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RESEARCH ARTICLE Open Access

Multi-omics integration reveals molecular
networks and regulators of psoriasis
Yuqi Zhao1, Deepali Jhamb2, Le Shu1, Douglas Arneson1, Deepak K. Rajpal2* and Xia Yang1,3,4,5*

Abstract

Background: Psoriasis is a complex multi-factorial disease, involving both genetic susceptibilities and environmental
triggers. Genome-wide association studies (GWAS) and epigenome-wide association studies (EWAS) have been carried
out to identify genetic and epigenetic variants that are associated with psoriasis. However, these loci cannot
fully explain the disease pathogenesis.

Methods: To achieve a comprehensive mechanistic understanding of psoriasis, we conducted a systems biology
study, integrating multi-omics datasets including GWAS, EWAS, tissue-specific transcriptome, expression quantitative
trait loci (eQTLs), gene networks, and biological pathways to identify the key genes, processes, and networks that are
genetically and epigenetically associated with psoriasis risk.

Results: This integrative genomics study identified both well-characterized (e.g., the IL17 pathway in both GWAS and
EWAS) and novel biological processes (e.g., the branched chain amino acid catabolism process in GWAS and
the platelet and coagulation pathway in EWAS) involved in psoriasis. Finally, by utilizing tissue-specific gene
regulatory networks, we unraveled the interactions among the psoriasis-associated genes and pathways in a
tissue-specific manner and detected potential key regulatory genes in the psoriasis networks.

Conclusions: The integration and convergence of multi-omics signals provide deeper and comprehensive
insights into the biological mechanisms associated with psoriasis susceptibility.

Keywords: Psoriasis, GWAS, EWAS, Systems biology, Integrative genomics

Background
Psoriasis is a common and chronic skin disease with
poorly understood etiology. It is mainly characterized by
vascular remodeling, epidermal hyper-proliferation, and
inflammation [1]. The development of psoriasis involves
both genetic susceptibilities and environmental triggers
[2]. From the genetic perspective, the heritability of psor-
iasis has been estimated to be 60–75% based on a
population-based twin study [3]. Recent genome-wide as-
sociation studies (GWAS) have identified ~ 50 genetic loci
at genome-wide significance (p < 5e-8), together explain-
ing ~ 22% of the genetic heritability [4, 5] and leaving
two-thirds of the heritability to be further explored. In
addition to genetic factors, environmental factors such as

psychological stress, injuries, cigarette smoking, obesity,
infections, and alcohol consumption, also play an import-
ant role in psoriasis pathogenesis. To tackle the molecular
underpinnings of environmental factors, epigenome-wide
association studies (EWAS) have emerged and unraveled a
role for differential DNA methylation in the complex
interplay between genes and the environment during
disease development. For instance, Lu et al. character-
ized differential DNA methylation between involved
and uninvolved skin lesions from patients with psoriasis
and found aberrant methylation patterns in genes involved
in the immune system, cell cycle and apoptosis [2].
Conventional GWAS and EWAS examine individual

genetic and epigenetic markers one at a time and typically
only reveal a small number of top signals due to severe
multiple testing penalty. As such, they are not adequately
powered to identify genes and loci with moderate to subtle
effect sizes that are part of the missing heritability [6], nor
are they designed to investigate tissue-specific gene-gene
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interactions that are increasingly recognized to play crit-
ical roles in complex disease development [7–9]. In
addition, GWAS and EWAS of psoriasis have not been
comprehensively examined for inter-connections or com-
pared for commonalities and differences in the mechanis-
tic insights inferred.
We and others have recently demonstrated that inte-

gration of multidimensional genomic resources into
tissue-specific network models can improve our under-
standing of human complex diseases [7–12]. In this
study, we apply such an integrative genomics strategy
(Fig. 1) that leverages the entire summary-level data
from psoriasis GWAS and EWAS (not just the genome-
wide significant signals), gene expression profiles of hu-
man psoriatic and normal skins, and functional genomics
information including tissue-specific expression quantita-
tive loci (eQTLs, which reveal genetic regulation of gene
expression), gene regulatory networks from key tissues in-
volved in psoriasis, and biological pathways. Specifically,
we used Mergeomics [13], a versatile and robust computa-
tional pipeline that aggregate statistical patterns of univar-
iate associations of diverse data types and molecular
networks to identify important pathways and key drivers
in biological systems. Importantly, Mergeomics does not
require the multi-omics datasets to be derived from the
same study population, and can overcome heterogeneity

between independent datasets from different studies to
extract robust biological signals across data types, stud-
ies, diseases, and species. The pipeline has been suc-
cessfully applied to lipid metabolism [13], diabetes [12],
coronary artery disease [9, 12], and nonalcoholic fatty
liver disease [11]. Extensive in vitro and in vivo valid-
ation experiments support the robustness and validity
of the novel findings derived from Mergeomics [11, 12].
In this study, a comprehensive integration of tens of

diverse datasets related to psoriasis using Mergeomics
allowed us to unravel the gene regulatory networks that
capture the full range of genetic/epigenetic perturbations
(from strong to moderate and subtle), elucidate the rela-
tionships among the disease susceptibility genes/pathways
informed by genetic and/or epigenetic associations, illus-
trate the key commonalities and differences between gen-
etic and epigenetic mechanisms, and pinpoint key
regulators for psoriasis. These findings built on multi-omics
big data integration provide systems-level insights into the
etiology of psoriasis and potential treatment avenues.

Methods
We present the essential methods in the main text and
the detailed descriptions can be found in Additional
file 1.

