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ABSTRACT OF THE THESIS 

 

A Comprehensive Study of the Dzhanibekov and Tennis Racket Phenomena 

 

by 

 

Takeyuki Ono 

 

Master of Science in Engineering Sciences (Mechanical Engineering) 

 

University of California, San Diego, 2017 

 

Professor Hidenori Murakami, Chair 

 

 The Dzhanibekov and tennis racket phenomena are described by the torque-free 

rotation of a rigid body with three distinct principal moment of inertia values and angular 

velocity components. In these phenomena, rotations about the largest and smallest principal 

moments of inertia create stable rotations. However, when rotating about the intermediate 

principal moment of inertia, an unstable rotation is produced that leads to the basis of these 



 

x 

phenomena. In this thesis, the above phenomena are examined and explained analytically, 

geometrically, and numerically. In addition, the analysis is applied to a satellite system to 

observe the change in trajectory as the solar panels and reflectors are deployed. In the 

derivation, the Euler torque-free equations for a rotating rigid body are formulated using 

the moving frame method. The derived equations are then non-dimensionalized and a 

complete analytical solution, including an expression for the non-dimensional period, is 

presented. Furthermore, the axisymmetric cases and the effect of varying intermediate 

principal moment of inertia are examined. Lastly, the analytical expressions are compared 

with the numerical simulation to validate the results. The complete solution is then 

summarized and shown to clearly demonstrate that the conservation of angular momentum 

is indeed preserved in the phenomena. 
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CHAPTER 1: INTRODUCTION 

 In 1985, Vladimir Dzhanibekov, a Russian astronaut, conducted experiments in the 

space station concerning the rotation of a rigid body with three distinct principal moment 

of inertia values. As presented by Dzhanibekov, the rotation of a rigid body (dictionary, 

wing nut, box) about the intermediate moment of inertia causes the initial spin axis to rotate. 

Similar phenomenon has been observed on earth with a tennis racket and table tennis 

paddle, both of which produced similar results to Dzhanibekov’s experiments [1, 2]. 

 The equations governing rotational motion of a rigid body are referred to as Euler’s 

equations, named after Leonhard Euler (1707-1783), who developed rigid body dynamics. 

As a special case, he investigated the torque-free rotation of a rigid body. Both the 

Dzhanibekov and the tennis racket phenomena can be governed by the torque-free Euler 

equations. The moving frame method will be used to show a clear derivation of the 

equations that govern this seemingly non-trivial behavior of the tennis racket and the 

Dzhanibekov experiments. 

 Analytical solutions of the torque-free Euler equations have been previously 

presented. Wittenburg demonstrated the analytical solution of Euler’s equations using 

Jacobi elliptic functions, but with respect to the angular velocity components [3, 4]. 

Ashbaugh et al. also reported the analytical solution using Jacobi elliptic function for the 

tennis racket experiments by solving Euler’s equations with respect to the momentum 

components, but no intermediate steps were shown in their derivation [5]. Previous work 

by Murakami et al. presented a numerical	
 and geometrical explanation of the Dzhanibekov 

and tennis racket phenomena [6]. In this thesis, a complete non-dimensionalized analytical 

solution, including an expression for the non-dimensional period of the trajectory, is 
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presented by addressing analytical components. Furthermore, the transition is examined as 

the moment of inertia about the spin axis is varied when an initially spinning satellite 

deploys its solar panels. 
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CHAPTER 2: FORMULATION AND ANALYTICAL SOLUTION OF THE 

TORQUE-FREE RIGID BODY ROTATION 

2.1 Formulation of Euler’s Equation using the Moving Frame Method 

 The Euler torque-free equations for a rigid body are formulated by using the moving 

frame method. The moving frame method explicitly states the coordinate vector basis when 

expressing vectors to easily distinguish between an inertial and a moving frame observer. 

Firstly, a fixed inertial coordinate system {𝑥%	
  	
  	
  𝑥"	
  	
  	
  𝑥$} and its corresponding orthonormal 

vector basis 𝐞. ≡ 𝐞%. 	
  	
  	
  𝐞". 	
  	
  	
  𝐞$.  are introduced with the origin at a specified point in 

Euclidean three-space, ℝ$ . Next, a body-attached principal coordinate system 

{𝑠%	
  	
  	
  𝑠"	
  	
  	
  𝑠$} and its corresponding orthonormal vector basis 𝐞 𝑡 ≡ 𝐞%(𝑡)	
  	
  𝐞"(𝑡)	
  	
  𝐞$(𝑡) 	
  	
 

are established in the directions of the body’s principal axes. As shown in Figure 2.1, it is 

convenient to choose the inertial coordinate system to be the body-attached coordinate 

system at time 𝑡 = 0, 𝐞. = 𝐞 0 .  

 

Figure 2.1: A fixed inertial coordinate system and a body-attached principal coordinate 
system 
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 The vector basis is explicitly written in order to represent vectors and identify the 

coordinate system. In addition, the formulation is facilitated by adopting Frankel’s compact 

notation [7], in which the vector basis 𝐞 𝑡 ≡ 𝐞%(𝑡)	
  	
  𝐞"(𝑡)	
  	
  𝐞$(𝑡)  is expressed by a 

1×3 row matrix, and the components are expressed by a 3×1 column matrix [8].   

 To begin the derivation of Euler’s equations, a relationship between the current 

body-attached frame and the inertial frame is established through a 3×3 rotation matrix 

𝑅(𝑡). 

 𝐞 𝑡 = 𝐞.𝑅(𝑡) (1)   

It should further be noted that rotation matrices, 𝑅(𝑡) belong to the special orthogonal 

group, SO (3), and thus 𝑅 𝑡 : = 𝑅 𝑡 ;%
. 

 𝐞. = 𝐞 𝑡 𝑅 𝑡 :
 (2)   

To obtain the angular velocity of the body, the time derivative of the body-attached frame 

is taken, and Eq. (2) is used to relate the expression back to its corresponding frame. 

 𝐞 𝑡 = 𝐞.𝑅 𝑡 = 𝐞 𝑡 𝑅 𝑡 :𝑅 𝑡 = 𝐞 𝑡 𝜔(𝑡) (3)   

The time rate of the body-attached frame produces a 3×3 skew-symmetric matrix known 

as the angular velocity matrix 𝜔(𝑡)  

 𝜔(𝑡) ≡ 𝑅 𝑡 :𝑅 𝑡 ≡
0 −𝜔$ 𝑡 𝜔" 𝑡

𝜔$ 𝑡 0 −𝜔% 𝑡
−𝜔" 𝑡 𝜔% 𝑡 0

 (4)   

from which the angular velocity components with respect to the moving body can be 

obtained by observing a one-to-one relation between 3×3 skew-symmetric matrices in 

the Lie algebra of SO (3) and angular velocity vectors in ℝ$. 
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 𝝎 𝑡 = 𝐞 𝑡 𝜔(𝑡) ≡ 𝐞% 𝑡 	
  	
  	
  𝐞" 𝑡 	
  	
  	
  𝐞$ 𝑡
𝜔% 𝑡
𝜔" 𝑡
𝜔$ 𝑡

 (5)   

Since the moving frame coincides with body’s principal axis, the mass moment of inertia 

matrix can be expressed as a diagonal 3×3 matrix as in Eq. (6) below. To be noted, the 

mass moment of inertia values will follow 𝐽%? > 𝐽"? > 𝐽$? . 

