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Summary. Testing homogeneity of species assemblages has important applications in ecology. Due to the unique structure
of abundance data often collected in ecological studies, most classical statistical tests cannot be applied directly. In this
article, we propose two novel nonparametric tests for comparing species assemblages based on the concept of data depth.
They can be considered as a natural generalization of the Kolmogorov–Smirnov and the Cramér-von Mises tests (KS and
CM) in this species assemblage comparison context. Our simulation studies show that the proposed test is more powerful than
other existing methods under various settings. A real example is used to demonstrate how the proposed method is applied
to compare species assemblages using plant community data from a highly diverse tropical forest at Barro Colorado Island,
Panama.
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1. Introduction
Testing homogeneity across different species assemblages is
important in ecology because it provides crucial informa-
tion about the spatial and temporal stability of ecosystems.
One typical type of data collected in ecological studies is
abundance data, which consists of counts of abundances of
individual species in each sampling unit. For example, as
part of the Barro Colorado Island forest dynamics research
project, a study was carried out to investigate spatial differ-
ences between two highly diverse tropical forest census plots
from Barro Colorado Island, Panama. Each of the two plots,
which were 1 hectare in size, was divided into twenty-five
20 m × 20 m quadrats. Counts of each individual species
were then recorded in all of the 25 quadrats. Based on those
species abundance data, one fundamental ecological question
is whether the two species assemblages differ significantly. In
this study, a total of 159 tree species was observed in the two
plots. Therefore, if we treat the vector of the counts of all
159 tree species in each of the quadrats as an observation in
the sample, the data we have consists of two 159-dimensional
samples with both sample sizes being 25. Our task is essen-
tially to compare the distributions of the species abundance
data from the two plots based on these two samples.

Typically for abundance data, dimensionality, which is
equal to the number of species, is often high (in our case it is
159), and zeros are common due to the rarity of some species,
making it difficult to find a satisfactory parametric model for
such data. Thus, a nonparametric testing procedure is more
desirable when comparing species assemblages given abun-
dance data. Furthermore, for abundance data, measures such
as Bray–Curtis distance (Bray and Curtis, 1957) are usually
preferred to Euclidean distance for describing the dissimilar-

ity between observations (Faith, Minchin, and Belbin, 1987;
Clarke, 1993). Therefore, a nonparametric testing procedure
that can incorporate such measures would be the most ap-
propriate to carry out the comparison between species assem-
blages.

In the literature there have been some approaches which
can incorporate distance measures into the comparison proce-
dure for multivariate outcomes (e.g., Gower and Krzanowski,
1999; McArdle and Anderson, 2001; Reiss et al., 2010). Most
of them are based on so-called “analysis of distance,” which
partitions the variation inherent in distance matrices, analo-
gous to the well-known multivariate analysis of variance. Simi-
lar to multivariate analysis of variance, those approaches were
motivated by testing equal means among distributions, and
therefore are only sensitive to the location differences among
distributions. In practice, the distributions of abundance data
from different species assemblages may differ in other charac-
teristics. In this article, we propose two novel nonparametric
tests, both of which have the flexibility to incorporate any de-
sired distance measure and are also capable of detecting any
distributional differences between species assemblages. More
specifically, the two tests are derived based on the concept
of data depth. Because the data depth we use is based on
any distance measure between observations, it can be directly
applied to abundance data and at the same time is capable
of incorporating any desired distance measure for abundance
data. Based on this distance-based depth, we also employ the
so-called two-dimensional DD-plot (Liu, Parelius, and Singh,
1999) to visualize the difference between species assemblages.
This graphical tool serves as further motivation for our two
proposed tests for species assemblage comparisons. The two
tests can be considered as the analogues of the classical KS
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and CM tests in a species assemblage comparison context. The
analogue of the CM test is shown to have more power than
other existing nonparametric tests for a variety of alternative
hypotheses.

The rest of this article is organized as follows. In Section 2,
we briefly review the general concept of data depth, and then
introduce the special notion of data depth that we use in this
article, distance-based depth. In Section 3, we demonstrate
the use of DD-plot for graphical comparison of two species
assemblages. In Section 4, we describe the two proposed non-
parametric testing procedures. Simulation studies are carried
out to evaluate the performance of the proposed tests in Sec-
tion 5. In Section 6, we demonstrate the application of the
proposed procedures by revisiting the species abundance data
from the two tropical forest census plots in Barro Colorado
Island, Panama. Finally, we provide concluding remarks in
Section 7.

