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Aix-Marseille Université & Centre National de la Recherche Scientifique
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Abstract

This study describes an analytical model of the visual lex-
ical decision (VLD) task. The task is modeled as a prob-
lem of hypothesis testing given noisy evidence using a gen-
eral Bayesian framework, similar to several previously pub-
lished models. The Bayesian formulation is then shown to
reduce to a Geometric Brownian Motion with a drift and an
infinitesimal variance (a Drift-Diffusion Model). In turn, this
reduction enables the use of direct analytical techniques — in-
stead of simulations — to understand the different factors that
influence response latencies. We demonstrate the power of
this technique by analyzing the individual response latencies
to a realistic size vocabulary covering virtually the full English
lexicon. The model achieves an accurate prediction of the re-
sponse latencies and error scores to thousands of individual
words in relation to previously published VLD data. Crucially,
this approach enables a direct explanation of several known
non-linear effects, directly addressing their underlying math-
ematical explanation in a level of detail that is not attainable
using traditional simulation-based approaches.

Keywords: Visual Lexical Decision; Bayesian; Analytical;
Brownian Motion; English; Distributed Representations

A Bayesian Model of Lexical Decision

In line with some current models of the VLD task (e.g., Adel-
man & Brown, 2008; Norris, 2006; Ratcliff, Gémez, & McK-
oon, 2004; Wagenmakers, Steyvers, Raaijmakers, Shiffrin,
van Rijn, & Zeelenberg, 2004) we can view lexical decision
as a problem of optimally taking a decision by accummulat-
ing evidence coming from a noisy input. In VLD the input
corresponds to the visual information provided by the eyes as
time passes. As more samples of the input are accumulated
the evidence supporting a ‘yes’ or a ‘no’ response grows until
a certain level of certainty is attained. As noted by Adel-
man and Brown (2008), Norris (2006), or Wagenmakers et
al. (2004), from a Bayesian perspective, the problem of de-
ciding whether a certain visual input corresponds to a word
or not can be characterized as a general problem of hypoth-
esis choice. We can view word versus non-word decision as
two hypotheses from which participants have to choose one,
and assume that the participants respond as soon as they have
gathered a certain level of evidence in favor of either.

Odds Ratios

The Odds Ratio (OR) between two hypotheses is the ratio of
their posterior probabilities given the available information.
In our case the two hypotheses being word (W) and non-word
(NW), the decision on presentation of a certain visual input
(I) could be made using the OR:

5 POWILH)

~ P(NWI|I,H)’ M

where the additional conditionings on () represent the set of
modeling assumptions and previous knowledge under which
we provide the estimates of the posteriors.

The input I corresponds to a sequence of samples I =
{x1,...,xy} from a noisy distribution. Therefore we can view
the OR in (1) as a function of time, whose value changes with
each new sample that is received. In this way, W would be
chosen over NW at the first time 7 when the value of the OR
between them exceeds some threshold value @y > 1:

P(W|xy,...,x7,H)

B(T)*P(NW\xh...,xT,}[) 2 . @
This amounts to ensuring that the probability of W given the
stimulus (and our assumptions) is at least @y times greater
than the probability of NW given the stimulus. Symmet-
rically, we can use another threshold 0 < Oy < @y that
would enable us to choose to respond that the input corre-
sponds to a non-word, whenever B(T) < @pw. These thresh-
old parameters could take very different values, depending
on how much easier we would expect one hypothesis to be
recognized over another. However, for simplicity we will
work under the assumptions that the thresholds are symmet-
rical @y = ©, Oyw = &)

The calculation of the OR’s is simplified when one works
in a logarithmic scale, the Log Odds Ratio (LOR). If we de-
fine 6 = log®, then the condition to choose a word over a
non-word stated in (2) is fully equivalent to:

P(W‘Xl,...,XT,}[)
P(NW|xy,...,x7,H)

The time T at which the condition in (2) is first satisfied is the
same at which (3) becomes true.