 𝐽? =
𝐽%? 0 0
0 𝐽"? 0
0 0 𝐽$?

 (6)   

The angular momentum vector about the center of mass, 𝑯? 𝑡 , can now be expressed 

with respect to the body attached or moving frame: 

 

𝑯? 𝑡 = 𝐞 𝑡 	
  𝐽?𝜔 𝑡 = 𝐞 𝑡 𝐻? 𝑡  

≡ 𝐞% 𝑡 	
  	
  	
  𝐞" 𝑡 	
  	
  	
  𝐞$ 𝑡
𝐻%A 𝑡
𝐻"A 𝑡
𝐻$A 𝑡

 
(7)   

where the components of the angular momentum are expressed with the product between 

the principal mass moment of inertia matrix and the angular velocity components as: 

 
𝐻%A 𝑡
𝐻"A 𝑡
𝐻$A 𝑡

=
𝐽%? 0 0
0 𝐽"? 0
0 0 𝐽$?

𝜔% 𝑡
𝜔" 𝑡
𝜔$ 𝑡

. (8)   

The frame of reference can easily be changed to that of an inertial frame since the vector 

basis is explicitly stated. Expressing the angular momentum vector with respect to the 

inertial frame observer is done by a simple substitution using Eq. (1) above: 

 𝑯? 𝑡 = 𝐞.𝑅 𝑡 	
  𝐽?𝜔 𝑡 = 𝐞.𝐻?. (𝑡). (9)   

To obtain Euler’s torque-free equations, the time derivative of the angular momentum is 

taken and equated to zero. Note, without explicitly stating the vector basis when expressing 
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the angular momentum, confusion can arise when obtaining the time rate. Taking the time 

derivative of Eq. (7) results in the following expression for the angular momentum with 

respect to the moving frame: 

 𝑯A 𝑡 = 𝐞 𝑡 𝐻A 𝑡 + 𝐞 𝑡 𝐻A 𝑡 = 0. (10)   

The substitution of Eq. (3) into Eq. (10) above for 𝐞 𝑡  results in the governing equations 

for a torque free rotation of a rigid body: 

 𝑯 𝑡 = 𝐞 𝑡 𝐻A 𝑡 + 𝜔 𝑡 𝐻A 𝑡 = 0. (11)   

Equation (11) above, expressed in component form, results in three first order differential 

equations that govern the torque-free rotation of a rigid body 

 𝐻%? 𝑡 − 𝜔$ 𝑡 𝐻"? 𝑡 + 𝜔" 𝑡 𝐻$? 𝑡 = 0, (12a)    

 𝐻"? 𝑡 + 𝜔$ 𝑡 𝐻%? 𝑡 − 𝜔% 𝑡 𝐻$? 𝑡 = 0, (12b)    

 𝐻$? 𝑡 − 𝜔" 𝑡 𝐻%? 𝑡 + 𝜔% 𝑡 𝐻"? 𝑡 = 0. (12c)    

By substituting for the angular velocity components in the above three differential 

equations using Eq. (8), the equations can be expressed by using only the mass moments 

of inertia and the angular momenta 

 𝐻%? 𝑡 +
1
𝐽"?

−
1
𝐽$?

𝐻"? 𝑡 𝐻$? 𝑡 = 0, (13a)   

 𝐻"? 𝑡 +
1
𝐽$?

−
1
𝐽%?

𝐻%? 𝑡 𝐻$? 𝑡 = 0, (13b)   

 𝐻$? 𝑡 +
1
𝐽%?

−
1
𝐽"?

𝐻%? 𝑡 𝐻"? 𝑡 = 0. (13c)   

  As can be seen, the moving frame method provides a clear derivation and avoids 

any user confusion by explicitly stating the vector basis. It also provides a succinct and 

easy way of changing the frame of reference through the use of rotation matrices. 
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2.2 Analytical Solution of Euler’s Equation 

 Euler confirmed that four quantities were conserved: the kinetic energy and the 

three angular momentum components. He also noted that the length of the angular 

momentum vector remained constant. From these observations, the conservation of 

rotational kinetic energy: 

 𝐻%? 𝑡
"

𝐽%?
+

𝐻"? 𝑡
"

𝐽"?
+

𝐻$? 𝑡
"

𝐽$?
= 2𝐾G, (14)   

and the conservation of the magnitude of the angular momentum vector is expressed as: 

 𝐻%? 𝑡
" + 𝐻"? 𝑡

" + 𝐻$? 𝑡
" = 𝑯? 0 ". (15)   

In the above, 𝐾G represents the initial rotational kinetic energy, calculated from the initial 

conditions and body parameters as follows: 

 𝐾G =
%
"
𝐽%? 𝜔% 0

" + 𝐽"? 𝜔" 0
" + 𝐽$? 𝜔$ 0

" 	
  , (16)   

and the norm 𝑯? 𝑡  of the angular momentum vector remains the magnitude at 𝑡 = 0. 

 Euler observed from his equations that three steady-state solutions referred to as 

permanent rotation states exist  

 𝜔% 𝑡 = 𝜔G, 𝜔" 𝑡 = 𝜔$ 𝑡 = 0 (17a)   

 𝜔% 𝑡 = 0, 𝜔" 𝑡 = 𝜔G, 𝜔$ 𝑡 = 0 (17b)   

 𝜔% 𝑡 = 𝜔" 𝑡 = 0, 𝜔$ 𝑡 = 𝜔G,  (17c)   

where 𝜔Gis a constant. 

In certain cases, when a dominant angular velocity is applied about one principal axis to 

induce a state of permanent rotation, the initial angular velocity deviates slightly from the 

state of permanent rotation. In other words, in addition to the dominant component about 
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the principal axis, the initial angular velocity includes small angular-velocity components 

about other axes. To account for the slight perturbation of initial conditions, the stability of 

the angular velocity components near the permanent rotation states must be examined.  

