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On the Accuracy of Vortex Methods
Mirta Beatriz Perlman

Abstract

The accuracy of the vortex method depends on the choice of the cutoff
function, of the cutoff length ¢ and on the initialization of the vorticity distri-
bution. We investigate the practical effect of these choices on the vortex
method for inviscid flows in the absence of boundaries. In our examples the
vorticity is radially symmetric and has bounded suppdrt. We consider the con-
sistency error and its components, the smoothing error and the discretization
error for high order cutoff functions and several values of the cutoff length ¢.
Our numerical experiments indicate that for smooth flows, high order cutofis
improve the accuracy of the approximation. The best value of § is larger than
h, the initial distance between the vortices; it is time dependent in the sense
that longer time integration requires a larger 4. In addition the optimal choice
of é is insensitive to the smoothness of the flow. If § is close to A then the
accuracy is lost in a relatively short time. This loss of accuracy is caused by

the growth of the discretization error.
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Introduction.

The vortex method is a grid free method that simulates incompvressible
fluid flow by approximating the vorticity by a finite sum of functions of small
support and computing their evolution. These functions, called cutoff or core
functions, are parametrized by § and approximate the delta function as ¢
tends to zero. A general discussion of vortex methods is given by Chorin [9]
and by Leonard [16]. The vortex method as presented by Chorin in [8] has
been successfully used to simulate high Reynolds number fluid flow. Applica-
tions of the vortex method include the calculation of unstabie boundary layers
{Chorin [9]), aerodynamic calculations {Cheer [7], Spalart [25], Leonard &
Spalart [17]), flow through heart vaives (McCracken & Peskin [18]), the simula-
tion of turbulent mixing layers (Ashurst [3]), the modelling of turbulent
combustion (Ghoniem, Chorin & Oppenheim [12], Sethian [24]) and flows of
variable density (Anderson [1]).

The convergence of the vortex method has been established for two
dimensional inviscid flows in the absence of boundaries. Hald [13] showed that
the vortex method can converge with second order accuracy to the solutibn of
Euler’s equations as the number of vortices increases. Subsequently Beale &
Majda [4], [5] extended Hald's results to obtain higher order methods in two
and three dimensions. Recently Beale & Majda’s results were simplified by Cot-
tet [11]. A simpler version of Beale & Majda’'s and Cottet’s proofs is given by
Anderson & Greengard [2]. The convergence proofs are based on consistency

and stability estimates.

In this thesis we investigate the practical accuracy of the vortex method

for inviscid flows in the absence of boundaries. We assume that the vorticity is



radially symmetric and has bounded support. Thus the solution of Euler's
equations can be given explicitly. We look at the consistency error and its

components: the smoothing error and the discretization error.

The accuracy of the vortex method depends on how the delta function is
approximated. Hald [13] presented several cutoff functions which give second
order accuracy. Beale & Majda [6] sﬁggest a class of infinitely differentiable
cutoff functions which in theory provide high order accuracy. We examine the
accuracy obtained with these cutofl functions for smooth and non-smooth

flows.

- Another factor that affects the accuracy of the approximation is the
choice of the cutoff parameter 4. Theoretically & is chosen so that the smooth-
ing error and the discretization error are of the same order. Chorin [8].[9]
chooses 70 equal to the average distance between the vortices created along a
boundary. Chorin’s choice of § is much larger than the average distance
between the vortices. Hald [13] chooses 6 = VR, where A is the initial distance
between the vortices. Beale & Majda [5] suggest that for sufficiently smooth
flows we can choose § close to A and obtain an order of accuracy almost as
high as the order of the cutoff function. Qur numerical experiments indicate
that with a suitable choice of § the vortex method converges. However if § is
close to h the accuracy in the velocity and vorticity approximations is lost in a
relatively short time. The best choice of § is time dependent, in the sense that
longer time integration requires a larger 4. In addition the optimal choice of §
is quite insensitive to the smoothness of the flow. The loss of accuracy is
caused by the discretization error, which comes from approximating a convo-
lution integral by the trapezoidal rule. Since the discretization error

decreases as § increases while the the smoothing error increases with § we



can choose a larger value of 6 to preserve the accuracy over a fixed time
interval. A possible explanation for the growth of the discretization error in
time is the disorganization of the computational points. However we have not

found an explanation to the observed decrease in the order of accuracy.

The initial vorticity distribution can be approximated in two different
ways. Hald [13] assigns to each computational point the vorticity contained in
the blob surrounding it, while Beale & Majda [5] assign the value of the vorti-
city at the point times the area of the blob. Our numerical experiments indi-
cate that Hald's choice leads to second order accuracy for any cutoff function,

while Beale & Majda’s approximation can provide high order accuracy.

Earlier numerical experiments with radially symmetric vorticity distribu-
tions were presented by Hald & Del Prete [14]. They used cutoff functions of
the type introduced by Chorin [8] and observed second order accuracy.
Nakamura, Leonard & Spalart [20] tested the accuracy of the vortex method
for inviscid shear layers. Numerical experiments with high order cutoff func-
tions were presented‘by Perlman [22]. Additional numerical experiments are

given by Beale & Majda [6].

This thesis is divided into five parts. In section 1 we present the derivation
of the vortex method and a summary of the existent convergence proofs. Sec-
tion 2 contains our test problems and how we measure the errors. In section 3
we present of our numerical experimegts. We study the behavior of the con-
sistency error as a function of A , 6 and of the time { and look at its com-
ponents: the smoothing error and discretization error. In section 4 we com-
pare the two different approximations of the initial vorticity distribution.

Finally, section 5 is devoted to a general discussion of the results.



