
UC Irvine
Recent Work

Title
The Capacity of Private Computation

Permalink
https://escholarship.org/uc/item/5vc8f7h0

Authors
Sun, Hua
Jafar, Syed A

Publication Date
2017-10-31

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, availalbe at
https://creativecommons.org/licenses/by-nc-nd/4.0/

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5vc8f7h0
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/

The Capacity of Private Computation
Hua Sun

Department of Electrical Engineering
University of North Texas, Denton, TX 76203

hua.sun@unt.edu

Syed A. Jafar
Center for Pervasive Communications and Computing (CPCC)

University of California Irvine, Irvine, CA 92697
syed@uci.edu

Abstract—We introduce the problem of private computa-
tion, comprised of N distributed and non-colluding servers, K
datasets, and a user who wants to compute a function of the
datasets privately, i.e., without revealing which function he wants
to compute to any individual server. This private computation
problem is a strict generalization of the private information
retrieval (PIR) problem, by expanding the PIR message set
(which consists of only independent messages) to also include
functions of those messages. The capacity of private computation,
C, is defined as the maximum number of bits of the desired
function that can be retrieved per bit of total download from
all servers. We characterize the capacity of an elemental private
computation setting, with N = 2 servers and K = 2 datasets
that are replicated at each server, for linear computations.
Surprisingly, the capacity, C = 2/3, matches the capacity of
PIR with N = 2 servers and K = 2 messages. Thus, allowing
arbitrary linear computations does not reduce the communication
rate compared to pure dataset retrieval. The same insight is
shown to hold at the opposite extreme where the number of
datasets K → ∞, the number of servers N can be arbitrary,
and arbitrary (including non-linear) computations are allowed.

I. INTRODUCTION

Motivated by privacy concerns in distributed computing ap-
plications, we introduce the private computation (PC) problem,
where a user wishes to privately compute a function of datasets
that are stored at distributed servers. Specifically, K datasets
are stored at N non-colluding servers, and a user wishes to
compute a function on these datasets. A private computation
scheme allows the user to compute his desired function, while
revealing no information to any individual server about the
identity of the desired function. The achievable rate of a private
computation scheme is the ratio of the number of bits of the
desired function that the user is able to retrieve, to the total
number of bits downloaded from all servers. The capacity of
private computation is the supremum of achievable rates.

The private computation problem is a strict generalization
of the private information retrieval (PIR) problem, where one
of the K datasets is desired by the user, i.e., the function to
be computed simply returns the desired dataset. The capacity
was characterized recently for PIR in [1] and for several of
its variants in [2]–[7]. In the PIR setting, the datasets are
called messages and all messages are independent. Private
computation may also be viewed as PIR with dependent
messages, where each possible function that may be desired
by a user is interpreted as a dependent message, i.e., a message
whose value depends on other messages.

Our main result is the capacity characterization of an ele-
mental instance of the problem of private computation, where a
user wishes to compute arbitrary linear combinations of K = 2
independent datasets (messages), replicated at N = 2 servers.
Note that if the user can only choose one of M = 2 linear
combinations that are linearly independent, then the setting
is equivalent to the PIR problem with K = 2 messages and
N = 2 servers. From [1], we know that the capacity of PIR in
this setting is equal to 2/3. Surprisingly, we show that even if
the user wishes to compute arbitrary linear combinations of the
two datasets, the capacity of private computation remains 2/3,
i.e., in terms of capacity, arbitrary linear computation incurs
no additional penalty. The same insight is shown to hold at the
opposite extreme where the number of datasets K →∞, the
number of servers N can be arbitrary, and arbitrary (including,
possibly non-linear) computations are allowed. While the
asymptotic result is relatively straightforward, the elemental
setting requires sophisticated structure in the queries in order
to optimally exploit message dependencies. Specifically, the
private computation scheme utilizes an optimized symbol
index structure, and a sophisticated assignment of signs (‘+’
or ‘−’) to each symbol in order to optimally exploit the linear
dependencies.

Notation: For integers Z1, Z2, Z1 ≤ Z2, we use the compact
notation [Z1 : Z2] = {Z1, Z1+1, · · · , Z2}. The notation X ∼
Y is used to indicate that X and Y are identically distributed.
For sets S1, S2, we define S1/S2 as the set of elements that
are in S1 and not in S2. For n ∈ {1, 2} we define n̄ as the
complement of n, i.e., n̄ = 1 if n = 2 and n̄ = 2 if n = 1.

II. PROBLEM STATEMENT AND DEFINITIONS

Consider the private computation problem with N = 2
servers and K = 2 datasets. We will assume that the
datasets are replicated at both servers, that the servers do
not collude, and that the functions to be computed are linear
combinations of the messages. We will focus primarily on
this basic setting which opens the door to numerous other
open problems through various generalizations, e.g., K > 2
datasets, coded storage instead of replication, N > 2 servers,
some of which may collude, symmetric privacy requirements,
non-linear functions, etc.

The two datasets, denoted by Wd1 ,Wd2 ∈ FL×1p , are each
comprised of L i.i.d. uniform symbols from a finite field Fp.
In p-ary units,

H(Wd1) = H(Wd2) = L, (1)

H(Wd1 ,Wd2) = H(Wd1) +H(Wd2). (2)

A linear combination of these datasets is represented as a
dependent message,

Wm = αmWd1 + βmWd2 ,m ∈ [1 : M] (3)

where αm, βm are two constants from Fp, and ‘+’ represents
element-wise addition over Fp. The case M = 1 is trivial, so
we consider M ≥ 2. Without loss of generality, the vectors
(αm, βm) are assumed to be pairwise linearly independent.

There are N = 2 servers and each server stores both datasets
Wd1 ,Wd2 . A user privately generates θ ∈ [1 : M] and wishes
to compute (retrieve) Wθ while keeping θ a secret from each
server. Depending on θ, there are M strategies that the user
could employ to privately compute his desired function. For
example, if θ = m, then in order to compute Wm, the user
employs N = 2 queries, Q[m]

1 and Q[m]
2 . Since the queries are

determined by the user with no knowledge of the realizations
of the messages, the queries must be independent of the
messages,1

∀m ∈ [1 : M], I(W1, · · · ,WM ;Q
[m]
1 , Q

[m]
2) = 0. (4)

The user sends Q[m]
1 to the first server and Q[m]

2 to the second
server. Upon receiving Q

[m]
n , n ∈ [1 : 2], the n-th server

generates an answering string A
[m]
n , which is a function of

Q
[m]
n and the data stored (i.e., all the messages),

∀m ∈ [1 : M], n ∈ [1 : 2], H(A[m]
n |Q[m]

n ,W1, · · · ,WM) = 0.

Each server returns to the user its answer A
[m]
n . From

all the information that is now available to the user
(A

[m]
1 , A

[m]
2 , Q

[m]
1 , Q

[m]
2), the user decodes the desired mes-

sage Wm according to a decoding rule that is specified by the
private computation scheme. Let Pe denote the probability of
error achieved with the specified decoding rule.

To protect the user’s privacy, the M strategies must be
indistinguishable (identically distributed) from the perspective
of each server, i.e., the following privacy constraint must be
satisfied ∀n ∈ [1 : 2],∀m ∈ [1 : M],

(Q[1]
n , A

[1]
n ,W1, · · · ,WM) ∼ (Q[m]

n , A[m]
n ,W1, · · · ,WM). (5)

The PC rate characterizes how many bits of desired infor-
mation are computed per downloaded bit, and is defined as
follows.