2. A Distance-Based Data Depth
A data depth is a measure of how central or how outlying
a given point is with respect to a multivariate data cloud
or its underlying distribution. The word depth was first used
by Tukey (1975) for picturing data. Since then, many differ-
ent notions of data depth have been proposed for capturing
different probabilistic features of multivariate data. Among
the most popular choices of data depths are Mahalanobis
depth (Mahalanobis, 1936; Hu et al., 2009), half-space depth
(Hodges, 1955; Tukey, 1975), simplicial depth (Liu, 1990),
projection depth (Stahel, 1981; Donoho, 1982; Donoho and
Gasko, 1992; Zuo, 2003), etc. More discussion on different no-
tions of data depth can be found in Liu et al. (1999), Zuo and
Serfling (2000), and Mizera (2002).

In the last two decades, data depth has provided many
new and powerful nonparametric tools for multivariate data
(see, e.g., Liu et al., 1999; Li and Liu, 2004, 2008). However,
due to the discrete nature of the abundance data and the spe-
cial distance measure required between the observations, most
existing depths in the literature cannot be directly applied
to abundance data. This motivates us to explore a distance-
based depth, the idea of which was briefly mentioned in Bar-
toszynski, Pearl, and Lawrence (1997). The definition of the
distance-based depth is given below.

Definition (Distance-based depth). Let X =
{X1, . . . , Xn } be a random sample from F , where F is
a distribution of any type. The distance-based depth at x w.r.t.
F is defined as

DF (x) = Pr {d(X1, X2) > max [d(X1, x), d(X2, x)]}
+

1
2
Pr {d(X1, X2) = d(X1, x) > d(X2, x)}

+
1
2
Pr {d(X1, X2) = d(X2, x) > d(X1, x)}

+
1
3
Pr {d(X1, X2) = d(X1, x) = d(X2, x)} ,

and the sample version is

Figure 1. B(Xi , Xj ) in two-dimensional case.

DFn (x) =
1(
n
2

)
(∑

i< j

I {d(Xi , Xj ) > max [d(Xi , x), d(Xj , x)]}

+
1
2

∑
i< j

I {d(Xi , Xj ) = d(Xi , x) > d(Xj , x)}

+
1
2

∑
i< j

I {d(Xi , Xj ) = d(Xj , x) > d(Xi , x)}

+
1
3

∑
i< j

I {d(Xi , Xj ) = d(Xi , x) = d(Xj , x)}
)

,

where d(x, y) is any suitably chosen distance measure between
x and y, and I{A} is the indicator function which takes 1 if A
is true and 0 otherwise.

In the above definition, Pr{d(X1, X2) > max[d(X1, x),
d(X2, x)]}(≡ p1) represents the probability that the side join-
ing X1 and X2 is the longest in a triangle with vertices X1,
X2, and x. Similarly, we can define

p2 = Pr {d(X1, X2) < min [d(X1, x), d(X2, x)]}
and

p3 = Pr {min [d(X1, x), d(X2, x)] < d(X1, X2)

< max [d(X1, x), d(X2, x)]} ,

which represent the probabilities that the side joining X1 and
X2 is the shortest or middle in the triangle with vertices X1,
X2, and x. If we consider the case in �2 and Euclidean dis-
tance as the distance measure, given X1 and X2, we can form
two circles, each having one of the points as the center and
the other on the circle, as shown in Figure 1. The radiuses
of both circles are equal to the Euclidean distance between
X1 and X2, d(X1, X2). We denote region k (k = 1, 2, 3) in
Figure 1 by Bk (X1, X2). Then the probability pk (k = 1, 2, 3)
is equivalent to the probability of x falling into Bk (X1, X2).
Similarly,

Pr{d(X1, X2) = d(X1, x) > d(X2, x)} + Pr{d(X1, X2)

= d(X2, x) > d(X1, x)}
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Figure 2. A bivariate Poisson-lognormal sample with the 20% deepest points.

calculates the probability of x falling on the boundary be-
tween B1(X1, X2) and B3(X1, X2), and

Pr {d(X1, X2) = d(X1, x) = d(X2, x)}

calculates the probability of x falling on the boundary be-
tween B1(X1, X2), B2(X1, X2), and B3(X1, X2). Splitting
these probabilities evenly among their adjacent regions has
led to the fractions 1/2 and 1/3 in the definition of the above
distance-based depth. As a result, the distance-based depth
DF (x) can be considered as the probability of x falling into
B1(X1, X2) and its boundary.

