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Abstract

Recent observational work of controller behavior in simulations of air traffic control sessions
suggests that controllers formulate and modify their plans in terms of clusters of aircraft, rather
than individual aircraft, and that they cluster aircraft based on their closeness in an abstract
cognitive space, rather than simple separation in physical space. A mathematical model of that
space is presented as a background for further work to determine the cognitive strategies that
controllers use to navigate that space. The model is topological in that neighborhood constraints
play a central role; it is dynamic in that more than one topology interact to define its essential
characteristics; and itis parametric in that an entire class of spaces can be obtained by varying
the values of some parameters.

With the presented model as background, some hypotheses as to controller strategies are
suggested and examples given to illustrate them. For example, controllers appear to segment
their work into episodes defined in terms of the interactions of clusters and to prioritize the sub-
tasks within these episodes, with different strategies for different sub-tasks. Some specific
questions suggested by the hypotheses are raised, and some theoretical and practical
implications are pointed out. For example, controllers appear to change their plans consequent
upon changes in perceived clustering: deliberate cognitive acts are triggered by presented
changes in conceptualization. This has implications for tool development, in that it underscores
the need to limit the extent to which automated aids should be allowed to deviate from actual
controller practice.

1 Supported, in part, by Contract No. NGT 47-003-029, NASA-Langley Research Center,
Hampton, VA. | would like to thank Herb Armstrong, Hugh Bergeron, Greg Bonadies, Randy
Harris, Gary Lohr, Renate Rofske-Hofstrand, and George Steinmetz for invaluable assistance on
the empirical work that underlies the theoretical model presented here. | also thank Eric Braude,
Robert Kuhns, and especially Carol Munroe for very helpful comments on an earlier draft.
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1. Background. Recent observational work on controller behavior in air traffic control
simulation sessions suggests that controllers formulate and modify their plans in terms of clusters
of aircraft, rather than individual aircraft, and that they cluster aircraft based on their closeness in
an abstract cognitive space, rather than simple separation in physical space (Cushing, 1989; also
see Bregman et al., 1988; Cushing, 1990; NASA/OAST, 1988; Roske-Hofstrand, 1988; Roske-
Hofstrand et al., 1989; and Wesson, 1977; for further background and discussion). In this paper a
mathematical model of that space is presented based on that work and as background for further
work to determine the cognitive strategies that controllers use to navigate that space. The model
is topological in that neighborhood constraints play a central role; it is dynamic in that more
than one topology interact to define its essential characteristics; and it is parametric in that an
entire class of spaces can be obtained by varying the values of some external parameters. The
several topologies are also distinguished by the values of internal parameters. The parameters
are presented in Section 2 and the model itself in Section 3. With it as background, some
hypotheses as to controller strategies are suggested in Section 4, along with some examples that
illustrate them and some specific questions for further investigation.

2. The Parameters. The essence of the model is illustrated in Figures 1-9. Arriving aircraft
are identified with (an initial segment of) the set Z+ of positive integers, and the controller's task is

modelled as the construction of a permutation A on Z*. In other words, aircraft that are
presented in an order of arrival must be safely rearranged into an order for landing. The

construction of an appropriate A is subject to constraints that are central to the structure of the
space. Aircraft that are within a neighborhood of each other in arrival order must be kept within a
neighborhood of each other in landing order, with the respective neighborhoods defined by the

parameters m , and = ,. Similarly, aircraft that are within a neighborhood of each other in arrival
time must be kept within a neighborhood of each other in landing time, with the respective

neighborhoods defined by the parameters T, and t,. The topologies that are determined by
these neighborhood constraints partially characterize the structure of the space.

Neighborhood constraints defined in terms of six other parameters determine further
topologies that complete that characterization. Four of these, like t, and =, are numerical
parameters: the minimum separation (i.e., physical distance) o that must be maintained at all
times between any two aircraft, the maximum order difference w and maximum cognitive
distance x for aircraft to be in a cluster, and the minimum duration interval that an
aircraft can be in a cluster. In actual practice, ¢ has the value 3.0 (miles) for good weather and

5.0 for bad. A possible refinement would be to allow a further parameter o, for “heavy” aircratt,
which require greater separation, but this can be avoided if the two separation values are taken to

be systematically related, e.g., by a constant difference or ratio. The value of 1 depends on short-
term memory capacity and perception thresholds and can thus be expected, like  and x, to
vary from controller to controller, in contrast to the values of o, which are set by regulation.
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Finally, we have two functional parameters: the physical distance ¢ and the
cognitive distance y . We can reasonably assume that ¢ is unique and fully understood, but
determining the character of  is intricately intertwined with the related problem of determining
the cognitive strategies in which it is used and thus, other than being required to be a distance

metric, is beyond the scope of the present paper.2 Any of the parameters can be varied at will
for purely investigative purposes, i.e., modeling, simulation, or the like.