Fig. 1 Flowchart of the study. The integrative genomic approach leverages multiple genetic and genomic datasets to uncover the mechanisms
of psoriasis. The data types included are psoriasis GWAS, EWAS, gene expression profiles of human psoriatic and normal skins (Additional file 1:
Table S1), tissue-specific eQTLs from skin and blood, gene regulatory networks from skin and blood, and biological pathways. The framework can
be roughly divided into five steps. First, we constructed data-driven co-expression networks and curated knowledge-driven pathways. These serve
as gene sets containing genes with functional relevance and relationships. Second, GWAS and EWAS of psoriasis were integrated with the gene
sets using Marker Set Enrichment Analysis (MSEA) to identify genetically (via GWAS) and epigenetically (via EWAS) perturbed pathways. Third, we
identified the converging psoriasis pathways from both GWAS and EWAS and merged them into independent supersets. Fourth, Bayesian gene
regulatory networks were integrated with the psoriasis-associated supersets to determine key driver (KD) genes based on network topology.
Finally, the KD genes and their subnetworks were cross-validated using multiple in silico methods. GIANT: Genome-scale Integrated Analysis
of Networks in Tissues, the experimental details of the GIANT interface can be found in [25]
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Multi-omics datasets for psoriasis
Psoriasis GWAS: Full summary statistics of psoriasis
GWAS was obtained based on data accessed from
dbGAP database (www.ncbi.nlm.nih.gov/gap) with ac-
cession phs000019.v1.p1 (Additional file 1: Table S1).
The genotype and phenotype data was generated in
1399 psoriasis cases and 1426 controls of European an-
cestry [14]. No other psoriasis GWAS data with full
summary statistics was publicly accessible. We used dif-
ferent mapping methods to link SNPs to their potential
target genes (details in Additional file 1) and derived six
unique sets of SNP-gene mapping: eQTL skin, eQTL
blood, eQTL all (i.e., combing skin and blood eQTLs),
chromosomal distance-based mapping (± 50 kb), Regu-
lome (ENCODE-based mapping), and Combined (comb-
ing all the above methods). eQTL data sources are
detailed in Additional file 1. Linkage disequilibrium (LD)
between SNPs were corrected by keeping only one SNP
among all SNPs in LD r2 > 0.7, a cutoff resulting in a bal-
ance between statistical power and correction of LD struc-
ture (details in Additional file 1).
Psoriasis EWAS: We searched the GEO database by

keywords “psoriasis methylation” and obtained three
EWAS studies for psoriasis (Additional file 1: Table S1).
The raw methylation datasets were reanalyzed with the
R Bioconductor packages methylumi (v2.16.0) [15] and
lumi (v2.22.1) [16]. The CpG sites were mapped to adja-
cent genes within 5 kb [17].
Psoriasis transcriptome data: We searched the Gene

Expression Omnibus (GEO) database for studies involv-
ing gene expression profiling for psoriasis. To avoid
systematic bias by different experimental platforms and
small sample size, we obtained the studies using the fol-
lowing criteria: a) the microarray studies were per-
formed on Affymetrix Human Genome U133 platforms
(GPL570/GPL571), which are the most commonly used
in the psoriasis studies; b) the sample size of both the
control and psoriasis groups should be over three. Ap-
plying these criteria yielded 696 gene expression pro-
files (Additional file 1: Table S1). We also retrieved 174
RNA sequencing samples (92 psoriatic and 82 normal
skin samples) for independent validation of our main
findings (under in silico validation section at the end of
the Methods).

Differentially expressed genes and differentially
methylated CpG sites in psoriasis
We detected differentially expressed genes and differ-
entially methylated CpG sites between psoriasis and
normal skin using GEO2R (www.ncbi.nlm.nih.gov/geo/
geo2r/), a web-based program that employs the Biocon-
ductor packages GEOQuery [18] and limma [19] in R,
with the Benjamini-Hochberg false-discovery rate (FDR)

method for multiple-testing correction as its default
method.

Reconstruction of skin coexpression networks
The MEGENA (Multiscale Embedded Gene Co-expression
Network Analysis) package [20] was applied to recon-
struct the co-expression networks in psoriasis and nor-
mal skin separately (details in Additional file 1). The
coexpression modules were compared between psoria-
sis and normal groups using the “Reciprocal Best Hits”
method [21, 22]. Fisher’s exact test was performed to
assess gene overlaps between two modules from psori-
atic and normal skin networks. If the coexpression
modules satisfy FDR < 0.05 in the Fisher’s exact test and
were reciprocal best hits between psoriasis and normal,
we define them as preserved modules. Modules failed
to satisfy FDR < 0.05 were deemed as “differential mod-
ules” that were not preserved between psoriasis and
normal skin. To link each coexpression module to bio-
logical processes, we used the build-in functions in the
MEGENA package [20] to annotate each module with
known pathways and functional categories collected
from Gene Ontology, Biocarta, KEGG and Reactome
databases [23, 24]. The significance of the overlap be-
tween a coexpression module and an annotation path-
way was calculated using Fisher exact test with FDR <
5% to identify significant annotation terms and link the
modules to biological processes.

Knowledge-based biological pathways
The knowledge-based biological pathways included 1827
canonical pathways from the Reactome, Biocarta, and
KEGG databases [23, 24] and three psoriasis related
“positive control” gene sets (details in Additional file 1:
Table S2).

MSEA (marker set enrichment analysis)
To detect gene sets (knowledge-based pathways or data-
driven coexpression modules) affected by molecular
markers (genetic loci or methylation sites) associated
with psoriasis, we used MSEA in the Mergeomics
package, which has been demonstrated with superior
performance compared to other gene set enrichment
analysis methods [13]. For a given gene set, gene mem-
bers are first mapped to markers (SNP/CpGs) based
on a mapping file described above and then the disease
association p values of the corresponding markers are
extracted to test for enrichment of association signals
based on a chi-squared-like test statistic, followed by
FDR estimation (Additional file 1) [13]. To evaluate a
gene set across multiple EWAS studies, we employed
the Meta-MSEA analysis in Mergeomics, which con-
ducts meta-analysis to retrieve robust gene sets across
studies (Additional file 1).
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Merging psoriasis-associated pathways into supersets
We merged the common pathways associated with psor-
iasis with FDR < 5% in both GWAS and EWAS using a
merging algorithm in Mergeomics [13]. Briefly, the over-
lap ratio r between two gene sets A and B was defined
as r = (rAB × rBA)

0.5, where rAB is the proportion of genes
in A that are also in B while rBA is the proportion of
genes in B that are also in A. We set the overlap ratio
r cutoff to > = 0.2 and also required Fisher’s exact tests
for the number of shared genes among pathways to be
statistically significant (FDR < 0.05). If a resulting super-
set had more than 500 genes, we trimmed it down to
the core genes that were shared across overlapping gene
sets.

