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Abstract

This dissertation is split into 3 parts. In the first part (Chapter 2) we look at shapes
or manifolds on which neural activity over time lies. In a neural state space, where
each axis represents a neuron, neural activity over time forms a point cloud. This point
cloud often occupies a small region in the space of all possible activity patterns thus
revealing structure in data. We consider point clouds from neural activities from common
population codes known as “tuning curve models”. In these models, the firing rate of
each neuron is a function of a latent variable which might be a stimulus variable or a
variable related to an internal state and a tuning curve parameter which labels each
neuron. We address the question: How close are point clouds formed by such models to
a linear subspace? To answer this, we define the linear dimension of the data to be the
number of dimensions which captures a very high fraction of variance, for example 95%
variance in this data. We show that the linear dimension grows exponentially with the
number of latent variables encoded by the population. Thus the manifolds formed by the
neural activities from these models are extremely non-linear. Linear dimension is not a
good measure for the intrinsic dimension of the manifold on which this point cloud lies.

In the second part (Chapter 3), we model connections between distant brain regions
by sparse random connections. We start by observing that such a network has a special
property known as the expander property. Using this property it can be shown that
information can be transmitted efficiently from a source region to a target region even
if the target region has fewer neurons than the source region. We also consider if the
compressed patterns in the target region can be re-coded or expanded to perform some
computation. We show that the compressed patterns can be re-expanded by algorithms
known as Locally Competitive Algorithms (LCA) and the re-expanded patterns can be
separated by a downstream neuron into arbitrarily defined classes. We next consider
whether long range reciprocal connections between two regions can be used to maintain
persistent activity in both the regions. Such activity is thought to be a substrate for
working memory, the ability to hold things in mind. We show that the network can indeed
maintain sparse patterns of activity through simple network dynamics. We conclude that
sparse random connections can be used to transmit information effectively and improve
the performance of certain computations compared to dense random connections.

In the last part (Chapter 4), we built a computational rate model for the pre-cortex
biological neural circuit responsible for the localisation of sound in the vertical plane.
Interaction of incoming sound waves with the outer ear filters out energy from specific
frequency bands in the spectrum of the incoming sound. The frequency bands with zero
or reduced power in them are known as notches. The position of the notches is a function
of the angle of elevation of the sound source. There is a dedicated set of neurons in the
auditory pathway which are sensitive to the position of these notches and hence thought
to be responsible for the localization of sound in the vertical plane. These neurons show
different levels of excitation or inhibition above or below their spontaneous rates for
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different combinations of frequencies and intensities of sound. We built a computational
model to probe how this complex set of responses arise from the interaction between the
various populations of neurons in the auditory pathway.
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dimensional circular variable. Each axis shows the activity of 1 neuron.
Gray: Best fitting 2D linear subspace (i.e., plane spanned by first two prin-
cipal components). Left and right show an example of narrow (σ = 0.075)
and broad (σ = 0.2) tuning respectively. For (c)–(e), results shown are for
Gaussian tuning to a circular variable, with uniformly spaced tuning curve
centers. Circles show numerical simulations and lines show theoretical pre-
dictions. (c) Fraction of variance explained by each principal component
(equivalently, eigenvalues of covariance matrix) for a population of N = 50
neurons. Different curves show different tuning curve widths. (d) Linear
dimension of neural data against tuning curve widths, showing that linear
dimension grows as 1/σ. (e) Linear dimension against number of neurons
in a population for each tuning curve width, showing initial linear growth
before saturation at the predicted values shown in (d). . . . . . . . . . . 15
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√
D/σ. (e) Semi-log plot

of linear dimension (ϵ = 0.05) vs. intrinsic dimension for Gaussian tuning
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dimension against intrinsic dimension for the data in (c). Circles show sim-
ulations and solid line shows theoretical lower bound of 2D(H−0.05), where
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3.1 Properties of expander graphs and two models of communication.
a) Two regions connected by sparse expander connections and connections
with no expansion. The sparse expander connections separate patterns in
the source area to different patterns in the target area where as the con-
nections with no expansion map separate patterns in the source region to
same pattern in the target region. b) Violin plot showing the distribution

of |N (S)|
c|S| as function of |S| where S is a subset of L1 and N (S) is the

neighbor set of S. This distribution was created for a random bipartite
graph with regular left degree c. It turns out to be an expander graph with
parameters ϵ = 0.25, α = 0.04, c = 5. The dashed line is at 0.75. Note
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Chapter 1

Introduction

Neurons encode information about the external world and internal states through patterns

of firing rate activity. These patterns of activity arise through the interaction between

the neurons at the synapses. Different patterns of activities produced by such interac-

tions in different groups of neurons are used by the brain for different computations.

Understanding how neural activity patterns, connectivity between neurons, dynamics of

the network and the computation they perform are linked is one of the central problems

of neuroscience. In this thesis, I have studied the different aspects of neural networks,

namely the patterns of activity in populations of neurons, sparse connectivity between

groups of neurons and consequences of sparse connectivity and the link between compu-

tation and connectivity in a biological neural circuit responsible for the localization of

sound in the vertical plane. This thesis is divided into three chapters which follow this,

and each of the chapters are dedicated to a particular topic.