1. The Vortex Method in Two Dimensions.

Consider the vorticity-stream function formulation of Euler’s equations in

the (z,y) plane:

we + (uV)w =0, (1.1)
AV =—0, (1.2)
u, =¥,  up=-Y,, (1.3)

where u = (u,, ujp) is the velocity vector, z = (z , ¥) is the position vector , w

is the vorticity and V¥ is the stream function.
By solving the Poisson equation {1.2) above we obtain:
¥(z) =f G(z —2")w(z')dz",
where G(z)= —-z—ln—log | z |, with |z |?2=2z?+y?, is the fundamental solution of

the Laplace equation ( see [15, p.75] ) and dz'=dz'dy'. The velocity u is
obtained by differentiating the stream function with respect to y and z, and is
given by the integral:

u(z,t)=fK(z ~z")w(z')dz", | (1.4)

where

0
K(z) = —217[_6’,’]G<z> = ——zﬂfz E [_3

In the Lagrangian description of the flow, we follow the motion of material
points of the fluid. Thus if a =(a,, a,) denote the Lagrangian coordinates, then

the path of a particle starting at the point 2 =a is determined by:

o,t)y=u(z(a,t),t), z{a,0) = a. (1.5)

a8

It follows from equation (1.1) that the vorticity is conserved along particle



paths. More precisely, %:L(a,t)=0 or equivalently w(z(a,t),t)= w(a,0),
see Chorin & Marsden [10]. By using this fact and the fact that the flow is
incompressible we can write the right hand side of equation {(1.5) in the follow-
ing way:

u(z(a,t),t)=fK(z —-zVe(z't)dz' (1.8)
=fK(z ~z(o,t)) w(z{(a,t),t)da

=fK(z —z{(a,t)w(a,0)da.

We will now describe the discretization of the system of ordinary
differential equations (1.5). Assume that at time ¢ =0 the support of the vor-
- tleity is contained in the region (2. We introduce a square grid in the a plane.
The squares 5; are centered at the grid points jh = (71.72)h and have length
and width h. We denote by 2;(t) =2(jh.t) the position at time ¢ of a fluid parti;
cle starting at the point jh at time £ =0. Let u;(t)=u(2;(t),t) be the velocity
at the point 2;. By using the grid points z; that are contained in the support ()

of the initial vorticity distribution, we approximate the right hand side of (1.6)
by:

uh(z't):z:[((z—zj(t))cj (1.7)
j

where the c;’'s have one of the following two forms:

2]
!
1

!j“’(z) dz, (1.7.a)

¢; = w(jh )RR (1.7.b)

One possible numerical method consists of replacing equation (1.5) by the

system of ordinary differential equations:



220 3. o= (9)
where
G?(t)=ZK(gt(t)"gj(t)) Gy (1.9)
. ji .

Thus we expect that the z j's will approximate the particie 'position.s. The algo-
rithm (1.8)-(1.9) is called the point vortex method. It was introduced by Rosen-
head [23] to study the behavior of vortex sheets. Since u*(z.t)=
K*),6(z —2;(t))c; we see that u” is the velocity corresponding to a collection
of point vortices with strength c;.

Since the kernel X is singular at the origin the velocity tends to infinity as
the distance between two particles tends to zero. To overcome this difficulty,
Chorin [8] replaced the kernel K by a kernel K, which is bounded at the ori-
gin. The kernel K can be obtained by convolving K with a smooth cutoff func-

tion Y;:

Ki(z)=K*ys(z)= [ K(z —2')s(z")dz", (1.10)

where Vs is a radially symmetric function and satisfies ¥s(z) =624(z/6) and
f’g{/(z)dz =1. Thus s approximates the Dirac delta function as §-0. The velo-

city for the point vortex method is then replaced by:

uP(z,t) =) Ko(z —2;(t))c; (1.11)
J

We can then compute the particle trajectories by solving the system of ordi-

nary differential equations:

dN‘ ~ ~
Ziogh z(0) =ih, (1.12)

where



wh= Z'Kd(gi(t)—;j(t)) cj. (1.13)
i _

The algorithm (1.12)-(1.13) is called the vortex blob method. Since u’*(z)=
K*Y sz —2;(t))c; we see that u? is the velocity fleld corresponding to the
vorticity distribution wh(z,t)= ) ¥s(z —2;(t))c;. Thus we arrive at Chorin’s
interpretation of the vortex method, [8], namely that the vorticity is approxi-
mated by a sum of vortex blobs of common shape ¥s centered at 2;(t) and
with strength c;.

The accuracy of the vortex method depends on the smoothness of the
flow, on the initial approximation of the vorticity, and on the choice of cutoff

function y.

Numerical experiments by Hald & Del Prete [14] indicate that the rate of
convergence for the vortex method with Chorin's cutoff functions is essentially
second order. Hald [13] showed that the vortex method can converge with
second order accuracy in the L? norm, for arbitrarily long time intervals.
Hald’'s cutoff functions ¥ are twice continuously differentiable, have support in
the disk |z | <1 and are constructed so that the first three moments of K ~ K;
vanish. In addition Hald [13] uses (1.7.a) to define cj, i.e., he lets ¢; be the vor-
ticity contained in the square B;. Our numerical experiments, presented in
section 4, and Cottet’s results [11, Theorem 4.1] show that by using Hald's vor-
ticity approximation and cutoff functions the rate of convergence for the vor-

tex method can never be larger than quadratic.

Beale & Majda [5] have improved Hald's results by showing that the vortex
method can converge with arbitrarily high order accuracy, provided the initial
vorticity w is sufficiently smooth and that the velocity and vortiéity are

approximated using the c;'s defined in (1.7.b) and finally that the cutoff func-



tion ¢ satisfies:

(i) y & C*(R?) (1.14.a)

(i) [ Yz)dz =1 (1.14.b)
J2Uz)dz =0 y=(nr) 1slyl=p-1

(iti) For some L>0, and for any multi-index g the Fourier

transform ¥(¢) satisfies

sup | D $(6)|= Gy (1+ 1¢1)E71%1 (1.14.)