Given a sample X = {X1, . . . , Xn } in �2, the sample
distance-based depth, DFn (x), has a similar interpretation
and it calculates the proportion of B1(Xi , Xj ) (i, j = 1, . . . ,
n, i �= j) and its boundary containing x. For any point x
in �2, if x is near the center of the data cloud, x should be
contained in many of B1(Xi , Xj ) and its boundary generated
from the sample. On the other hand, if x is relatively near
the outskirts, we would expect that x is contained by only
a few of B1(Xi , Xj ) and its boundary. In higher dimensions
or with other distance measures being used, the value of the
above depth has similar interpretations. Therefore, the above
notion of depth provides a reasonable measure of “depth” of
x w.r.t. the data cloud {X1, . . . , Xn}.

Because any distance measure can be used in the above
definition of distance-based depth, it can be directly applied
to our species abundance data using any desired distance
measures between observations. Based on this distance-based
depth, for any given abundance data sample {X1, . . . , Xn},
we can calculate the depth values DFn (Xi ), and then order
the Xi ’s according to their descending depth values. This
gives rise to a natural center-outward ordering of the sample

points. As an example and for demonstration purposes, we
assume that there are only two species in the species assem-
blage. The counts of the two species from 100 sampling units
are generated from a bivariate Poisson-lognormal distribution
(Aitchison and Ho, 1989), where the sample is drawn from
a bivariate Poisson with mean (λ1, λ2) being random draws
from bivariate lognormal distribution. To facilitate the expo-
sition, we denote the general multivariate Poisson-lognormal
distribution as PL(μ, Σ), where μ and Σ are the parame-
ters of the multivariate lognormal distribution. In ecology, for
this type of data, Euclidean distance is generally not con-
sidered appropriate. Instead, measures such as Bray–Curtis
distance (Bray and Curtis, 1957) are preferred. The Bray–
Curtis distance for sample points Xl = (X l1, X l2, . . . , Xlp)′

and Xl ′ = (Xl ′1, Xl ′2, . . . , Xl ′p )′ is defined as,

dll ′ =

p∑
k=1

|Xlk − Xl ′k |
p∑

k=1

(Xlk + Xl ′k )

,

and dll ′ = 0 if both Xl and Xl ′ equal 0p , where 0p is the vector
of p zeros. Figure 2 shows the simulated data ordering based
on the distance-based depth when Bray–Curtis distance is
used. In the plot, “+” marks the deepest 20% of the observa-
tions.

3. DD-plot: A Graphical Comparison
of Species Assemblages

In this section, we demonstrate how the so-called DD-plot
(depth versus depth plot) can be used to provide a graphical
tool for comparisons of species assemblages. The DD-plot was
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Figure 3. DD-plots: (a) F = G = PL(110, I10); (b) F = PL(110, I10) and G = PL(2110, I10); (c) F = PL(110, I10) and G =
PL(110, 2I10); and (d) F = PL(110, I10) and G = PL(110, 0.81101′

10 + 0.2I10). In all the plots, the circles represent the observa-
tions from F and the pluses represent the observations from G.

first introduced by Liu et al. (1999) for graphical comparisons
of two continuous multivariate distributions. Based on our
newly adopted distance-based depth in Section 2, the DD-plot
can now be directly applied to our species abundance data.
Let {X1, . . . , Xm}( ≡ X) and {Y 1, . . . , Yn}( ≡ Y) be the
abundance data from two species assemblages, respectively.
The DD-plot is constructed by

DD(Fm , Gn ) = {(DFm (z), DG n (z)), z ∈ X ∪ Y} , (1)

where DFm (z) and DG n (z) are the sample distance-based
depths w.r.t. samples X and Y, respectively.