Tissue-specific gene regulatory networks and weighted
key driver analysis (wKDA)
The Bayesian gene regulatory networks of skin and
blood tissues were retrieved from GIANT [25]. GIANT
gene networks were constructed using Bayesian model-
ing of tissue-specific transcriptome data from human
datasets from GEO and known functional gene relation-
ships. Using these networks, we performed wKDA [13]
on the disease-associated supersets (9 common, 16 GWAS-
unique, and 13 EWAS-unique supersets respectively) to de-
termine the key drivers whose network neighbors are
enriched for genes in these supersets informed by psoriasis
GWAS and EWAS. The test statistic for wKDA was based
on a chi-squared-like test, with FDR < 0.05 used to focus on
the top robust KDs (details in Additional file 1).

In silico validation of KDs
To investigate the relevance of the identified KDs to
psoriasis based on previous literature evidence, we
assessed relevant information from different resources:
1) Mouse Phenotypes from the Mouse Genome Data-
base (MGD) [26], 2) the Gene Ontology annotations
[27], 3) literature support for disease implication using
Linguamatics [28], Polysearch [29], and COREMINE
(http://www.coremine.com/medical).
Besides literature mining, we utilized RNA-seq tran-

scriptomes (GEO accession: GSE54456) from 92 psori-
atic and 82 normal punch biopsies [30], as independent
sets of transcriptomic data to analyze the transcriptomic
perturbations of KD subnetworks in lesional psoriatic
skin. The transcriptomic patterns of the KD subnet-
works were assessed using the Gene Set Enrichment
Analysis (GSEA, the latest version gsea2–2.2.0.jar) [31],
which determines whether an a priori defined set of
genes shows statistically significant, concordant differ-
ences between two biological states (the psoriatic and
normal skins in this case) based on the Kolmogorov-
Smirnov statistic.

Results
Construction of skin co-expression networks in psoriasis
using transcriptome data
We first analyzed potential changes in gene-gene relation-
ships involved in psoriasis based on gene co-expression
patterns. We retrieved skin transcriptomic datasets from
696 samples in eight transcriptome studies (Additional
file 1: Table S1). Using a multiscale gene coexpression
network modeling approach MEGENA [20], we recon-
structed a psoriatic network comprised of 228 co-ex-
pression modules and a normal skin network comprised
of 165 modules (Fig. 1). We identified 68 differential coex-
pression modules that are not preserved between the two
networks, including 24 from psoriatic skins and 44 from
normal skins at FDR < 0.05 (Additional file 1: Table S3; de-
tails in Methods). Modules from normal skins can be dis-
rupted in disease conditions, and pathogenic modules
may uniquely form in psoriatic skins; both types of mod-
ules can be informative for disease pathogenesis. These
modules were involved in diverse biological processes,
such as “IL12 pathway”, “T Cell Receptor (TCR) signal-
ing”, and “branched chain amino acid (BCAA) catabolism”
(Additional file 1: Table S3). In addition, we identified 429
differentially expressed genes (DEGs) between psoriatic
and normal skins at FDR < 0.05 (Additional file 1: Table
S4). The 68 differential coexpression modules and the
DEG set serve as a collection of gene sets that inform on
functional gene-gene connections that are potentially per-
turbed by genetic and epigenetic risks of psoriasis.

Coexpression networks and pathways associated with
psoriasis in GWAS
The above transcriptome-based analyses are correlative
in nature and cannot differentiate the upstream, disease-
causing processes from those that are downstream, re-
active to the disease condition. Genetic signals from
GWAS, due to their inheritable nature, precede disease
development and therefore have the power to infer caus-
ality. To this end, we integrated the 68 differential coex-
pression modules and the DEG set from the above skin
transcriptome analyses with the full statistics of a large
psoriasis GWAS from the Collaborative Association
Study of Psoriasis [14] using MSEA (see Methods) [13].
To complement the data-driven gene sets, we also in-
corporated 1827 knowledge-based pathways curated
from KEGG, Biocarta, and Reactome databases as com-
plementary sets of genes that are functionally related.
Furthermore, we included three predefined psoriasis-
related gene sets as positive controls based on 1) top
psoriasis GWAS hits in GWAS Catalog [32], 2) the
well-established IL23/IL17 pathway [33, 34], and 3) previ-
ously refined psoriasis gene signatures based on differen-
tial analysis of transcriptome data (details in Additional
file 1: Table S2) [35, 36]. Briefly, single nucleotide
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polymorphisms (SNPs) were mapped to genes in each
gene set using chromosomal location (SNPs were mapped
to adjacent genes) or function-based mapping using blood
and skin eQTLs and ENCODE information (SNPs with
functional evidence support were mapped to adjacent
genes). Skin eQTLs were chosen because of the direct
relevance to psoriasis, and blood eQTLs were chosen be-
cause they mainly represent gene regulation in immune
cells, which play a significant role in psoriasis. The psoria-
sis GWAS association p values for the mapped SNPs from
each gene set were then extracted and compared with
SNPs mapped to random gene sets of matching sizes to
assess the aggregate GWAS association strength of a gene
set with psoriasis (detailed in Methods).
We found 14 (out of 68; 10 from normal skin and 4