By applying Bayes’ Theorem on both terms of this ratio,
we obtain the ratio of the likelihoods times the ratio of the
prior probabilities. However, in a typical lexical decision
experiment, the prior probability of observing a word or a
pseudo-word are balanced and would normally cancel out.
Thus we are left with the ratio between the likelihoods of the
input sample {xi,...,X, } under a word or non-word hypoth-
esis:

> 6. 3)

b(T) =log

P(X1,...,%|W,H)

b(t) _IOgP(xl,...,x,|NW,ﬂ-[)' @

As in most models of this task, we assume that the samples

from the visual input are independent of each other. Thus,

we can expand this log-likelihood as the sum of the log-
likelihoods of the independent samples (x;) from the input:

t t
b(r) = Z log P(xx|W, H) — Z log P(xi|[NW, H).  (5)
k=1 k=1
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This assumption of temporal independence of the samples
could suffer if samples came from different eye fixations.
However, on the lack of information of the specific fixations
we can safely assume that their average can be described by
a single distribution of independent samples.

Likelihood for Words

In an optimal decision process, it is not the likelihood of a par-
ticular word that drives the decision, but rather the combined
likelihoods of all possible words, weighted by their individual
prior probabilities:

Ny

P(I|W,H) =Y P(I|W;,W, H)P(W,|W, ). (6)
i=1

where N,, is the number of words in the lexicon. The first
component of each of the terms of this sum, the prior for a
particular word (W;), is its overall probability of occurrence
in the experiment. On the lack of additional contextual con-
straints, we can estimate it as being proportional to its relative
frequency of occurrence in a linguistic corpus:

F(W)

PWiW, H) ~ ————.
L F (W)

@)

In turn, the combined likelihoods given a word W; for a
sequence of ¢ independent input samples Xi,...,X, sampled
from a multidimensional Gaussian with diagonal covariance
(AN (u;,6?%)) is the product of the individual likelihoods for
each of the {x;...x,}:

T
P(xi,...,x7 Wi, H) = [ [ P(xc|Wi, H) 8)
k=1

Each of the individual likelihoods in (8) is a Gaussian cen-
tered on y; and with a variance 6%

1 _nxrgfuz
\/275(52e A ®

For simplicity, in line with previous models, we will assume
that the sampling variance (G2), is uniform across experimen-
tal stimuli. This is a simplification of the actual process where
different types of stimuli could give rise to different noisy
variances (consider for instance the effect on the visual input
to varying word lengths).

At this stage, we can already notice two factors that will af-
fect the LOR. On the one hand, from (7) we can infer that the
contribution that each word’s contribution to the LOR will
be proportional to its frequency of occurrence in a corpus.
On the other hand, the likelihood in (9) decreases exponen-
tially with the distance between each sampled input and the
centroid of the representation of the target word. As the in-
put itself will follow a normal distribution centered on this
particular centroid, due to the product in (8) we can be cer-
tain that with time the contribution to the LOR will be mostly

P(xi|Wi, H) =

driven by the likelihood of the target word, with a minor con-
tribution of relatively high frequency orthographic neighbors.
Therefore this will give rise to a facilitatory effect of word
frequency, as most of the value of the numerator to the LOR
will come from the target word itself, and this contribution is
frequency-weighted. In addition, at least at the initial stages
of processing, the LOR will also receive a facilitatory con-
tribution from the orthographic neighborhood, which will in-
crease with the number, relative proximity, and frequency of
existing neighbors.

Likelihood for pseudo-words

The problem is to decide whether the input has been sampled
from a Gaussian centered in the mean of one of the existing
words, or whether it is more likely to have been sampled from
another Gaussian distribution with a different unknown mean,
corresponding to a non-word.

A simple way to represent this is that the probability of
a pseudo-word corresponds to the sum of the probabilities
of possible non-words located at all points in the representa-
tional space, weighted by our prior expectation of finding a
pseudo-word at that point in space:

PO INW, 30) = [ plosy m, NW, 90) p(am[NW, ),

(10)
where m are the possible locations in the representational
where the pseudo-word could be located. !