In Chapter 2 of the thesis I have described my work on geometric structure of pop-

ulation codes. A common hypothesis about information encoding by neurons is that

populations of neuron collectively encode information about stimulus variables or inter-

nal states. Under this hypothesis, activities of individual neurons are highly correlated

and the population as a whole encodes information. Therefore one needs to study the

time varying pattern of activity of the population to understand how information is en-

coded by this population. One example of population coding is the coding of different

1



memories in the hippocampus. Each memory is thought to be represented as a unique

pattern of activity across a population of hippocampal neurons, which can be reactivated

later to retrieve the memory. One of the central questions of neuroscience is what infor-

mation is encoded in the population activity patterns of neurons in different areas in the

brain?

A geometric approach to ask questions and test hypotheses about population codes

has emerged in the recent years. In this approach, the activities of neurons over time are

viewed as trajectories in a neural state space, where each axes represents a neuron and

each point represents the activity of the neurons at a given time. Any kind of neural

recordings over time such as data from fMRI, calcium imaging or electrophysiology forms

a point cloud in this space. These points lie in an ambient space of N dimensions where

N is the number of neurons but it is often found that the point cloud can be confined

to a low dimensional manifold. This low dimensional manifold can give insights into

the information encoded by the population, and the way it is embedded depends on

the neural computation performed by this population [1]. For example, Chaudhuri et

al. [2] analyzed neural activity associated with a population of head direction cells in

the anterodorsal thalamic nucleus of mice during active foraging as well as rapid eye

movement (REM) sleep. They used a novel nonlinear decoding strategy to discover the

ring structure around which the population activity was organized and the position along

the ring parametrically encoded the animals’ head direction. However, this ring was

embedded in the ambient space in a highly nonlinear manner like a twisted elastic band.

This approach has led to insights into the neural encoding of other brain areas as well. For

example, neurons in the visual cortex respond selectively to the orientation of a rotating

grating [3], responses in the olfactory cortex reveal the latent organization of the chemical

odour space [4], and the dynamics of population activity in the motor cortex provide a

potential basis set for outgoing muscle-like commands [5]. We found the linear dimension

of manifolds formed by a common class of population codes. A modified manuscript has

been submitted to PNAS and received positive reviews. We hope that it will be published

soon.The background, methods and results of this work are described in Chapter 2 of
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this thesis.

In Chapter 3 of the thesis, I have explored the interaction and exchange of informa-

tion between distant brain regions using sparse connections. Neurons interact with each

other at synapses. As already discussed, individual neurons encode information through

patterns of electrical potential across it’s membrane and firing action potentials. The

action potential is a rapid depolarisation that travels down the axon of a neuron and

triggers the release of neurotransmitter molecules in the synapse when it reaches the

end. These neurotransmitters diffuse across the synapse and bind to receptors on the

surface of the target neuron. The binding of neurotransmitters to receptors on the target

neuron causes a change in the electrical potential across the target neuron’s membrane,

which can either excite or inhibit the firing of an action potential in the target neuron.

Moreover, many neurons have complex dendritic branches which form multiple synapses

with other neurons. These synapses allow neurons to integrate information in a highly

specific manner. The precise location of synapses on the dendrites and soma of a neuron

can influence the strength and directionality of the signal transmission. Thus, another

key challenge in neuroscience is to understand how the neural representations or popu-

lation codes discussed above arise from synaptic interactions within a population as well

as signals external to the population. This question can also be recast to ask: how are

synaptic connectivity and the computation a network performs linked? In this context,

neural computation can be defined as the way neurons process information about exter-

nal world or internal states and produces an output which directly leads to the activity

patterns (neural representations) formed by a population.

Achieving this objective for a cortical network where there are thousands of neurons

and millions of synapses is daunting even if we had data on neural activity of every neuron

and strength of all synapses. Computational models of neural networks provide a natural

test-bed for finding the relationship between the connectivity, dynamics and computation

in a network. However this relationship is well understood only in a few cases [6–8]. The

Hopfield model [6] is a recurrent neural network that can store binary patterns of activity

as fixed points in its dynamics. Hopfield showed that the weights of the network could be
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learned such that starting from a pattern which is slightly distorted from a pattern the

network has learnt to store, the dynamics converge to that of the stored pattern. The

dynamical update rule of the network moves it to the minima of an energy landscape, the

minima corresponding to the stored pattern. In [8], the authors have shown that when

the connectivity of a recurrent network has a low rank structure,i.e, it can be expressed as

the sum of outer products of independent vectors, the activity of the network organizes in

low dimensional subspace. The organization of the activity in a low dimensional subspace

can be used to solve a number of cognitive tasks. (1) A go-no-go task where the network

has to produce a go signal and output zero for a no-go signal. (2) A temporal integration

task, where the network has to output one after integrating a signal and the integrated

value crosses a threshold and a zero output if the integrated value is below the threshold.

(3)-(4) Both these tasks in context dependent cases. These are a few examples in which

the authors have linked the connectivity of a network to the computation it performs.

We explored the consequences of modeling long distance connections with sparse random

connections on the interacting between distant brain regions.

It has been observed that probability of connection between two neurons fall-off ex-

ponentially [9]. Motivated by this observation, we considered brain areas interacting

through sparse random connections. We observed that these connections have a special

property known as the expander property which is defined in Chapter 3. We explored the

consequences of the connections having this property on some computations that these

brain regions might perform. The background, methods and the result of this work is

described in Chapter 3.