The second condition is called the moment condition. Beale & Majda’s results

are summarized in:

Theorem ( Beale & Majda [5] ). Assume that the cutoff function ¥ satisfies

(1.14.a—c) for some 2</ < and for some p =2. Choose 6 =A%, with 0<g <1

L+

smooth for zeR? and 0<¢{<T and the initial vorticity has bounded support

if L is finite. If the velocity field u#(z,t) is sufficiently

if L=w and g <

then for any 1 < <= and 7 >0 there exists an hq >0 such that for all A <hg

(t)Y~-2; Pg
Orgta;)g'ﬂz,(t) zJ(t)ﬂL’:_,sC'h ,

(tY =l < b
or;’xg:;lu,(t) u,(t)lL#_C'h. .

The convergence proofs for the vortex method by Hald [13], Beale &
Majda [5], Cottet [11] and Anderson & Greengard [2] are based on consistency
and stability estimates. The convergence is proved by estimating the distance
between the exact velocity u defined in (1.4) and the computed velocity u*

defined in (1.11). By using the tfiangle inequality we can estimate the distance



by

Ilu(t)-;"(t)l < Ju(t)-ur()] + lur(t)-uh(t)].

Here u" is evaluated by using the exact particle positions 2; in equation (1.7).
The first term [u —u® | ‘is called the consistency error. It is the distance
between the exact velocity u _and the discrete velocity u* obtained by replac-
ing the continuous vorticity distribution by a collection of Qortex blobs 95 cen-
tered at 2;(t) and with strength .wjhz. The second error term |u®-u"| is
called the stability error. It measures how the computed particle paths differ

from the exact ones.

-In their proof, Beale & Majda further estimate the consistency error by

the sum of two terms:
Ju(t)-ur@)] = | [K(z -2’)w(2'.t)d2'-§}Ka(z —2;(t))wsh?|
<| f&(z —2")e(z")dz' ~ [Ke(z —2')e(z")dz' |
-+ | [Ke(z —z')w(z’)dz’—‘?[(c(z —2;(t))w;h?|

=ju-uf] + |ul-ur].

The first error term [« —u%| is called the smoothing error. It arises because
the kernel K is replaced by the kernel K;=K*¥,. The smoothing error
depends on the cutoff parameter § and on the time £, but does not depend on
the grid size k. The second term [ u®—u?] is called the discretization error.
It represents the error in the numerical integration of the function

Ks(z —2z')w(z') by the trapezoidal rule. The discretization error depends on
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the mesh length h, on the cutoff parameter § and on the time ¢.

Beale & Majda have shown that if the flow is smooth then the smoothing
error is of order 0P, where p measures the number of moments of the.cutoff
function that vanish. The discretization error is of order 6L pi-1-t  where

£>0 and L depends on the rate of decay of the Fourier transform of 3. Thus,
the consistency error can be bounded by C,6P + Cy( ’;’HL 6~17¢, where C, and C;

are independent of § and h. For a fixed mesh length A we would like to choose
0 so that the consistency errf)r is as small as possible. Beale & Majda choose
6 =h9 with g ={(L—-1-¢)/(L+p ). With this choice the smoothing error and the
discretization error are of order hAP¥. For smooth cutoff functions L may be
arbitrarily large. Thus we can choose 6 close to A and obtain in principle a p®*

order method.

The last choice is valid only for smooth flows. If the flow is not infinitely
differentiable, then the exponent L in the estimate of the discretization error
cannot be larger than the number of derivatives of the vorticity , see Lemma
2.5 by Cottet [11] or the Discretization Lemma by Anderson & Greengard [2].
The estimate of the smoothing error also depends upon the smoothness of the

flow. Thus a higher order cutoff does not always lead to more accurate results.
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2. Choice of Test Problems.

In this section we describe the various test problems we have used in the
numerical experiments to check the accuracy of the vortex method. We con-
sider the radially symmetric initial vorticity distribution:

(1-12]2)" |=z| =1

w(l)(z)z
{0 lz] >1

The corresponding velocity field is given by:

w2 t)=f( |z | )[_Z]
where
At Ll A

rlzn=f 17!

18]z |? lz]>1

The velocity field u(z,t) is in C?(R?) and is C* for |2 | # 1. The flow is radially
symmetric and rotates about the origin. Fluid particles at different radii move
at different speeds. The particles near the origin complete one rotation at
time ¢ = 4, while the particles on |z | =1 complete one rotation at £ = 32m.

At time £ =0 we place the particles at thé points jh =(jh,jzh) on a
square grid on the (z,¥) plane. Since &= 0 outside the unit circle all our com-

putational points all lie inside the unit circle.

Qur second test problem is a C~ radially symmetric vorticity distribution:

W@ (z) =211
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The corresponding velocity field is given by:

Y
_z'

u®(z,t)= - —L—(1-e"2I=1%)

24|z |?

The flow is radially symmetric and rotates about the origin. The vorticity dis-
tribution does not have compact support, but decays rapidly at infinity. To
prove convergence of the vortex method Cottet [11] assumes that the vorticity
and its derivatives decay rapidly at infinity. Thus our choice of & is within the
range of validity of his theory. As in the previous test case we place the parti-
cles at the points jh =(j,h.jzh) on a square grid on the {(z,y,) plane. We
neglect those particles z; for which w®(z;) < 107%. Our numerical experiments
indicate that this doeé not affect the qualitative behavior of the error. |
In the third and last test case all the fluid particles inside the unit circle

rotate at constant speed. The vorticity distribution is given by

1 |z =1
Q(a)(z) =
0 |z|>1
and is discontinuous at | 2z | = 1. The corresponding velocity field is given by:
Yy
u®(z,t)=g(|z]) [._x]

where

1

> lz| =1,
gllz])= 1 |

2z |? |z] > 1.

To test the accuracy of the vortex method we have used Gaussian cutoff

functions of different orders:
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It
(1) P =2 Vs = E‘ld'?e 26° ' (2.1)
v
2 2
%) = = 1— _F-— 1 _26_2 2.2
(it) p=4 2 s (2e e ) (2.2)
.2 -2 -2
= ’ = .1_ 8 & _-2-;? __1_ -:6? 29
(i) p=6 Vs —7 (3¢ t e ) (2.3)
. 2 2 2 2
('i'U) p =8 ¢6 - 1_ %e-:_z_ 4_2—;?.‘. 1—e—‘:6_2_ _1._2—81.?) (2.4)
_ mé® 21 -3 6 168

where 72=z%+y®% These cutoff functions have L == and are suggested by
Beale & Majda in [6].

