged βN/li≥ 3.7. The decent agreement between simulation and experiment

Figure 8.3: Normalized plasma response (G/kA) versus I-coil perturbation fre-
quency (Hz) for open loop (blue), LQG closed loop (black) and proportional
closed loop (red) for time averaged βN/li ≥ 3.7. VALEN simulation results for
closed loop (black line) and LQG closed loop (blue line) are also shown. Sim-
ulation results well approximate the experimental results for discharges with
βN/li≥ 3.7.

for higher values of βN/li shown in figure 8.3 shows the simulation techniques of chapter

7 were successful at designing an LQG controller that worked well with minimal testing

in actual experiments. Figure 8.4 shows C-coil RMS current versus I-coil perturbation
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frequency for both LQG and proportional controllers. The filtering e�ects of the wall were

modeled in VALEN; the results show thatC-coil RMScurrent using the LQGcontroller based

on VALEN (black diamonds) uses considerably less current at higher frequencies than

the proportional controller (red triangles). Moreover, the LQG controller applies more

current at frequencies below the wall frequency because that frequency region is where

feedback will be most e�ective. Together figures 8.2 and 8.4 show that the proportional

controller (red triangles) applied far more current at higher frequencies without any

observable improvement in reduction of normalized plasma response compared to the

LQG controller (black diamonds).

Another performancemetric for feedback is a parameter called “e�iciency”, de-

fined as eff =
√

2
2 ×

I∗
IRMS
× 100%, where I∗ is the current applied at the perturbation

frequency (as shown in the FFT plot), and IRMS is the RMS current of the n=1 fit of the C-coil

current during the perturbation period. The
√

2
2 is a normalizing scale factor to ensure that

a purely sinusoidal wave would not have an e�iciency of greater than 100%. In qualitative

terms, the e�iciency demonstrates how well the controller identifies the perturbation

in comparison to other noise and disturbances that may be occurring at frequencies

other than the perturbation frequency. C-coil e�iciency versus perturbation frequency

for closed loop discharges with βN/li > 3.0 is shown in figure 8.5. This plot shows the

variation of the proportional controller’s (red triangles) frequency dependence on e�i-

ciency: that is, as frequency increases, a large fraction of the proportional controller’s

power is not being used to suppress the plasma response but rather beingwasted to drive

plasma response at the system’s resonant frequency. In contrast, the e�iciency of the

LQG controller (black diamonds) is high across a wide range of perturbation frequencies.
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Figure 8.4: C-coil RMS current (kA) versus I-coil perturbation frequency (Hz) for
LQG closed loop (black) and proportional closed loop (red) for time averaged
βN/li > 3.0. The filtering e�ects of the wall were modeled in VALEN; the results
show that C-coil RMS current using the LQG controller based on VALEN uses
considerably less current at higher frequencies than the proportional controller.
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Figure 8.5: C-coil e�iciency (%) versus I-coil perturbation frequency (Hz) for LQG
closed loop (black) and proportional closed loop (red) for time-averagedβN/li >
3.0. At higher frequencies a large fractionof theproportional controller’s power is
not being used to suppress the plasma response but rather beingwasted to drive
plasma response at the system’s resonant frequency. In contrast, the e�iciency
of the LQG controller is high across a wide range of perturbation frequencies.
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8.2 Perturbations at a Single Frequency

Figure 8.6 shows the normalized plasma response versus βN/li for all open and

closed loop perturbations done at 20Hz from 2016 and 2017 experiments. A clear trend

is visible in which normalized plasma response rises with βN/li, but the relation is not

necessarily linear. An improvement between the 2016 controllers (mark 1) and the 2017

controller (mark 2) can be also be seen in figure 8.6. A more optimized controller was

createdby trial anderrorbychanging thepenatlymatricesof the linearquadratic regulator

(equation 6.1) using the techniques of section 6.4. Each newly designed controller was

tested in closed loop simulation as described in section 7.3.2 until a controller was found

that was most e�ective at suppressing the normalized plasma response with achievable

control inputs in each control coil. Dozens of simulations were done in this manner until

the mark 2 controller was arrived upon.