In the last chapter of this thesis, I investigated the relationship between neural activ-

ity, connectivity and computation for a particular biological network responsible for the

localization of sound in the vertical plane. The interaction of sound with the outer ear

alters the spectrum of sound hitting the eardrums filtering out energy from particular

frequency bands. These regions of frequency in the spectrum where energy is filtered is

known as notches. The position of these notches depend upon the vertical angle of the

source of the sound. It has been found experimentally that there are dedicated neurons in
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the auditory pathway whose responses are sensitive to the position of the notches in the

spectrum. In addition to that, these neurons show complex responses to different auditory

stimuli such as pure tones, broad band noise and notched noise. We built a computa-

tional model of the neurons in the auditory pathway starting from auditory nerve fibers,

to dorsal cochlear nucleus (DCN), to inferior colliculus (IC) and investigated how the

connectivity between the various populations of neurons led to their complex responses.

The background, methods and results of this chapter are described in Chapter 4.

Thus each of the subsequent chapters are on three different topics and correspond

to the different projects in my PhD. Each chapter explores different aspects of a neural

network, starting from dimensionality of neural representations in Chapter 2, connectiv-

ity between distant brain regions and consequences on dynamics of this connectivity in

Chapter 3 and the relationship between representation, connectivity and computation

for the biological network responsible for localization of sound in the vertical plane in

Chapter 4.
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Chapter 2

Neural manifolds from tuning curve

models are extremely nonlinear

2.1 Introduction

The brain encodes information about the external world and internal variables through

population activity. For example, the direction of arm movement is controlled by a

population of neurons in the primate motor cortex [10]. A weighted sum of the individual

activities of the neurons in the motor cortex could accurately predict the direction of the

arm movement [10]. Distributed coding of different features of objects such as shapes,

contours, boundaries, colors is ubiquitous in the ventral visual pathway [11–15]. These

studies show that multiple neurons respond to the same stimulus features and each neuron

responds to multiple features. Thus, it would not be possible to infer information encoded

in correlated neural activity from single cell recordings. Several studies of population

coding have propelled the advancement of technologies which enable recording from tens

off thousands of neurons simultaneously.

Such technologies has resulted in a boom in the amount of various types of neural data.

New tools and methods are needed to form and test hypotheses based on such data. A

powerful method to understand neural population dynamics is to represent neural activity

data in a neural state space. Each neuron in a population corresponds to an axis in the
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neural state space. Thus the neural state space of a population of N neurons is RN . Firing

rates of neurons or other measures of neural activity at each moment is represented as

a point in this space. Neural activity over time thus forms a point cloud in this space.

Structure in this point cloud reveals information about encoding and computation [1].

This framework allows the application of geometric tools to understand neural data.

The ambient space in which this point cloud lies has dimensions equal to the number

of total neurons (N) which is very high. It is often found that this point cloud lies on a low

dimensional manifold with dimension M << N . Such low dimensional structure reveals

structure in data and emphasises the importance of population coding. Single neuron

trajectories may seem chaotic or irregular, but population activity shows structure and

allows us to test hypotheses about population coding [5, 16]. For example, in [16], the

authors found that the activity of ∼ 800 neurons in the prefrontal cortex of monkey

during a working memory task lay on low dimensional manifold of dimension 3 − 6,

which explained 95% of variance in data. Viewing neural activity as points on a manifold

has been useful in other parts of the brain as well. For example, references [17, 18]

posit that the responses of the neurons in visual pathway for an object under different

lighting, orientation, etc, form low dimensional manifolds in the high dimensional visual

space. They hypothesize that the role of the visual cortical hierarchy is to disentangle

the object manifolds to facilitate object recognition. Activity of neurons in the motor

cortex during reaching activity lie on a low dimensional manifold and show oscillatory

activity [5]. These are a few examples of studies that have used population activity

and dimensionality reduction methods to uncover structure and computational principles

from neural data.

A manifold is a space which resembles an Euclidean space locally but globally it

might have a different structure. A very common example is a D dimensional sphere

which can be locally mapped to RD but such a mapping cannot be extended to all of

the sphere. Suppose a manifold M can be expressed as a union of local patches Uα such

that M =
⋃

α U
α. Formally, smooth functions ψα : Uα → RD can be defined from local

patches of a manifold Uα. In the case of neural data, low dimensional structure might
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arise when the population of N neurons encode D latent variables. Therefore the firing

rate of a neuron m in a population of N neurons can be expressed rm(t) = Fm(x(t))

where F : RD → RN and x(t) ∈ RD. x(t) is known as the latent variable since it cannot

be observed directly but gives rise to the shared structure in the population activity. The

population activity lies on a low dimensional manifold if the range of F can be confined

to a manifold M with dimensions less than N .

Assuming that the data points lie on a low dimensional manifold M , a fundamental

question asks how close this manifold is to a linear subspace. In many cases, neural data

can be expressed as a linear combination of a few latent variables, which can be found

using techniques like Principal Component Analysis (PCA) and Factor Analysis(FA) [16].

PCA finds a set of orthogonal linear axes to explain the variance in the data. The first

axis corresponds to the direction of maximum variance in the data and the subsequent

axes have decreasing amount of variance along them. It is a commonly used method for

dimensionality reduction where only a set of independent dimensions to explain a large

fraction of variance in the data (80-95 %) is retained. PCA assumes that the variance

in the data is common or shared between all components. FA seeks to find fewer latent

variables or factors on which the data depends. The data can be explained as a linear

combination of these factors plus some error. FA assumes that each factor might have an

unique variance due to error in addition to the shared common variance between. When

this unique variance is equal for all latent variables, FA is equivalent to PCA.