The two components in this integral require assumptions
on the corresponding distributions. As was done for the
words, we can assume that the likelihood of observing a par-
ticular sample from the input x given that the presented stim-
ulus was a non-word with orthographic representation m fol-
lows a multidimensional Gaussian centered on the represen-
tation of the non-word, and a diagonal covariance matrix with
determiner 62:

(e, NW, ) = — o (11)
PR Ve

The non-words in a typical visual lexical decision exper-
iment are constructed to be similar to the existing words,
therefore their distribution in the representation space should
be similar to that of the words themselves. On the lack of
additional knowledge on the shape of distribution of words in
the representational space, by the Maximum Entropy Princi-
ple we can assume it is a multidimensional Gaussian. We can
estimate the frequency weighted mean of the representations
of all words in our lexicon (u,,) and the corresponding vari-
ance (62)). Therefore, the prior for the location of the possible
pseudo-word means is:

_Im—p|?
p(m|NW, H) = e (12)

1
/2162,

IThis integral includes all locations in the representational space,
also those of the words themselves. Note however, that in relation to
the whole space, the combined cumulative probability of the points
corresponding to words is zero, and thus negligible.
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The integral in (10) can be reduced to a convolution be-
tween two Gaussians, thus it is itself also a Gaussian distribu-
tion with mean g, and variance va +0%

_ lx—pmw]?

1 e 2((5%-+52> ) (13)

PIINW,H) = ——————
21 (02,4 02)
In practice, the variance of the words over the whole lexi-

con is much greater than the variance of the input, 62, > 62.
This implies that the expression in (13) will be very close to
the original prior on the pseudo-word mean expressed in (12).
The likelihood of the input given a pseudo-word changes lit-
tle with time, and depends only on the centrality of the input
in the lexical representational space. In general, the closer
the input is to the center of the representational space (u,),
the greater that the likelihood for the pseudo-word will be,
and the smaller the value of the LOR. The center of the rep-
resentational space is the area where a greater number of ex-
isting words can be expected: a denser orthographic neigh-
borhood. Thus, when the input is coming from a dense or-
thographic neighborhood, the recognition of a word will be
more difficult. It will become slower. This implies that the
orthographic neighborhood size effect (and neighborhood fre-
quency as well, as w, was computed as by weighting the
contribution of words by their frequency) will have an in-
hibitory component in visual lexical decision, at least when
the pseudo-words used in the experiment were designed to
be similar to the words. This inhibitory component will in
turn be combined with the facilitatory neighborhood density
component that was discussed above.

Response Latencies
Distribution of the LOR in time

As discussed above, the time taken to decide whether the in-
put corresponds to a word or to a non-word will be the first
time 7 when the LOR in (5) reaches a value greater then 6
(‘yes’ response) or lower than —0 (‘no’ response). There-
fore the average RT to a particular word should correspond
to the expected time that it takes the LOR to cross the 0 bar-
rier, without having previously crossed the —6 barrier (which
would have already led to a ‘no’ response).

Closed-form expressions for the mean and variance of the
ORs between the word and non-word hypotheses at each
point in time can be obtained by integration. Unfortunately,
the equations that one obtains in this way are computation-
ally intractable. Using a motivated approximation, we can
obtain an estimate of the reaction times. The value of the
likelihood for the word hypothesis is mostly driven by the
likelihood of the particular word that was presented, with a
rather small contribution of the other words in the lexicon,
which will be stronger at the earlier stages of processing. We
can thus consider individually the contribution to the likeli-
hood of the target word (W;), and summarize in a single term
the contribution of all other words (which is in any case mi-
nor). Our estimation of the likelihood of a pseudo-word used

a Gaussian distribution to simulate the probability of finding a
pseudo-word in the different parts of the lexicon. This Gaus-
sian was chosen to replicate as closely as possible the distri-
bution of words in the lexicon. Therefore it is reasonable to
employ this same distribution to approximate the contribution
of the other words in the lexicon. The contribution of those
others should be relatively smaller than that of the pseudo-
words because the pseudo-words could be located anywhere
in the space, while the existing words only occupy a few of
those infinite possible locations. We therefore account for the
contribution of the other words using a parameter 0 < ot < 1.
The approximated OR becomes:

P(X],...,X[“’Vi,ﬂ)
P(x1,...,%|NW,H)

B(r) = P(W;|7) +(1=P(W;|H)) o

(14)
Note that the term corresponding to the non-word likelihood
cancels out.
With this simplification, the condition in (2) can be restated
in terms or the LOR between one particular word (the one
presented) and the non-words:

P(Xy,...,%|W;, H)
P(X1,..., % |NW, H)’
log[®@— (1 —P(W;|H))a. (16)

() = logP(W|#)

(15)
() =

Note that we have now a case of an asymmetrical thresh-
old. The ‘yes’ decisions will be take with the threshold 0}, =
log[® — (1 — P(W;|#{)) o, and the ‘no’ will use a threshold
By = log[§ — (1 —P(W;|#))a]. Furthermore, the equa-
tions give us an additional constraint on the possible values
of the o parameter. In order to be useful, the OR in (16)
should never have a negative value. Therefore o0 < %. To en-
sure the maximum possible contribution of the other words to
the decision process, it is safest to assume that the parameter
gets its maximum possible value, o = %.

The LOR #'(¢) between two possible hypotheses follows a
normal distribution (c.f., Kass & Raftery, 1995). If we now
integrate to calculate the expectation of 4’ (¢), we find that the
expected value of the LOR at any time ¢ is a linear expression
of t:

EW(t))=K+v-t, (17)

where with K and v have the values:

K =log P(Wi|H), (18)
2, 2 2 diz
U:%logcm;c +%(%3_1)+72(G%+02)’ 19)

and d; is the Euclidean distance between the prototypical rep-
resentation of the presented word (y;) and the center of the
representational space (u,):

di = || — g | (20)

Furthermore, integration also reveals that the variance of the
LOR also follows a (very similar) linear function of time.
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Reaction Times

As described above, the value of the LOR between two words
follows a Gaussian distribution, whose mean and standard de-
viation are a linear function of time. Instead of considering a
discrete intake of samples from the distribution at a fixed rate
— as was done by Adelman & Brown (2008) or Norris (2006)
— we can consider the equivalent limiting process in which
samples from the input are collected continuously in time.
This limit continuous process is a Brownian Motion with a
starting value (18), a drift (19), and an infinitesimal variance
(the expected variance of the LOR). If we momentarily ignore
the times when the negative threshold is reached first (i.e.,
the errors), the distribution of the times for such a process
to reach a particular positive threshold value corresponds to
the distribution of first-passage times of the Brownian motion
through a fixed positive barrier. This distribution is known in
its closed form: First-passage times of a Brownian motion
follow an Inverse Gaussian distribution (IG). If we have a
Brownian motion with a starting value K and a positive drift
v, the expected first passage time of the process through a
positive level 8y, is given by:

0—K
5

E(Ty) = @1
This expresses the intuitive notion that the average time to
reach a preset level of certainty starting at time zero from an
offset equal to our prior expectations, is equal to the differ-
ence between the desired level to be attained and the initial
offset, divided by the average accumulation of evidence per
unit of time.

The IG distribution describes the first-passage times
through the positive threshold. However, it does not con-
sider whether at that moment the negative threshold has al-
ready been crossed, in which case an error would have hap-
pened and the time would not affect our distribution. What
we are interested in is in the distribution of the time taken
to cross the positive threshold, provided that the positive one
is crossed before the negative. This is expressed by the con-
ditional probability function p (T |CorrectResponse, W;, ).
We can use Bayes’ theorem to calculate this distribution, and
then integrate to find the corrected distribution of latencies
(see Dixit, 1993 for a detailed discussion of these issues).
Fortunately, in our particular case, introducing this correc-
tion did not produce significantly different results than those
produced by just applying (21), so for simplicity we do not
consider it in the remaining discussion.

Model Implementation
Orthographic Representations

In order to obtain estimates of the reaction times us-
ing our method, we need a distributed representation
of the orthographic forms of all English words. For
this purpose, we used the Accumulation of Expecta-
tions (AoE) technique (Moscoso del Prado Martin, 2003;
Moscoso del Prado Martin, Ernestus & Baayen, 2004;