8.3 Attempts at High Performance Plasmas

8.3.1 Feedback on High Performance Plasma

The LQG controller developed in section 7.1 was briefly tested during high perfor-

mance plasma experiments on DIII-D in March 2016. These experiments were conducted

in βN regimes inwhich RWMs are likely to occur. Figure 8.7 shows the results of two similar

discharges with themajor exception that feedback is on or o�. Discharge 165885, in which

there was no C-coil feedback, terminates early due to an RWM around 2100ms, as shown

by the large excursion observed in poloidal magnetic field activity and highlighted in

yellow of subplot (a). This largemode is responsible for the collapse in βN seen in subplot
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3.1

Figure 8.6: Comparison of βN/li versus normalized plasma response (G/kA) at
20Hz perturbation frequency for all open and closed loop experiments (2016
and 2017). The cyan squares andmagenta diamonds depict the 2016 experiment
described in section 7.1, while the blue squares and black diamonds are data
from the 2017 experiment described in section 8.1.
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(b) of figure 8.7. Discharge 165898 (the trace in blue), on the other hand used the VALEN-

based LQG algorithm for C-coil feedback, identical to one used during the perturbation

experiments, and was thus able to achieve the desired βN until the end of the discharge.

Subplot (b) in figure 8.7 shows traces of βN for feedback-o� (black trace) and feedback-on

(blue trace) discharges. The time period highlighted in red in (b) is expanded in subplot

(a) of figure 8.7 and displays the n = 1 fit of the midplane poloidal field (Bp) sensors. The

feedback-o� trace (black trace) shows significant n = 1MHD activity around 2080ms and

is an RWM; the early stages of the RWM are highlighted in yellow. Subplot (c) expands

the highlighted yellow region in subplot (a); the linear fit of the log of the feedback-o�

magnetics signal, .88ms, is consistent with the expected growth time of the RWMa and is

shown in sublplot (d). Subplot (e) shows the n = 1 fit of the C-coil feedback signal used

for the feedback-on case, in which an RWM did not occur.

8.3.2 Dedicated High Performance Plasma Discharges

Several discharges were devoted to testing the LQG and proportional controllers

on high βN plasmas, a parameter that should be maximized for Advanced Tokamak

operation. For these discharges, the βN target for the neutral beam injection system is

ramped from 3.1 to 5.1, from 3 to 5 seconds, or from 3 to 4 seconds. Graphical summaries

for the maximum βN reached for LQG and proportional control are shown in figures 8.8

and 8.9, respectively. While both controllers nominally reach the same maximum βN

at approximately the same time, the proportional controller uses 77%more current, as

shown in figure 8.9 (note the di�erent scales for C-coil current in the two figures), much

of which is at the resonant frequency -31.7Hz (see figure 8.10). This significant amount

of field generated by the C-coils drives a strong plasma response at that frequency, as
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Figure 8.7: (a)(c)(d) the n=1 fit of midplane poloidal field, Bp, magnetics
(MPID66M), (b) normalized plasma beta, βN , and (e) n=1 C-coil current are
shown for high performance plasmadischarges 165885 (black) and 165898 (blue).
165885 terminates early due to an RWM (region highlighted in red) and su�ers a
collapse in βN . 165898 is able to achieve the desired βN by C-coil feedback. (a)
depicts the magnetics during the time highlighted in red in (b), during the RWM.
(c) and (d) highlight the magnetics during the 1.6ms period highlighted in yellow
in (a).
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Figure 8.8: (a) βN as calculated by the magnetic equilibrium reconstruction
codes EFIT01 and EFIT02; (b) n=1 poloidal field (black)/C-coil current (blue); (c)
n=1 poloidal field (black)/C-coil (blue) phase versus time for 168952 using the
mark 2 LQG controller. They highlighted grey region indicates when feedback is
on. The βN target for the neutral beam injection system is ramped from 3.1 to 5.1,
from 3 to 5 seconds, or from 3 to 4 seconds.
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Figure 8.9: (a) βN as calculated by the magnetic equilibrium reconstruction
code EFIT01; (b) n=1 poloidal field (black)/C-coil current (blue); (c) n=1 poloidal
field (black)/C-coil (blue) phase versus time for 169034 using the proportional
controller. They highlighted grey region indicates when feedback is on. The βN
target for the neutral beam injection system is ramped from 3.1 to 5.1, from 3 to 5
seconds, or from 3 to 4 seconds. The phase plot shows plasma response being
driven at the resonant frequency -31.7Hz by the C-coils.
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shown in the phase plot of figure 8.9. Most of these discharges were ultimately hindered