R ,
L

D
(6)

where D is the expected value (over random queries) of the
total number of bits downloaded by the user from both servers.

A rate R is said to be ε-error achievable if there exists
a sequence of private computation schemes, indexed by L,
each of rate greater than or equal to R, for which Pe → 0 as

1Since M ≥ 2 and the functions are linearly independent, the message
sets (Wd1 ,Wd2) and (W1,W2, · · · ,WM) are invertible functions of each
other, so, e.g., conditioning on one is the same as conditioning on the other.

L→∞. Note that for such a sequence of private computation
schemes, from Fano’s inequality, we have

[Correctness] H(Wm|A[m]
1 , A

[m]
2 , Q

[m]
1 , Q

[m]
2) = o(L) (7)

where any function of L, say f(L), is said to be o(L) if
limL→∞ f(L)/L = 0. The supremum of ε-error achievable
rates is called the capacity C.

III. CAPACITY OF PRIVATE COMPUTATION

Theorem 1 states our main result.
Theorem 1: For the private computation problem where a

user wishes to privately retrieve one of M arbitrary linear
combinations of K = 2 independent datasets from N = 2
servers, the capacity is C = 2/3.

When M = 2, the problem reduces to the PIR problem
with N = 2 servers and K = 2 messages, for which the
capacity is 2/3 [1]. Adding more computation requirements
M > 2 can not help (surprisingly it does not hurt either), so
the converse of Theorem 1 is implied. We only need to prove
the achievability, which is presented in Section IV.

It is quite surprising that increasing the number of messages
by including arbitrary linear combinations of K datasets does
not reduce capacity in the elemental setting of K = 2 and
N = 2 servers. A natural question then is whether this insight
holds more broadly. Remarkably, the insight is also true at the
other extreme, where the number of datasets is large (K →∞)
and the number of servers is arbitrary. It turns out that in
this case, again the capacity of private computation is equal
to the capacity of PIR. This supplemental result is rather
straightforward and is stated in the following theorem.

Theorem 2: For the private computation problem with K
independent datasets, Wk, k ∈ [1 : K], H(Wk) = L,
arbitrary N servers and M − K arbitrary (possibly non-
linear) dependent messages, Wm, m ∈ [K + 1 : M],
H(Wm | Wk, k ∈ [1 : K]) = 0, H(Wm) ≤ L, if K → ∞,
then the capacity of private computation C → 1−1/N , which
is the capacity of PIR with K →∞ messages and N servers.
Proof: For Theorem 2, the achievability is identical to the
symmetric PIR2 scheme of Theorem 1 in [3], where the M
functions are viewed as the messages in the symmetric PIR
problem and common randomness is not used. The dependence
of the messages has no impact on privacy or correctness of
that scheme. The converse follows from the converse of regular
PIR [1] because restricting the message set to Wk, k ∈ [1 : K]
cannot reduce capacity.

IV. THE ACHIEVABLE SCHEME

The private computation scheme needed for Theorem 1
builds upon and significantly generalizes the capacity achiev-
ing PIR scheme presented in [1], [8]. If we ignore the
dependence of the messages in the private computation
problem and directly use the PIR scheme (capacity achiev-
ing for independent messages) in [1], the rate achieved

2In fact, Theorem 2 extends immediately to the symmetric private compu-
tation problem, where the user is prohibited from learning anything beyond
the desired function.

is
(
1 + 1/2 + 1/4 + · · ·+ 1/2M−1

)−1
= 2M−1

2M−1 , which is
strictly less than 2/3 (independent of M), the capacity of
private computation. To optimally exploit the dependence of
the messages, we start with the original PIR scheme of [1]
and incorporate two new ideas. For ease of reference, let us
denote the original PIR scheme of [1] as PIR1 .

(1) Index assignment: Additional structure is required from
symbol indices within the queries because dependence
only exists across message symbols associated with the
same index. This requirement yields a new PIR scheme,
that we will denote as PIR2 . If the messages are
independent, then in terms of downloads PIR2 is as
efficient as PIR1 , i.e., they are both capacity achieving
schemes. However, PIR2 is more efficient in terms of
uploads than PIR1 .3

(2) Sign assignment: The index structure of PIR2 seems
essential to accommodate dependent messages. By itself,
however, it is not sufficient. For example, the queries
in both PIR1 and PIR2 are comprised of sums of
symbols. Depending on the form of message dependen-
cies, more sophisticated forms of combining symbols
within queries may be needed. For our present purpose,
with linear message dependencies, we will need both
sums and differences. To this end, we need to carefully
assign a ‘sign’ (‘+’ or ‘−’) to each symbol. The sign
assignment produces the optimal private computation
scheme, denoted PC , for Theorem 1.

To present these schemes, we need to introduce the follow-
ing notation. Let π represent a permutation over [1 : L]. For
all m ∈ [1 : M], i ∈ [1 : L] let

um(i) = σiWm(π(i)) (8)

Thus, Wm(π(i)) are the symbols from message Wm, permuted
by π, and um(i) are the corresponding signed versions ob-
tained by scaling with σi ∈ {+1,−1}. Since both m and i are
indices in um(i), if there is a potential for confusion, we will
refer to m as the ‘message index’ and i as the ‘symbol index’.
Note that the same permutation is applied to all messages, and
the same sign variable σi is applied to symbols from different
messages that have the same symbol index. Both π and σi are
generated privately, independently and uniformly by the user
such that they are not known to the servers.

We will refer to the message Wm equivalently as the
message um. To illustrate the key ideas we will use the special
M = 4 setting as our running example in this work.

Example A: Suppose the M = 4 functions that we
wish to compute are the following.

W1 = Wd1

3Based on our ongoing work we believe that the index structure of PIR2
(with an additional step required to minimize redundancy in the permutation
π, see [1]) requires the smallest upload of any capacity achieving scheme for
PIR.

W2 = Wd2

W3 = α3Wd1 + β3Wd2

W4 = α4Wd1 + β4Wd2 (9)

Each message consists of L = 16 symbols from Fp. The
specialized setting allows us to use a simpler notation as
follows.

(ai, bi, ci, di) = (u1(i), u2(i), u3(i), u4(i))

The notation is simpler because we only have symbol
indices. Message indices are not necessary in this toy
setting because a different letter is used for each message.

We will start with the query structure of the PIR scheme,
which we will modify using the two principles outlined earlier,
to obtain the private computation scheme. First we explain the
index assignment step.

A. Index Assignment: PIR2

In this section, we introduce the PIR2 scheme, built upon
PIR1 by an index assignment process. The index assign-
ments are necessary because unlike PIR1 where independent
permutations are applied to symbols from each message, in
PIR2 the same permutation is applied to symbols from every
message. For ease of exposition, we will first illustrate the
index assignment process through the M = 4 example, and
then present the general algorithm for arbitrary M . Since we
do not use sign assignments in PIR2 , the σi are redundant
for this scheme. Without loss of generality, the reader may
assume σi = 1 for all i for PIR2 .

1) M = 4 Example: Suppose the desired message is W1,
i.e., θ = 1. Recall the query structure of PIR1 , where we have
left some of the indices of undesired symbols undetermined.