 Geometrically, the energy ellipsoid expressed with respect to the 𝐻%? , 𝐻"? , and 

𝐻$?-axis can be constructed using Eq. (14): 

 
𝐻%? 𝑡
2𝐾G𝐽%A

"

+
𝐻"? 𝑡
2𝐾G𝐽"A

"

+
𝐻$? 𝑡
2𝐾G𝐽$A

"

= 1, (18)   

and the angular momentum sphere can be defined as: 

 𝐻%? 𝑡
" + 𝐻"? 𝑡

" + 𝐻$? 𝑡
" = 2𝐾G𝐷. (19)   

where D is a parameter, which changes the radius of the angular momentum sphere 

 𝐷 =
𝑯A 0 "

2𝐾G
	
  . (20)   

Since the body-attached coordinate axes are defined so that the inequality of the mass 

moment of inertia 𝐽%? > 𝐽"? > 𝐽$?  is satisfied, the following inequality for the parameter 

D is required: 

 𝐽%? ≥ 𝐷 ≥ 𝐽$? . (21)   

The intersection of the energy ellipsoid and the angular momentum sphere is the trajectory 

of the angular momentum vector with respect to the body attached coordinate frame. Louis 

Poinsot (1777-1859) in the 19th century, added a geometrical interpretation to Euler’s 

analytical solution. He stated that the intersecting path of Eqs. (14) and (15) is the trajectory 

of the angular velocity vector with respect to the body attached coordinate frame. The 

collective curves of intersection, as the angular momentum ellipsoid is varied, are referred 

to as polhodes by Poinsot [9].  
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2.3 Non-dimensional Analytical Solution 

 The analytical solution to the non-dimensional Euler’s equations with respect to the 

moving frame will be derived. Before doing so, the Euler’s equations, the angular 

momentum sphere, and the energy ellipsoid will be non-dimensionalized. Non-

dimensionalization will allow for an easier interpretation and visualization of the polhodes, 

producing a constant energy ellipsoid and an angular momentum sphere with a single 

parameter, which controls the radii of the sphere. The analytical solution of the non-

dimensionalized Euler’s equations will then be obtained through the use of elliptic 

functions for varying moment of inertia values and expression for the non-dimensional 

period of the trajectory will be obtained in the next section. 

2.3.1 Non-dimensionalization of Euler’s Equations 

 The non-dimensionalization process is presented for the angular momentum sphere 

and energy ellipsoid, defined in Eqs. (18) and (19). The non-dimensional angular 

momentum components, represented by over-bars, are obtained from the energy ellipsoid 

and angular momentum sphere by using the terms associated with the 	
  𝐻"? t  component 

 𝐻K? = 	
  
𝐻K?
2𝐾G𝐽"A

, 𝑖 = 1,2,3. (22)   

To obtain an expression for the non-dimensionalized time, a reference time 𝑡M  is 

established 

 𝑡 = 𝑡M𝑡. (23)   

Substituting Eqs. (22) and (23) back into one of Euler’s equations (Eq. (13a) was chosen): 
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 1
𝑡M

𝐽"A
2𝐾G

	
  
𝑑
𝑑𝑡
	
  𝐻%? + 1 −

𝐽"A
𝐽$A

	
  𝐻"?	
  𝐻$? = 0. (24)   

The expression for the reference time can thus be obtained from the first term above 

 𝐽"A
2𝐾G

= 𝑡M. (25)   

Substituting Eq. (25) into Eq. (23), the non-dimensional expression for time is obtained: 

 𝑡 =
2𝐾G
𝐽"A

	
  𝑡. (26)   

The non-dimensional Euler’s equations can now be expressed: 

 
𝑑
𝑑𝑡
𝐻%? +	
   1 −

𝐽"?
𝐽$?

	
  𝐻"?𝐻$? = 0, (27a)   

 𝑑
𝑑𝑡
𝐻"? +	
  

𝐽"?
𝐽$?

−
𝐽"?
𝐽%?

	
  𝐻$?	
  𝐻%? = 0, (27b)   

 𝑑
𝑑𝑡
𝐻$A +	
  

𝐽"A
𝐽%A

− 1 	
  𝐻%A	
  𝐻"A = 0. (27c)   

Lastly, using Eqs. (18), (19), and (22), the non-dimensional constant energy ellipsoid and 

the non-dimensional angular momentum sphere result in Eqs. (28) and (29) respectively 

 
𝐽"A
𝐽%A

𝐻%A
"
+ 𝐻"A

"
+

𝐽"A
𝐽$A

𝐻$A
"
= 1, (28)   

 𝐻%A
"
+ 𝐻"A

"
+ 𝐻$A

"
= 𝑑. (29)   

The variable 𝑑, defined below, is the single parameter that is varied to control the radius 

of the angular momentum sphere 

 𝑑 = 𝐷 𝐽"A	
  . (30)   

From Eq. (21), the radius 𝑑 of the non-dimensional angular momentum sphere satisfies 
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the following inequality: 

 
𝐽$A
𝐽"A

≤ 𝑑 ≤
𝐽%A
𝐽"A
	
  . (31)   

 The above equations conclude the non-dimensionalization of relevant quantities. 

2.3.2 Geometrical Solution 

 The intersections between the energy ellipsoid and the angular momentum sphere 

present the geometrical solutions for a body under torque-free motion. 

 Firstly, the projection of the intersections on to the 𝐻"A, 𝐻$A-plane is considered. 

The equation for the trajectory is obtained by eliminating 𝐻%A from Eqs. (28) and (29) 

 1 −
𝐽"A
𝐽%A

𝐻"A
"
+

𝐽"A
𝐽$A

−
𝐽"A
𝐽%A

𝐻$A
"
= 1 −

𝐽"A
𝐽%A
𝑑 ≥ 0. (32)   

From Eq. (31), the inequality of the right-hand side is obtained and the coefficients on the 

left-hand side are both positive. Hence, the above equation describes an ellipse if the right-

hand side does not vanish, 𝑑 < 𝐽%A 𝐽"A. If the right-hand side of Eq. (32) vanishes, 𝑑 =

𝐽%A 𝐽"A, it shows the state of permanent rotation: 𝐻%A = 𝑑, 𝐻"A = 𝐻$A = 0.   

 Second, the projection on to the 𝐻%A, 𝐻"A-plane is considered. The equation for 

the trajectory is obtained by eliminating 𝐻$A from Eqs. (28) and (29)  

 
𝐽"A
𝐽$A

−
𝐽"A
𝐽%A

𝐻%A
"
+

𝐽"A
𝐽$A

− 1 𝐻"A
"
=

𝐽"A
𝐽$A

𝑑 − 1 ≥ 0. (33)   

Here, the inequality on the right–hand side is obtained by using the inequality (31). Since 

the coefficients on the left-hand side are both positive, Eq. (33) represents an ellipse if the 

right-hand side does not vanish, 𝑑 > 𝐽$A 𝐽"A. If the right-hand side of Eq. (33) vanishes, 

𝑑 = 𝐽$A 𝐽"A, it becomes a point showing the state of permanent rotation:	
  𝐻%A = 𝐻"A = 0, 
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𝐻$A = 𝑑. 