Figure 8.10: FFT of the n=1 C-coil current for 169034 starting from 2980ms to
maximum βN using proportional control. A large amount of current, .6kA, is
being wastefully applied at the resonant frequency of -31.7Hz.

from reaching higher βN due to the onset of tearing modes, which are seen in figures 8.8

and 8.9 andwhich are not a�ected by feedback control, shortly a�er the βN peak. Tearing

modes are indicated by the high frequency (> 5kHz) activity in the n=1 fit of poloidal

field magnetics. Two independently generated kinetic EFITs[32] were made for discharge

168952 at time 3565, the peak βN reached, and were analyzed using the stability code

CalTrans (Corsica)[61] in order to determine a refined βN from a kinetically constrained

equilibrium as well as identify the no-wall and ideal-wall βN limits. The calculated results

for βN were 3.57 and 3.67, the no-wall βN limits were 3.52 and 3.67 and the ideal-wall βN

limits were 4.36 and 4.7.

8.3.3 Comparison of Steady-State Advanced Tokamak Discharges

The discharge 133103 has been identified as a DIII-D discharge exhibiting desirable

properties for a steady-state Advanced Tokamak type discharge due to its noninduc-

tive current fraction near unity, high bootstrap current fraction and βN>3.5 for over 1
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second[62]. Discharge 133103 was used as the target discharge (with modifications, most

notably the βN target for Neutral Beam Injection (a plasma heating source) for all of the ex-

periments described in sections 7.1 and 8.1. Discharge 133103 used the PCS’ PID algorithm

with the I-coils and SPA power supplies for RWM feedback. A similar high βN discharge

was attempted in shot 168953, similar to 168952 using the LQG controller on the C-coils.

This controller was able to achieve a similar βN for a longer period than shot 168952 due

to less detrimental tearing activity. Discharge 168953 was able to nearly replicate the

βN trace of 133103 as shown in figure 8.11, demonstrating the e�ectiveness of the LQG

controller using a more reactor relevant control coil set.

This chapter contains material which has been accepted for publication in Control

Engineering Practice andmaterial which has been submitted for publication in Nuclear

Fusion. Clement, Mitchell; Hanson, Jeremey; Bialek, Jim; Navratil, Gerald., International

Federation of Automatic Control, 2017. Clement, Mitchell; Hanson, Jeremey; Bialek, Jim;

Navratil, Gerald., International Atomic Energy Agency, 2017. The dissertation author was

the primary investigator and author of these papers.
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0

Figure 8.11: (a) βN(EFIT01), (b) qmin(EFIT01) and (c) injected beam power for dis-
charges 133130 (blue) and 168953 (black). 133103 is a DIII-D discharge with βN
at values for what is expected in a steady-state Advanced Tokamak. Discharge
168953 was able to e�ectively reproduce this discharge using external vice inter-
nal control coils.



Chapter 9

Conclusions and Future Work

Experimental results and simulations presented in this dissertation indicate that

H2 optimal control techniques, also known as Linear Quadratic Gaussian (LQG) control,

used with the VALEN RWMmodel are e�ective at mitigating resistive wall modes. These

techniques were proven to be e�ective when used with control coils external to the toka-

mak’s vacuum vessel wall that is relevant for next-step nuclear-grade fusion experiments.

Perturbation experiments using DIII-D’s I-coils (in-vessel coils) were used to validate con-

troller designs and simulations of these experiments using VALEN were used to design

controllers with optimized performance characteristics. These controllers were then used

to demonstrate RWM control using external C-coils for feedback control.

9.1 Conclusions

An LQG controller based on the VALENmodel has been developed for RWM feed-

back on DIII-D using its ex-vessel control coils (C-coil). This control algorithm has been

implemented on a low-latency GPU-based control system using 24magnetics sensors,

104
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measuring poloidal and radial field at various toroidal and poloidal locations surround-

ing the plasma volume. The algorithmwas first tested in experiments in which DIII-D’s

external coils provide feedback on plasma perturbations driven by the tokamak’s internal

control coils (I-coil). In this experiment, the I-coils were used to drive an n=1 plasma

response on a stable plasma that mimics the 3D structure of an RWM. Parameters for the

VALENmodel were fit to perturbation experiments carried out at a single frequency, and

using these empirically derived parameters, these experiments were simulated using

VALEN. By simulation, feedback algorithms could be tested and optimized and led to a an

optimized controller used in later experiments.