From the construction of the above DD-plot, we can see
that if the distributions of the abundance data from the two
species assemblages are the same, all the data points in the
DD-plot should be concentrated along the 1:1 correspondence
line as shown in Figure 3a. Here the abundance data X and
Y from the two species assemblages are generated from the
same distribution PL(110, I10), where 1d is a vector of d ones,
and Id is the d-dimensional identity matrix. If the two species
assemblages are different, the DD-plot would exhibit a notice-
able departure from the 1:1 correspondence line as shown in
Figure 3b–d. Here the abundance data X and Y from the two
species assemblages are generated from two different distri-
butions. More specifically, X is generated from PL(110, I10)

in all the plots, whereas Y is generated from PL(2110, I10),
PL(110, 2I10), and PL(110, 0.81101′

10 + 0.2I10), respectively. To
make the difference between the two samples more visible, un-
like the DD-plot originally used in Liu et al. (1999), where the
observations from different samples were not distinguished, we
use different symbols to indicate different memberships of the
observations in the DD-plot. For example, in all the plots in
Figure 3, the circles represent the observations from X, and
the pluses represent the observations from Y. In all the plots,
Bray–Curtis distance is used in calculating the distance-based
depths, and m and n are set as 100.

In general, if the distributions of abundance data from the
two species assemblages mainly differ in location, the DD-plot
would have a leaf-shaped figure as the one in Figure 3b, be-
cause the deepest point with respect to one sample will not
be the deepest point with respect to the other sample and
therefore will have relatively smaller depth value with respect
to that sample. If the two distributions mainly have different
scales, for example, G is more spread out than F , then the
depth of any point with respect to G would be no less than its
depth with respect to F . In such a case, the DD-plot would
have an early-half-moon-shaped figure arching above the
diagonal line as the one in Figure 3c. How other distribu-
tional differences are associated with particular patterns of



Nonparametric Tests for Homogeneity of Species Assemblages 1485

deviation from the 1:1 correspondence line in the DD-plot
can be interpreted in a similar way.

As we can see from the above plots, the DD-plot based on
the distance-based depth provides a simple diagnostic tool for
visual comparison of two species assemblages.

4. Tests of Homogeneity of Species Assemblages
We again denote the abundance data from two species assem-
blages by {X1, . . . , Xm} and {Y 1, . . . , Yn}. We assume that
they are random samples from the underlying distributions F
and G, respectively. The comparison of the two species assem-
blages can be formulated as the following hypothesis testing
problem,

H0 : F = G v.s. H1 : F �= G (2)

As noted in the previous section, when the two species as-
semblages are identical, i.e., F = G, we would expect all the
points in the DD-plot clustered along the 1:1 correspondence
line. In other words, DFm (z) and DG n (z) should be approx-
imately the same for all the observations from the pooled
sample X ∪ Y. If there is a difference between the two species
assemblages, DFm (z) and DG n (z) would be different from each
other. Therefore, the difference between DFm (z) and DG n (z)
from all of the observations can be used as an indicator of
heterogeneity of the two species assemblages. Motivated by
this observation, we propose the following two test statistics
for hypothesis testing problem (2), which can be considered
as a natural generalization of KS and CM tests in this species
assemblage comparison context:

• KS type test statistic:

TK S = sup
z∈X∪Y

|DFm (z) − DG n (z)| (3)

• CM type test statistic:

TC M =
∑

z∈X∪Y

[DFm (z) − DG n (z)]2 (4)

Define

pK S = PH 0 (TK S � T obs
K S ), and pC M = PH 0 (TC M � T obs

C M ),

where T obs
K S and T obs

C M are the observed values of TKS and TCM ,
respectively, based on the given sample X ∪ Y. Then pKS and
pCM are the p-values of the proposed two tests. To determine
their values directly from the null distributions of TKS and TCM

is not trivial. Instead, we proceed and use the permutation
method to approximate pKS and pCM . More specifically, we
randomly permute the pooled sample X ∪ Y B times. Here B
is sufficiently large. For each permutation, we treat the first m
elements as the X-sample and the remaining elements as the
Y -sample. We denote the outcome of the ith permutation by
X∗