3. The Model. Since we identify aircraft with their positions in arrival and landing order, i.e.,
before and after permutation by the controller, the parameters that bound their neighborhoods and
clusters are naturally taken also to be integers. Physical or cognitive distances or times, however,
are more reasonably taken to be real-valued. We thus begin as follows:

Stipulation: Numerical Parameters. Choose fixed values
T o, Ty, @ € Z¥%
T ar T || (0] y 1, K € R+.

Safety requires, first and foremost, that the physical distance between aircraft not be permitted to
aftain a value less than a specified minimum, identified above as the minimum separation ¢ .
It is apparent from controller behavior, however, that a very different measure of cognitive
distance also plays a role in determining which aircraft are taken as being “close enough” to be
considered together as a cluster, as illustrated in Figures 4 and 5. Even aircraft whose arrival
occurs at opposite ends of the controller’s screen and are thus widely separated physically can be
grouped together in planning, as the required permutation is constructed. We thus continue as
follows:

Stipulation: Functional Parameters. Choose distinct fixed values

o , x:Z*XZ* XR* 5 R,
subject to the following constraint:
For 8e {6 , x} V Py, P, P3€ Z%, te R¥,
0<3(py,Pat)
8 ( Py, P2, 1) =8(py Py, 1),
5 (P1, P2 1) < 8(Py, P3. 1) +3(p3, P2 1).

2 Compare the analogous difference, in physics, between claiming that the universe is a

four—dimensional differentiable manifold and claiming that it is a particular such manifold or, in
linguistics, between claiming that language is characterized by an underlying autonomous

universal syntax and claiming that that syntax is embodied in grammatical rules or principles of a
particular form. Though equally non-trivial, the two sorts of claims differ substantially in strength,
the first providing the background for investigating the second, further refinements of which can
eventually lead to the confirmation of both (or not). The space proposed here embodies a claim of
the former sort; further characterizing x would involve successive refinements of claims of the latter.
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This is the standard definition of distance metric in a metric space, but relativized to times and
with an internal parameter & that takes the two functions ¢ and x as instances, thereby
defining two different topologies on the space. Note that the stipulated relativization allows & itself
to vary with time, with different results possible at different times for the same ordering or spatial
arrangement of aircraft. Though not sufficiently constraining for physical distance, this flexibility is
desirable for cognitive distance, which can be expected to vary with time of day, work load, stress,
and the like, as these affect the controller's mental state.

The difference in arrival order, p, — p 4, is a further distance metric, not dependent on

time, that, along with %, constrains the formation of clusters. It is the occurrence of clustering
that makes controller cognition a non-trivial problem. If aircraft were treated entirely as individuals,
it would be a simple matter, at least in principle, to automate the process, by assigning each aircraft

a dedicated processor to maintain separation ¢ from every other, as is apparent from the
Figures. With each aircraft capable of fending for itself, air traffic control would be rendered

superfluous. Clustering reflects the need, however, to plan ahead in maintaining ¢ , not just
now, but throughout the permutation process. It is thus in the internal logic of clusters that we can
most reasonably expect to find indications of how this planning proceeds.

Definition: Neighborhood. LetD ¢ {Z+ R*}. V d,, d,, B € D,
d, is in a B—neighborhood of d,, N; (d,, dy), if |[dy,-d;[< B .

Corollary: (1) Reflexive.V d B e DNy (d,d).
() Symmetric. v dy.dp B € DN, (dy,dp) = N (dp dy).
(3  Intransitive. 3 dy,dp,dg, B € D,Ny (dy,dp) n Ng(dp dg) A =N (dy, d).