The controller was then tested during discharges that achieve high plasma pres-

sure and conditions conducive to MHDmodes like the RWM. O�en these discharges failed

to complete without any form of RWM feedback, but were able to attain higher βN with

either I-coil feedback using proportional only feedback gain driving the SPAs, or C-coil

feedback using the LQG algorithm driving the AAs. Steady state, high βN discharges

that had only previously used I-coil feedback were very nearly reproduced using VALEN-

based LQG feedback and the C-coils; an approach that may be extendable to next-step

nuclear-grade tokamak devices.

9.2 Future Work

LQG control assumes the spectrum of noise in the system is white (colored for

sampleddata systems) andGaussian formeasurementnoise andprocessnoise. This is not

very realistic. The Kalman filter described in this work was optimized very little during the

course of experiments and simulation. Measurements in tokamaks are indeed corrupted

by some amount of measurement noise (thermal noise) but o�en there are other MHD
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events occurring that are not the RWM. One such example are edge localized modes

(ELMs) that appear as period bursts in magnetics signals during high confinement or H-

mode discharges. One method to deal with these would be to incorporate a disturbance

model during observer design. This ,however, may require a linear model for ELMs, which

may be impractical. Another optimal control technique that is worth investigating isH∞

optimal control[42]. In LQG orH2 optimal control, the control law and observer attempt

tominimize the system’sH2 transfer function norm. InH∞ control, it is theH∞- norm that

is minimized. This technique is o�en referred to as aworst-case design and is intended

to improve system robustness. Other filtering techniques are worth investigating such

as particle filters[42], which are non-linear filters and very computationally intensive.

Particle filters relyonsequentialMonteCarlomethodsbasedon“particle” representations

of probability densities, they are probability-based estimators and are well equipped

to handle non-Gaussian noise. These techniques may o�er improvements in removing

systemdisturbances such as ELMs from any system state estimate andmay help to further

improve feedback.

The LQG feedback kernel described in chapter 6 and appendix B uses only one of

the 13 available GPU Streaming Multiprocessors (SMs). Sequences of operations running

on the GPUmay be further parallelized into streams, which may run concurrently on the

GPU[55]. A streammay run on one or more SMs, depending on the number of threads re-

quired for the stream. To fully utilize the computational resources of the GPU for real time

computations, additional tasks may be run as concurrent streams. One such algorithm is

Error Field Correction (EFC)[44], which seeks to cancel out magnetic fields generated by

construction imperfections in the tokamak. The EFC algorithm produces essentially a

DC field and is computed from toroidal field and plasma current measurements. An EFC
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kernel has been run in parallel with the LQG feedback kernel, with the vector sum of the

outputs of both algorithmsbeing sent topower supplies. This summation is accomplished

by a third kernel that waits for the completion of the other two algorithms to complete by

waiting a prescribed number of clock cycles and then reading from their output bu�ers

and adding the commands together. This is shown graphically in figure 9.1. The EFC

algorithm computes currents on each lead coil and is used with current control power

supplies. Because this field is essentially DC, a voltage control algorithm could easily be

derived using Ohm’s law, but remains to actually be done. Addition of the EFC algorithm

brings the total number of concurrent streams running, and number of SMs used, up to

three. One excellent use of the unused SMs and computing capability on the GPU would

be for MHD equilibrium reconstruction. This is currently accomplished at DIII-D using the

EFIT code[32], which iteratively solves the Grad-Shafranov equation. Parallelization of

the EFIT code for use on the GPU, named P-EFIT, has already been demonstrated at the

EAST tokamak[63]. Real time equilibrium reconstruction is essential for discharge shape

control, also known as the “isoflux” technique[64]. This could be easily handled by an

additional stream as shown in figure 9.1. This is the future of GPU powered control.
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Appendix A

Mode Fitting

This section describes how the amplitude and phase of MHDmodes, with toroidal

mode number n, are extracted from an array of sensor measurements that are spaced

toroidally at di�erent poloidal locations around a tokamak[65]. To solve for the sine and

cosine components for a given sensor, the following over determined set of equations is

used:

S∗ sin(n∗φ
sensor
1 )+C ∗ cos(n∗φ

sensor
1 ) = Φ

sensor
1

S∗ sin(n∗φ
sensor
2 )+C ∗ cos(n∗φ

sensor
2 ) = Φ

sensor
2

...