i = {X∗
i1, . . . , X∗

in }, and Y∗
i = {Y ∗

i1, . . . , Y ∗
in }, for i = 1, . . . ,

B. For each X∗
i ∪ Y∗

i , we evaluate the corresponding TKS and
TCM values (following (3) and (4)), denoted, respectively, by
T ∗

i ,K S and T ∗
i ,C M , i = 1, . . . , B. Then pKS and pCM can be

approximated, respectively, by

p̂K S =

1 +
B∑

i=1

I
{
T ∗

i ,K S � T obs
K S

}
B + 1

,

and

p̂C M =

1 +
B∑

i=1

I
{
T ∗

i ,C M � T obs
C M

}
B + 1

,

(see, e.g., Fay, Kim, and Hachey, 2007). In the following, we re-
fer to our permutation tests based on TKS and TCM as a depth-
based KS test and a depth-based CM test, respectively.

5. Simulation Study
In this section, we conduct several simulation studies to eval-
uate the performance of our proposed two tests. In particular,
we compare our tests with two tests available in the literature,
which can also be applied to the species assemblage compar-
ison context.

The first one is the test proposed by Nettleton and Baner-
jee (2001) (NB hereafter), which applied the testing proce-
dure of Friedman and Rafsky (1979) to compare distribu-
tions of random vectors with categorical components. Let
Z = {Z1, . . . , Zm +n } denote the pooled sample X ∪ Y. The
NB test statistic is defined as

TN B =
m +n∑
i=1

I{the nearest neighbor of Zi

belongs to different sample},
where the nearest neighbor of Zi is the one which minimizes
δ(Zi , Zk ), k = 1, . . . , i − 1, i + 1, . . . , m + n, and δ(· , ·) is
any distance measure which is appropriate for the application.
The test rejects H0: F = G if TNB is too small.

The second test we will consider was proposed by Hall and
Tajvidi (2002) (HT hereafter). Again we consider the pooled
sample Z. We define Mi (j) as the number of observations
being from sample Y in the neighborhood of Xi , where the
neighborhood is bounded by a circle with center at Xi and
radius as the distance between Xi and its jth nearest neigh-
bor. Similarly, we define Ni (j) as the number of observations
being from sample X in the neighborhood of Yi , where the
neighborhood is bounded by a circle with center at Yi and ra-
dius as the distance between Yi and its jth nearest neighbor.
Under H0, it can be shown that

E0(Mi (j)) =
nj

m + n − 1
and E0(Ni (j)) =

mj

m + n − 1
.

Define the deviations of M and N from their expected values
under H0 as

DMi (j) =
∣∣∣Mi (j) − nj

m + n − 1

∣∣∣
and DNi (j) =

∣∣∣Ni (j) − mj

m + n − 1

∣∣∣ .

The HT test statistic is then defined as

TH T =
1
m

m∑
i=1

n∑
j=1

DMi (j)γ w1(j) +
1
n

n∑
i=1

m∑
j=1

DNi (j)γ w2(j),

where w1(j) and w2(j) denote nonnegative weights and γ is
some positive value. Like the NB test, the HT test can be
based on any distance measure. The test rejects H0: F = G
if THT is too large. Based on the simulation studies reported
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Table 1
Simulated power for different tests using the samples from
F = PL(μF , ΣF ) and G = PL(μG , ΣG ) where μF = 110,

μG = μμF , and ΣF = ΣG = 0.51101′
10 + 0.5I10

TNB THT TKS TCM

μ = 1 0.037 0.057 0.045 0.039
μ = 1.1 0.035 0.053 0.073 0.069
μ = 1.2 0.048 0.117 0.111 0.117
μ = 1.3 0.064 0.176 0.224 0.245
μ = 1.4 0.102 0.319 0.380 0.422
μ = 1.5 0.128 0.454 0.537 0.592
μ = 1.6 0.176 0.613 0.696 0.769
μ = 1.7 0.243 0.713 0.820 0.860
μ = 1.8 0.346 0.838 0.919 0.946
μ = 1.9 0.435 0.929 0.973 0.985
μ = 2 0.549 0.960 0.987 0.995