Again, this is a standard definition of neighborhood in a metric space, but with the domain D
and the neighborhood bound 3 as parameters internal to the model, taking Z* or R+ and

the external parameters @ 5, ™|, T4, T, Or ® as values, respectively, in various places in
the model. The corollary is also standard and serves mainly to disqualify NB from being an

equivalence relation.

Definition: Clustering. A functionc: Z+ X R+ — 2% isa (@ v, x, x)—clustering
if it satisfies the following constraints:

M@V pe Z* 3 tp,a, tp,, e R,V te Rt
[t € [tp,a'tp'll = p € C(p,t) ]A [t € [tp'a:tp’ll = C(p,t) = Q],
B)Y py,poe Z+,Vte RY[p, € c(pyt) = py € c(p,, 1),
(€)Y py, Py Pge Z+,V t € R¥,

[P, € e(py,t) A pg e c(pt)l = py e c(py,t),
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(2 @ V py.pye 2% te R¥[p, € ¢p,,t) = N, (py, Pl
(b) V py, ppe Z* te RYIpp € opy,t) = x (py, Ppu 1) <K,
(3 V pe Z*+ te R*
[c(pt)= @ = [3 t,,t,e RY t,-t, 21, te [t,t)]
Vie (). lelpt)#3 = c(pt)=c(p,t)]]]

A clustering assigns to each aircraft (in Z+) a set of aircraft, its cluster, (in 2z+) that can
change as time (in R+*) passes, subject to three constraints. Constraint (1) says that
being-clustered-with, unlike being-in-a-neighborhood-of, is an equivalence relation at a
time t on sets of aircraft with overlapping salience intervals [t, ,, t, ]: an aircraft is always in its
own cluster between its arrival time and its landing time, but has no genuine cluster (i.e., its cluster
= @) otherwise. Outside that interval, an aircraft is of no cognitive interest, in the present
context; it need not be worried about before it arrives and after it lands. Assigning it a cluster of &
simplifies the formulations by avoiding the need for partial functions. An aircraft can be viewed as
comprising its own cluster whenever it is treated individually. Constraint (2) relates clustering to
the two non-physical distance metrics of the model by imposing proximity constraints: one aircraft

can be in the cluster of another aircraft only if they are within w of each other in arrival order
and within x of each other in cognitive distance. The actual values of ® and x will depend
on the individual controller, but they can be expected to be intimately connected to limits on
short-term memory. Characterizing cognitive distance amounts to solving simultaneously the

conditions of the definition for suitable functions x .3 Constraint (3) says that a clustering can
assign a particular set of aircraft as the cluster of a particular aircraft at a salient time only if it
assigns that set as the cluster of that aircraft within an interval that contains that time, of width no

less than 1. This guarantees a degree of (i.e., step~wise) continuity so that changes in
clustering remain realistic, without diminishing the flexibility that makes those changes useful.

The parameters w and 1 serve to define upper bounds on the size and the number of
clusters and on the number of times they can change, as follows:

Theorem: Let Cbe the set of all (, 1,x, x)Clusterings.

(1) V pe Z* te R*, ce C,
le(p, )| <200 = 1.

(2 V pe ZHte [tat
He(p, 1) | ce Cl<2%@- M),

B) V pe Z*,ce C,
l{tte [t,,.t,), 3 e R* c(p,t—¢€) = c(p, t +€)}|

<(ty=ta)/ 1) +2

3 See note 2.
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Proof: (1) Planes available for p's cluster ranga from p - (@ - 1) through p + (@ - 1) , including p itself:
S(o-)+(w-1)+1 =20 1.
(2) Clusters generally available for p include all subsets of the set of planes in (1) that contain p:
(1/2)(2203 1) - 22m -2 - 2210) 2 1).
The < is required, rather than =, because of the current indeterminacy of y, which can be expected, when

determined, to rule out possible clusters that are permitied by the other constraints, and also, independently of 7 ,

because of the fact that two different planes will not have identical salience intervals (see landing sequence below).
(3) A plane's cluster becomes non-null upon arrival and can then change at any time thereafter. After the first change,

each cluster must then persist for an interval of at least 1 in duration. Let L = (tp,, -1 'a) and assume each interval

has duration exactly 1. If v exactly divides L, thereare L / v change points if t begins an interval of length

p.a
1, and (L /1) + 1 otherwise. If 1 does not exactly divide L, there are [(L / 1) + 1] change points if tp a

begins an interval of length 1, and [(L / 1) + 2] otherwise, where [x] is the greatest integer in x. If one or more
intervals has duration greater than 1, the number of change points does not increase.