S∗ sin(n∗φ
sensor
N )+C ∗ cos(n∗φ

sensor
N ) = Φ

sensor
N ,

(A.1)

where φ is the toroidal angle of the sensor, and N is the number of sensors in the array.

Equation A.1 may bemore compactly written as a matrix vector equation:

AN×2
[

S
C

]
2×1 =

⇀

Φ
sensor
N×1 . (A.2)
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The matrixA in equation A.2 is o�en called a fittingmatrix. To solve equation A.2 for S

andC, the pseudo-inverse of matrixA is used, which will give a least squares solution:

[
S
C

]
2×1 = [A+]2×N

⇀

Φ
sensor
N×1 . (A.3)

The amplitude and phase of themode can be determined from the sine (S) and cosine (C)

components of the mode as,

amplitude =
√

C2 +S2 (A.4a)

phase = arctan(C/S). (A.4b)

Typically, n = 1 is the mode of interest, as it normally contains most of the mode’s energy.

Equation A.3 can be used for fitting the current in control coils as well, where φwould

represent the location of the center of the coil and the vector of sensor fluxes,
⇀

Φsensor,

would be replaced by a vector of currents from each control coil,
⇀

Icoil . Equation A.3 may

also be used for a time series of data, which is to say that thematrixΦΦΦsensor
N×M represents

theM measurements in time fromN sensors, and sine and cosine components become

1×M arrays. To remove any DC component from a signal or arrray, the mean of the array

is subtracted from each element, X0 = X− X̄ . For Fast Fourier Transforms (FFT), the n = 1

component may be transformed by creating a complex number composed of the sine

and cosine components, z =C0 + iS0, and then taking the FFT of z.

For fitting complex phasors of magnetics or currents, as described in section 7.2.1,

the fitting matrix must become complex as well. This new complex fitting matrix will

fit the sine and cosine components into one complex number, meaning the matrix of

equation A.3 will now have dimension 1×N. The new fitting matrix is constructed by
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taking each column of sine and cosine components and making a single complex column

entry with the form: .5∗ (C+ iS). The factor of .5 accounts for the signal contribution at

negative frequencies that arises when taking the Fourier transform of a real signal.



Appendix B

Control Algorithm Implementation

This chapter describes the operation of the valiant LQG control algorithm based

on the DIII-D VALEN RWMmodel. Also described here are the scripts and functions used

on Tesibius to implement real-time RWM control.

B.1 Building VALENmodels

B.1.1 makeVALEN.py: A Python Script to Make VALENModels

makeVALEN.py is located on the General Atomics Venus computing cluster in

/u/clementm/valiant/VALEN and has option parsing capability; information on these

options may be accessed by entering:

# makeVALEN.py -h .

Important parameters that are passed to makeVALEN.py are VALEN parameters s and α,

the i1 and i2 files which specify the conducting finite elements as well as the magnetic

field normal component to the unperturbed plasma surface and the sample rate to which

the continuous timemodel will be discretized to. This python script makes calls to the
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three VALEN executables, CUPR13, CUDR13NN and CUREVF02NN. These executables ulti-

mately generate the L,R andMmatrices described in chapter 3. From here the script

puts VALEN into state-space form, converts the flux measurement to field measurements

by computing the sensor di�erencing and using the sensor area and number of coil turns.

This continuous time state-space model is saved as a python numpy .zip file. From here

another script, reduceVALEN.py, does both the discretization based on the sample rate

specified earlier and the balanced realization and reduction using the SLICOT routine

AB09BD[52]. The ultimate product of this script is a numpy .zip file containing the discrete

full and reduced models, the sample rate and a description of the model capturing its

important parameters.