θ = 1
Server 1 Server 2

a1, b1, c1, d1 a2, b2, c2, d2
a3 + b2 a6 + b1
a4 + c2 a7 + c1
a5 + d2 a8 + d1
b∗ + c∗ b∗ + c∗
b∗ + d∗ b∗ + d∗
c∗ + d∗ c∗ + d∗

a9 + b∗ + c∗ a12 + b∗ + c∗
a10 + b∗ + d∗ a13 + b∗ + d∗
a11 + c∗ + d∗ a14 + c∗ + d∗
b∗ + c∗ + d∗ b∗ + c∗ + d∗

a15 + b∗ + c∗ + d∗ a16 + b∗ + c∗ + d∗

Note that the first row of the query to Server n, n ∈ {1, 2},
is an, bn, cn, dn, just as in the original PIR scheme. In the
original PIR scheme, the permutations are chosen indepen-
dently for each message, so that cn, dn are not necessarily
functions of an, bn. However, here, because we apply the same
permutation to every message, and because the same sign σn
is applied to an, bn, cn, dn, the dependence of messages is

preserved in these symbols. In particular, cn = α3an + β3bn,
dn = α4an + β4bn, and H(an, bn, cn, dn) = 2 p-ary units.

The next three rows of the queries to each server are
2-sums (i.e., sums of two symbols) that are also identical
to the original PIR scheme, because these queries exploit
the side-information from the other server to retrieve new
desired symbols. However, notice that because permutations
of message symbols are identical, there is a special property
that holds here that is evident to each server. For example,
Server 1 notes that the 2-sums that contain ai symbols, i.e.,
a3 + b2, a4 + c2, a5 + d2 have the same index for the other
symbol, in this case the index 2. Since we do not wish to
expose the identity of the desired message, the same property
must hold for all messages. This observation forces the index
assignments of all remaining 2-sums.

For example, let us consider the next query term, b∗ + c∗,
from, say, Server 1. Since b2 was mixed with a3 in the query
a3 + b2, all 2-sums that include some bi must have index 3
for the other symbol. Similarly, since c2 was mixed with a4,
all 2-sums that include some cj must have index 4 for the
other symbol. Thus, for Server 1, the only index assignment
possible for query b∗ + c∗ is b4 + c3. Similarly, the b∗ + d∗
must be b5 + d3 and c∗ + d∗ must be c5 + d4. All indices for
2-sums are similarly assigned for Server 2 as well. Thus all
indices for 2-sums are settled.

Now let us consider 3-sums. The index assignments for
the first three rows for the 3-sums are again straightforward,
because as in [1], these are side-information exploitation
terms, i.e., new desired message symbols must be mixed with
the side-information symbols (2-sums) downloaded from the
other server that do not contain desired message symbols. This
gives us the following query structure.

θ = 1
Server 1 Server 2

a1, b1, c1, d1 a2, b2, c2, d2
a3 + b2 a6 + b1
a4 + c2 a7 + c1
a5 + d2 a8 + d1
b4 + c3 b7 + c6
b5 + d3 b8 + d6
c5 + d4 c8 + d7

a9 + b7 + c6 a12 + b4 + c3
a10 + b8 + d6 a13 + b5 + d3
a11 + c8 + d7 a14 + c5 + d4
b∗ + c∗ + d∗ b∗ + c∗ + d∗

a15 + b∗ + c∗ + d∗ a16 + b∗ + c∗ + d∗

Now, again there is a special property that is evident to each
server based on the 3-sums that contain symbols from message
a. Suppose we choose any two messages, one of which is a.
For example, suppose we choose a, b and consider Server 1.
Then there are 2 instances of 3-sums that contain a, b, namely,
a9 + b7 + c6 and a10 + b8 + d6. Note that the third symbol
in each case has the same index (6 in this case). The same is
true if for example, we choose a, c or a, d instead. The two
3-sums that contain a, c are a9 + b7 + c6 and a11 + c8 + d7,

and in each case the third symbol has the same index (7 in
this case). The two 3-sums that contain a, d are a10 + b8 + d6
and a11 + c8 + d7, and in each case the third symbol has the
same index (8 in this case). Again, because we do not wish to
expose a as the desired message, the same property must be
true for all messages. This observation fixes the indices of the
remaining 3-sum, b∗ + c∗ + d∗ as follows. The index of d in
this term must be 9 because the two 3-sums that contain b, c
must have the same index for the third symbol, and according
to a9 + b7 + c6 this index must be 9. Similarly, the index of
c in b∗ + c∗ + d∗ must be 10 because the two 3-sums that
contain b, d must have the same index for the third term, and
according to a10 + b8 + d6 it has to be 10. The index of b in
b∗+ c∗+d∗ is similarly determined by the term a11 + c8 +d7
to be 11. Thus, the query b∗+ c∗+ d∗ from Server 1 must be
b11 + c10 + d9. Similarly, the query b∗ + c∗ + d∗ from Server
2 must be b14 + c13 + d12.

The last step is again a side-information exploitation step,
for which index assignment is trivial (new desired symbol
must be combined with the 3-sums queried from the other
server that do not contain the desired symbol). Thus, the index
assignment is complete, giving us the queries for PIR2 .

θ = 1
Server 1 Server 2

a1, b1, c1, d1 a2, b2, c2, d2
a3 + b2 a6 + b1
a4 + c2 a7 + c1
a5 + d2 a8 + d1
b4 + c3 b7 + c6
b5 + d3 b8 + d6
c5 + d4 c8 + d7

a9 + b7 + c6 a12 + b4 + c3
a10 + b8 + d6 a13 + b5 + d3
a11 + c8 + d7 a14 + c5 + d4
b11 + c10 + d9 b14 + c13 + d12

a15 + b14 + c13 + d12 a16 + b11 + c10 + d9

For the sake of comparison, here are the queries generated
with PIR2 when θ = 3, i.e., when message W3 (symbols c)
is desired.

θ = 3
Server 1 Server 2

a1, b1, c1, d1 a2, b2, c2, d2
c3 + a2 c6 + a1
c4 + b2 c7 + b1
c5 + d2 c8 + d1
a4 + b3 a7 + b6
a5 + d3 a8 + d6
b5 + d4 b8 + d7

c9 + a7 + b6 c12 + a4 + b3
c10 + a8 + d6 c13 + a5 + d3
c11 + b8 + d7 c14 + b5 + d4
a11 + b10 + d9 a14 + b13 + d12

c15 + a14 + b13 + d12 c16 + a11 + b10 + d9

To see why the queries for θ = 1 are indistinguishable from
the queries for θ = 3 under PIR2 , say from the perspective
of Server 1, note that the former is mapped to latter under the
permutation on [1 : L] that maps

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16)

−→ (1, 3, 4, 2, 5, 9, 6, 10, 7, 11, 8, 12, 15, 13, 14, 16)

The permutation π is chosen privately and uniformly by the
user independent of θ, so both queries are equally likely
whether θ = 1 or θ = 3.