Table 2
Simulated power for different tests using the samples from

F = PL(μF , ΣF ) and G = PL(μG , ΣG ) where
μF = μG = 110, ΣF = 0.51101′

10 + 0.5I10, and ΣG = σΣF

TNB THT TKS TCM

σ = 1.1 0.038 0.060 0.051 0.050
σ = 1.2 0.060 0.079 0.068 0.078
σ = 1.3 0.046 0.137 0.129 0.148
σ = 1.4 0.063 0.196 0.163 0.198
σ = 1.5 0.072 0.271 0.220 0.303
σ = 1.6 0.087 0.375 0.310 0.404
σ = 1.7 0.079 0.444 0.371 0.487
σ = 1.8 0.105 0.544 0.427 0.569
σ = 1.9 0.114 0.633 0.527 0.687
σ = 2 0.131 0.719 0.632 0.748

in HT, several different choices of weight functions and γ val-
ues do not have significant effects on the power of the test.
Therefore, in our simulation study, we set γ = 1 and w1(j) =
w2(j) = 1.

To compare our proposed tests with the NB and HT tests in
various settings, we first generated m = n = 30 random obser-
vations from F = PL(μF , ΣF ) and G = PL(μG , ΣG ), where
μF = 110, ΣF = 0.51101′

10 + 0.5I10, μG = μμF and ΣG = σΣF

with μ and σ being manipulated according to different set-
tings. All of the tests were then carried out through permu-
tation. The number of permutations was set to be 999. The
significance level was set at 0.05. Again, we chose Bray–Curtis
distance as the distance measure in all of the tests. Table 1
shows the simulated power for the four tests under different
choices of μ with σ being fixed at 1, i.e., ΣF = ΣG . Table 2
shows the simulated power for different choices of σ with μ be-
ing fixed at 1, i.e., μF = μG . The results were based on 1000
simulations. As we can see from the tables, our depth-based
CM test outperforms the other three tests in both settings.
When ΣF = ΣG , our depth-based KS test is ranked as the sec-
ond, outperforming both NB and HT tests. When μF = μG ,
the KS test is slightly worse than the HT test. In both set-
tings, the NB test has the lowest power.

Our second simulation study is to investigate the powers
of the four tests for comparing samples from different dis-

Table 3
Simulated powers for comparing samples from different

distribution families

TNB THT TKS TCM

G = PG(0.582110, 7.701110) 0.097 0.611 0.475 0.748
G = PW (0.772110, 3.851110) 0.062 0.476 0.345 0.561

tribution families. Recall the Poisson-Lognormal distribution
is essentially a Poisson-Lognormal mixture. Similarly, we can
also consider Poisson-gamma mixture and Poisson–Weibull
mixture. We refer to those mixtures as Poisson-gamma dis-
tribution and Poisson–Weibull distribution. For simplicity,
we choose the mixing distribution in the Poisson-gamma
(Poisson–Weibull) as a multivariate distribution with inde-
pendent gamma (Weibull) distributed marginals. Therefore,
we can denote the Poisson-gamma and Poisson–Weibull dis-
tributions by PG(a, θ) and PW (b, λ), respectively, where
(a, θ) and (b, λ) are the shape and scale parameter vec-
tors for the gamma and Weibull marginals, respectively.
In the simulation, we chose F as PL(110, I10), and G as
PG(0.582110, 7.701110) or PW (0.772110, 3.851110). The shape
and scale parameters in the Poisson-gamma and Poisson–
Weibull distribution were chosen to make them have the same
componentwise mean and variance as those in PL(110, I10).
Table 3 shows the power of the four tests when comparing
the samples from different distribution families. Again, our
depth-based CM test is the best among the four.

We also carry out some additional simulation studies to
evaluate the performance of the tests when the underlying
multivariate distributions are continuous and Euclidean dis-
tance is used in our distance-based depth. Please see Web
Tables 1–6 for results of those studies. Similar to what we
observe from Tables 1–3, the depth-based CM test performs
best among all the tests and outperforms the depth-based KS
test in most of the cases. This may be explained by the fact
that the depth-based CM test considers all of the differences
of depth from the data points, whereas the depth-based KS
test only considers the maximal difference of depth among the
data points.