B.1.2 The VALEN Python Class

Thepythonclass,VALENcls, defined in/u/clementm/valiant/VALEN/VALENclass.

py takes the numpy .zip file generated by makeVALEN.py and creates a python object

whose attributes are the important state-space VALENmatrices, sample rate and descrip-

tion of the VALENmodel. This class is used in the scripts subsequently described in this

chapter when they are passed a VALENmodel stored in a numpy .zip file. For example, the

VALEN .zip file when loaded in to the VALEN class would have stored in its .desc attribute:

“VALENbuilt from i1 file: i1ga.HANSONwcc.2015.#1, i2 file: i2v.o133103_3330.008. s parame-

ter: 5.667e-02. alphaparameter: 0.000e+00. Discretizedversionof ssVALEN_201701261547.npz.

Balanced and truncated using SLICOT AB09BD.”
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B.2 Operation

This sectiondescribespythonscripts andcuda functions that areused for real-time

feedback control on Tesibius (section 5.3). On Tesibius, control functionality is provided in

twomain directories, /pcshome/clementm/valiant/ and /opt/control/. /pcshome/

clementm/valiant/ contains code relevant to real-time feedback while /opt/control/

contains code needed to initialize and control D-TACQ hardware. To setup digitizers the

script init_rtm-t.sh is sourced as the root user in order to get the RTM-T ready for

control and sets the environment variable RTM_T_READY to YES. For example, to set the

RTM-T to receive a hard trigger from an external clock (i.e. the DIII-D timing system), enter:

# . init_rtm-t.sh lemo .

Amore inclusive script for getting Tesibius ready for operation is the script rockNroll.sh.

This script terminates any active threads, resets the GPU, initializes RTM-Ts for a hard

trigger and boosts GPU clocks to their maximum frequency (758MHz),

# . rockNroll.sh .

B.2.1 Host Script: valiant.py

The python script valiant.pywill execute RWM feedback for DIII-D discharges

requiring it. Three parameters are passed to the control script from the command line:

shot number, feedback commence time (in ms) and feedback termination time (ms), if

feedback is desired for one sustained period. For perturbation experiments as described

in chapter 8, where six periods of feedback are required, 13 parameters are passed to the

control script: shot number, period 1 feedback commence time (ms), period 1 feedback
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termination time (ms), period 2 feedback commence time, etc. Based on the number of

inputs it receives, valiant.py is able to determine if one period or six periods of feedback

are required. If the script is unable to determine howmany periods are desired based

on the arguments it receives, the user is prompted for the shot number and feedback

times. As an expample, feedback for shot 900000 from 2 seconds to 5.5 seconds would

be commanded like so:

# valiant.py 900000 2000 5500 .

valiant.py also has option parsing capability; information on these options may be

accessed by entering:

# valiant.py -h .

If valiant.py is not called as the root user, valiant.py will inform the user and exit

the python environment. valiant.py establishes the low latency control definitions

required for the ACQ196 digitizer and AO32 output modules, including the sample rate

to be used, and arms them for operation. The reduced VALEN model, pre-comupted

controller gains and vacuum field compensationmatrices are imported and GPUmemory

allocation is handled via the PyCUDA so�ware package[66]. valiant.py requires the

imported VALEN discretized model to match the sample rate. Based on the sample rate

specified in the script, valiant.py calculates three chronometricmilestones, the TLATCH

when feedback will commence, or digitzer timestamp, the TLATCHwhen feedback will

terminate and 20ms prior to when feedback will commence. No DIII-D shot is expected to

last longer than 17 seconds, beginning from trigger 6A which occurs at -10 seconds and

7 seconds of discharge. Based on this and the sample rate, valiant.py calculates how

many samples it should receive from the digitizer a�er being triggered. From the size

of the reduced VALENmodel, valiant.py calculates the size of the thread block it will
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launch based on a predefined parameter called WORK_SIZE. Once all initializations are

completed by valiant.py, it launches the valiant control kernel, defined in valiant.cu,

on the GPU and turns over all control to it. The next section describes the GPU kernel that

is responsible for control. While the kernel waits for trigger 6A, valiant.py continuously

probes the PCS state from the lockserver. If a shot is not imminent or gets aborted

prematurely, the kernel is terminated. valiant.py then copies GPU bu�ers that contain

the lead coil voltages calculated during the discharge, archives them to MDSPlus and

archives information about the VALEN model used as well as the parameters used to

design the controller gain. valiant.py then frees GPU memory and performs other

cleanup operations on the host side.