Moscoso del Prado Martin, Schreuder & Baayen, 2004). This
technique enables us to automatically build distributed vec-
tors representing all orthographic forms in a given language.
These vectors have a fixed dimensionality, and do not require
alignment of the words at their beginnings, or endings (40 di-
mensions per vector, for all words). The AoE vectors have
successfully been used in large-scale connectionist models of
the processing of Dutch and English words. We used the En-
glish vectors of Moscoso del Prado and colleagues to esti-
mate the distribution of words in the English lexicon. For
this, we employed the vectors corresponding to all English
words appearing in the CELEX database (Baayen, Piepen-
brock & Gulikers, 1995) with a frequency greater than one.
In order to adapt them to the needs of our model, several
modifications were done on these vectors. First, to ensure
that the similarity space is defined by the Euclidean distance
(the vectors were originally developed for use with angular
measures), we normalized them to modulus one. Second, as
reported by Moscoso del Prado Martin, (2003), these vectors
tend to represent longer words in central areas of the represen-
tational space, which can lead to reversed word length effect.
We overcome this problem by linearly scaling the vectors by
their word length. Finally, in order to ensure the required
diagonality of the covariance matrix, the vectors were ro-
tated using a Principal Component Analysis®>. We used these
vectors to compute the frequency-weighted mean (u,, ~ 0)
and the determiner of the corresponding covariance matrix
(62, = 14.74) to use with the equations defined above.

Dataset and Model Fit

We investigated how accurately would our model predict
VLD RT’s of a previously published dataset. For simplicity,
we chose a subset of the data described by Balota, Cortese
and Pilotti (1999) for which a highly detailed analysis of
the RTs was provided by Baayen et al., (2006). This subset
contained the average young participants’ VLD responses to
2,088 monosyllabic mono-morphemic English words. Using
the formulation from the previous section, we computed the
predicted average VLD RT using a geometric Brownian Mo-
tion with an absorbing barrier. The drifts, infinitesimal vari-
ances, and biases were computed directly. The values of the
two free parameters of the model the threshold ® and the vari-
ance of the input error (G) were set in different ways. On the
one hand, the value of ® was set using a Gauss-Newton non-
linear least-squares regression from the theoretical to the ac-
tual RTs. The value of ¢ was chosen to be small (¢ = .1) rel-
ative to the variance of the words in the lexicon (c,, = 3.84).
We chose this value because it is the point were the parame-
ter seemed to reach an asymptote in the prediction of reaction
times (in general, the smaller this parameter, the better the
prediction).

2These transformed orthographic vectors can be obtained by con-
tacting the author.

3We excluded 6 from the non-linear regression because includ-
ing it led to non-convergence of the regression algorithm, as the per-
formance keeps improving infinitesimally as its value decreases. In
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Figure 1: Comparison of the theoretical RT’s predicted by the
model (horizontal axis), with the average VLD RT’s of young
participants to the same items in the Balota et al. (1999) study
(vertical axis). The dashed line plots the identity relation.
The solid line is a non-parametric regression between both
measures.

Results and Discussion

Figure 1 shows the relationship between the predicted aver-
age response latencies using our model (horizontal axis), and
the actual average response latencies of subjects performing
VLD, taken from the Balota et al. (1999) dataset. The first
thing to notice is that, despite the very large number of items,
the model achieves a fairly good prediction of each individual
latency, with an overall explained variance of over 40%. As
illustrated by the overlap between the non-parametric regres-
sion (solid line) and the identity line (dashed line), the relation
between both measures is remarkably linear. This indicates
that the model captures the detailed distribution of response
latencies, with enough detail to make item-level predictions.

In addition, one can observe a slight nonlinearity for the
fastest reaction times. Although relatively small, this devia-
tion from linearity is very robust, and will show up consis-
tently in re-sampling analyses of this dataset. Interestingly,
if we were to swap the axes, and perform the non-parametric
regression in the opposite direction (i.e., predicting the model
responses from the experimental RTs), we would find the
same deviation from linearity in the low range. Counter-
intuitively, this deviation goes in the same direction (above

addition, a general linear scaling factor was added to speed up the
convergence. Finally and additional intercept fixed to 447ms. was
added to the model based on a separate theoretical study on the (rel-
atively) constant portion of the VLD RT distributions.