2) Arbitrary M : Recall that the PIR scheme of [1],
[8] generates the queries block by block (the kth block is
comprised of only k-sums, i.e., sums of k symbols) based on
repeated application of two algorithms: Exploit-SI and M-
Sym. Exploit-SI takes all the queries from a server (Server
n) in block k that do not contain a desired message symbol
and adds a new desired symbol to each of them to create new
queries for block k + 1 for the other server (Server n̄). This
algorithm remains unchanged in our new PIR scheme. The
other algorithm, M-Sym, is called after Exploit-SI for each
block and adds queries that do not include desired symbols
to force symmetry in queries with respect to messages. The
new index assignment process changes only this algorithm.
In particular, the change is as follows. Suppose the M-Sym
algorithm needs to add a query ui1(∗) +ui2(∗) + · · ·+uik(∗)
to Server n in the kth block where ∗ symbols represent indices
that need to be assigned. In order to find the index ∗ for
uil(∗), l ∈ [k], it finds the k-sum query that contains symbols
from ui1 , ui2 , · · · , uil−1

, uθ, uil+1
, · · ·uik that was generated

already for Server n by Exploit-SI algorithm. If this query
contains uθ(jl) then the index jl is assigned to uil . In this
way, the Exploit-SI algorithm assigns all indices to generate
the query ui1(j1) +ui2(j2) + · · ·+uik(jk). No other changes
are made in the PIR scheme of [1] by the index assignment
process.

The privacy of PIR2 follows from the following observa-
tions. Consider Block k, k > 1, of the query to Server n. It
contains only k-sums. In fact it contains a k-sum of every type
for a total of

(
M
k

)
terms. Now choose any (k − 1) message

indices ~i = (i1, i2, · · · , ik−1), and consider all the queries in
Block k that reduce to a (k−1)-sum of type (i1, i2, · · · , ik−1)
after one of their symbols is removed. Then, all the symbols
that are removed have the same symbol index j. Furthermore,
these are the only symbols with symbol index j among all
queries to Server n. For each block k this establishes a one-
to-one mapping between each type set (i1, i2, · · · , ik−1) and
the corresponding symbol index j. The mapping depends on
θ. Let us denote this mapping as j(θ,~i). Then the query
for θ is mapped into the query for θ′ under a permutation
that maps indices j(θ,~i) −→ j(θ′,~i). However, since the
permutation of indices is chosen privately and uniformly by
the user independent of θ, both queries are equally likely,
regardless of whether the desired message is θ or θ′. Thus,
the queries do not reveal the identity of the desired message.

The correctness of PIR2 follows directly from the cor-
rectness of PIR1 . By the same token, if the messages are

independent then PIR1 and PIR2 have the same rate. Thus,
the index assignment process produces a new PIR scheme,
PIR2 , that for independent messages, is equally efficient as
PIR1 in terms of download, i.e., PIR2 is capacity achieving
for independent messages. However, depending upon the form
of the message dependencies, it turns out that the ‘sums’ may
not be sufficient and more sophisticated mixing of message
symbols may be required. For N = K = 2 and the
dependencies that we consider in this paper, we will need sign
assignments, that are explained next.

B. Sign Assignment: PC

In this section, we present the sign assignment procedure
that produces the private computation scheme PC from PIR2
for arbitrary M . We will use the M = 4 example to illustrate
its steps. The sign assignment procedure depends on θ. Let us
choose θ = 3 to illustrate the process. Note that σi are now
generated uniformly and independently from {+1,−1}.

To explain the sign assignment, it is convenient to express
each query in a lexicographic order. For example, the query
ui1(j1) + ui2(j2) + · · ·+ uik(jk) is in lexicographic order if
i1 < i2 < · · · < ik regardless of the values of the indices j.
For our M = 4 example, the query c9 + a7 + b6 is expressed
as a7 + b6 + c9 under lexicographic ordering. Note that the
lexicographic order for the M = 4 example is simply the
ordering a < b < c < d and the indices do not matter. The
position of the c∗ symbol within this lexicographic ordering
of query q will be denoted as ∆c(q), i.e., for the query q =
a7 + b6 + c9, we have ∆a(q) = 1,∆b(q) = 2,∆c(q) = 3 and
∆d(q) = 0 where the 0 value indicates that a symbol from
that message is not present in the query.

Next, the queries are sorted in increasing order of blocks,
B, so that the kth block B = k, contains only k-sums. Each
block is partitioned into sub-blocks, S, such that all the queries
q in the same sub-block have the same value of ∆Wθ

(q). The
sub-blocks are sorted within a block in descending order of
∆Wθ

(q) and numbered S = 1, 2, · · · . With this sorting, the
query structure is represented as follows.

θ = 3
B S(∆c) Server 1 Server 2
1 · · · c1, a1, b1, d1 c2, a2, b2, d2
2 1(2) a2 + c3 a1 + c6

1(2) b2 + c4 b1 + c7
2(1) c5 + d2 c8 + d1
3(0) a4 + b3 a7 + b6
3(0) a5 + d3 a8 + d6
3(0) b5 + d4 b8 + d7

3 1(3) a7 + b6 + c9 a4 + b3 + c12
2(2) a8 + c10 + d6 a5 + c13 + d3
2(2) b8 + c11 + d7 b5 + c14 + d4
3(0) a11 + b10 + d9 a14 + b13 + d12

4 1(3) a14 + b13 + c15 + d12 a11 + b10 + c16 + d9

The sign assignment algorithm for arbitrary M is comprised
of 4 steps.
Algorithm: SignAssign

(Step 1) Consider queries for which ∆Wθ
(q) = 0, i.e.,

queries that do not contain desired message symbols.
The terms in these queries that occupy even positions (in
lexicographic order within each query) are assigned the
‘−’ sign. Thus, for example the query q = a11+b10+d9
changes to q → q′ = a11 − b10 + d9 after the sign
assignment. Notice that the signs are alternating in the
lexicographic ordering of symbols within the query. The
sign assignments for the queries with ∆Wθ

(q) = 0 are
now settled.
(Step 2) If a symbol is assigned a negative sign in Step 1
then in Step 2 it is assigned a negative sign everywhere it
appears. Note that any undesired symbol that appears in
the query from one server, appears exactly once within
the query to each server.
For our M = 4 example, at this point we have,

θ = 3
B S(∆c) Server 1 Server 2
1 · · · c1, a1, b1, d1 c2, a2, b2, d2
2 1(2) a2 + c3 a1 + c6

1(2) b2 + c4 b1 + c7
2(1) c5 + d2 c8 + d1
3(0) a4 − b3 a7 − b6
3(0) a5 − d3 a8 − d6
3(0) b5 − d4 b8 − d7

3 1(3) a7 − b6 + c9 a4 − b3 + c12
2(2) a8 + c10 − d6 a5 + c13 − d3
2(2) b8 + c11 − d7 b5 + c14 − d4
3(0) a11 − b10 + d9 a14 − b13 + d12

4 1(3) a14 − b13 + c15 + d12 a11 − b10 + c16 + d9

(Step 3) Every query such that ∆Wθ
(q) > 0, i.e.,

every query that contains a desired message symbol is
multiplied by (−1)S+1(θ 6=1), where S is the sub-block
index and 1(θ 6= 1) is the indicator function that takes
the value 1 if θ 6= 1 and 0 if θ = 1.
(Step 4) Finally, in Step 4, for each query q that contains
a desired symbol, i.e., ∆Wθ

(q) > 0, the desired symbol
is assigned the negative sign if it occupies an even
numbered position, i.e., if ∆Wθ

(q) is an even number,
and a positive sign if it occupies an odd numbered
position, i.e., if ∆Wθ

(q) is an odd number.

Following this procedure for our running example, we have
the final form of the queries as follows.