2.2 Tuning curve model

In a tuning curve model each neuron is “‘’tuned’’” to, or maximally responsive to a

particular value of a latent variable. Tuning curve models are commonly used to describe

responses of neurons in early sensory areas. For example, auditory nerve fibers are most

responsive to a particular frequency [19]. Neurons in V1 are selective to the orientation

of a rotating bar or, more generally orientation of boundaries [7, 20]. Neurons in higher

cortical areas in the visual pathway like the inferior temporal (IT) cortex are tuned to
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certain objects [13]. We generalise this model to a population code where each neuron is

labelled by a tuning curve parameter α. This might be the value of the latent variable

a neuron is most sensitive to, or it might represent other parameters of the tuning curve

function, like the slope of a sigmoid, for neurons having a sigmoidal tuning curve. The

latent variables x(t) on which the firing rates depend might be direct features of stimulus

like frequency or intensity of sound [21], orientation of rotating bars [7], spatial frequency

of visual stimulus [22] or more abstract things like shape, colour, [23] or behavorial context

[24]. The firing rate of the population can be expressed as

r(t) = F (x(t),α) (2.1)

where r is the N dimensional vector of the activities of the neurons, F : RD ×RP → RN ,

expresses the firing rates as a function of the D dimensional latent variables x(t) and the

P dimensional tuning curve parameter α. Note that P and D may not be equal.

Population with shared tuning curves In the model described above, the response

of the nth neuron is given by the nth component of the function F , rn(t) = Fn(x(t),α).

A population of neurons often shares the same shape of the tuning, rn(t) = f(x(t),αn)

with different parameters αn, where α could be the width of the tuning curve, or the slope

of a saturating curve. In other words all the functions Fn(x(t),α) have the same form

f(x(t),αn). Such shared tuning curves are common for populations described above such

as V1 neurons, auditory neurons and even neurons tuned to numbers [25, 26].

Linear structure in population response A common structure to seek in data

is linearity or how close the data lies to a linear subspace. In the presence of noise the

points may not exactly lie on a linear subspace. Even in the absence of noise, the point

cloud might only be approximately linear. In such cases, we try to find a subspace that

can explain a large fraction of the variance in the data. In other words we seek L basis

patterns vl that can approximate the data points ie r(t) ≈
∑

l al(t)vl.

More precisely we define the L1−ϵ dimension of the data matrix A to be the smallest

R such that a rank R approximation AR of A satisfies ||A − AR||2F < ϵ||A||2F . ||A||F is
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the Frobenious norm of a matrix A which is defined as

||A||F =

√∑
i

∑
j

a2ij (2.2)

This definition corresponds to the notion of dimensionality commonly used in neural

data analysis [27], where dimension is defined by the number of Principal Components

required to explain a large fraction of variance in the data, i.e. (1− ϵ) in our definition.

The low rank approximation of AR of the data matrix A can be obtained by singular

value decomposition (SVD) of the matrix A to give

AR =
R∑

k=1

σkukvk
T (2.3)

where σk’s are the singular values of A in descending order of magnitude and uk,vk

are the left singular vectors and right singular vectors respectively. In this case the

remaining variance ||A− AR||2F =
∑N

k=R+1 σ
2
k. In other words, the matrix A has (1− ϵ)-

linear-dimension L1−ϵ if

Lϵ∑
k=1

σ2
k/

N∑
k=1

σ2
k ≥ 1− ϵ but

Lϵ−1∑
k=1

σ2
k/

N∑
k=1

σ2
k < 1− ϵ (2.4)

The singular values of A can also be calculated from the eigenvalues of the (non-

mean-subtracted) covariance matrix AAT , which is the matrix of covariances between

neurons averaged over time, or ATA, which is the matrix of covariances between data

points averaged over neurons. The k-th eigenvalue of each of these matrices is λk = σ2
k

(for k ≤ N , assuming more time points than neurons).

Constructing such a low rank approximation to the data matrix (or, equivalently,

fitting a linear subspace to the data point cloud) is the foundation of commonly used

dimensionality reduction methods such as PCA and Factor Analysis. Moreover, a number

of nonlinear dimensionality reduction techniques rely on approximating the data point

cloud or manifold by a family of linear subspaces [28–30]. Such methods will be expected

to perform well when the data point cloud or manifold is near-linear and poorly when
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the data manifold is highly non-linear.

Figure 2.1: Schematic of low-dimensional structure in neural population data.
(a) Spiking activity of 3 neurons over time. Shaded regions show three sample time bins,
each used to compute an activity vector. (b) Activity represented as a collection of points
in 3-dimensional space. Colored points correspond to shaded regions in panel (a). (c)
Lower-dimensional linear structure in data, shown as a 2-dimensional plane chosen to
capture as much variance in the data as possible. Scatter of points (e.g., pink and green
points) off of plane reflects variance that is not captured.