 Finally, the projection on to the 𝐻%A, 𝐻$A-plane is considered. The equation for 

the trajectory is obtained by eliminating 𝐻"A from Eqs. (28) and (29) 

 − 1 −
𝐽"A
𝐽%A

𝐻%A
"
+

𝐽"A
𝐽$A

− 1 𝐻$A
"
= 1 − 𝑑. (34)   

Here, the coefficients in pairs of parentheses on the left-hand side are both positive. Then, 

Eq. (34) shows a hyperbola. The equations of its asymptotes are  

 𝐻$A = ±
𝐽$A 𝐽%A − 𝐽"A
𝐽%A 𝐽"A − 𝐽$A

𝐻%A. (35)   

 If 𝑑 < 1, the vertices and focal points of the hyperbola are on the 𝐻$A-axis in the 

projected plane. Therefore, on the energy ellipsoid, the trajectory is closed and circulates 

about the 𝐻$A -axis. On the contrary, if 𝑑 > 1 , the vertices and focal points of the 

hyperbola are on the 𝐻%A-axis in the projected plane. Therefore, on the energy ellipsoid, 

the trajectory is closed and circulates about the 𝐻%A-axis. If 𝑑 = 1, the trajectory of Eq. 

(34) becomes Eq. (35). Then, Eq. (35) becomes separatrices. Furthermore, 𝐻%A = 𝐻$A =

0 represents the state of permanent rotation, 𝐻"A = 1. Figure 2.2 shows that angular 

momentum trajectories which are intersections between the non-dimensional energy 

ellipsoid and the non-dimensional angular momentum sphere. 
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Figure 2.2: Polhodes on a non-dimensional energy ellipsoid 

2.3.3 Solution of the non-dimensional Euler’s Equation 

 First, from Eqs. (32) and (33), 𝐻%A and 𝐻$A can be solved as functions of 𝐻"A 

 𝐻%A
"
=
𝐽%A 𝐽"A − 𝐽$A
𝐽"A 𝐽%A − 𝐽$A

𝑎" − 𝐻"A
"
, (36)   

 𝐻$A
"
=
𝐽$A 𝐽%A − 𝐽"A
𝐽"A 𝐽%A − 𝐽$A

𝑏
"
− 𝐻"A

"
, (37)   

where 𝑎" and 𝑏" are positive constants defined as follows: 

 𝑎" ≡
𝐽"A𝑑 − 𝐽$A
𝐽"A − 𝐽$A

=
𝐷 − 𝐽$A
𝐽"A − 𝐽$A

, (38a)   

 
𝑏
"
≡
𝐽%A − 𝐽"A𝑑
𝐽%A − 𝐽"A

=
𝐽%A − 𝐷
𝐽%A − 𝐽"A

. 
(38b)   

From the above expressions, 𝑎" and 𝑏" can be said to satisfy the following relationship: 

 𝑎" − 𝑏
"
=

𝑑 − 1 𝐽%A
𝐽"A

− 𝐽$A𝐽"A
1 − 𝐽$A𝐽"A

𝐽%A
𝐽"A

− 1
=

𝐷 − 𝐽"A 𝐽%A − 𝐽$A
𝐽"A − 𝐽$A 𝐽%A − 𝐽"A

. (39)   

Next, the substitution of 𝐻%A  and 𝐻$A  from Eqs. (36) and (37) into the second non-

𝐻T%A	
   𝐻T"A	
   

𝐻T$A	
   

𝑑 = 1 

𝑑 > 1 

𝑑 < 1 
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dimensional Euler equation and the use of the separation of variables method result in the 

following equation: 

 
𝑑𝐻"A

𝑎" − 𝐻"A
"

𝑏
"
− 𝐻"A

"
= −

𝐽%A − 𝐽"A 𝐽"A − 𝐽$A
𝐽%A𝐽$A

𝑑𝑡. (40)   

To solve above equation, three cases need to be considered with regards to 𝑎 and 𝑏. Firstly, 

Case 1: 𝑎" < 𝑏
"
which leads to 𝑎 < 𝑏, 𝑑 < 1, and 𝐷 < 𝐽"A is considered. Altering Eq. 

(40) for the case at hand leads to the following equation: 

 
U VWX

Y

%; VWX
Y

W
%; Y

Z

W VWX
Y

W
= − 𝑏 [\X;[WX [WX;[]X

[\X[]X
𝑑𝑡. (41)   

On the left-hand side, the integral is recognized to be an elliptic integral of the first kind. 

Therefore, by using Jacobi elliptic functions, an expression for 𝐻"A can be obtained: 

 𝐻"A = −𝑎	
  sn 𝜉 𝑡 , (42)   

where 𝜉 𝑡  is expressed below 

 𝜉 𝑡 = 𝑏
𝐽%A − 𝐽"A 𝐽"A − 𝐽$A

𝐽%A𝐽$A
𝑡 − 𝑡G , (43)   

The solutions for 𝐻%Aand 𝐻$A are obtained by substituting Eq. (42) into Eqs. (36) and (37), 

and by using the addition theorems for the elliptic functions: sn"𝜏 + cn"𝜏 = 1  and 

dn"𝜏 + 𝑘"sn"𝜏 = 1 where 𝑘" = 𝑎" 𝑏
"
 [10] 

 𝐻%A = ±𝑎
𝐽%A 𝐽"A − 𝐽$A
𝐽"A 𝐽%A − 𝐽$A

cn 𝜉 𝑡 , (44)   



 

 

15 

 
𝐻$A = ±𝑏

𝐽$A 𝐽%A − 𝐽"A
𝐽"A 𝐽%A − 𝐽$A

dn 𝜉 𝑡 . (45)   

The sign of each non-dimensional angular momentum component is determined from the 

signs of the initial conditions and by checking Euler's equation of motion. Therefore, if 

𝐻$A > 0, 

 𝐻%A = +𝑎
𝐽%A 𝐽"A − 𝐽$A
𝐽"A 𝐽%A − 𝐽$A

cn 𝜉 𝑡 , (46a)   

 𝐻"A = −𝑎sn 𝜉 𝑡 , (46b)   

 
𝐻$A = +𝑏

𝐽$A 𝐽%A − 𝐽"A
𝐽"A 𝐽%A − 𝐽$A

dn 𝜉 𝑡 , (46c)   

and if 𝐻$A < 0, 

 𝐻%A = 	
  −𝑎
𝐽%A 𝐽"A − 𝐽$A
𝐽"A 𝐽%A − 𝐽$A

cn 𝜉 𝑡 , (46d)   

 𝐻"A = −𝑎sn 𝜉 𝑡 , (46e)   

 
𝐻$A = −𝑏

𝐽$A 𝐽%A − 𝐽"A
𝐽"A 𝐽%A − 𝐽$A

dn 𝜉 𝑡 , (46f)   

where 𝑎 and 𝑏 are expressed as 

 𝑎 = ±
𝐽"A𝑑 − 𝐽$A
𝐽"A − 𝐽$A

= ±
𝐷 − 𝐽$A
𝐽"A − 𝐽$A

, (47a)   

 
𝑏 =

𝐽%A − 𝐽"A𝑑
𝐽%A − 𝐽"A

=
𝐽%A − 𝐷
𝐽%A − 𝐽"A

. 
(47b)   
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The non-dimensional period of the Jacobi elliptic functions is obtained from the complete 

elliptic integral of the first kind where sn and cn are 4K periodic and dn is 2K periodic. 