The numerical experiments by Hald & Del Prete [14], Anderson [1] and
Nakamura, Leonard & Spalart [20] have shown that the vortex method is
stable. In this thesis we will therefore investigate the consistency error in
detail. As suggested by the numerical results presented in section 4 and by
Cottet’s observation [11, Lemma 4.1] we assign to each particle z; the vorti-
city value c¢; =w;h? Here w; =w(2;) and h? is the area of the square B; cen-

tered at 2z;. Thus we approximate the vorticity and the velocity by:

uh(z,t)= 2 Ks(z —2;(t)) w;h%,
i

(z,t)= Z¢6(z_ —2;(t)) wh?
j

The behavior of the consistency error for the velocity and for the vorticity
as a function of h, § and £ will suggest a choice of the cutoff parameter § for a
fixed time interval [0, T].

We measure the consistency error for the velocity and the vorticity in the

discrete L2 norm:



14

, \%
é‘u = %}Iu(zj,t) —uh(z;,t) [2R? ] S (2.5)

.

J

E,= r Yl w(zj,t) —wh(2;,t) | 2h? ]%- (2.8)

\

We also compute the relative errors E,/ |u | and £,/ | »|, where |2z ] and
| ©] are the discrete L? norms of the velocity and the vorticity. Similarly we
measure the smoothing error and the discretization error for the vorticity in

the discrete L? norm:

ES =

]

le(zj)—m(z.,t)lzhz]%. | | (2.7)

o |
£ = [;1 oﬁ(z-.t)-oh<zj.t>|2h2] | (2.8)

where 0® =9, * w.

By using the cutoff functions (2.1)-(2.4) we compute the velocity u* and
the vorticity o with 0.05=<h <0.2 and 6 =AY, 0.5<gq <1, and in the time intef-
val [0,20]. We use between 80 and 950 vortices. We compute wé=1;*w by
numerical integration. Specifically we use the routine DO1DAF of the NAG
ﬁbrary [19] with an error tolerance of 10~7. The method in this routine is

~described by Patterson in [21]. Finally we estimate the rate of convergence of

the vortex method by using two successive values of h:

log[E’h1 / E'hz] .

- le y h-z] (2.9)

rate of convergence =
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3. Numerical Results.

In this section we present the results of our numerical experiments. For
a fixed time interval [0, T ] we will consider the approximations to the velo-
city and the vorticity to be accurate if the rate of convergence is constant

over the time interval. The accuracy of the vortex method depends on:
(i) The approximation of the initial vorticity distribution.
(i1) The choice of cutoff function ¥ for some L and p .
(iii) The cutoff parameter 6 =hY, for sofne 0<g <1

We present now the results of the numerical experiments for the first test
problem. Our numerical experiments show that the consistency errors £, and
E, are qualitatively similar for the three cutoff vfunctions (2.2)-(2.4) and differ
from those of (2.1). Hence, we contrast the results obtained with these higher

order cutoff functions with those obtained for the second order cutoff {2.1).

Consider one of the higher order cutoff functions. We find that for a fixed
§=h!=¢ with ¢ small and 0.05<h <0.2 both £, and £, increase sharply in
time. However £, and £, do not increase without bound; they reach a local
maximum at time 7. and oscillate around it later on. The time T. increases as
h decreases. We can observe this behavior of E, and £, for the cutoff func-

tions (2.2) and (2.3) with 6 =h%% in Figures 3.1.a and 3.1.b.

In addition to the sharp increase of the error as a function of ¢, we find
that as a function of A and with § =A!™® with ¢ small, neither %, nor E,
decrease uniformly as h decreases. The rate of convergence is kept constant
for a short time interval and then decreases sharply. This can be seen in Fig-
ures 3.2.a and 3.2.b for the cutoff functions (2.2) and (2.3) and 6 =h%%, This

time interval becomes shorter as h decreases and as p, the order of the cutoff
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function, increases (see Figure 3.3). We also find that for this choice of § and
some T >0, the errors do not decrease with h. We observe in Figures 3.1.a and
3.1.b that this effect is more pronounced in the consistency error of the vorti-

city than in the consistency error of the velocity.

We consider now the error as a function of 4, with h fixed and set § = h9,
with 0.5< g <1. The theoretical eétimates by Beale & Majda [5] and Cottet [11]
show that if 6 =h? with g <1, then the consistency érror is of order hP?, where
ﬁ is the order of the cutoff function. Hence the errors should increase as g
decreases. We find that this holds for a short time interval [0, 7°]. This time _
interval becomes shorter.as h decreases and as p increases. Tables 3.1 and
3.2 show the consistency errors E, and £, for p =4 , h =0.07 ( 465 vortices )
and h =0.05 (925 vortices), and 6 =h? with 0.5< g <1. We observe that at time
t =0 the errors increase as ¢ decreases. This agrees with the theoretical esti-

~mates. However at time ¢ = iO, the velocity error is the smallest for
q =0.85 (h =0.07) and g =0.8 (h =0.05), while the vorticity error is the smal-
lest for g =0.75 (A =0.07, 0.05). At time £ =20 the smallest velocity error is
obtained when &=h%® for h =0.07 and 6 =h%? for A =IO.05, while the smallest

vorticity error is obtained when & = h%7 for h =0.07 and 6 =h%%5 for h =0.05.’

As 0 increases the sharp increase of the error in time is gradually
v attenuated and we observe a more uniform behavior of the error as A-0 over
the time iﬁterval [0, 20] (compare Figures 3.1.a and 3.1.b with Figures 3.4.a
and 3.4.b).