from psoriatic skin) differential coexpression modules
and 105 (out of 1827) canonical pathways to be signifi-
cantly enriched for genetic risk variants of psoriasis
(FDR < 5%; Additional file 1: Table S5). As expected, the
“positive control sets based on top GWAS” hits and the
“IL23/IL17 immune pathway” were among the top sig-
nals in terms of enrichment for genetic variants (Add-
itional file 1: Table S5). The two transcriptome-based
DEG gene sets in psoriasis (both our own DEGs and
those from the previous studies [35, 36]), however, were
not significant, suggesting that these genes are likely not
causal for psoriasis but may be downstream molecular
changes. This result agrees with the conclusion from a
previous study [37] that differential co-expression is
more informative for causal disease mechanisms,
whereas differential gene expression is more likely re-
flective of events downstream of diseases and may be
more useful as biomarkers rather than causal targets.
Interestingly, although we could not obtain access

to the full GWAS summary statistics from the latest
psoriasis GWAS which reported results from ~ 40,000
individuals from eight different Caucasian cohorts
[38], our analysis using an older GWAS dataset [14]
(phs000019.v1.p1 used in our analysis) involving a much
smaller sample size (~ 2800 individuals) was able to cap-
ture pathways identified in the latest GWAS study of ~
40,000 individuals, such as “lymphocyte differentiation/
regulation”, “Type I interferon”, “pattern recognition and
response to virus/bacteria”, and “NF-κB cascade”, serving
as a cross-validation of our findings. Moreover, our ap-
proach aggregating the full spectrum of GWAS had the
power to capture many more biological processes than
those informed by the GWAS hits from the latest psoriasis
GWAS study, such as the “cell cycle”, “ER phagosome”,
“proteasome”, “BCAA biosynthesis” and “BCAA catabol-
ism” (Fig. 2).
The incorporation of tissue-specific eQTLs to guide

SNP-gene mapping allowed us to capture tissue-de-
pendency of the pathways. For example, when blood

eQTLs were used for SNP-gene mapping in the ana-
lysis, we could retrieve pathways such as “IL10”, “TH1/
TH2”, and “granulocytes” pathways; when skin eQTLs
were used, coexpression modules involved in “sulfur
amino acid metabolism” and “cytokine signaling” were
identified.

Coexpression networks and pathways associated with
psoriasis in EWAS
In addition to GWAS, epigenetic associations can also re-
veal causal processes that are subject to perturbations
by environmental inducers. We therefore conducted
MSEA using three accessible psoriasis EWAS datasets
(Additional file 1: Table S1; details in Methods). We
identified 133 (out of 1827) knowledge-based pathways
and 6 differential coexpression modules (out of 68; 5
from normal skin and 1 from psoriatic skin) to be signifi-
cantly enriched for psoriasis-associated DNA methylation
signals in > = 2 EWAS studies or in a meta-analysis across
the three EWAS studies (FDR < 5%; Additional file 1:
Table S6). Among these, many epigenetically associated
pathways reported by a recent systematic review on the
epigenetics of psoriatic disease [39], such as “IL17 path-
way”, “Natural killer cell-mediated cytotoxicity”, and
“Leukocyte transendothelial migration” were captured
in our analysis. Besides immune related processes,
pathways such as lipid metabolism [40], insulin signal-
ing, adipokine signaling, collagen formation, and cell-
cell communication were also found to be enriched for
psoriasis EWAS signals (Fig. 2).

Overlap and differences in pathways and networks
informed by GWAS and EWAS
We compared the pathways and network modules iden-
tified in GWAS and EWAS and found that 39 pathways
overlapped (38 canonical pathways and 1 coexpression
module from normal skin), suggesting that both genetic
and epigenetic risks could converge on similar sets of
genes and pathways (Fig. 2; Table 1; Additional file 1:
Table S7). The overlapping signals between GWAS and
EWAS included many inflammatory and immune re-
sponse pathways. Notably, the IL17 component, a well-
established psoriasis causal pathway, is affected by both
GWAS and EWAS signals. In addition, “PPARA signal-
ing”, “ABC transporters”, and “endocytosis” pathways,
and a coexpression module enriched for genes involved
in heparin sulfate/heparin metabolism are also among
the shared signals between GWAS and EWAS.
We also identified unique aspects of genetically vs epige-

netically perturbed signals (Fig. 2). For example, the BCAA
biosynthesis/catabolism processes are unique to GWAS,
whereas platelet and coagulation, insulin signaling, and
lipid metabolism pathways appear to be more specific to
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EWAS, suggesting that genetic and environmental factors
also perturb different pathways leading to psoriasis.

Merging pathways into independent supersets
We focused on the shared processes between GWAS
and EWAS for the downstream analysis, as these reflect
the most reproducible findings between genetic and
epigenetic signals in the current study. Because we inte-
grated the pathways and coexpression modules from di-
verse sources, many of the detected pathways may
share gene members and can be highly overlapping. To
reduce the redundancy, we merged the 39 consistent
gene sets between GWAS and EWAS into 22 independent
supersets by combining the overlapping ones with gene
overlap ratio r > 0.2 and FDR < 0.05 (see methods for de-
tails) into supersets (8) while keeping the non-overlapping
ones (14) intact (Table 1; Methods in Additional file 1;
more detailed results in Additional file 1: Table S7). To
confirm the merged supersets still carry the GWAS and
EWAS information, we performed meta-analysis of the 22
supersets across the GWAS and EWAS studies separately
and found 20 satisfying FDR < 5% in both meta-MSEA of
GWAS and EWAS (Additional file 1: Table S7). As HLA

genes (human leukocyte antigen) are located in close
physical proximity on chromosomes and tend to be co-
regulated, they might introduce statistical artefacts. Ex-
cluding HLA genes in the meta analyses confirmed 9
supersets at a stringent cutoff of FDR < 5.0e-4, 4 of which
do not contain HLA genes (“Cytokine Cytokine Receptor
Interaction”, “ABC Transporters”, “LAIR Pathway”, and
“Heparan sulfate and heparin biosynthesis and metabol-
ism”) and 5 of which contain HLA genes but retained sig-
nificance even after removal of these genes (“CTLA4
Pathway”, “Intestinal Immune Network For IGA Produc-
tion”, “Hematopoietic Cell Lineage”, “TCR Signaling”, and
“Antigen Processing And Presentation”), suggesting that
other genes in the latter category also contribute to the
genetic and epigenetic signal enrichment. These were con-
sidered as a prioritized set of robustly shared processes be-
tween GWAS and EWAS of psoriasis, and we included
the HLA genes in these 9 supersets for the downstream
network analyses.
In addition, we merged the gene sets informed only by