Using Eq. (43), the following equations can be written 

 4𝐾
𝑎
𝑏

= 𝑏
𝐽%A − 𝐽"A 𝐽"A − 𝐽$A

𝐽%A𝐽$A
𝑡 − 𝑡G , (48a)   

 
2𝐾

𝑎
𝑏

= 𝑏
𝐽%A − 𝐽"A 𝐽"A − 𝐽$A

𝐽%A𝐽$A
𝑡 − 𝑡G . (48b)   

The non-dimensional period can then be found by stating that the time shift corresponds to 

a period. The non-dimensional period for 𝐻%A and 𝐻"A becomes: 

 𝑇 =
4𝐾 𝑎

𝑏

𝑏 𝐽%A − 𝐽"A 𝐽"A − 𝐽$A
𝐽%A𝐽$A

, (49a)   

and the non-dimensional period for 𝐻$A becomes: 

 𝑇 =
2𝐾 𝑎

𝑏

𝑏 𝐽%A − 𝐽"A 𝐽"A − 𝐽$A
𝐽%A𝐽$A

. (49b)   

Second, Case 2: 𝑎" > 𝑏
"

 which leads to 𝑎 > 𝑏 , 𝑑 > 1 , and 𝐷 > 𝐽"A  is considered. 

Equation (40) can thus be rewritten as: 

 
U VWX

Z

%; Z
Y

W
VWX
Z

W
%; VWX

Z

W
= − 𝑎 [\X;[WX [WX;[]X

[\X[]X
𝑑𝑡, (50)   

The solutions for the non-dimensional angular momentum and period are derived in the 

same manner as shown in Case 1. If 𝐻%A > 0, 
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 𝐻%A = +𝑎
𝐽%A 𝐽"A − 𝐽$A
𝐽"A 𝐽%A − 𝐽$A

dn 𝜂 𝑡 , (51a)   

 𝐻"A = −𝑏	
  sn 𝜂 𝑡 , (51b)   

 
𝐻$A = +𝑏

𝐽$A 𝐽%A − 𝐽"A
𝐽"A 𝐽%A − 𝐽$A

cn 𝜂 𝑡 , (51c)   

and if 𝐻%A < 0, 

 𝐻%A = 	
  −𝑎
𝐽%A 𝐽"A − 𝐽$A
𝐽"A 𝐽%A − 𝐽$A

dn 𝜂 𝑡 , (51d)   

 𝐻"A = −𝑏	
  sn 𝜂 𝑡 , (51e)   

 
𝐻$A = −𝑏

𝐽$A 𝐽%A − 𝐽"A
𝐽"A 𝐽%A − 𝐽$A

cn 𝜂 𝑡 , (51f)   

where 𝜂 𝑡 , 𝑎, and 𝑏 are expressed below 

 𝜂 𝑡 = 𝑎
𝐽%A − 𝐽"A 𝐽"A − 𝐽$A

𝐽%A𝐽$A
𝑡 − 𝑡G , (52)   

 
𝑎 =

𝐽"A𝑑 − 𝐽$A
𝐽"A − 𝐽$A

=
𝐷 − 𝐽$A
𝐽"A − 𝐽$A

, 
(53a)   

 
𝑏 = ±

𝐽%A − 𝐽"A𝑑
𝐽%A − 𝐽"A

= ±
𝐽%A − 𝐷
𝐽%A − 𝐽"A

. 
(53b)   

The non-dimensional period for 𝐻"A and 𝐻$A is written as: 
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 𝑇 =
4𝐾 𝑏

𝑎

𝑎 𝐽%A − 𝐽"A 𝐽"A − 𝐽$A
𝐽%A𝐽$A

, (54a)   

and the non-dimensional period for 𝐻%A is expressed as: 

 𝑇 =
2𝐾 𝑏

𝑎

𝑎 𝐽%A − 𝐽"A 𝐽"A − 𝐽$A
𝐽%A𝐽$A

, (54b)   

The complete elliptic integral can be evaluated using a polynomial approximation as 

presented by Abramowitz and Stegun [10]. 

Finally, Case 3: 𝑎"= 𝑏
"
which leads to 𝑎 = 𝑏, 𝑑 = 1, and 𝐷 = 𝐽"?  is considered. In this 

case, Eq. (40) becomes 

 𝑑𝐻"A
𝑎" − 𝐻"A

" = −
𝐽%A − 𝐽"A 𝐽"A − 𝐽$A

𝐽%A𝐽$A
𝑑𝑡. (55)   

Integrating the above expression results in Eq. (56) below 

 tanh;% 𝐻"A 𝑎 = −𝑎
𝐽%A − 𝐽"A 𝐽"A − 𝐽$A

𝐽%A𝐽$A
𝑡 − 𝑡G . (56)   

To simplify the final expression for 𝐻"A, a time variable 𝜂 𝑡  is introduced 

 𝜂 𝑡 = 𝑎
𝐽%A − 𝐽"A 𝐽"A − 𝐽$A

𝐽%A𝐽$A
𝑡 − 𝑡G . (57)   

The final expression for 𝐻"A for Case 3 can thus be stated as below: 

 𝐻"A = −𝑎 tanh 𝜂 𝑡 . (58)   

The solutions for 𝐻%Aand 𝐻$A are obtained by substituting Eq. (58) into Eqs. (36) and 
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(37): 

 𝐻%A = ±𝑎
𝐽%A 𝐽"A − 𝐽$A
𝐽"A 𝐽%A − 𝐽$A

1

cosh 𝜂 𝑡
	
  , (59)   

 
𝐻$A = ±𝑎

𝐽$A 𝐽%A − 𝐽"A
𝐽"A 𝐽%A − 𝐽$A

1

cosh 𝜂 𝑡
. 

(60)   

In this case, the solutions are not periodic whereas the solutions of case 1 and case 2 are 

periodic. Therefore, as 𝜂 𝑡 → 	
  ∞, 𝐻%Aand 𝐻$A  go to zero and 𝐻"A  approaches −𝑎.  

Also, as 𝑑 → 1, the solutions of case1 and case2 converge on the solutions of case3. 