One could think that the behavior of the error for § =hA!™¢ with & small, is
due to the fact that the flow in our test case is not infinitely differentiable.
Therefore to choose 6 close to A may not be consistent with the theoretical

estimates, and a larger ¢ has to be chosen.
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We corisidér now the second test problem to check how the smoothness of
the flow will affect the choice of 6 and as a consequence the behavior of the
-error. Since the flow is infinitely differentiable, in the estimates of the con-
sistency error we can take L to be arbitrarily large. This allows us the choice
of 6 = h1~¢ with & small, in accordance with the theory. Since we are interested
only in the qualitative behavior of the error we computed the consistency
errors E, and E, using only the 4** and 6% order cutoff functions (2.2) and
(2.3). It follows from Figures 3.5.a and 3.5.b that the behavior of the error as a
function of h and ¢ is similar to the behavior of the error observed in the pre-

vious test case.

In contrast to the first two test problems, we observe that for the third
test problem the ‘consistency errors £, and E, are constant in time. This is
not surprising since the particles rotate as a rigid body' and therefore the dis-
tance between the computational points is constant in time. We observe that
the errors decrease with h and for a fixed h the smallest errors are obtained
for & close to h. It follows from Tables 3.3.a and 3.3.b that the errors are
reduced by a factor slightly higher than two when we increase the order of the
cutoff function from p =2 to p =4, however for p=4 the accuracy is not

improved by increasing the order of the cutoff function.

We conclude that the qualitative behavior of the consistency error is quite
insensitive to the smoothness of the flow and that the optimal choice of §, a §
that will preserve a uniform accuracy over a finite time interval [0, 7],
depends on the final time. For the first test problem the optimal choice of J in
the time interval [0,10] is 6 =h%® for p =4, § =h%™ for p =6 and § =h%" for
p =8 while in the time interval [0,20], the optimal choice of § is § =h%% for

p=4 and 6 =h%® for p =6 and p =8. Tables 3.4.a and 3.4.b show the relative
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errors £,/ |u || and £/ | w| for h =0.07 and h =0.05 with the optimal choicé
of 8 for p =4,6,8 at times £t =10 and { =20. We find that the errors are sub-
stantially reduced as we increase the order of the cutoff function. For p =4
and h =0.05 the velocity error at £ =10 is 0.2% while for p =8 it is reduced to
0.05%. At £ =20 the error for p =4 and A =0.05 is 0.@39% and for p =8 the velo-

city error is 0.397%.

In contrast to the higher order cutofI functions, we find that if we use the
~ second order cutoff function (2.1) and 6 =h%9, we do not observe a loss of
accuracy in the time interval [0,20] and the errors do not have the sharp
increase in time that is observed when we used higher order cutoffs. We there-
fore obtain essentially second order accuracy with a relative velocity error of
2.9%. at time £ =20 and with A =0.05 (see Tables 3.4.a and 3.4.b). Although we
are able to choose v6 close to & in the time interval [0, 20] and obtain second
order accuracy, we observe from Figure 3.6 that to preserve the accuracy
over a longer tifne interval 6 will have to be larger, as in the case of the higher

order cutoff functions.

To understahd the behavior of the consistency error, and the time depen-
dency of the cutoff parameter &, and following the spirit of the proof in [5], we
look at the components of the consistency error, the smoothing and discreti-

zation error, defined in (2.7) and (2.8).

The smoothing error EJ is the difference between the exact vorticity &
and wc='¢6*o. Since w and w® do not change in time, £5 remains constant for
all time. It is therefore enough to look at ES at time £ =0. Tables 3.5.a and
3.5.b contain the smoothing error and the order of accuracy of the approxima-
tion @’ to w for the first test problem. We observe that £S is asymptotically of

order &7, for a p** order cutoff function and a smooth enough vorticity.
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The discretization error EZ is the difference between w®=1%;*» and its
trapezoidal rule approximation «*. EZ is of order (h/6)%, (see Lemma 2.5 by
Cottet [11] or the Discretization Lemma by Anderson & Greengard [2]), where
L depends on the smoothness of the flow and of the cutoff function %. Thus if

we choose d =h?, with g <1, the error should decrease for any g <1.

Our numerical experiments indicate that the discretization error £2 has
the same qualitative behavior for all cutoff functions, including the second
order éutoff function. Hence, we will now describe the discretization error for
these cutoff functions as a function of A , § and t. The numerical experiments
relate to the first test problem. Partial runs for the second test problem, not

presented here, indicate a similar behavior of the discretization error.

We find that £2 behaves in an unexpected fashion both as a function of A
and of the time ¢, while £2 has thevexpected behavior as a function of § i.e.,

the error decreases as d increases.

Consider a fixed h and any 6 =h? with 0.5<gq <1. We present in Figures
3.7.a-d the discretization error for p =2 and p =4 with § =~09 and § =h%85, We
find that the £Q increases sharply in time, however it does not increase
without bound, (Figures 3.7.a-d). The rate at which the error increases,
decreases in time. For example, for p =4 and h =0.05, with § =k%% the error
at t =2 is B8 times larger than the error at time ¢ =1, wﬁile the error at £ =20
is only 1.05 times larger than the error at ¢{ = 19. The major difference in the
approximation of w? by «* is the position of the computational points. When
one observes the flow, one can see that as time increases, there is a rapid
decrease in the degree of organization of the flow. At time £ =0, when the com-
putational points are equally spaced, the approximation is extremely accu-

rate; but as soon as the points become disorganized, there is a sharp increase
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in the error. On the other hand further disorganization of the computational
points does not affect the approximation drasticaliy. This is seen in the small
increase of the error from time £ =19 to £ =20, and in longer time computa-
tions. It would seem that the accuracy of the approximation depends on the

organization of the computational points.

As a function of ~ and for any 6§ =h?, with 0.5<g <1, we observe a loss of _
accuracy over time in the approximation of w’ by . This loss of accuracy is
more pronounced for 6 close to h, 6 =h? with 0.75<g <1. For 0.05=h <0.2 we
observe that for any 6 and for some T >0 the error does not decrease as we
increase the number of vortices, (see Figures 3.7.a-d). For h=<0.05, which
corresponds to more than 900 vortices, we find that while the errors do not
decrease for 6 close to h and some T >0, they do decrease for larger d over

the time interval [ 0,20].