6. Real Application
In this section, we revisit the species abundance data from
the two tropical forest census plots from Barro Colorado Is-
land, Panama, briefly described in the “Introduction.” The
two highly diverse plots were located within 1 km of each
other and represent 100- to 400-year-old lowland tropical for-
est. In both plots, species identity was determined and loca-
tion within the plot was recorded for all woody stems �10
mm diameter at 1.5 m height (Condit, 1998; Hubbell et al.,
1999; Hubbell, Condit, and Foster, 2005).

As mentioned in the “Introduction,” our task is to compare
the two species assemblages based on the two abundance data
samples, which are 159-dimensional and both have 25 obser-
vations each. Before we apply our tests to the data, we first
use the DD-plot described in Section 3 to visualize the dif-
ference of these two species assemblages. Figure 4 shows the
corresponding DD-plot based on the distance-based depth by
using Bray–Curtis distance. In the plot, the circles represent
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Figure 4. DD-plot for the samples from the two tropical forest census plots on Barro Colorado Island, Panama.

the observations from one census plot and the pluses repre-
sent those from the other. From the plot, it clearly suggests
that there is a location difference between the distributions of
the species abundance data in these two census plots. Both of
our depth-based KS and CM tests yield p-values 0.001, which
further confirms that the distributions of these two plots are
indeed different.

7. Concluding Remarks
In this article, we present a data depth approach to the
problem of comparing species assemblages given abundance
data. It is completely nonparametric and does not require
any knowledge of the underlying distribution. Results from
simulation studies have shown that our depth-based CM test
performs very well and has better power than other alter-
natives under different settings. Furthermore, the use of the
DD-plot that motivated our tests also provides an easy graph-
ical tool for visualizing the difference of species assemblages.

Although the proposed tests were motivated by the species
assemblages comparison problem in ecology and were demon-
strated mostly by examples of count data, they are very flex-
ible and can be easily applied to other applications with dif-
ferent data types. For example, this approach could be ap-
plied to comparing samples of functional data, or samples of
image data, because properly defined distance measures are
usually available for these types of data and distance-based
depth, which is capable of incorporating any desired distance
measure, makes our approach applicable for a wide range of
applications. It is worth pointing out that our proposed depth-
based KS and CM tests can be also paired with any other data

depths which are suitable for the particular application. For
example, to compare samples of functional data, we may base
our KS or CM tests on the depth proposed by Lopez-Pintado
and Romo (2009) for functional data.

8. Supplementary Materials
Web Tables referenced in Section 5 are available un-
der the Paper Information link at the Biometrics website
http://www.biometrics.tibs.org.

Acknowledgements

The Barro Colorado Island forest dynamics research project
was made possible by National Science Foundation grants
to Stephen P. Hubbell, support from the Center for Tropi-
cal Forest Science, the Smithsonian Tropical Research Insti-
tute, the John D. and Catherine T. MacArthur Foundation,
the Mellon Foundation, the Celera Foundation, and numer-
ous private individuals, and through the hard work of over
100 people from 10 countries over the past two decades. The
plot project is part of the Center for Tropical Forest Science,
a global network of large-scale demographic tree plots. We
thank the editor, the associate editor, and two referees for
their thoughtful comments, which have helped improve our
article. JL thanks NSF for supporting her research through
Grant DMS-0907655.

References

Aitchison, J. and Ho, C. H. (1989). The multivariate Poisson-log normal
distribution. Biometrika 76, 643–653.



1488 Biometrics, December 2011

Bartoszynski, R., Pearl, D. K., and Lawrence, J. (1997). A multidimen-
sional goodness-of-fit test based on interpoint distances. Journal
of the American Statistical Association 92, 577–586.

Bray, J. R. and Curtis, J. T. (1957). An ordination of the upland forest
communities of southern Wisconsin. Ecological Monographs 27,
325–349.

Clarke, K. R. (1993). Nonparametric multivariate analyses of changes in
community structure. Australian Journal of Ecology 18, 117–143.

Condit, R. (1998). Tropical Forest Census Plots. New York: Springer-
Verlag.

Donoho, D. L. (1982). Breakdown properties of multivariate location
estimators. Ph.D. Thesis, Harvard University.

Donoho, D. L. and Gasko, M. (1992). Breakdown properties of location
estimates based on half-space depth and projected outlyingness.
Annals of Statistics 20, 1803–1827.