GWAS (82) or EWAS (100) into relatively independent
supersets separately, resulting in 46 supersets from
GWAS and 57 from EWAS. As these supersets may still

Fig. 2 Comparison of significant pathways between GWAS and EWAS. Panels A-D represent significant canonical pathways/coexpression modules
from Biocarta (a), Reactome (b), KEGG (c), and coexpression networks (d), respectively, that are associated with in psoriasis in GWAS and EWAS.
The detailed MSEA results in GWAS and EWAS can be found in Additional file 1: Tables S5 and S6. The pathways are derived from various
databases including Biocarta, Reactome, and KEGG, and were intersected with GWAS or EWAS using our MSEA procedure to identify pathways whose
genes contain genetic or epigenetic variants showing coordinated association with psoriasis in GWAS or EWAS. “BCAA biosynthesis” stands for
branched chain amino acids biosynthesis. In Additional file 1: Table S5, the corresponding full pathway name is “valine, leucine, and isoleucine
biosynthesis”, where valine, leucine, and isoleucine are BCAAs
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Table 1 Top shared pathways associated with psoriasis identified in GWAS and EWAS at FDR < 5%, and their corresponding network
key drivers (KDs) in skin and blood networks

Supersets Module
Size

Resources Pathways KDs in skin KDs in blood

S1: Antigen processing and
presentation

149 KEGG Antigen processing and
presentation

HLA-B, GBP1, C3, HLA-A,
PSMB9

HLA-C, WARS, BCL3, BIRC3,
SAT1

KEGG Viral myocarditis

KEGG Autoimmune thyroid disease

KEGG Type-I Diabetes mellitus

KEGG Graft versus host disease

KEGG Allograft rejection

S2: Intestinal immune
network for IGA production

45 KEGG Asthma N/A BIRC3, SELL, LAPTM5, IRF8,
CD40

KEGG Intestinal immune network for
IGA production

S3: Cytokine cytokine
receptor interaction

327 KEGG Cytokine-cytokine receptor
interaction

GRB2, STAT1, TNFAIP3,
TNFSF10, EGFR

BIRC3, SLA, PLAUR, LAPTM5,
CSF2RB

KEGG JAK-STAT signaling pathway

S4: TCR signaling 51 Reactome TCR signaling LCK, CHUK, NFKBIA,
NFKB2, FYB

LCK, ZAP70, CD247, CD3E,
CD8A

Reactome Generation of second messenger
molecules

Reactome PD1 signaling

Reactome Phosphorylation of CD3 and TCR
zeta chains

Reactome Translocation of ZAP 70 to
immunological synapse

S5: CTLA4 pathway 31 Biocarta CTL pathway LCK, FYB, IKZF1, GAB1 LCK, CD247, GZMA, CD3E,
NKG7

Biocarta CTLA4 pathway

Biocarta TCRA pathway

S6: LAIR pathway 22 Biocarta Lair pathway TNFAIP3, ICAM1 ITGAL, IFITM2, BIRC3,
HLA-DPB1, MSN

Biocarta Granulocytes pathway

S7: IL10 pathway 24 Biocarta IL10 pathway IL6ST, STAT1, ICAM1 STAT3, LAPTM5, BCL3,
IFNGR1, ARPC1B

Biocarta IL22BP pathway

S8: Inflammatory pathway 43 Biocarta Inflammation pathway MYD88 LAPTM5, CSF1R

Biocarta Cytokine pathway

Biocarta DC pathway

ABC transporters 44 KEGG ABC transporters N/A N/A

Adaptive immune system 522 Reactome Adaptive immune system PSMD13, PSMD14, PSMC5,
PSMA1, PSMD8

PSMD6, PSMC5, PSMD1,
PSMC1, PSMD4

Cell adhesion molecules
(CAMs)

114 KEGG Cell adhesion molecules (CAMs) LCK LCK, ITGAL, SLA, LAPTM5,
LILRB2

Endocytosis 177 KEGG Endocytosis GRB2, EGFR, RAB5A,
UBC, CBL

FYN, CD58, ATP6V0D1,
LHFPL2

Hematopoietic cell
lineage

83 KEGG Hematopoietic cell lineage MCL1, TIMP1 CSF1R, LAPTM5, PLAUR,
SERPINB1, IRF8

Heparan sulfate biosynthesis
and metabolism

41 Coexpression Heparan sulfate biosynthesis
and metabolism

THYN1, BBS4, YBX1, HSDL1,
GNL3

N/A

Immunoregulatory interactions
between a lymphoid and a
non-lymphoid cell

64 Reactome Immunoregulatory interactions
between a lymphoid and a
non-lymphoid cell

LCK, ICAM1, HLA-F LCK, KLRK1, CD247, LY96,
PRF1

Initial triggering of
complement

16 Reactome Initial triggering of complement N/A IFITM2, C2, C1QB, CCL18,
C1R

Leishmania infection 58 KEGG Leishmania infection MYD88, IER3, NFKB1, PLAUR, BCL3, BIRC3,

Zhao et al. BMC Systems Biology            (2019) 13:8 Page 7 of 14



share gene members and can be highly overlapping, we
then applied Fisher’s exact test with FDR adjustment to
estimate the overlaps among GWAS, EWAS, and Com-
mon supersets. If a superset from one list does not
meet FDR < 0.05 threshold in enrichment analysis with
any supersets from the other lists, we define them as a
“unique” superset. We identified 16 and 13 unique super-
sets for GWAS and EWAS respectively (Additional file 1:
Table S8), which are involved in diverse processes, such as
“aminoacyl tRNA biosynthesis”, “platelet homeostasis”,
and “sulfur amino acid metabolism” that are unique to
GWAS and “neuroactive ligand receptor interaction”,
“lipid metabolism”, “extracellular matrix organization”
that are unique to EWAS.