If h is fixed then EZ decreases as 6 increases (see Figure 3.8). This agrees
with the negative powers of § which occur in the theoretical éstimates of ED,
see Beale & Majda [5], Cottet [11], Anderson & Greengard [2]. The decrease of
E2 as 6 increases allows us to create a balance between the smoothing and

discretization errors, to obtain accurate results over a fixed time interval.

If we compare the discref.ization error for different cutoff functions, with
a fixed A and &, we find that the discretization error for p =2 is substantially
smaller than the discretization error for higher order cutoff functions. Th_e
latter are of comparable size. On the other hand the smoothing error
decreases as we increase the order p of the cutoff function (see Table 3.5.a).
Because of these two facts we need to choose a larger § as p incre.ases. This is
not consistent with the theory for L =, i.e., for infinitely differentiable flows,

but is qualitatively consistent with the theory if L is finite.
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Having observed the behavior of the smoothing and discretization errors,
we can understand how the consistency error dévelops as a function of A, ¢
and ¢. Consider the second order cutoff function. As we mentioned above, the
discretization error EZ increases in time and for some T >0 does not decrease
as h decreases, however it is small relative to the size of the smoothing error,
which is of order 62 Thus the behavior of £2 is not felt in the consistency

error and we obtain an accuracy of 2gq, with g <0.9.

For higher order cutoff functions and 6 =A%, with 0.75<q <1, the sharp
increase of the consistency error in time and its behavior as A decreases is
caused by the discretization component. We observe that for some T >0 thg
consisf.ency error is almost equal to its discretization component. This indi-
cates that except for a short initial time, the dominant term in the con-
sistency error is the discretization error. This neutralizes the advantages pro-
vided by higher order cutoff functions. Because ES increases with &, while ED
decreases as § increases, by choosing § larger we are able to eliminate the
sharp increase of the consistency error as a function of { and we obtain a
more uniform decrease of the error as a function of A. In doing so, we lose
some of the increased accuracy provided by the higher order cutoff functions.

We conclude this section with a summary of the results of our numerical
experiments:

If the flow is smooth enough, the accuracy of the vortex method is
improved by increasing the order of the cutoff function. This is not the case
for non-smooth flows, as we showed in the numerical experiments with the
third test problem.

Our numerical experiments indicate that for the values of A tested, the

choice of § is quite insensitive to the smoothness of the flow. We find that if 4 is
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close to h, as suggested by Beale & Majda [5], then the accuracy is lost in a
relatively short time, even for infinitely differentiable flows. By increasing 0 we
are able to preserve the accuracy of the method over longer time intervals.
Thus the predicted p** order accuracy is reduced to pq, with g closer to %
than to 1. In addition we pbserve that the discretization error does not grow
without bound. Therefore by choosing § large enoughv so that the smoothing

error is larger than the discretization error we can obtain accurate results

over long time intervals:.
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6=h-",
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Discretization error £2 in the time interval [0,20] with w=w{!), p =2 and

§=h",
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Discretization error £2 in the time interval [0,20] with w=w("), p =4 and

5=h%,
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Discretization error £2 in the time interval [0,20] with w=w{, p =4 and

6 =h"S,
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Discretization error EZ2, with w=o), p=4, A =007 and 6&=h?,

0.75<g <0.85.
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Discretization error EZ, with w=o), p=86, A=0.07 and 6=hY,

0.75<g <0.95.
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E, E,
8 =h? t=0 £t =10 t =20 t=0 £t =10 t =20
g=.95 | 1.628-4  1.252-3  2.809-3 | 1.173-3  4.729-2 . 9.122-2
g=.90 | 2.694-4 B.873-4 2.158-3 | 1.946-3 2.933-2  6.103-2
g=.85 | 4.427-4  7.009-4  1.647-3 | 3.179-3  1.732-2  3.969-2
g=.80 | 7.211-4  7.932-4  1.348-3 | 5.136-3  1.076-2 . | 2.558-2
g=.75 | 1.161-3  1.178-3  1.411-3 | 8.189-3  9.709-3  1.787-2
g=.70 | 1.844-3  1.848-3  1.927-3 | 1.284-2  1.318-2  1.657-2
g=.65 | 2.880-3 2.881-3 2.907-3 | 1.976-2  1.983-2  2.106-2
q =80 | 4.410-3 44103 44183 | 2971-2 29722  3.018-2
g=.55 | 6.598-3  8.598-3  6.601-3 | 4.348-2  4.349-2  4.366-2
Table 3.1

Velocity and vorticity consistency errors at £ =0, 10, 20 with w=o{l), p = 4

and A = 0.07.
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Ey E,
d=ht t=0 t=10 t =20 t=0 t=10 t =20
g =.95 4.547-5 8.415-4 3.349-3 | 3.291-4 4.688-2 1.142-1
g =.90 8.144-5 5.366-4 2.831-3 5.949-4 2.614-2 8.803-2
q =.85 1.452-4 3.315-4 2.295-3 1.056-3 1.317-1 6.596-2
g =.80 2.570-3 2.974-4 1.773-3 1.859-3 6.181-3 4.692-2
g=.75 4.510-4 4.566-4 1.339-3 3.237-3 4.070-3 3.121-2
g =.70 7.819-4 7.827-4 1.156-3 5.561-3 5.664-3 1.978-2
qg =.85 1.335-3 1.366-3 1.445-3 9.836-3 9.399-3 . 1.429-2
g =.80 2.238-3 2.239-3 2.268-3 1.549-2 1.5650-2 1.856-2
q =.55 3.667-3 3.887-3 3.675-3 2.491-2 2.491-2 2.511-2
Table 3.2

Velocity and vorticity consistency errors at ¢ =0, 10, 20 with w =), P =4

and h = 0.05.