B.2.2 The valiant() Control Kernel

In practice, valiant.cu is compiled to a .cubin shared object file to be used by

valiant.py. valiant.py launches on theGPU the real-time control kernel valiant() or

hexa_valiant(). Important arguments to valiant()/hexa_valiant() are pointers to

GPU global memory hb and ao_hb. These locations are the memory bu�ers to which the

ACQ196 sends it dataand theAO32 readsoutput commands, respectively. Other important

matrices passed to valiant()/hexa_valiant are: 1) the closed loop dynamics matrixΦ,

2) the observer gainKo, 3) the controller gainKc and 4) the vacuum field compensation

matrixCcomp. First, each threadmust identify itself and some important parameters to

determine its location in a matrix. valiant.py launches a 1-dimensional block of 128

threads. This means each thread will have a threadIdx.x from 0 to 127. From this thread

ID, each thread then computes which block column it is in, blockCol = threadIdx.x

/ 32. For a reduced VALENmodel’s systemmatrix, there are four block columns in this
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matrix and blockCol may have values from 0 to 3. Next, each thread determines its

row in the matrix, row = threadIdx.x % 32, where % is the modulo operator. Next,

sharedmemory locations are allocated for all matrices and variables to be used for the

algorithm. The time invariant matrices passed to valiant()/hexa_valiant() are then

copied into shared memory. Shared memory is used because it is much faster than using

global memory and because valiant()/hexa_valiant() can be handled by a single

Streaming Multiprocessor (SM), meaning all threads have access to the same shared

memory[55]. At this point, the kernel enters its 13µs control loop. Every time new data is

streamed from the ACQ196, it is time stampedwith a TLATCH, starting from 0. Each thread

probes the memory location in the input bu�er for a new TLATCH. Once a new TLATCH

has been pushed onto the input bu�er, a thread then goes to work on data in the input

bu�er. The global memory location hb is allocated as a region containing unsigned 32 bit

integers, because TLATCH is an unsigned 32 bit integer. The actual 96 channels of data

are actually digitized as signed 16 bit integers. Bearing this in mind, the first 12 threads of

block column 0 read the first 12 memory locations from hb, then performs a bit shi� of 16

bits where necessary, to get the 24 magnetics signals into a vector in shared memory. In

a similar fashion, threads 13 to 16 of block column 0 read the next four memory locations

to get the 8 digitized coil currents needed for vacuum field compensation. Next, each

threadmust determine its next action based on a comparison of the current TLATCH to

the predetermined timemilestones. If the current TLATCH is less than 20ms prior to the

feedback commence time, no computation is necessary. If the current TLATCH is greater

than 20ms prior to the feedback commence time but less than the feedback commence

time, each signal is summed in a bu�er. This is done for signal baselining and at the end

of the 20ms period, the summed signals are then divided by the number of samples in
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the 20ms baseline period to give the average value of the signal. If the current TLATCH is

greater than the feedback commence time and less than the feedback terminate time,

each thread enters the feedback section of the control loop.

To handle the matrix-vector multiplication required by LQG control, a general de-

scription of how valiant() does the general computation ⇀y = A⇀x follows[67]. With each

thread knowing where it resides in thematrixAwith regard to row and block column and

where it resides in vector⇀xwith regard to vector row (vecRow=blockCol), each thread then

multiplies corresponding matrix-vector locations by traversing WORK_SIZE(8) columns

along its row in its respective block column ofA and then traversing WORK_SIZE(8) rows

down the vector ⇀x. This operation then forms a submatrix that is 32 rows by 4 columns(32

/ WORK_SIZE). Threads in the first block column then go onto sum the rows of this sub-

matrix to give the final result ⇀y. A graphical description of this operation is shown in figure

B.1.