2.3 Translation invariant tuning curves

A commonly found population code in the brain is one in which each neuron in the

population share the same tuning curve centered around different values in the latent

space. For example, orientation selective neurons in the V1 have the same shape of

tuning curves centered around angles of orientation. Place cells and grid cells also share

the same tuning curves centered around different points in physical space. Neurons in

the parietal cortex show translation invariant tuning to numbers on a logarithmic scale

[25, 26]. Similarly, auditory nerve fibers are tuned to frequencies on a logarithmic scale

and have the same structure. In such a code, the tuning curves of the neurons are shifted

versions of each other.

f(x+ δ,α+ δ) = f(x,α) = f(x−α, 0) (2.5)

This implies that the tuning curves have to be a function of the difference between the

latent variable x and the tuning curve parameter α.

f(x,α) = g(x−α) (2.6)
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For tuning curves to be truly translation invariant, the latent space has to be periodic

or infinite. In this work, we assume that x,α ∈ [0, 1]D and f is periodic along each

dimension with period 1. In the case where the latent variables are uniformly sampled

from this space, the neuron-neuron covariance matrix C(αm,αn) = c(αm −αn), where

c is a periodic function with period 1 along each dimension, which has been derived in

Section 2.6.2. Thus translation invariant tuning curves give rise to translation invariant

covariance matrices. It is a well known result that the eigenvalues of a translation invari-

ant kernel is given by its D-dimensional Fourier transform. This can be shown to be true

for the discrete translation invariant covariance matrix too (Section 2.6.3).

In 1D, if the tuning curve centers are uniformly spaced in the interval, [0,1) the

covariance matrix is a circulant matrix where each row is obtained by cyclically shifting

the row above to the right. Eigenvalues of circulant matrices are given by the discrete

Fourier transform of the first row of a circulant matrix. When the boundary conditions

are not periodic, the covariance matrix is Toeplitz, and the eigenvalue relation holds

approximately [31].

2.3.1 1D Gaussian tuning curves

Population responses can often be fit by a Gaussian tuning curves [32, 33]. We first

consider a population with 1D translation invariant Gaussian tuning curves. We assume

that the latent variables x and neuron labels α lie on a circle with circumference, x, α ∈

[0, 1). Consider, for example orientation selective neurons in the V1, visualised in Fig.

2a. The data matrix for this model is given by

A(xp, αq) = K1 exp

(
−(xp − αq)

2

2σ2

)
(2.7)

where K1 is the maximal firing rate when the latent variable x is equal to the neuron

label α and σ is the width of the tuning curves. In Fig 2a. the xp’s are points along the

circle. The distance |xp −αq| is the shortest distance between xp and αq along the circle.

The covariance matrix can be obtained by averaging over the latent variables. We
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assume that the latent variables are sampled uniformly from [0, 1). The covariance is

given by a Gaussian with width
√
2σ

c(αm − αn) = c(δ) =K2 exp

(
− δ2

4σ2

)
, δ ≤ 1

2

=K2 exp

(
−(1− δ)2

4σ2

)
, δ >

1

2

(2.8)

which is periodic generalisation of a Gaussian in the range [0,1). The constant K2 =

K2
1

√
πσ2 If tuning curve centers are evenly spaced, this covariance profile is sampled at

δn = n/N , where n takes values in [0, . . . , N − 1].

As described in Section 2.3, the eigenvalues of the covariance matrix are given by the

Fourier transform of this profile. For convenience we index the eigenvalues by p ranging

from ⌊(−N + 1)/2⌋ to ⌊N/2⌋. For each such p we have an eigenvalue

λp = K2

N−1∑
n=0

c(n/N)e−2πip n/N = K2

⌊N/2⌋∑
n=0

c(n/N)e−2πip n/N +

⌊(N+1)/2⌋∑
l=1

c(1− l/N)e2πip l/N


= K2

⌊N/2⌋∑
n=0

exp

(
−n2

4σ2N2

)
exp

(
−2πinp

N

)
+

−1∑
l=⌊(−N+1)/2

exp

(
−l2

4σ2N2

)
exp

(
2πilp

N

)
= K2

 ⌊N/2⌋∑
n=⌊(−N+1)/2⌋

exp

(
−n2

4σ2N2

)
exp

(
−2πinp

N

)
= K3 exp

(
−4π2σ2p2

)
(2.9)

where in the last line K3 = K2N and we have completed the square and noted that

the sum over n is a constant. Thus the eigenvalues have a Gaussian profile with width

2
√
2π
σ

. Also note that the eigenvalues decrease monotonically with the magnitude of p and

that, except for λ0, they occur in pairs with λp = λ−p.

Since the eigenvalues occur in pairs, the (1− ϵ)-linear dimension is the smallest L1−ϵ

such that
L1−ϵ

2∑
p=0

λp ≥ (1− ϵ)

N/2∑
p=0

λp. (2.10)

For large N , approximating both sides of this equation as an integral and canceling
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the common prefactor K3 yields

∫ L1−ϵ
2

0

e−(2πσp)2dp ≥ (1− ϵ)

∫ ∞

0

e−(2πσp)2dp =
(1− ϵ)

4
√
πσ

4
√
πσ

∫ L1−ϵ
2

0

e−(2πσp)2dp ≥ (1− ϵ)

2√
π

∫ πσL1−ϵ

0

e−z2dz ≥ (1− ϵ)

erf (πσL1−ϵ) ≥ (1− ϵ)

L1−ϵ =
1

σ

erf−1 (1− ϵ)

π

(2.11)

Thus, L1−ϵ grows as
1
σ
, with a proportionality constant that depends on the fraction

of variance explained. In particular, for 95% variance explained, we have L0.95 =
1.96√
2 πσ

.