Faith, D. P., Minchin, P. R., and Belbin, L. (1987). Compositional dis-
similarity as a robust measure of ecological distance. Vegetatio
69, 57–68.

Fay, M. P., Kim, H. J., and Hachey, M. (2007). On using truncated
sequential probability ratio test boundaries for Monte Carlo im-
plementation of hypothesis tests. Journal of Computational and
Graphical Statistics 16, 946–967.

Friedman, J. H. and Rafsky, L. C. (1979). Multivariate generalizations
of the Wald-Wolfowitz and Smirnov two-sample tests. Annals of
Statistics 7, 697–717.

Gower, J. C. and Krzanowski, W. J. (1999). Analysis of distance for
structured multivariate data and extensions to multivariate anal-
ysis of variance. Applied Statistics 48, 505–519.

Hall, P. and Tajvidi, N. (2002). Permutation tests for equality of dis-
tributions in high-dimensional settings. Biometrika 89, 359–374.

Hodges, J. (1955). A bivariate sign test. The Annals of Mathematical
Statistics 26, 523–527.

Hu, Y., Wang, Y., Wu, Y., Li, Q., and Hou, C. (2009). Generalized
Mahalanobis depth in the reproducing kernel Hilbert space. To
appear in Statistical Papers. DOI: 10.1007/s00362-009-0265-1.

Hubbell, S. P., Foster, R. B., O’Brien, S. T., Harms, K. E., Condit,
R., Wechsler, B., Wright, S. J., and Loo de Lao, S. (1999). Light
gap disturbances, recruitment limitation, and tree diversity in a
neotropical forest. Science 283, 554–557.

Hubbell, S. P., Condit, R., and Foster, R. B. (2005). Barro Col-
orado Forest Census Plot Data. http://ctfs.arnarb.harvard.
edu/webatlas/datasets/bci, last accessed February 2010.

Li, J. and Liu, R. Y. (2004). New nonparametric tests of multivariate
locations and scales using data depth. Statistical Science 19, 686–
696.

Li, J. and Liu, R. Y. (2008). Multivariate spacings based on data depth:
I. Construction of nonparametric multivariate tolerance regions.
Annals of Statistics 36, 1299–1323.

Liu, R. Y. (1990). On a notion of data depth based on random simplices.
Annals of Statistics 18, 405–414.

Liu, R. Y., Parelius, J. M., and Singh, K. (1999). Multivariate analy-
sis by data depth: Descriptive statistics, graphics and inference.
Annals of Statistics 27, 783–840.

Lopez-Pintado, S. and Romo, J. (2009). On the concept of depth for
functional data. Journal of the American Statistical Association
104, 718–734.

Mahalanobis, P. (1936). On the generalized distance in statistics. Pro-
ceedings of the National Academy India 12, 49–55.

McArdle, B. H. and Anderson, M. J. (2001). Fitting multivariate models
to community data: A comment on distance-based redundancy
analysis. Ecology 82, 290–297.

Mizera, I. (2002). On depth and deep points: A calculus. Annals of
Statistics 30, 1681–1736.

Nettleton, D. and Banerjee, T. (2001). Testing the equality of distribu-
tions of random vectors with categorical components. Computa-
tional Statistics and Data Analysis 37, 195–208.

Reiss, P. T., Stevens, M. H. H., Shehzad, Z., Petkova, E., and Milham,
M. P. (2010). On distance-based permutation tests for between-
group comparisons. Biometrics 66, 636–643.

Stahel, W. (1981). Robust Schaetzungen: Infinitesmale Optimalitaet
und Schaetzungen von Kovarianzmatrizen (Robust estimation:
Infinitesimal optimality and covariance matrix estimators). Ph.D.
Thesis, ETH Zurich.

Tukey, J. (1975). Mathematics and picturing data. Proceedings
of the 1975 International Congress of Mathematics 2, 523–
531.

Zuo, Y. J. (2003). Projection-based depth functions and associated me-
dians. Annals of Statistics 31, 1460–1490.

Zuo, Y. J. and Serfling, R. (2000). General notions of statistical depth
function. Annals of Statistics 28, 461–482.

Received June 2010. Revised November 2010.
Accepted December 2010.