Using the vector of coil currents thatwas created early in the control cycle, vacuum

field is calculated,

⇀yvac = Ccomp
⇀ycoil; (B.1)

next, a new state estimate is computed using the old state estimate and the newmea-

surements

x̂k+1 =ΦΦΦx̂k +Ko(
⇀yk−

⇀ybaseline−
⇀yvac). (B.2)

The state estimate is used for the controller,

⇀uk =−Kcx̂k+1, (B.3)
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{

Figure B.1: A graphical description of how valiant() does the general matrix-
vector product ⇀y = A⇀x.

and finally the state is advanced in time,

x̂k = x̂k+1. (B.4)

Before the commands in ⇀u are written to the output bu�er, a check of plasma current

is done, to ensure that a disruption has not occurred and that a shot is still in progress.

If the plasma current check is passed, the voltage is converted to digitizer counts and

scaled to accommodate the Audio Amplifier gain and copied to ao_hb, the output bu�er.

If the current TLATCH is greater than the feedback termination time, output voltages are

commanded to 0. Finally at the end of a control cycle, the output voltage and TLATCH

are archived to bu�ers in GPU global memory for archiving by valiant.py once control

is relinquished by the GPU. A�er completion of all control cycles, coil and magnetics
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baselines are copied to global memory for archiving by valiant.py. At this point the

kernel terminates and control is handed back over to valiant.py on the host.

B.2.3 Kernel Determinism

Reliably ensuring the completion of the feedback computation performed by

valiant()within a control cycle is imperative for real-time control on the GPU. NVIDIA

makes no guarantees about the deterministic nature of computation of their GPUs. This

means that they make no guarantee about how fast a kernel may run from one time

to the next. For this reason, many engineers are reluctant to use a GPU for real-time

control. For this reason, a statistical study of the time it takes the valiant() kernel to

run, once new data has been pushed by the digitizer into global memory, was performed.

This was also used to determine the sample rate of the system. Timing of the kernel

was performed by using the CUDA function clock64()[55] which allows processor clock

cycles to be counted. By counting the number of cycles required to complete a cycle, from

immediately a�er the kernel has determined new data is in the bu�er to the archiving of

TLATCH, and knowing the clock speed (758MHz), the wall-time required for computation

may be determined. This measurement was carried out for over 1 million runs of the

kernel and is shown in figure B.2. From this the jitter of the kernel may be determined.

Themean time for computation is around 11.4µs with a standard deviation of less than

.2µs. This is very much within an acceptable range for real-time control application.

B.2.4 Host Script: makeGains.py

The script makeGains.py is used to make LQGmatrices for real-time feedback, as

described in chapter 6, and has option parsing capability; information on these options
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Figure B.2: Measurements of the wall-time for 1001664 runs of the valiant()
control kernel. The measurement is made by counting the number of clock
cycles required for the kernel to complete once it receives new data from the
digitizer in GPU global memory. Themean and standard deviations are shown
as the red and blue dashed lines respectively, which gives an idea of the jitter for
the kernel. The black line is a normal distribution with the computed mean and
standard deviation.

may be accessed by entering:

# makeGains.py -h .

Important optionswhichmay be specified from the command line are qc, rho, n and tset.

These parameters only a�ect the design of the controller gain matrixKc. The observer

gain is designed the same way for every VALENmodel (see section 6.3). The scalar option

rhowill a�ect the value of the diagonal of the penalty matrixQc by setting the diagonal

value of Q̄c defined in equation 6.3. The scalar option n defines the number of Hankel

singular values to keep: that is to say the number of diagonal entries ofH, defined in 6.4,

which are set to unity. The scalar option rho sets the parameter ρ defined in equation 6.6.

The option tset defines the settling time.
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B.2.5 Host Script: pyPCS.py, GUI to Control Scripts

The scripts valiant.py, magsCal.py and pwrSupTest.pymay also be controlled

by a graphical user interface (GUI), which is launched via the script pyPCS.py. The GUI

allows the user to enter times, shot number, select options, specify a VALEN model

and launch the script using check boxes, text entry boxes and buttons. The GUI also

enables control of error field correction (EFC) from Tesibius, initialization of the RTM-Ts

and resetting the GPU. A screenshot of the GUI is shown in figure B.3.

This chapter contains material which has been accepted for publication in Control

Engineering Practice. Clement, Mitchell; Hanson, Jeremey; Bialek, Jim; Navratil, Gerald.,

International Federation of Automatic Control, 2017. The dissertation author was the

primary investigator and author of this paper.
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