2.3.4 Axisymmetric Cases 

 The analytical solutions for the axisymmetric cases are presented by taking the limit 

of the equations derived above. In these cases, a rigid body has two equal principal 

moments of inertia and the solutions are expressed with simpler form. Firstly, the case 

where the intermediate mass moment of inertia approaches the largest moment of inertia is 

considered. The intermediate mass moment of inertia 𝐽" near the largest moment of inertia 

𝐽% can be expressed as follows using a small parameter 𝜀, 𝜀 ≪ 1: 

 𝐽" = 𝐽% − 𝜀. (61)   

By substituting Eq. (61) into the analytical solutions in Case 1 and taking the limit as 𝜀 

approaches zero, the analytical solutions can be reduced to the following equations: if 

𝐻$A > 0, 

 𝐻%A = +𝑎o cos 𝜉o 𝑡 	
  , (62a)   

 𝐻"A = −𝑎o sin 𝜉o 𝑡 , (62b)   
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𝐻$A = +

𝐽$A 𝐽%A − 𝐷
𝐽%A 𝐽%A − 𝐽$A

= const., (62c)   

where  𝑎o and 𝜉o 𝑡  can be expressed as: 

 𝑎o = ±
𝐷 − 𝐽$A
𝐽%A − 𝐽$A

, (63)   

 
𝜉o 𝑡 	
  =

𝐽%A − 𝐷 𝐽%A − 𝐽$A
𝐽%A𝐽$A

𝑡 − 𝑡G . (64)   

If 𝐻$A < 0, 

 𝐻%A = −𝑎o cos 𝜉o 𝑡 , (65a)   

 𝐻"A = −𝑎o sin 𝜉o 𝑡 , (65b)   

 
𝐻$A = −

𝐽$A 𝐽%A − 𝐷
𝐽%A 𝐽%A − 𝐽$A

= const.. (65c)   

Next, the case where the intermediate mass moment of inertia approaches the smallest 

moment of inertia is considered. The intermediate mass moment of inertia 𝐽" near the 

smallest mass moment of inertia 𝐽$ can be expressed as follows using a small parameter 

𝜀, 𝜀 ≪ 1: 

 𝐽" = 𝐽$ + 𝜀. (66)   

By substituting Eq. (66) into the analytical solutions in Case 2 and taking the limit as 𝜀 

approaches zero, the analytical solutions can be reduced to the following equations: if 

𝐻%A > 0, 
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 𝐻%A = +
𝐽%A 𝐷 − 𝐽$A
𝐽$A 𝐽%A − 𝐽$A

= const., (67a)   

 𝐻"A = −𝑏o sin 𝜂o 𝑡 , (67b)   

 𝐻$A = +𝑏o cos 𝜂o 𝑡 . (67c)   

where 𝑏o and 𝜂o 𝑡  can be expressed as: 

 𝑏o = ±
𝐽%A − 𝐷
𝐽%A − 𝐽$A

, (68)   

 
𝜂o 𝑡 =

𝐽%A − 𝐽$A 𝐷 − 𝐽$A
𝐽%A𝐽$A

𝑡 − 𝑡G . (69)   

If 𝐻%A < 0, 

 𝐻%A = −
𝐽%A 𝐷 − 𝐽$A
𝐽$A 𝐽%A − 𝐽$A

= const., (70a)   

 𝐻"A = −𝑏o sin 𝜂o 𝑡 , (70b)   

 𝐻$A = −𝑏o cos 𝜂o 𝑡 . (70c)   

These solutions correspond with the axisymmetric solutions [3, 4]. 

 

 Chapter 2, in part, is a reprint of the following published paper: 

Rios, O., Ono, T., Murakami, H., and Impelluso, J. T., 2016, “An Analytical and 

Geometrical Study of the Dzhanibekov and Tennis Racket Phenomena,” ASME Paper No. 

IMECE2016-65570. The thesis author was the principal researcher of this paper. 
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CHAPTER 3: NUMERICAL AND GEOMETRICAL RESULTS 

3.1 Tennis Racket Experiment 

 The analytical solutions have now been obtained for the non-dimensional angular 

momentum components. Now, they are applied to the tennis racket phenomena and 

compared with the numerical solution by solving the non-dimensional Euler equations 

using the fourth-order Runge-Kutta method for discrete time with time increment ∆𝑡. For 

given values of 𝐻KA 𝑡 , Eqs. (27a-c) give 𝐻KA 𝑡 + ∆𝑡 , 𝑖 = 1,2,3. Before doing so, the 

rigid body used in the analysis is presented. 

 As shown in Fig. 3.1, a moving coordinate frame is attached to the center of mass 

of the tennis racket. The mass and mass moment of inertia values used in the analysis are 

𝑚 = 0.375	
  𝑘𝑔, 𝐽%A = 0.0185	
  𝑘𝑔/𝑚", 𝐽"A = 0.0164	
  𝑘𝑔/𝑚", 𝐽$A = 0.00121	
  𝑘𝑔/𝑚". 

 

Figure 3.1: Tennis racket shown with the body attached coordinate frame and vector basis 
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To analyze the tennis racket phenomena, the racket will be spun with a large initial angular 

velocity around the 𝐞"-axis corresponding to the intermediate moment of inertia and small 

perturbations along the 𝐞%-and 𝐞$-axes  

 𝜔% 0 = 𝜔$ 0 = 0.001 𝑟𝑎𝑑 𝑠 , 𝜔" 0 = 5.0 𝑟𝑎𝑑 𝑠. (71)   

Before calculating the initial conditions for non-dimensional angular momentum from Eq. 

(22), the initial kinetic energy needs to be obtained using Eq. (16) and Eq. (71). 

 2𝐾G = 𝐽% 𝜔% 0
" + 𝐽" 𝜔" 0

" + 𝐽$ 𝜔$ 0
" = 0.41	
  . (72)   

The initial conditions to be used in the numerical solution of Eqs. (27a-27c) are thus: 

 

𝐻%A 0 = 2.2561𝑒 − 4, 

𝐻"A 0 = 1.0, 

𝐻$A 0 = 1.4756𝑒 − 5.	
   

(73)   

The numerical solution can now be obtained, but before presenting the solution, the 

analytical solution will be examined. As mentioned above, three distinct cases exist for the 

analytical solution, all dependent on the parameter	
  𝐷. To determine	
  𝐷, Eqs. (28) and (29) 

will be used: 

 𝐷 = 𝐽"A 𝐻A 0 " = 1.64000000049927𝑒 − 2 (74)   

From the value of D above, it can be seen that the analytical solution for Case 2, specifically 

the equations corresponding to 𝐻%A > 0, are needed to describe the tennis racket with the 

given initial conditions. Using the expression for 𝜂 𝑡  in Eqs. (51a-c), the analytical 

solution is obtained. Note, in the analytical solution, the issue of the time shift needs to be 

addressed. If the time shift is removed or set equal to zero (𝑡G = 0), the solution will not 

properly take into account the initial conditions for this particular problem. As can be noted 
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from Eq. (51b), without a time shift, 𝜂 𝑡 = 0 at time 𝑡 = 0, thus making 𝐻"A = 0. 

Since the rotation is not solely about the smallest or largest moment of inertia, in which 

case 𝑡G would be equal to zero, the angular momentum components need to be shifted so 

that the initial values match the initial conditions in Eq. (73). The time shift was found to 

be 𝑡G = 7.753 s from the initial condition and elliptic integral. The numerical and 

analytical solutions presented in Fig. 3.2 show great agreement between the analytical and 

numerical solution of each of the angular momentum components. 