θ = 3
B S(∆c) Server 1 Server 2
1 · · · c1, a1, b1, d1 c2, a2, b2, d2
2 1(2) a2 − c3 a1 − c6

1(2) b2 − c4 b1 − c7
2(1) c5 − d2 c8 − d1
3(0) a4 − b3 a7 − b6
3(0) a5 − d3 a8 − d6
3(0) b5 − d4 b8 − d7

3 1(3) a7 − b6 + c9 a4 − b3 + c12
2(2) −a8 − c10 + d6 −a5 − c13 + d3
2(2) −b8 − c11 + d7 −b5 − c14 + d4
3(0) a11 − b10 + d9 a14 − b13 + d12

4 1(3) a14 − b13 + c15 + d12 a11 − b10 + c16 + d9

To complete the illustration for our M = 4 example, let us
also present the final queries for θ = 1, 2, 4.

θ = 1
B S(∆c) Server 1 Server 2
1 · · · a1, b1, c1, d1 a2, b2, c2, d2
2 1(1) a3 − b2 a6 − b1

1(1) a4 − c2 a7 − c1
1(1) a5 − d2 a8 − d1
2(0) b4 − c3 b7 − c6
2(0) b5 − d3 b8 − d6
2(0) c5 − d4 c8 − d7

3 1(1) a9 − b7 + c6 a12 − b4 + c3
1(1) a10 − b8 + d6 a13 − b5 + d3
1(1) a11 − c8 + d7 a14 − c5 + d4
2(0) b11 − c10 + d9 b14 − c13 + d12

4 1(1) a15 − b14 + c13 − d12 a16 − b11 + c10 − d9

θ = 2
B S(∆b) Server 1 Server 2
1 · · · b1, a1, c1, d1 b2, a2, c2, d2
2 1(2) a2 − b3 a1 − b6

2(1) b4 − c2 b7 − c1
2(1) b5 − d2 b8 − d1
3(0) a4 − c3 a7 − c6
3(0) a5 − d3 a8 − d6
3(0) c5 − d4 c8 − d7

3 1(2) a7 − b9 − c6 a4 − b12 − c3
1(2) a8 − b10 − d6 a5 − b13 − d3
2(1) b11 − c8 + d7 b14 − c5 + d4
3(0) a11 − c10 + d9 a14 − c13 + d12

4 1(2) a14 − b15 − c13 + d12 a11 − b16 − c10 + d9

θ = 4
B S(∆d) Server 1 Server 2
1 · · · d1, a1, b1, c1 d2, a2, b2, c2
2 1(2) a2 − d3 a1 − d6

1(2) b2 − d4 b1 − d7
1(2) c2 − d5 c1 − d8
2(0) a4 − b3 a7 − b6
2(0) a5 − c3 a8 − c6
2(0) b5 − c4 b8 − c7

3 1(3) a7 − b6 + d9 a4 − b3 + d12
1(3) a8 − c6 + d10 a5 − c3 + d13
1(3) b8 − c7 + d11 b5 − c4 + d14
2(0) a11 − b10 + c9 a14 − b13 + c12

4 1(4) a14 − b13 + c12 − d15 a11 − b10 + c9 − d16

We include the full algorithm here for completeness.
Q(n, θ) denotes the queries for Server n ∈ {1, 2} when Wθ

is desired. For any ordered tuple u, let new(u) be a function
that, starting with u(1), returns the “next” element in u each
time it is called with the same tuple u as its argument.

Algorithm (1) Q-Gen Algorithm.
1: Input: θ
2: Output: Q(1, θ), Q(2, θ)
3: Initialize: All query sets are initialized as null sets. Also

initialize Block = 1;
4:

Q(1, θ,Block,M)← {uθ(1)}
Q(1, θ,Block, I)← {u1(1), · · · , uM (1)}/{uθ(1)}
Q(2, θ,Block,M)← {uθ(2)}
Q(2, θ,Block, I)← {u1(2), · · · , uM (2)}/{uθ(2)}

5: for Block = 2 : M do
6:

Q(1, θ,Block,M)← Exploit-SI(Q(2, θ,Block− 1, I))

Q(2, θ,Block,M)← Exploit-SI(Q(1, θ,Block− 1, I))

7:

Q(1, θ,Block, I)← M-Sym(Q(1, θ,Block,M))

Q(2, θ,Block, I)← M-Sym(Q(2, θ,Block,M))

8: end for (Block)
9:

Q(1, θ)←
⋃

Block∈[1:M]

(
Q(1, θ,Block, I) ∪Q(1, θ,Block,M)

)
Q(2, θ)←

⋃
Block∈[1:M]

(
Q(2, θ,Block, I) ∪Q(2, θ,Block,M)

)
SignAssign(Q(1, θ), Q(2, θ))

The sub-routines are as follows. θ,Block are assumed to be
available to the sub-routines as global variables. Tk represents
the set of all possible choices of k distinct indices in [1 : M].−→
T indicates that the elements of T are to be accessed in the
natural lexicographic increasing order.

Algorithm (2) M-Sym Algorithm.
1: Input: Q = Q(n, θ,Block,M)
2: Output: Q∗ = Q(n, θ,Block, I)
3: Initialize: Q∗ ← ∅.
4: for each i[1:Block] ∈

−−−→
TBlock, θ /∈ i[1:Block] do

5:

Q∗ ←Q∗ ∪ {ui1(j1) + ui2(j2) + · · ·+ uiBlock(jBlock)}
such that ∀l ∈ [1 : Block]

∃ uθ(jl) +
∑

r∈[1:Block],r 6=l

uir (∗) ∈ Q

6: end for (i[1:Block])

Algorithm (3) Exploit-SI Algorithm.
1: Input: Q = Q(n, θ,Block− 1, I)
2: Output: Q′ = Q(n̄, θ,Block,M)
3: Initialize: Q′ ← ∅.
4: for each q ∈

−→
Q do

5:
Q′ ← Q′ ∪ {new(uθ) + q}

6: end for (q)

This completes the description of the scheme PC . The
correctness of PC follows from that of PIR2 . Remarkably, if
the messages are independent, then PC may be seen as another
PIR scheme that achieves the same rate as PIR1 , PIR2 , i.e.,
all three are capacity achieving schemes. The proof of privacy
of PC is deferred to Section VI-A for the M = 4 setting and
to Section VI-B for arbitrary M .

The main advantage of PC is that for the dependent mes-
sage setting of Theorem 1, it is the optimal private computation
scheme. Its proof of optimality is presented next.

V. PROOF OF OPTIMALITY OF PC

In this section, we show how PC achieves the capacity of
private computation when the messages are dependent. The
key idea is that the message dependencies combined with
the special index and sign structure of PC create redundant
queries, and by downloading generic combinations of the
queries4 instead of downloading each query separately, the
download requirement is reduced without compromising on
privacy.

4Alternatively, random binning (Slepian-Wolf coding) may be used.

A. Proof of Optimality for M = 4

To prove optimality, we need to show that the scheme
achieves a rate that matches the capacity of private compu-
tation according to Theorem 1. Specifically, let us prove that
the rate achieved is 8/12 = 2/3. For this, we will show
that the user downloads only 12 symbols from each server.
Note that ostensibly there are 15 symbols that are queried
from each server. However, it turns out that based on the
information available from the other server, 3 of these symbols
are redundant. Thus, 12 generic combinations of these 15
symbols are sufficient.