0.20 | 2.621-2 1.2672 1.1802 1.151-2
0.14 | 1.561-2 6.984-3 6.401-3 6.209-3
0.10 | 9.271-3 43443 4.051-3 B5.957-3
0.07 | 5.520-3 2.331-3 2.126-3 2.059-3
0.05 | 3.291-3 1.511-3 1.4153 1.384-3

0.03 | 2.018-3 B8.548-4 7.8344 7.605-4

Table 3.3.a

Relative velocity errors for w = and § = k-9,

0.2 1.682-1 1.354-1 1.319-1 1.304-1
0.14 | 1.382-1 1.113-1 1.082-1 1.068-1
0.10 | 1.113-1 8.771-2 8.485-2 8.362-2
0.07 | 9.303-2 7.306-2 7.044-2 6.929-2
0.05 | 7.663-2 5.806-2 5.579-2 5.481-2
0.03 | 6.477-2 5.030-2 4.834-2 '4.748-2

Table 3.3.b.

Relative vorticity errors for w=w(® and § = A%,
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h =0.07 h =0.05

Eu/lul Evlel | E/lul Es/ el

p=2 6=h% | 50092 8.691-2 2.764-2 4.865-2
p=4, 6=h8 | 54073 2.351-2 2.030-3 1.351-2
p=86, 6=h"™ | 25633 1.398-2 7.626-4 6.270-3

D =8, 6=h™ 2.181-3 8.795-3 5.056-4 2.540-3

Table 3.4.a.

Relative velocity and vorticity errors for w= o) with the optimal values of § at

time £ = 10.

h = 0.07 h = 0.05

Elul Eslel || B/ lu]l Eu o]

p=2 6=h% | 5044-2 8.964-2 2.869-2 6.976-2
|p=4, 6=h% | 19812 4.603-2 9.866-3 3.123-2
p =8, §=h% | 13852 3.527-2 6.001-3 2.042-2

p=8, 6=h% | 2870-3 2.546-2 3.935-3 1.823-2

Table 3.4.b.

Relative velocity and vorticity errors for w= o) with the optimal values of ¢ at

time t = 20.



) p=2 p=4 p=6 p=8

0.2 1.415-1 2.810-2 1.4152 9.430-3
0.15 9.186-2 1.118-2 3.975-3 2.055-3
0.1 4.485-2 2.646-3 5.109-4 1.641-4
0.075 | 2.695-2 8.954-4 1.060-4 2.307-5
0.06 1.237-2 1.858-4 1.068-5 1.268-8
0.04 7.994-3 7.725-4 2.850-6 2.460-7

Table 3.5.a

Smoothing error for w=wl!) and p = 2, 4, 6, 8

0.2 | 1.50 3.20 4.41 5.30
0.15 | 1.71 3.55 506 6.23
0.1 | 1.85 3.77 546 6.82
0.075 | 1.92 3.88 5.66 7.15

0.05 1.96 3.93 5.92 7.35

Table 3.5.b

Order of accuracy of the approximation w® computed by using two successive

values of § from Table 3.5.a.
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4. The Approximation of the Initial Vorticity Distribution.

The initial vorticity distribution can be approximated by one of the two

following forms

wh = ;%(z -zj)g;w(z)dz (4.1)
or

wf = Y Ys(z —z5) w;h% (4.2)
J

where the 2;’s are the grid points and h? is the area of the square B;j centered
at z;. The corresponding velocity approximations are given by uf=K* wf, for
l=1,2. The approximation (4.2) is the approximation of the convolution
integral 95 * w by the trapezoidal rule. The error is of order 6° + (h/ §)* where
P is the order of the cutoff function and L depends on the number of deriva-
tives of the vorticity ( see Anderson [1] ). Cottet has shown that if the vorticity
is approximated by (4.1) there is an additionai' error of order A% Thus if the
cutoff function is of order p =4 and Vkh < § <h, the approximation {4.1) is only
second order accurate. On the other hand, for sufficiently smooth flows and ¢
close to h the vorticity approximation (4.2) is, at least at time t =0, p® order

accurate for a p** order cutoff function.

The numerical experiments presented in Section 3 indicate that to
preserve the accuracy of the velocity and vorticity approximation over a fixed
time interval [ 0, T ] the smoothing error should be larger than the discretiza-
tion error. This is always the case at £ =0. As our initial vorticity is radially
symmetric the smoothing error is independent of time. Thus we compare the
velocity and vorticity approximations at time £ =0. We use the first test prob-

lem of section 2 and compute the discrete velocity and vorticity approxima-
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tions 4 and o ({ =1,2) at time ¢ =0 for the cutoff functions {2.1)-(2.4),
0.03=h =<0.2 and 6 =h? with 0.5<g <1. We measure the consistency errors

t =0 in the discrete L? norm:

BL= (3 lule) ~ul(e) PR
and

EL =Y | w(z;) —of(z;) |22 )4
J

where I =1,2. We estimate the rate of convergence by using two successive

values of h in equation (2.9).

With both approximations the velocity and vorticity errors decrease as
h-0 for any 6=h7%, with 0.5<g <1, and for a fixed h the errors increase as 0
increases. For a fixed h and g both E! and E? decrease as the order of the

cutoff function increases.

We find that for any 0.03<h <0.2 and for any §d =h9?, with 0.5<g <1, the
errors E} and £} are larger than the errors E2 and £%. Tables 4.1.a-b com-
pare the velocity and vorticity errors obtained with both approximations. For
the second order cutoff function (2.1), £! and £? are of the comparable order.
Both approximations are 29 order accurate for d =h?. For higher order cutoff
functions and 6 =h?, with 0.75<q <1, there is a significant difference between
the two approximations. For example, with A =0.05, §=h*® and p =8, £} is
approximately 10™* while £Z is approximately 1078 In addition we find that for
these values of § and p =6 and 8 u%} and w} are qui_te insensitive to the order
of cutoff function and to the choice of &, (see Figure 4.1). With these values of
¢ the rate of convergence of the approximation (4.1) decreases to 2, while the

rate of convergence obtained with (4.2) increases as h - 0.
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Our numerical examples show that for d=h?, with 0.5<g=<0.75, the
difference betweén E' and E® is not so drastic, although & 1> E? still holds
(see Table 4.2). We find that for a fixed g in the range specified above, the rate
of convergence of {4.1) increases up to approximately 3 and decreases again
for smaller values of A, however it does not decrease to 2. A similar
phenomena has been observed by Hald and Del Prete [14]. A possible explana-
tion to this fact is that these values of § are not in the region where the

asymptotic estimates are valid.
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Figure 4.1