As we have discussed, translation invariant covariance profiles and their eigenvalues

are related by Fourier transforms. According to these uncertainty principles, a function

and its Fourier transform cannot both be too localised in their domains [34]. More

formally

H(f)H(f̂) ≥ A (2.12)

where f̂ denotes the Fourier transform of f and H(f) is some measure of localisation

of f and A is a constant. For example, for the Heisenberg uncertainty principle the

localisation is the variance of the square of the function, ie H(f) =
∫
dx x2|f(x)|2. The

Heisenberg uncertainty principle is saturated by a Gaussian function.

Other measures of f include support of f , which is equal to the number of non-zero

elements of f(x) when it is discretely sampled from a range. In this case the uncertainty

principle is given by

Supp|f(x)| Supp|f̂(ξ)| ≥ N (2.13)

where N is the total number of points at which the function is sampled. This relation

can be used to show that if a fraction 1− ϵ̂ of the covariance profile is concentrated on a

set S of size P (meaning that
∑

δ∈S |c(δ)| > (1− ϵ̂)
∑

|c(δ)|), then the smallest set that

contains 1 − ϵ of the eigenvalue mass has size at least N(1 − ϵ̂)(1 − ϵ)/P [34, 35]. Note

14



that the size of this set is just the (1 − ϵ)-linear dimension and consequently the linear

dimension grows inversely with P . These uncertainty principles imply that the spread

or the fall-off of the eigenvalue profile is inversely related to the spread or fall-off the

covariance profile. Thus covariance profiles concentrated on small sets would have a large

number of non-zero eigenvalues which will lead to high linear dimension.

Figure 2.2: Translation-symmetric tuning to a one-dimensional variable and
the inverse relationship between linear dimension and sparsity. (a) Gaussian
tuning curves of 3 neurons encoding a circular (top) or non-circular (bottom) scalar
stimulus variable. The non-circular variable example includes tuning to time, as in an
epoch code. (b) Black line: Manifold formed by population activity of 3 neurons with
Gaussian tuning to a 1-dimensional circular variable. Each axis shows the activity of 1
neuron. Gray: Best fitting 2D linear subspace (i.e., plane spanned by first two principal
components). Left and right show an example of narrow (σ = 0.075) and broad (σ = 0.2)
tuning respectively. For (c)–(e), results shown are for Gaussian tuning to a circular
variable, with uniformly spaced tuning curve centers. Circles show numerical simulations
and lines show theoretical predictions. (c) Fraction of variance explained by each principal
component (equivalently, eigenvalues of covariance matrix) for a population of N = 50
neurons. Different curves show different tuning curve widths. (d) Linear dimension of
neural data against tuning curve widths, showing that linear dimension grows as 1/σ. (e)
Linear dimension against number of neurons in a population for each tuning curve width,
showing initial linear growth before saturation at the predicted values shown in (d).

2.3.2 D dimensional translation invariant Gaussian tuning curves

We now turn to the case where the neurons encode D features, or the latent space is

D dimensional. For place cells and grid cells, D = 2 and correspond to two spatial
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dimensions. We consider D dimensional translation invariant Gaussian tuning curves

with periodic boundary conditions along each dimension. We assume that x,α ∈ [0, 1]D.

The data matrix is given by

A(xp,αq) = K1 exp

(
−1

2
(xp −αq)

TΣ−1(xp −αq)

)
(2.14)

The basis vectors of the latent space x can be chosen such that the covariance Σ =

diag(σ2, · · · , σ2) is diagonal.

Since the tuning curves are translation invariant the covariance profile is also trans-

lation invariant, c(αm −αn) = c(δ) as shown in (Eq. (2.39). For notational convenience

we shift the range of δ so that each component lies within [−1/2, 1/2] rather than [0, 1].

Thus,

c(δ) =

∫
S
dx f(x, 0)f(x, δ)

= K2
1

∫
S
dx exp

(
−1

2
xTΣ−1x

)
exp

(
−1

2
(x− δ)TΣ−1(x− δ)

)
= K2

1

∫
S
dx exp

[
−
(
xTΣ−1x− δTΣ−1x

2
− xTΣ−1δ

2
+

δTΣ−1δ

2

)]
= K2

1

∫
S
dx exp

[
−
(
x− δ

2

)T

Σ−1

(
x− δ

2

)]
exp

(
−δTΣ−1δ

4

)

= K2
1 exp

(
−δTΣ−1δ

4

)∫
S
dx exp

[
−
(
x− δ

2

)T

Σ−1

(
x− δ

2

)]

= K2 exp

(
−δTΣ−1δ

4

)
.

(2.15)

Here the constant K2 = K2
1

√
det(πΣ). The last equality is approximate but holds when

tuning curves are not too wide, meaning that no single neuron responds to the full range

of latent variable values, so that integrating over the range of latent variable values is

equivalent to integrating over the range of the tuning curve. Thus, neurons with Gaussian

tuning curves have a Gaussian covariance profile with covariance twice that of the tuning

curve.