Let us see why this is the case for the queries from Server 1.
c1, d1 are clearly redundant symbols because according to (9)
they are functions of a1, b1. So we need one more redundant
symbol. Suppose a is desired (θ = 1). Then, consider the 2-
sum queries that do not involve the desired message, a. There
are 3 such queries. However, the key is that from any 2 we
can construct the 3rd. In this case from Server 1 we have:
b4 − c3, b5 − d3, c5 − d4. But note that

β3(b5 − d3)− β4(b4 − c3)− (α3β4 − α4β3)a3

− α4a4 + α3a5 = (c5 − d4)

Verify:

LHS = β3(b5 − d3)− β4(b4 − c3)− (α3β4 − α4β3)a3

− α4a4 + α3a5
(9)
= β3(b5 − α4a3 − β4b3)− β4(b4 − α3a3 − β3b3)

− (α3β4 − α4β3)a3 − α4a4 + α3a5

= α3a5 + β3b5 − α4a4 − β4b4
(9)
= (c5 − d4) = RHS

Since the user knows a3, a4, a5 due to the side information
available from the other server, out of these 3 equations, 1
is redundant. Thus, one more symbol is saved, giving us 12
effective downloaded symbols, and the rate 8/12 is achieved.
Since this is also the outer bound, this scheme achieves
capacity. It can similarly be verified for this M = 4 example
that the redundancy exists no matter which message is desired.

As another example, suppose c is desired (θ = 3). Referring
to the scheme, from Server 1, the three queries (that are 2-
sums) not involving c are a4 − b3, a5 − d3, b5 − d4. But note
that

(α3β4 − α4β3)(a4 − b3)− α3(a5 − d3)

− α4c3 − β4c4 + c5 = β3(b5 − d4)

Verify

LHS
= (α3β4 − α4β3)(a4 − b3)− α3(a5 − d3)− α4c3 − β4c4 + c5
(9)
= (α3β4 − α4β3)(a4 − b3)− α3(a5 − α4a3 − β4b3)

− α4(α3a3 + β3b3)− β4(α3a4 + β3b4) + (α3a5 + β3b5)

= β3(b5 − α4a4 − β4b4)

(9)
= β3(b5 − d4) = RHS

Note that the scheme is designed to satisfy server symmetry,
so redundancy exists for Server 2 as well. Note also that
the redundant symbols are created in the message symmetry
step so that regardless of the value of θ, the sign structure
(alternating) is maintained and the symbol index structure
is guaranteed to be symmetric. So for all θ ∈ [1 : 4],
we always have 3 redundant symbols from each server, and
downloading 12 symbols per server suffices. The rate achieved
is L/D = 16/24 = 2/3 = C.

B. Proof of Optimality for Arbitrary M

To prove optimality, we need to show that the scheme
achieves a rate of 2/3. For this, we will show that the user
downloads only

∑M
k=1

((
M
k

)
−
(
M−2
k

))
= 2M − 2M−2 sym-

bols from each server. Note that the message size is L = 2M ,
then the rate achieved is 2M/(2(2M − 2M−2)) = 2/3, as
desired. Note that there are

(
M
k

)
symbols queried in Block

k, k ∈ [1 : M] from each server. However, it turns out that
based on information available from the other sever,

(
M−2
k

)
of these symbols are redundant. Thus,

(
M
k

)
−
(
M−2
k

)
generic

combinations of these
(
M
k

)
symbols are sufficient.

Next we prove why this is the case in the following lemma.
Lemma 1: For all θ ∈ [1 : M], for each server, in Block

k ∈ [1 : M − 2],
(
M−2
k

)
of the

(
M
k

)
symbols are redundant,

based on the information available from the other server.
Proof: Let us start with the case where θ = 1. Consider the k-
sum queries that do not involve the desired message u1. There
are
(
M−1
k

)
such queries, divided into two groups:

1)
(
M−2
k−1

)
queries that involve u2,

2)
(
M−2
k

)
queries that do not involve u2.

The key is that the symbols in Group 2 are redundant.
Specifically, we show that they are functions of the symbols
in Group 1 when u1 is known.5

Example 1: We accompany the general proof with a concrete
example to explain the idea. For this example, assume M = 6
messages, and denote symbols u1, u2, · · · , u6 by distinct let-
ters a, b, · · · , f , respectively, for simplicity. Consider Block
k = 3. The queries that do not involve the desired message
u1 are shown below. For this example, we will see that the 4
symbols in Group 2 are functions of the 6 symbols in Group
1.

Group 1 bj5 − cj2 + dj1
bj6 − cj3 + ej1
bj7 − cj4 + fj1
bj8 − dj3 + ej2
bj9 − dj4 + fj2
bj10 − ej4 + fj3

Group 2 cj8 − dj6 + ej5
cj9 − dj7 + fj5
cj10 − ej7 + fj6
dj10 − ej9 + fj8

5This is guaranteed because the desired variable u1 in Block k is mixed
with side information in Block k − 1 available from the other server.

Specifically, let us prove that any query in Group 2 is a
function of k queries from Group 1. Consider an arbitrary
query in Group 2:

q0 = ui1(j1)− ui2(j2) + ui3(j3)− · · ·+ (−1)k−1uik(jk)

where 3 ≤ i1 < i2 · · · < ik. We show that when u1 is known,
the query q0 is a function of the following k queries in Group
1:

q1 = u2(j1)− ui2(p1) + ui3(p2)− · · ·+ (−1)k−1uik(pk−1)

q2 = u2(j2)− ui1(p1) + ui3(∗)− · · ·+ (−1)k−1uik(∗)
q3 = u2(j3)− ui1(p2) + ui2(∗)− · · ·+ (−1)k−1uik(∗)
...
qk = u2(jk)− ui1(pk−1) + ui2(∗)− · · ·

+ (−1)k−1uik−1
(p k(k−1)

2
)

where in ql, we place uil in q0 with u2. The indices are assigned
by the index assignment process.

We assume without loss of generality that [α1, β1] =
[1, 0], [α2, β2] = [0, 1] (by an invertible change of basis
operation). Then we have

uil(∗) = αilu1(∗) + βilu2(∗), l ∈ [1 : k] (10)

Note that u1(∗) are assumed known, so we may set u1(jl) to
zero. Now we show that q0 is a linear function of q[1:k].

q0 = βi1q1 − βi2q2 + · · ·+ (−1)k−1βikqk, when u1(∗) = 0

In other words,

βi1u2(j1)− βi2u2(j2) + βi3u2(j3)− · · ·+ (−1)k−1βiku2(jk) =

βi1

(
u2(j1)− βi2u2(p1) + βi3u2(p2)− · · ·+ (−1)k−1βiku2(pk−1)

)
− βi2

(
u2(j2)− βi1u2(p1) + βi3u2(∗)− · · ·+ (−1)k−1βiku2(∗)

)
+ βi3

(
u2(j3)− βi1u2(p2) + βi2u2(∗)− · · ·+ (−1)k−1βiku2(∗)

)
· · ·

+ (−1)k−1βik

(
u2(jk)− βi1u2(pk−1) + βi2u2(∗)− · · ·

+ (−1)k−1βik−1
ui2 (p k(k−1)

2

)
)

(11)

We verify the above equality holds. First, note that the LHS
only contains variables u2(j1), u2(j2), u2(j3), · · · , u2(jk). For
these variables, the RHS matches the LHS. Second, we con-
sider the remaining variables. To this end, pick an arbitrary
index pq, q ∈ [1 : k(k−1)2] and we show that u2(pq) is cancelled
in the RHS. Suppose pq is assigned when the symbol with
index pq is removed, we have the following k−1 variables in
the k-sum.