Velocity and vorticity errors with approximations (4.1) and (4.2), with w= (V)

P =6and §=hY, 0.80<q <0.95.
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0.2

0.14

0.1

0.07

0.05

0.03

3.394-2
2.006-2
1.123-2
6.065-3
3.210-3

1.680-3

3.219-2
1.894-2
1.088-2
5.711-3
3.025-3

1.5685-3

7.885-3
3.209-3
1.286-3
5.343-4
2.348-4

1.083-4

5.333-3

1.821-3

5.621-4

1.628-4

4.547-5

1.245-5

5.156-3

1.999-3

8.565-4

4.022-4

1.970-4

9.793-5

2.607-3
6.002-4
1.132-4
1.877-5
2.903-6

4.685-7

4.301-3
1.735-3
7.985-4
3.919-4
1.954-4

9.768-5

1.731-3

2.980-4

3.811-5

3.984-6

5.113-7

1.979-7

Table 4.1.a

Velocity errors obtained with approximations (4.1) and (4.2) and § =h%,

By

0.2
0.14
0.1
0.07
0.05

0.03

1.651-1
1.030-1
5.961-2
3.281-2
1.754-2

9.230-3

1.576-1
9.767-2
5.628-2
3.093-2
1.654-2

8.710-3

4.867-2
2.024-2
8.021-3
3.238-3
1.378-3

6.196-4

3.523-2
1.260-2
3.896-3
1.173-3
3.291-4

8.998-5

3.288-2
1.235-2
4.985-3
2.255-3
1.088-3

5.379-4

1.897-2
4.647-3
8.707-4
1.515-4
2.401-5

7.964-6

2.721-2
1.025-2
4.469-3
2.156-3
1.071-3

5.348-4

1.321-2
2.460-3
3.248-4
3.628-5
1.227-5

8.308-8

Table 4.1.b

Vorticity errors obtained with approximations (4.1) and (4.2) and § =h-%5,
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0.2
0.14
0.1
0.07
0.05

0.03

8.224-2 6.114-2

4.703-2 4.834-2
3.241-2 3.378-2
2.403-2 2.377-2
1.640-2 ‘ 1.625-2

1.095-2 1.087-2

1.814-2
9.687-3
8.490-3
3.209-3
1.504-3

6.785-4

1.941-2 | 1.587-2

1.110-2 | 7.895-3
5.865-3 | 3.538-3
- 2.880-3 | 1.429-3
1.336-3 | 5.405-4

5.935-4 | 2.007-4

1.368-2
6.785-3
2.954-3
1.129-3
3.876-4

1.222-4

1.247-4 4.164-5

1.341-2  1.146-2

6.287-3 5.221-3
2.555-3 1.999-3

9.277-4 6.400-4

3.270-4 1.745-4|

Table 4.2.a.

Velocity errors obtained with approximations (4.1) and (4.2) and 6 =h %5,

0.2
0.14
0.1
0.07
0.05
0.03

2.683-1 2.644-1

2.164-1 2.136-1
1.661-1 1.643-1
1.215-1 1.203-1
8.539-2 8.467-2

5.819-2 5.778-2

1.077-1
6.114-2
4.223-2
2.159-2
1.034-2

4.730-3

1.160-1 | 8.851-2

7.049-2 | 5.330-2
3.891-2 | 2.516-2
1.976-2 | 1.050-2
9.386-3 | 4.006-3

4.242-3 | 1.459-3

8.915-2
4.734-2
2.182:-2
8.746-3
3.114-3

1.010-3

8.731-2 7.759-2

4.411-2 3.810-2
1.894-2 1.568-2
7.011-3 5.336-3
2.387-3 1.530-3

8.320-4

Table 4.2.b.

Vorticity errors obtained with approximations (4.1) and (4.2) and 6 =95,

3.813-4

‘a?
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5. Conclusions.

We have presentéd a series of numerical experiments which test the accu-
racy of the vortex method for inviscid flows in the absence of boundaries. Qur
numerical experiments indicate that with a suitable choice of the cutoff

parameter § the vortex method converges.

We examined the accuracy provided by high order cutoff functions. If the
flow is smooth enough then the accuracy of the method is improved by
increasing the order of the cutoff function. In the case of non-smooth flows we
observed that the accuracy of the approximation is not improved by increas-

ing the order of the cutoff function beyond p = 4.

We have also looked at the accuracy of the method as a function of the
cutoff parameter 8. We found that the best choice of § is time dependent, in
the sense that longer time integration requi.rés a larger 6. In adciition the
optimal choice of § is quite insensitive to the smoothness of the flow. If § is
close to h, as suggested by Beale & Majda [5], the accuracy is lost in a rela-
tively short time. This loss of accuracy is caused by thé discretization error
which comes from approximating a convolution integral by the trapezoidal
rule. We found that the discretization error grows sharply in time and it does
not decrease uniformly with A for large values of t. This behavior is common
to all 6° .<h. <J. However, as a function of § the error decreases in accordance
with the theoretical estimates. The decrease of the discretization error as §
increases allows us to choose § so that the smoothing error is larger than the
discretization error. In doing so we 'preserve the accuracy over a fixed time
interval. Thus the predicted p* order accuracy (see Beale & Majda [5]) is

reduced to pgq with ¢ closer to % than to 1. A possible explanation for the
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growth of the discretization error is the disorganization of the computational

points. The reason for the observed decrease in the order of accuracy of the
trépezoidal rule remains to be found.

In addition we have compared the approximations to the initial vorticity
distribution used by Hald [13] and Beale & Majda [5]. We found that Hald's
approximation gives larger errors. For 4 close to h the differences are

significant, while for larger values of § the errors are of comparable size.

[T
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