In other words, the number of distinct aircraft that are in the cluster of a particular aircraft at a
particular time is bounded above by 2w - 1; the number of distinct potential clusters that are

available to be associated with a particular aircraft at a particular time, between the time it arrives

and the time it lands, is bounded above by 22(® - 1) - and the number of distinct times that a

controller assigns a new non-null (hence the “)” in [t th) here) cluster to a particular aircraft
's bounded above by ((t,, —tp,a)/ 1) + 2.

p.a’

Finally, we can characterize the controller’s task as follows:

Definition: Landing Sequence. A permutaton A on Z+, i.e.,, abijecton A :Z+ — Z+,
isa (rn, mp 1, 7)-landing sequence if it satisfies the following constraint:
v p1! p2 € Z+1
[[Nn,(pv Po) = Ng ,(k (Py), A (P
A [N‘fa(tm,a' tpz'a) = N l(tp1,|' tpz,,)]

Controller’'s Task: Construct a clustering and a landing sequence
subject to the following constraint:

V Py PreZH te [t 10 [t ], 0P pat)2o.

In other words, aircraft that are “near” each other in arrival order or time must be “near” each other
in landing order or time, respectively, though the “nearness” criteria for arrival and landing need
not be the same and the landing times must be different. Furthermore, no matter how they get
permuted or what clustering is used, two aircraft must never be permitted to approach each other to
within a physical distance of o . Constructing a landing sequence is the explicit requirement of
the controller’s task; the need to construct a clustering arises from the inherent complexity of that
task in the context of human cognition.
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4. Further Work in Progress. The above model provides the general cognitive
framework within which controllers appear to do their work. The next task is to determine the
cognitive strategies that controllers use to navigate the space the model characterizes. Work thus
far has suggested the following hypotheses (Cushing, 1989):

(1) Controllers segment their work temporally and dynamically into (sometimes overlapping)
episodes and sub-episodes defined in terms of the interactions of aircraft clusters;

(2) Controllers  prioritize  the  sub-tasks within their episodes,
with different strategies for different sub-tasks; and

(3) Controllers change plans consequent upon changes in perceived clustering:
deliberate cognitive acts are triggered by presented changes in conceptualization.

Hypothesis (1) is illustrated throughout the Figures. As an example of hypothesis (2), a controller in
a simulation session checks that separation of aircraft is adequate both before and after doing an
artificial “side—task” consisting of reading extraneous information about the weather, but is less
thorough in checking before scanning to accept responsibility for an aircraft that is being handed off
to him by another controller. This suggests that he considers the latter task to be more important
and in need of more immediate attention when it arises. Hypothesis (3) has particular implications
for tool development, in that it underscores the need to limit the extent to which automated aids,
such as expert system or decision support tools, should be allowed to deviate from actual controller
practice. Further work is needed to quantify and test these hypotheses.

In particular, the following questions need to be answered: (1) What factors other than
arrival order play a role in clustering?4 (2) Does the controller check aircraft separation in
preparation for doing the “side-task,” or does he do the “side-task™ after having checked
separation? (3) To what extent does the controller maintain separation of clusters, and to what
extent is he willing to shuffle (i.e., modify and mix) them? (4) How often and why does the
controller scan back to aircraft that are already lined up for landing, while focusing primarily on a
later cluster, and how often and why does he scan to outliers beginning a new cluster, while
focusing primarily on an earlier one?

It is anticipated that the pursuit of answers to these and related questions will lead to
refinements in the above model, as the strategies it supports are unraveled. It will be necessary to
investigate the extent to which controllers differ in their choice of strategies, both from each other
and from non—controller control subjects, in order to determine the extent to which the strategies
used are learned, rather than corollaries of inherent properties of human perceptual and
cognitive mechanisms. How this question gets answered has implications for training methods,
even aside from the development of support tools for assisting controllers on the job.

4 e, just what is it that distinguishes (b) from (a) in condition (2) of the clustering definition?
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