u2, ui1 , ui2 , · · · , uit1−1
, uit1+1

, · · · , uit2−1
, uit2+1

,

· · · , uik , t1, t2 ∈ [1 : k], t1 < t2. (12)

In other words, only uit1 and uit2 are not present. There are
two such k-sums and then two u2(pq) terms. The first u2(pq)
comes from uit2 (pq) and appears in qt1 as (−1)t2−1uit2 (pq)
(note that uit1 is missing in qt1). The second u2(pq) comes
from uit1 (pq) and appears in qt2 as (−1)t1uit1 (pq) (note that

uit2 is missing in qt2). Setting u1(∗) = 0 and replacing
uit1 (pq), uit2 (pq) with u2(pq) in (11), we have

(−1)t1−1βit1

(
(−1)t2−1βit2u2(pq)

)
+

(−1)t2−1βit2

(
(−1)t1βit1u2(pq)

)
= 0 (13)

So all terms u2(pq) are cancelled in the RHS and (11) holds.
Example 1 (Continued): Pick any query in Group 2, say

cj9 − dj7 + fj5 (14)

We show that this query is a function of the following 3 queries
in Group 1,

bj9 − dj4 + fj2 , bj7 − cj4 + fj1 , bj5 − cj2 + dj1 . (15)

Next we set the desired variables to zero and we have

β3bj9 − β4bj7 + β6bj5 = β3

(
bj9 − β4bj4 + β6bj2

)
− β4

(
bj7 − β3bj4 + β6bj1

)
+ β6

(
bj5 − β3bj2 + β4bj1

)
Note that bj1 , bj2 , bj4 are cancelled. So (14) is redundant
(when the desired message symbols are known) .

The proof for arbitrary θ 6= 1 follows from similar proce-
dures. In presenting the proof, we highlight the differences
while similar steps are described succinctly.

Note that k ≤ M − 2, so for any k-sum, except uθ, there
exists at least one missing message variable. Pick an arbitrary
missing one and suppose it is uγ . Similarly, consider the k-
sum queries that do not involve the desired message uθ, which
are further divided into two groups, depending on whether uγ
is involved (Group 1,

(
M−2
k−1

)
queries) or not (Group 2,

(
M−2
k

)
queries). We show that any query in Group 2 is a function of
the queries in Group 1. Define

Sum({ui1 , ui2 , · · · , uik}) ,
k∑
l=1

(−1)l−1uil(jl)

where i1 < i2 · · · < ik. Consider an arbitrary query in Group
2:

q0 = Sum({ui1 , ui2 , · · · , uik})

Note that uil , l ∈ [1 : k] is not equal to θ or γ. The symbol
indices in q0 are assigned by the index assignment process.
By a change of basis, we express each variable as a linear
combination of uθ and uγ . Assume without loss of generality,

uil(∗) = αiluθ(∗) + βiluγ(∗), l ∈ [1 : k] (16)

Suppose i1 < · · · < it < γ < it+1 < · · · < ik. Then we show
the following equality holds, when uθ(∗) = 0.

q0 = (−1)t−1

(
t∑
l=1

(−1)l−1βilql −
k∑

l=t+1

(−1)l−1βilql

)
(17)

where ∀l ∈ [1 : k], ql = Sum({uγ , ui[1:k]/l}). The rest of the
proof, where we verify (17) by showing that the LHS is equal
to the RHS, is identical to the case of θ = 1.

VI. PROOF OF PRIVACY OF PC

A. Proof of Privacy for M = 4

To see why this scheme is private, we show that the queries
are identically distributed, regardless of the value of θ. To this
end, we show that the query for θ = 2, 3, 4 has a one-to-
one mapping to the query for θ = 1, respectively, through a
choice of permutation π and signs σi which is made privately
and uniformly by the user.

For example, for Server 1 and Server 2, the query for θ = 2
can be converted into the query for θ = 1 by the following
mapping:

Server 1: (3, 2, 7, 9, 10, 8, 15, 14,−σ6,−σ12,−σ13)

−→ (2, 3, 9, 7, 8, 10, 14, 15, σ6, σ12, σ13)

Server 2: (6, 1, 12, 4, 13, 5, 16, 11,−σ3,−σ9,−σ10)

−→ (1, 6, 4, 12, 5, 13, 11, 16, σ3, σ9, σ10)

However, these mappings are privately generated by the user
and both alternatives are equally likely regardless of desired
message. Hence, these queries are indistinguishable.

We can similarly verify that the other remaining queries
for θ = 3, 4, are indistinguishable as well. For Server 1 and
Server 2, the query for θ = 3 can be converted into the query
for θ = 1 by the following mapping:

Server 1: (3, 4, 2, 7, 6, 9, 10, 11, 8,−σ8, 14, 13, 15,−σ12)

−→ (2, 3, 4, 9, 7, 6, 8, 10, 11, σ11, 15, 14, 13, σ12)

Server 2: (7, 6, 1, 4, 3, 12, 14, 13, 5,−σ5, 11, 10, 16,−σ9)

−→ (6, 1, 7, 12, 4, 3, 13, 5, 14, σ14, 16, 11, 10, σ9)

The last case is when θ = 4. The mapping from that to θ = 1
is as follows.

Server 1: (3, 4, 5, 2, 6, 7, 8, 9, 10, 11, 14, 13, 12, 15)

−→ (2, 3, 4, 5, 8, 10, 11, 6, 7, 9, 15, 14, 13, 12)

Server 2: (6, 7, 8, 1, 3, 4, 5, 12, 13, 14, 11, 10, 9, 16)

−→ (1, 6, 7, 8, 5, 13, 14, 3, 4, 12, 16, 11, 10, 9)

Again, since these mappings are privately generated by the
user and both alternatives are equally likely regardless of
desired message, these queries are indistinguishable. Thus all
queries are indistinguishable and the scheme is private.

B. Proof of Privacy for Arbitrary M

We prove that PC is private. We know that PIR2 is private
and PC is obtained from PIR2 by the sign assignment.
Therefore it suffices to show that the sign assignment does not
destroy privacy, i.e., Q(n, θ) still has a one-to-one mapping to
Q(n, 1) by a choice of permutation π and signs σi which is
made by the user privately and uniformly.

The one-to-one mapping is quite simple. Note that each
query in Q(n, 1) has alternating signs. Consider Q(n, θ). We
only need to consider the non-desired symbols in queries
introduced by Exploit-SI (so uθ is involved). The reason is
that the signs of the desired symbols introduced by Exploit-SI
and the other queries introduced by M-Sym are the same as

the signs of the queries in Q(n, 1).6 These queries all satisfy
that ∆Wθ

> 0. Now to map Q(n, θ) to Q(n, 1), for each block,
we flip the signs (i.e., replace σi with −σi) of variables to the
right of uθ in queries from sub-blocks S if S is odd, and the
signs of variables to the left of uθ in queries from sub-blocks
S if S is even.

Example 2: We accompany the general proof with a concrete
example to explain the idea. Consider M = 6 (messages),
block k = 4, desired message index θ = 4. For simplicity, we
denote u1, u2, · · · , u6 by a, b, · · · , f . In Block B = k = 4, we
have

(
6−1
4−1
)

= 10 queries introduced by Exploit-SI (contains
d) as follows. The signs that need to be flipped are colored in
red.