The eigenvalues of the covariance matrix are given by a D dimensional Fourier trans-

form. Each eigenvalue can be indexed by a D dimensional Fourier vector p, with dth
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entry pd ∈ [−Nd/2, · · · , Nd/2] yielding

λp = K3 exp

(
−4π2

D∑
d=1

p2dσ
2

)
= K3 exp(−4π2σ2||p||2). (2.16)

where Nd is the number of neurons along each dimension.

The magnitude of an eigenvalue is thus a function only of ||p||, the Euclidean distance

from the origin in p-space. Eigenvalues corresponding to all the lattice point at a fixed

distance from the origin will have the same magnitude of eigenvalue. Since the number

of lattice points on a sphere increases with the radius of the sphere in the p space,

the number of eigenvalues at a given distance from the origin increases as the distance

increases. Consequently, as the distance from the origin increases, there will be more

eigenvalues but with smaller magnitude. This explains the fall-off of the eigenvalues of

the eigenvalues as shown in Fig. 3b,c.

In the continuous limit, we define λ to be a D-dimensional continuous Gaussian

function, λ : RD → R as λ(p) = K3 exp(−4π2σ2||p||2). The eigenvalues are given by

λ(p) sampled at the integer lattice points of a D-dimensional cube with side length Nd.

Since the magnitude of the eigenvalues fall off with distance from the origin in the p

space, summing up the L1−ϵ largest eigenvalues is equivalent to summing up all eigenval-

ues for which ||p|| ≤ R (i.e., eigenvalues corresponding to all lattice points within a ball

of radius R). L1−ϵ will be equal to the number of lattice points in the sphere of radius

R. Thus we first compute the smallest radius R such that

∑
||p||≤R

λp ≥ (1− ϵ)
∑
p

λp. (2.17)

We approximate the sum by the integral of λ(p). We also assume that Nd is large

enough so that the sum
∑

p λp can be approximated by
∫
||p|| dpλ(p) where the integral is

over the whole space which we denote by K4. We seek R such that

1

K4

∫
||p||≤R

dp1dp2 · · · dpD exp(−(2πσ)2
D∑

d=1

p2d) ≥ (1− ϵ). (2.18)
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Converting to radial coordinates with r2 =
∑D

d=1 p
2
d and then rescaling r to define

y =
√
8πσr yields

1

K4

∫
||p||≤R

dp1 . . . dpD exp(−(2πσ)2
D∑

d=1

p2d) =
1

K5

∫ R

0

dr rD−1 exp(−(2πσ)2r2)

=
1

K6

∫ √
8πσR

0

dy yD−1 exp(−y2/2),

(2.19)

where K4 =
(

π
(2πσ)2

)D/2

, K5 =
Γ(D/2)

2(4π2σ2)D/2 and K6 = 2(D/2)−1Γ(D/2).

We note that λ is the (unnormalized) probability density function of a multivariate

Gaussian distribution and integrating it over a sphere of radius R normalized by the

total probability mass, gives us the CDF of a chi distribution which is a distribution of

magnitudes of D dimensional Gaussian random vectors. Thus for a random variable Z

from the chi distribution the integral in Eq. (2.19) represents the probability P (Z ≤
√
8πσR). We seek to find R such that P (Z ≤

√
8πσR) > 1− ϵ.

If ϵ < 1/2 (i.e., we are capturing at least 50% of the variance in the data), then by

definition R must be at least the median value of Z. Standard results on chi distributions

then show that
√
8πσR ≥

√
D
(
1− 2

9D

)3/2
> 0.8

√
D, where the final inequality holds for

D ≥ 2. Consequently, R > 0.8√
8π

√
D
σ
.

Finally, to estimate the linear dimension itself we need to count the number of eigen-

values that lie within a sphere of radius R. Since the eigenvalues correspond to lattice

points, the number of eigenvalues is approximately the volume of this D-dimensional

sphere yielding

L1−ϵ ≈ VD =
πD/2

Γ
(
D
2
+ 1
)RD ≈ 1√

Dπ

(
0.4

√
e

σ
√
π

)D

≈ 1√
Dπ

(
K7

σ

)D

(2.20)

whereK7 is a constant.To get this final form we have Stirling’s approximation for Γ(D/2+

1) ∼
√
Dπ

(
D
2e

)D/2
and substituted R = 0.8√

8π

√
D
σ
. Consequently the linear dimension grows

exponentially with D.

Exponential (or faster) scaling for localized tuning curves can be more generally de-

rived from uncertainty principles. Analogous to the 1D setting, the results of [34] can
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be used to show that if a fraction 1− ϵ̂ of the covariance profile is concentrated on a set

S of size K, then the smallest set that contains 1 − ϵ of the eigenvalue mass (i.e., the

(1− ϵ)-linear dimension) has size at least ND
D (1− ϵ̂)(1− ϵ)/K (where as before ND is the

number of tuning curve centers per dimension). For the case of Gaussian tuning, the size

of the set containing 50% of the covariance profile can be bounded above by the num-

ber of points in a sphere of radius σ
√
D, and this when combined with the uncertainty

principle again yields exponential scaling.

2.4 Multiplicative tuning curves

We next consider tuning curves which can be expressed as a product of tuning along

each dimension or factors of lower dimensions. For simplicity we assume that the D

dimensional tuning curve is a product of D tuning curves,

yn(t) = f(x(t),αn) =
D∏

d=1

fd(x
d(t), αd

n). (2.21)

(Here the superscript denotes the d-th component of a vector, and the fd’s are scalar

functions.) Note that in general the multiplicative factors can consist of groups of vari-

ables and not just one-dimensional factors, in which case the product would be taken

over groups rather than single variables.