Identification and validation of central regulators for
psoriasis
To explore the interactions between genes within the 9
prioritized psoriasis-associated gene sets (total 1397
genes) common to GWAS and EWAS and to detect
important hub genes (termed key drivers or KDs
herein), we used a weighted key driver analysis (wKDA)
implemented in Mergeomics [13] and networks depict-
ing detailed gene-gene regulatory relationships in skin
and blood tissues (see Methods for details). KDs are de-
fined as network nodes whose neighborhoods are over-
represented with genes in the psoriasis supersets in-
formed by both GWAS and EWAS. We identified 133
unique KDs satisfying FDR < 5% for the nine psoriasis
supersets in the blood or skin networks (Additional file
1: Table S9).
In the skin network, we identify KDs such as ICAM1,

IL15, STAT1, TNFAIP3, and GRB2 to be the network
hubs connecting numerous genes in the psoriasis-asso-
ciated supersets (Fig. 3a). These KD subnetworks in
skin provide insights into gene regulations involved in
the pathogenesis of psoriasis. For instance, the TNFAIP3

subnetwork includes crucial factors involved in the initi-
ation of a psoriatic skin lesion, such as IFNGR2, IL1B, IL6,
and CXCL10 which drive T cell-mediated inflammation
and keratinocyte activation and proliferation. These later
events further promote the activation of inflammatory
cells such as neutrophils and macrophages to contribute
to the formation of an inflamed cutaneous plaque [41].
Interestingly, the heparin metabolism pathway genes form
a subnetwork surrounding KDs such as BBS4, GNL3, and
THYN1, and this subnetwork is rather remote from the
main skin subnetwork connected by the other KDs.
The psoriasis-associated supersets were also found to

be closely linked in the blood network via KDs such as
CTSH, IL1B, STAT1, and IFITM2 (Fig. 3b). We also
identified 36 KDs that were shared across multiple
psoriasis supersets and tissue-specific regulatory net-
works, such as LCK and STAT1 (Fig. 3). Genes with strong
signals in both GWAS (p < 5e-8) and EWAS (p < 1e-5)
were mostly peripheral nodes in the networks (Fig. 3),
such as C2, FYN, ICAM3, LTB, PSMB8, TAP1, and
TNF. Exclusion of HLA genes from the nine psoriasis-
associated supersets did not appear to have major influ-
ence on the KDs identified (Additional file 1: Table S9).
This network analysis revealed tight connections be-
tween the psoriasis-associated processes and the key
regulators orchestrating the interactions.
The networks identified here also capture the relation-

ships between drug targets for psoriasis. In the skin and
blood psoriasis subnetworks, both existing (e.g., CCL2,
IL8, CD2, LCK, SELL, PRKCQ, and STAT1) and potential
drug targets (e.g., IL4R, IL1B, CCL20, CCL4, CCR7,
CXCL10, CXCL9, CXCR4, IL7R, LYN, and TNFRSF21)
[36, 41] were found to be closely connected via several
KDs (TNFAIP3, STAT1, NFKB2, MCL1, LCK, IL15,
IKZF1, and ICAM1) and are involved in immune system
and cell migration. Besides, genes in the IL23/IL17 im-
mune positive control pathway are over-represented in

Table 1 Top shared pathways associated with psoriasis identified in GWAS and EWAS at FDR < 5%, and their corresponding network
key drivers (KDs) in skin and blood networks (Continued)

Supersets Module
Size

Resources Pathways KDs in skin KDs in blood

NFKBIA, TNFAIP3 LAPTM5, CXCL2

Natural killer cell-mediated
cytotoxicity

132 KEGG Natural killer cell mediated
cytotoxicity

GRB2, LCK, FYN, RAC2,
ABL1

LCK, SLA, PTPN6, GZMA,
PRF1

NO2IL12 pathway 17 Biocarta NO2IL12 pathway LCK CD3E, GZMK, GZMA, LCK,
ZAP70

PPARA pathway 58 Biocarta PPARA pathway AR, FOS, IER2, TRIB1,
PPP1R15A

TRIB1, NFKBIA, ZFP36, BCL6,
BTG2

Primary immunodeficiency 35 KEGG Primary immunodeficiency LCK, IL32 CD247, CD8A, LCK, CD3E,
MS4A1

SODD pathway 10 Biocarta SODD pathway TNFSF10, CASP8, BIRC2,
LYN

TRAF1, IL4R, LTB, CEBPD,
FAS

Note: The detailed MSEA results in GWAS and EWAS are in Additional file 1: Tables S5 and S6. The detailed results and full list of key driver genes identified in skin
and blood networks are in Additional file 1: Table S9
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Fig. 3 Tissue-specific gene regulatory network of the top KDs in psoriasis. Panel (a) and (b) show the first level skin (a) and blood (b) subnetworks for
top KDs derived from wKDA. The genes are colored according to the common processes associated with psoriasis in both GWAS and EWAS. The
bigger nodes are the top KDs. Nodes with red outlines are known genes in the IL23/IL17 immune positive control pathway
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the networks (Fisher’s Exact Test P values < 1.0e-5 and
fold changes > 5.0 for both skin and blood networks;
Fig. 3).
We also applied KDA to the supersets unique to

GWAS or EWAS and identified top KDs for these gene
sets (Additional file 1: Table S8). In the skin subnetworks
(Fig. 4a), the top KDs (e.g., BPTF, RASA2, MFF, and
ALG8) tend to be surrounded by partner genes with
moderate to strong GWAS signals (p values from <
1.0e-3 to < 5.0e-8). The top KD subnetworks for the
EWAS-unique supersets in the skin tissue are enriched
with strong EWAS signals (e.g., SPARC and COL4A2 for
extracellular matrix and GHR and G0S2 for PPAR sig-
naling; Fig. 4b).