θ = 4
B S(∆d) Server n
4 1(4) aj5 − bj2 + cj1 − d∗

2(3) −aj6+bj3 + d∗ − ej1
2(3) −aj7+bj4 + d∗ − fj1
2(3) −aj8+cj3 + d∗ − ej2
2(3) −aj9+cj4 + d∗ − fj2
2(3) −bj8+cj6 + d∗ − ej5
2(3) −bj9+cj7 + d∗ − fj5
3(2) aj10 − d∗−ej4+fj3
3(2) bj10 − d∗−ej7+fj6
3(2) cj10 − d∗−ej9+fj8

Note that σi appears in all message variables with symbol
index i, so σi might be flipped multiple times and we need to
make sure that σi is flipped consistently, i.e., the sign flipping
rule either changes or does not change the signs of all variables
with the same index. This is indeed true, proved as follows.
Note that we flip the signs depending on whether the sub-
block index is even or odd and if the variables are to the left
or right of uθ. This means, for variables in two consecutive
sub-blocks, the variables to the left of uθ in one sub-block
and the variables to the right of uθ in the other sub-block are
simultaneously flipped or unflipped. So it suffices to show that
all variables with the same index are
• either in the same sub-block, and all are on the same side

of uθ,
• or in two consecutive sub-blocks, but are on different

sides of uθ.
Example 2 (continued): Referring to the table above, con-

sider all variables with index j1, i.e., cj1 , ej1 , f1. c1 is in sub-
block 1 and is to the left of d. ej1 , fj1 are in sub-block 2 and
are to the right of d. Further, the signs of cj1 , ej1 , fj1 are
all unflipped. As another example, consider all variables with
index j10, i.e., aj10 , bj10 , cj10 . They are all in sub-block 3 and
their signs are all unflipped. One more example: all variables

6Note that the indices of the non-desired symbols introduced by Exploit-
SI do not appear in the queries introduced by M-Sym. The reason is seen as
follows. Consider a symbol ui, i 6= θ that appears in a query introduced by
Exploit-SI (denote the query by q, so uθ appears in q) and suppose the index
of ui is j (i.e., we have ui(j)). Now from index assignment, symbols with
index j all appear in terms that contain uθ (thus these terms are all generated
by Exploit-SI).

with index j6, aj6 , cj6 , fj6 . aj6 , cj6 are in sub-block 2 and are
to the left of d. fj6 is in sub-block 3 and is to the right of d.
The signs of aj6 , cj6 , fj6 all need to be flipped.

We now find variables with the same symbol index, say
#. From index assignment, we know that all occurrences of
symbol index # are in queries that contain the same k − 1
(distinct) variables (uθ included). Suppose the message indices
of these k−1 variables are i1, · · · , ij , θ, ij+1, · · · , ik−2, where

i1 < · · · < ij < θ < ij+1 < · · · < ik−2. (18)

and let the remaining M−(k−1) message indices be denoted
by r1, r2, · · · , rM−(k−1). Then the symbol index # appears
in queries

ur1 (#)± ui1 ()± · · · ± uij ()± uθ()± uij+1 ()± · · · ± uik−2
()

· · ·
ui1 ()± · · · ± uij ()± uθ()± uij+1 ()± · · · ± uik−2

()± urM−(k−1)
(#)

(19)

where ± represents either ‘+’ or ‘−’, determined by sign as-
signment. These M−(k−1) variables url , l ∈ [1 : M−(k−1)]
can be divided into two sets (one set could be empty), where
• the first set are those url where rl < θ
• and the second set are those url where rl > θ

So the variables in the first set are to the left of uθ and the
variables in the second set are to the right of uθ. Further,
the two sets are in consecutive sub-blocks because ∆uθ only
differs by 1. Therefore the sign flipping rule is consistent and
the privacy proof is complete.

Example 2 (continued): Suppose we want to find all vari-
ables with index # = j1. They appear in queries that contain
a, b, d. The queries in (19) are

aj5 − bj2 + cj1 − d∗
−aj6+bj3 + d∗ − ej1
−aj7+bj4 + d∗ − fj1

The 3 variables with index # = j1 are cj1 , ej1 , fj1 (colored in
blue). The first set contains cj1(< d) (in sub-block 1) and the
second set contains ej1 , fj1(> d) (in sub-block 2). As another
example, suppose we want to find all variables with index
= j10. The queries in (19) are

aj10 − d∗−ej4+fj3
bj10 − d∗−ej7+fj6
cj10 − d∗−ej9+fj8

The 3 variables with index # = j10 are aj10 , bj10 , cj10(< d).
They all belong to the first set (sub-block 3). One more
example: find all variables with index # = j6. The queries
in (19) are

−aj6+bj3 + d∗ − ej1
−bj8+cj6 + d∗ − ej5
bj10 − d∗−ej7+fj6

The 3 variables with index # = j6 are aj6 , cj6 , fj6 . The first
set contains aj6 , cj6(< d) (in sub-block 2) and the second set
contains fj6(> d) (in sub-block 3).

VII. CONCLUSION

Motivated by privacy concerns in distributed computing, we
introduce the private computation problem where a user wishes
to compute a desired function of datasets stored at distributed
servers without disclosing any information about the function
that he wishes to compute to any individual server. The private
computation problem may be seen as a generalization of
the PIR problem by allowing dependencies among messages.
We characterize the capacity of private computation for the
elemental setting of N = 2 servers, K = 2 independent
datasets, and arbitrary M linear combinations of the two
independent datasets as the possible functions. Surprisingly,
this capacity turns out to be identical to the capacity of PIR
with N = 2 servers and K = 2 independent messages.
Thus, there is no loss in capacity from the expansion of
possible messages to include arbitrary linear combinations in
this elemental setting. Furthermore, this insight is also shown
to hold at the other extreme, where the number of independent
datasets K → ∞ and the user may be interested in arbitrary
functions (including possibly non-linear functions). While the
asymptotic case is relatively straightforward, the elemental
case requires sophisticated structure in the queries in order
to optimally exploit message dependencies.

REFERENCES

[1] H. Sun and S. A. Jafar, “The Capacity of Private Information Retrieval,”
IEEE Transactions on Information Theory, vol. 63, no. 7, pp. 4075–4088,
2017.

[2] ——, “The Capacity of Robust Private Information Retrieval with Col-
luding Databases,” arXiv preprint arXiv:1605.00635, 2016.

[3] ——, “The Capacity of Symmetric Private Information Retrieval,” arXiv
preprint arXiv:1606.08828, 2016.

[4] K. Banawan and S. Ulukus, “The Capacity of Private Information Re-
trieval from Coded Databases,” arXiv preprint arXiv:1609.08138, 2016.

[5] Q. Wang and M. Skoglund, “Symmetric private information retrieval for
mds coded distributed storage,” in Communications (ICC), 2017 IEEE
International Conference on. IEEE, 2017, pp. 1–6.

[6] K. Banawan and S. Ulukus, “The capacity of private information
retrieval from byzantine and colluding databases,” arXiv preprint
arXiv:1706.01442, 2017.

[7] R. Tandon, “The capacity of cache aided private information retrieval,”
arXiv preprint arXiv:1706.07035, 2017.

[8] H. Sun and S. A. Jafar, “Optimal Download Cost of Private In-
formation Retrieval for Arbitrary Message Length,” arXiv preprint
arXiv:1610.03048, 2016.