700

700

650
Model RTs (ms.)
600 650

Balota et al. RTs (ms.)
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L i 1 L 1
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log CELEX Frequency

log CELEX Frequency
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oo "
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Orthographic Neighborhood Size Orthographic Neighborhood Size

Figure 2: Comparison of the effects of word frequency (top
panels) and orthographic neighborhood size (bottom panels)
on the Balota et al. (1999) RT’s (left panels), and on the RTs
predicted by the model (right panels). The effects were es-
timated using a least-squares regression analysis on the log
RT’s including non-linear terms considered using restricted
cubic splines. The rugs at the bottom of each panel illustrate
the densities of the counts.

the diagonal), irrespective of the direction in which we per-
formed the regression. In fact, rather than pointing to a de-
viation between the model’s predictions and the participants’
responses, this is an intrinsic property of the reaction times
distribution. If we were to plot the RTs of individual sub-
jects against the others, we would again find the same non-
linearity. This is no more than a form of regression towards
the mean, which in very left-skewed distributions (as that
of the RTs), is more marked in the lower than in the up-
per range (Baayen, Moscoso del Prado Martin, Schreuder, &
Wurm, 2003).

We now turn to examine the role of frequency and neigh-
borhood size of the experimental response latencies and
model predictions. We performed a least-squares regression
on both the experimental and the theoretical RT’s, including
log frequency and the orthographic neighborhood size vari-
able, and including the possibility of a restricted cubic splines
for the effects for which the non-linear term reached signifi-
cance. Figure 2 summarizes the effects that we observed in
these regressions.

First, with respect to frequency (top two panels), we ob-
serve that the both in the human RT’s (left panel) and model
responses (right panel) it played a clearly linear effect. In-
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deed it is not surprising that frequency has a linear effect on
the model predictions. From (21) we can see that log fre-
quency will have a direct linear effect. Both Adelman and
Brown (2008) and Norris (2006) defended the crucial role of
log frequency on lexical decision latencies. In the case of
Adelman and Brown they could infer that the evidence for log
frequency was superior to the evidence for other counts like
rank frequency (Forster, 1976). In Norris’ study, the author
had to conclude that both these counts could be equally good
predictors for a Bayesian model of lexical decision. Notice
that our analytical approach enables to conclude for certain
that — at least on this type of models — it is log frequency
rather than rank frequency that will drive the decision.

Finally, we come to the issue of orthographic neighborhood
size effects. On the reaction times, we observed a non-linear
contribution of this variable. Notice that the model, on the
other hand, does not show this non-linearity, but rather shows
a constant inhibitory effect of the variable on the predicted
latencies.As we discussed when introducing the likelihoods
for words and non-words, both of these will contribute in op-
posite directions to the neighborhood size effect, with the fa-
cilitation provided by the words being stronger at the earlier
stages of processing. This is indeed the pattern that we ob-
serve on the human reaction times. In order to approximate
the word likelihood, we made the contribution of the ‘other’
words constant in time (i.e., the o parameter), thus elimi-
nating the non-linearity on the reaction times, which passes
to be dominated just by the inhibition provided by the non-
word likelihood. In turn, the direction of this effect is op-
posite to the effect reported by Norris (2006) on his model.
As he assumed non-words to be uniformly distributed in the
lexical space, there would be no reason in his model to ex-
pect that centrality and non-word density are correlated, thus
eliminating the inhibitory contribution of the pseudo-words.
Although Norris claims that the actual distribution of pseudo-
words in the model matters little, in fact we can see that it is
crucial for issues like neighborhood size. In fact, we can pre-
dict that this variable will also be affected by the distribution
of the non-words in a real experiment.

In sum, we have introduced a fully analytical model of the
VLD task (that can be run in seconds on a mid-range laptop).
Although further work on this model is clearly necessary, as
far as we are aware, this model outperforms any published
model both in terms of coverage (around 40K words vocabu-
lary), and item-level performance. Furthermore, by eschew-
ing simulations, we can arrive at full-fledge analytical expla-
nations of effects, rather than relying simply on goodness of
fit statistics. The model described here has made use of a
particular representational technique to represent the ortho-
graphic variation. Note however that, while the simulated re-
sults might depend on this particular representational scheme,
the theoretical analysis holds for any representation of the vi-
sual form of words for which a vector-space can be defined,
as long sampling is made based on the distance measure that
defines the space.
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