In silico validation of the KDs and their corresponding
subnetworks
To cross-validate the significance of the KDs in psoria-
sis, we carried out a comprehensive in silico analysis of
1) the 36 KDs shared between psoriasis supersets and
tissue networks for the common supersets between
GWAS and EWAS, 2) 19 KDs for GWAS-unique

supersets, and 3) 7 KDs for EWAS-unique supersets
(see Methods for details). Briefly, we queried the KDs
for evidence of psoriasis association based on the fol-
lowing criteria: gene knockout and mouse mutation
models, psoriasis gene signatures [36], GWAS (p <
5.0E-8) or EWAS signals (p < 1.0E-5). Our search re-
vealed that the 47 and 83% of the KDs for the common
supersets are associated with psoriasis or relevant con-
ditions in > = 2 or at least one of the above criteria, re-
spectively; five KDs (RAB25, TMEM40, COL4A2, GHR,
and PRKCZ) for the GWAS- or EWAS-unique super-
sets were associated with psoriasis or relevant condi-
tions in at least one of the criteria (Additional file 1:
Table S10).
We hypothesize that if the KD subnetworks are im-

portant for psoriasis, the expression levels of the genes
in the KD subnetworks are more likely to be perturbed
in psoriatic patients. To this end, we analyzed the ex-
pression profile alterations of the KD subnetworks be-
tween lesional psoriatic and normal skins using RNA-
seq transcriptomes of 92 psoriatic and 82 normal skin
samples (see Methods for details), which are completely

Fig. 4 GWAS- and EWAS-unique KD subnetworks in psoriasis. Panel (a) and (b) show the GWAS- and EWAS-unique subnetworks for top KDs
derived from wKDA. The genes are colored according to the unique processes associated with psoriasis in GWAS (a) or EWAS (b). The bigger
nodes are the top KDs. Genes with moderate (1.0e-3 < p < 5.0e-8) to strong (p < 5.0e-8) GWAS/EWAS signals are indicated by the bold outline
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independent of the other datasets used in the previous
analyses. Among the 62 KD subnetworks (36 KDs from
the shared supersets and 26 KDs from the GWAS/
EWAS-unique supersets),10 subnetworks showed sig-
nificant up-regulation patterns in psoriasis vs control
at FDR < 5%), including HLA-G, STAT1, TNFAIP3,
BIRC3, TNFSF10, HLA-E, HLA-A, IL1B, LCK, and IL15
(Additional file 1: Table S11). Encouragingly, all of these
10 KDs were among those associated with psoriasis in the
above bioinformatic validation analysis (Additional file 1:
Table S10). Taken together, many of the predicted KDs
exhibit evidence for involvement in psoriasis in inde-
pendent studies.

Discussion
High-throughput genomic studies have revealed a pleth-
ora of genomic and epigenomic changes contributing to
psoriasis via GWAS, EWAS, and transcriptome profiling
studies. However, an integrative systems analysis fully
utilizing the complementarity of diverse omics data has
not been conducted to capture a comprehensive view of
disease regulation. To address this challenge, we inte-
grated psoriasis GWAS, EWAS, functional genomics in-
formation (eQTLs and ENCODE), knowledge-driven
pathways, transcriptome, and data-driven networks to un-
cover biological processes and key regulators mediating
the actions of psoriasis genetic and epigenetic signals. This
systematic multi-omics integration unraveled both shared
and unique biological processes and gene networks associ-
ated with psoriasis between GWAS and EWAS, uncov-
ered interactions between psoriasis genes and processes,
and prioritized potential central regulators of disease
pathogenesis. The comprehensive insights obtained would
not have been possible without a thorough utilization and
integration of the diverse existing datasets.
Many of the identified pathways replicated previous

findings. For example, the IL17 pathway, one of the
most well-known immune processes underlying psoria-
sis pathogenesis, exhibited strong enrichment for psor-
iasis associated genetic and epigenetic variants. Other
pathways replicated based on genetic evidence include
“NO2-dependent IL12 pathway”, “Th1/Th2 pathway”,
and “Natural killer T cell” [6, 42]. In addition, “Cytokine
and Chemokine signaling” and “JAK/STAT signaling”
were replicated using psoriasis epigenetic signals [43,
44]. The retrieval of the known biology supports the
validity of our analytical framework.
As our multi-omics integration leveraged the full

spectrum of disease association (from strong to moder-
ate and subtle signals) as well as functional information
such as eQTLs, ENCODE, pathways, and gene net-
works, we observed numerous novel processes for psoria-
sis, such as the BCAA, ER phagosome, and proteosome
pathways in GWAS and the platelet and coagulation, lipid

metabolism, insulin signaling, adipokine signaling, collagen
formation, and cell-cell communication pathways in EWAS
(Fig. 2). The identification of multiple metabolism related
pathways such as BCAA, lipid, and insulin signaling sup-
ports the observed correlation between psoriasis and meta-
bolic disorders. The incorporation of genetic and epigenetic
association information in our analysis, which informs on
upstream gene regulatory events, suggests that these path-
ways are not merely correlated with psoriasis but likely play
causal roles in disease development. For example, decreased
levels of valine-leucine/isoleucine ratios were previously
found in psoriatic lesions compared to non-lesional psori-
atic skin [45]. In our study, the enrichment for psoriasis
genetic signals in this pathway suggests its potential causal
role. BCAAs are important amino acid nutrient signals that
have direct and indirect effects in the regulation of meta-
bolic processes such as glucose homeostasis, lipid metabol-
ism, body weight, and insulin signaling, which can
subsequently influence systemic inflammation [46]. In
addition, immune cells oxidize BCAA as fuel sources and
incorporate BCAA as the precursors for the synthesis of
new immune cells, effector molecules, and protective mol-
ecules [47]. Lack of BCAAs in diet (or abnormally de-
creased BCAA catabolism) impairs many aspects of
immune function and increases susceptibility to pathogens
mainly through changes in the NF-κB and mTOR signal-
ing pathways, subsequently increasing pro-inflammatory
cytokines and decreasing anti-inflammatory cytokines
(e.g., IL-10 and TGF-β1) [47]. The epigenetic connection
between platelet adhesion and psoriasis is also interesting.
The platelets have been shown to stimulate angiogenic
vessel growth [48], which is an early pathogenic event in
psoriasis [49]. A recent study showed that platelet
P-selectin, functioning as a cell adhesion molecule on
the surfaces of activated endothelial cells, might be
used as an efficacy biomarker to monitor treatment
success in psoriasis [50].
By investigating both GWAS and EWAS in the same