 

Figure 3.2: Plots of both the numerical and analytical solutions for the angular momentum 
components 
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3.2 Varying Moment of Inertia 

 Next, the effect of varying the mass moment of inertia is examined through the use 

of a satellite example. The progression of the trajectory and the period are analyzed as the 

rigid body changes geometry, varying the mass moment of inertia of the axis of rotation 

from the least to the intermediate value. As a specific example, a satellite released in space 

is presented as shown in Fig. 3.3 with an initial angular velocity around the 𝐞"-axis and 

small perturbations along the 𝐞%-and 𝐞$-axes. As the solar panels are deployed, the mass 

moment of inertia of the body changes. At the three positions shown in Fig. 3.3, the mass 

moment of inertia values are as follows: 

 𝐽% = 0.9156𝑒 + 4, 𝐽" = 0.3437𝑒 + 4, 	
  𝐽$ = 0.8144𝑒 + 4	
  𝑘𝑔	
  𝑚", (75a)   

 𝐽% = 1.386𝑒 + 4, 𝐽" = 𝐽$ = 0.8619𝑒 + 4	
  𝑘𝑔	
  𝑚", (75b)   

 	
  𝐽% = 1.782𝑒 + 4, 𝐽" = 1.256𝑒 + 4, 	
  𝐽$ = 0.8601𝑒 + 4	
  𝑘𝑔	
  𝑚". (75c)   

Although the rotational kinetic energy is conserved during the deployment, the angular 

velocities change.                          
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Figure 3.3: Satellite shown at three different configurations (a-c) with an initial angular 
velocity around the 𝐞" -axis deploying its solar panels, causing a change in the mass 
moment of inertia along the axis of rotation 
 

The initial major angular velocity is given about the 𝐞"-axis of the satellite. For the satellite 

presented and from Eqs. (75a-c), the mass moment of inertia values obey, at 𝑡 = 0, 𝐽% >

𝐽$ > 𝐽" from Eqs. (75a-c). Since the rotation is currently about the smallest mass moment 

of inertia, a permanent state of rotation is expected. The trajectory of the satellite before 

the deployment of the solar panels can be obtained by the curve of intersection between 
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the angular momentum sphere and energy ellipsoid. Figure 3.4 shows the small curve of 

intersection along the 𝐻"A axis in red. 

Figure 3.4: (a) Plotting of the energy ellipsoid (green) and the angular momentum sphere 
(red) and showing projections along the (b) 𝐻$-𝐻" (c) 𝐻"-𝐻% (d) 𝐻$-𝐻% plane for the 
initial satellite configuration shown in Fig. 3.3(a) 
 

 

(𝑎) (𝑏) 

(𝑐) (𝑑) 
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As the solar panels are deployed, the mass moment of inertia values change, as noted above 

in Eqs. (75a-c). The curve of intersection before the second configuration remains similar 

to the initial configuration, as the 𝐽"-value is still the smallest moment of inertia. As the 

solar panels continue to unfold, the 𝐽"-value goes from the smallest, to being equal to 𝐽$ 

making an axisymmetric body, to the intermediate moment of inertia value. In Fig.3.5 

below, the red line indicates the intersection between the energy ellipsoid and the angular 

momentum sphere when 𝐽" = 𝐽$. When the value of 𝐽" becomes greater than that of 𝐽$, a 

transition to a hyperbolic trajectory of the rigid body is seen, similar to that of the tennis 

racket. In Fig.3.6, the curve of intersection for the satellite with fully deployed solar panels 

is demonstrated. 

 

 

 

 

 

 

 

 

 



 

 

29 

 

Figure 3.5: (a) Plotting of the energy ellipsoid (green) and the angular momentum sphere 
(red) and showing projections along the (b) 𝐻$-𝐻" (c) 𝐻"-𝐻% (d) 𝐻$-𝐻% plane for the 
second satellite configuration shown in Fig. 3.3(b) 
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Figure 3.6: (a) Plotting of the energy ellipsoid (green) and the angular momentum sphere 
(red) and showing projections along the (b) 𝐻$-𝐻" (c) 𝐻"-𝐻% (d) 𝐻$-𝐻% plane for the 
final satellite configuration shown in Fig. 3.3(c) 
  

 

 

 

 

(𝑑) (𝑐) 

(𝑏) (𝑎) 
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To see the effect of 𝐽" on the trajectory after surpassing 𝐽$ and becoming the intermediate 

value, the projections of the intersecting curve on the 𝐻" − 𝐻%   plane,   𝐻$ − 𝐻"   plane, and  

𝐻$ − 𝐻%   plane are plotted as the value of 𝐽" increases. The mass moment of inertia values 

when the satellite becomes an axisymmetric body are 𝐽" = 𝐽$ = 0.8619𝑒 + 4	
  𝑘𝑔	
  𝑚". As 

𝐽"  increases to the fully deployed value defined in Eq. (73c), the progression of the 

trajectory is shown in Fig. 3.7 below. The color of the intersecting curve changes from red 

to black as 𝐽" increases. From Fig. 3.4-3.6, the major semi-axis and the minor semi-axis 

of the energy ellipsoid along the body attached 𝐻%-axis and 𝐻$-axis change as varying the 

mass moment of inertia values. This observation can be confirmed from Eq. (28). 
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Figure 3.7: Projections along the (a) 𝐻" -𝐻%  (b) 𝐻$ -𝐻"  (c) 𝐻$ -𝐻%  plane of the 
progression of the trajectories as the deployment of the solar panels creates a variation of 
𝐽" from 𝐽" = 𝐽$ (red) to 𝐽% > 𝐽" > 𝐽$ (black) 
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From Fig. 3.7, it is observed that as the satellite’s solar panels are fully deployed and 𝐽" 

increases, the trajectory of the system becomes more sensitive initial disturbances. The 

progression of the non-dimensional period for the above trajectories is presented below in 

Fig. 3.8. The x-axis of the figure ranges from the point 𝐽" = 𝐽$ to the final state shown in 

Fig. 3.3(c) above. As can be seen in the figure, as the solar panels deploy and near their 

final position, the body deviates from a permanent state of rotation to a trajectory with an 

exponentially decaying non-dimensional period. 

  

Figure 3.8: Plotting the progression of the non-dimensional period of the trajectory as the 
body goes from being axisymmetric to the final satellite configuration 
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 In order to avoid or control an unstable rotation, global control is required rather 

than local control which can aggravate an already difficult situation.  