study, we found converging pathways both genetically
and epigenetically associated with psoriasis, making
these a robust and prioritized set of pathways for future
mechanistic and therapeutic investigations. These com-
mon pathways in GWAS and EWAS can be partitioned
into 22 categories, including many previously impli-
cated processes such as “Cytokine signaling”, “JAK/
STAT signaling”, and “PPARA pathway”, and novel
pathways such as “ABC transporters” and “Endocyto-
sis”. Most identified drug transporters belong to the ATP-
binding cassette family expressed in the skin and might be
associated with drug-induced psoriasis [51, 52].
Beside retrieving the overlapping molecular processes

informed by both GWAS and EWAS in conjunction
with other functional evidence, our network modeling
demonstrated that the psoriasis-associated pathways
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interconnect via network hub genes (Fig. 3), including
both well-studied psoriasis genes involved in the immune
system (HLA-A, ICAM1, IL15, STAT1, and TNFAIP3) and
novel genes which may regulate immune processes and
cell cycle (CTSH, GRB2, and IFITM2). Among the KDs
that are known psoriasis genes, STAT1 from IL23/IL17
pathway and cytokine-cytokine receptor interaction ap-
pears to be a KD in both the blood and skin networks.
Among the novel KDs, the protein encoded by CTSH is a
lysosomal cysteine proteinase important in the overall
degradation of lysosomal proteins. Other cathepsin family
members, such as CTSS [53], CTSK [54], and CTSD [55],
have been implicated in the pathology of psoriasis.
CTSH was surrounded by CTSS, CTSD and other crit-
ical factors involved in complement and adhesion (e.g., C3
and ICAM1) in the psoriasis network (Fig. 3), suggesting
that it might trigger inflammatory responses by regulating
the neighbors in the network. The growth factor receptor
bound protein 2, encoded by GRB2, plays a key role in the
control of thymic positive and negative selection and en-
hances TCR signaling [56]. GRB2 was suggested to induce
ERBB2 signaling and trigger increased cell proliferation,
survival, motility, and invasiveness [57]. IFITM2 (inter-
feron induced transmembrane protein 2) encodes an
interferon-induced transmembrane protein that contrib-
utes to the control of cell growth through a multimeric
complex involved in the transduction of anti-proliferative
and homotypic adhesion signals. It is induced by IFN-γ in
primary keratinocytes and plays a role in keratinocyte
apoptosis in atopic dermatitis patients [58]. These poten-
tial key regulators orchestrate many known disease
genes and pathways in psoriasis gene networks, and
warrant further experimental investigation.
Compared to previous genomics studies of psoriasis,

our study is the most comprehensive in terms of the diver-
sity of data types included (GWAS, EWAS, transcriptome,
eQTLs, ENCODE), the number of data sets, and the var-
iety of analytical strategies. Importantly, our study utilizes
the full spectrum of genetic and epigenetic association
signals instead of only the top genome-wide significant
hits, which offers unique power to capture the missing
heritability and mechanisms. We also incorporated
function-guided mapping of genetic signals to target genes
using eQTLs and ENCODE data and included
tissue-specific gene expression patterns. As such, in this
single study we were able to uncover numerous known
pathways and processes revealed through decades of psor-
iasis research, in addition to a number of novel processes.
Additionally, our study is the first to compare GWAS and
EWAS to map the convergence and divergence in the
genetically and epigenetically perturbed disease processes.
Moreover, our network modeling enables a bird’s eye view
of the pathogenic networks and offers a prioritized list of
novel regulators as potential therapeutic targets.

We acknowledge the following limitations in our
study. First, we could only access one full GWAS dataset
out of more than 10 published GWAS studies, highlight-
ing the challenges in data access [59]. Encouragingly,
some of our new predictions based on the only access-
ible GWAS dataset were confirmed using the top sus-
ceptibility loci/genes identified in the latest GWAS
study, indicating that our analytical approach leveraging
the full summary statistics and multiple layers of gen-
omic information can capture and convey the essential
features of psoriasis. Second, the EWAS studies included
are of small sample size. Although we employed a meta-
analysis to enhance statistical power and focused on the
converging signals between GWAS and EWAS, it is im-
portant to validate our findings in larger EWAS when
available. Third, the gene regulatory networks used in
our analysis do not include other regulatory molecules
such as noncoding RNAs and may miss essential key
regulators that are not protein-coding [30]. Fourth, our
analysis does not consider directionality of the GWAS/
EWAS association, as it is not straightforward to unequivo-
cally interpret the impact of the direction of individual vari-
ant associations on the entire pathway or network. Lastly,
our variant to gene mapping mainly considers gene expres-
sion regulation, as majority of the disease genetic loci affect
gene expression [60], but may miss the mapping of protein
sequence variants. Along the same line, the variants used in
the analysis are not necessarily the causal variants but can
be tag variants in the same LD block, which may lead to
mis-annotation of genes. However, we expect similar asso-
ciation patterns for the causal and tag variants in majority
of the cases.

Conclusions
Our comprehensive integrative genomic approach helps
unveil the molecular mechanisms underlying pathogen-
esis of psoriasis from genetic and epigenetic aspects. In
addition, we identified potential central regulators of
psoriasis gene networks, which opens opportunities for
future experimental testing and may aid the clinical
diagnosis and treatment of psoriasis.
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