 As an opposing example to a rotating satellite, the rotation of an airplane can be 

considered. A flat spin, the rotation about the axis corresponding to the largest moment of 

inertia, is very dangerous and the hardest case to recover from if the rudder does not work 

sufficiently. The rotation about the axis corresponding to the smallest moment of inertia, 

which is related to spiral dive, also can lead to a serious situation due to significant increase 

in airspeed, rapid loss of altitude, and excessive loading because of improper recovery 

control application. However, in the rotation about the axis corresponding to the 

intermediate moment of inertia, the airplane will rotate in a periodic manner, making it is 

easier to control and recover. These are in contradiction to what is indicated in the case of 

the satellite and should be considered to control an unstable motion.    

3.3 Numerical Integration of the Rotation Matrix 

 For an inertial frame observer, three-dimensional (3D) animations provide the 

necessary visual tool to connect and validate the numerical solutions. Since the components 

of the angular velocity and angular momentum vectors have been obtained with respect to 

the moving frame, Eq. (1) must be used to express the vector components with the inertial 

frame. To this end, in Eq. (1), the rotation matrix must be updated at each time for given 

values of angular velocity components.  

 From Eq. (4), reconstruction formula for 𝑅 𝑡  [6, 8] is expressed as: 

 	
  𝑅 𝑡 = 𝑅 𝑡 𝜔(𝑡). (76)   

This equation can be integrated analytically from 𝑡  to 𝑡 + ∆𝑡  if the angular velocity 

remains constant 𝜔 𝑡 = 𝜔G . Using the constant angular velocity case, a numerical 
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integration scheme for time-dependent angular velocity cases can be developed. When the 

angular velocity is constant, the solution of Eq. (76) with initial value 𝑅 0  becomes [7] 

 𝑅 𝑡 = 𝑅 0 	
  𝑒𝑥𝑝 𝑡	
  𝜔G  (77)   

where the matrix exponential is defined as 

 

𝑒𝑥𝑝 𝑡	
  𝜔G ≡ 𝐼U + 𝑡	
  𝜔G +
𝑡"

2! 	
  𝜔G
" +

𝑡$

3! 	
  𝜔G
$ + ⋯

=
𝑡�

𝑘! 	
  𝜔G
�

�

��G

 

(78)   

In order for Eq. (77) to be useful, a simple expression for the matrix exponential is required. 

Eq. (78) is simplified using the Cayley-Hamilton theorem [11]. The simplified equation 

becomes  

 

𝑒𝑥𝑝 𝑡	
  𝜔G ≡ 𝐼U +
𝜔G
𝝎𝟎

𝑠𝑖𝑛 𝑡	
   𝝎𝟎

+
𝜔G
𝝎𝟎

"

1 − 𝑐𝑜𝑠 𝑡	
   𝝎𝟎  

(79)   

and the derivation is presented in the Appendix. 

 While the constant angular velocity is not met under the Dzhanibekov phenomena, 

it can be applied by approximation to each time step of the Runge-Kutta integration. From 

this perspective, the midpoint integration method is adopted by using the mean value of 

the angular velocity, 𝜔 𝑡 + ∆𝑡/2  as follows: 

 𝜔 𝑡 + ∆𝑡/2 = {𝜔 𝑡 + 𝜔 𝑡 + ∆𝑡 }/2. (80)   

Assuming that the angular velocity is constant during the time step from 𝑡 to 𝑡 + ∆𝑡, Eq. 

(76) is integrated analytically for the initial value of 𝑅 𝑡  to find 𝑅 𝑡 + ∆𝑡   
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 𝑅 𝑡 + ∆𝑡 = 𝑅 𝑡 	
  𝑒𝑥𝑝{∆𝑡	
  𝜔(𝑡 + ∆𝑡/2)}. (81)   

where Eq. (79) is used to evaluate the exponential matrix for 𝜔G = 𝜔 𝑡 + ∆𝑡/2 . 

  

 Chapter 3, in part, is a reprint of the following published paper: 

Rios, O., Ono, T., Murakami, H., and Impelluso, J. T., 2016, “An Analytical and 

Geometrical Study of the Dzhanibekov and Tennis Racket Phenomena,” ASME Paper No. 

IMECE2016-65570. The thesis author was the principal researcher of this paper. 
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CHAPTER 4: CONCLUSION 

 Euler’s equations were expressed using the moving frame method, providing a clear 

distinction between a moving frame observer and an inertial frame observer. The Euler’s 

equations were then non-dimensionalized and solved analytically together with 

expressions for the non-dimensional period of the trajectory. The numerical and analytical 

solutions for the tennis racket phenomena were compared and were shown to agree closely. 

Finally, the progression of the trajectory and the period were examined as the intermediate 

moment of inertia varied in a torque-free body. As a practical example, a satellite with an 

initial angular velocity deploying its solar panels was presented. As the solar panels are 

deployed, it was observed that a change in the trajectory and in the period of the satellite 

results in unwanted rotations. 
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APPENDIX 

A.1 The Case with Constant Angular Velocity 

 For the computation of 	
  𝜔G � in Eq. (76), the characteristic equation of 	
  𝜔G is 

computed  

 
det 𝜔G − 𝜆𝐼U = det

−𝜆 −𝜔$G 𝜔"G
𝜔$G −𝜆 −𝜔%G
−𝜔"G 𝜔%G −𝜆

	
  	
  	
  	
  	
  	
  	
  	
  	
  

= −𝜆$ − 𝝎𝟎
"𝜆 = 0 

(A1)   

where 

 𝝎𝟎
" = 	
  𝜔%G " + 	
  𝜔"G " + 	
  𝜔$G " (A2)   

From Eq. (A1), the Cayley-Hamilton theorem gives 

 	
  𝜔G $ = − 𝝎𝟎
" 	
  𝜔G  (A3)   

Using Eq. (A3), the right-hand side of Eq. (76) is expressed by 𝐼U, 𝜔G, and 	
  𝜔G " 

 

𝑒𝑥𝑝 𝑡	
  𝜔G ≡ 𝐼U + 𝑡	
  𝜔G +
𝑡"

2! 	
  𝜔G
" −

𝑡$

3! 𝝎𝟎
" 	
  𝜔G

−
𝑡�

4! 𝝎𝟎
" 	
  𝜔G " +

𝑡�

5! 𝝎𝟎
� 	
  𝜔G

+
𝑡�

6! 𝝎𝟎
� 	
  𝜔G " 	
  − ⋯ 

(A4)   

Furthermore, Eq. (A4) can be written as
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𝑒𝑥𝑝 𝑡	
  𝜔G ≡ 𝐼U

+
𝜔G
𝝎𝟎

𝑡 𝝎𝟎 −
1
3! 𝑡 𝝎𝟎

$ +
1
5! 𝑡 𝝎𝟎

�

−
1
7! 𝑡 𝝎𝟎

� + ⋯

+
𝜔G
𝝎𝟎

" 1
2! 𝑡 𝝎𝟎

" −
1
4! 𝑡 𝝎𝟎

�

+
1
6! 𝑡 𝝎𝟎

� 	
  −
1
8! 𝑡 𝝎𝟎

� + ⋯  

(A5)   

Finally, Eq. (79) is found from the above equation. 
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