A common example of such tuning curves come from multiplicative gain modulation

models of attention, where the tuning curve can be written as a product of the tuning to

the stimulus and the attentional signal [36] (Fig. 2.4a (top)). Another common example

is separable spatio-temporal receptive fields in early visual cortex. Early visual cells

respond to specific visual stimuli and their responses change over time. The responses

of these visual cells can be expressed as the stimuli convolved with a filter (the receptive

field). This filter or receptive field is known as separable when it factorizes into a product

of the spatial and the temporal part Fig. 2.4a (bottom)) [37, 38]. In general this model

is like a “mean field approximation” for neurons which code multiple features or latent

variables and their total tuning can be expressed as a product of tuning for each latent

19



Figure 2.3: Translation-invariant tuning to a multi-dimensional variable and
exponential growth of linear dimension with intrinsic dimension. (a) Examples
of 2d tuning curves, showing schematics of 3 different place cells with different tuning
centers in a square arena (left) and 3 grid cells with the same spacing but different
phases (right). (b) For Gaussian tuning curves, eigenvalues of the covariance matrix
(variance along each PC) are values of a D-dimensional Gaussian at the lattice points of
D-dimensional Fourier space. Each lattice point corresponds to one eigenvalue, and the
colormap shows its value. Left inset: Decay of eigenvalues with distance from origin in
Fourier space. Right: Number of eigenvalues contained in concentric shells of different
radii. Circular shells on plot highlight two sets of eigenvalues, with corresponding magni-
tude and volume of shell shown as shaded region in insets. For a shell close to the origin
the eigenvalues have large magnitude but there are fewer eigenvalues as a consequence
of the smaller volume. Away from the origin the value of the eigenvalue is lower but
there are more such eigenvalues. This trade-off between eigenvalue magnitude and the
number of eigenvalues of that magnitude explains the shape of the variance explained
vs PC number curve. (c) Fraction of variance explained by each PC (or eigenvalues
of covariance matrix) for D-dimensional Gaussian tuning curves and periodic boundary
conditions along each dimension. Circles show numerical simulations, thin line represents
prediction from Fourier transform of covariance matrix rows, and thicker lines represent
theoretically-predicted smooth interpolation. (d) Total probability mass at radius r for a
D-dimensional Gaussian (i.e., density function of chi distribution), shown for three differ-
ent values of D. Circular insets show concentric shells colored by total probability mass
at that radius. The bulk of the probability mass lies in a shell of radius ∼

√
D/σ. Thus,

accounting for most of the variance requires considering all eigenvalues within a sphere
of radius at least ∼

√
D/σ. (e) Semi-log plot of linear dimension (ϵ = 0.05) vs. intrinsic

dimension for Gaussian tuning curves with different widths. Circles show numerical re-
sults, solid lines show theoretical lower bound as in Eq. (2.20)(applies whenever ϵ ≤ 0.5),
and dashed lines show semi-analytic fit using chi distribution. (f) Semi-log plot of linear
dimension vs. tuning curve width. Circles and lines as in panel (e).
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variable.

We assume that the latent variables x(t) are sampled independently along each di-

mension. In this case the covariance of two neurons with parameters αm and αn is given

by

c(αm,αn) =

∫
dx p(x)f(x,αm)f(x,αn)

=
∏∫

dxd p(xd)fd(x
d, αd

m)fd(x
d, αd

n)

=
∏

cd(αd
m, α

d
n),

(2.22)

where p(x) =
∏

d p(x
d) is the distribution of latent variable values and we have defined

cd(αd
m, α

d
n) =

∫
dxdp(xd)fd(x

d, αd
m)fd(x

d, αd
n). Thus the data covariance matrix can be

written as the tensor product of matrices corresponding to individual stimulus dimensions,

C = ⊗D
d=1C

d, where ⊗ indicates the tensor product and the matrix Cd has entries Cd
mn =

Cd(αd
m, α

d
n).

The eigenvalues of C will then be given by the tensor product of the eigenvalues of

Cd. Let {γdpd ,u
d
pd
} be the pdth eigenvalue-eigenvector pair for each Cd. Then

C
(
u1

p1
⊗ · · · ⊗ uD

pD

)
=
(
C1 ⊗ · · · ⊗ CD

) (
u1

p1
⊗ · · · ⊗ uD

pD

)
=
(
C1u1

p1

)
⊗ · · · ⊗

(
CDuD

pD

)
=
(
γ1p1u

1
p1

)
⊗ · · · ⊗

(
γDpDu

D
pD

)
=
(
γ1p1 × · · · × γDpD

) (
u1

p1
⊗ · · · ⊗ uD

pD

)
(2.23)

Consequently,
(
γ1p1 × · · · × γDpD

)
is an eigenvalue of C. Thus the eigenvalues of C are

given by all possible products of the eigenvalues of the individual factors.

2.4.1 The linear dimension of multiplicative models grows ex-

ponentially with intrinsic dimension

For simplicity we assume that the covariance matrix factorizes along each dimension.

Let the eigenvalues of the covariance matrix for each factor be {γ1, . . . , γND
}. The N
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Figure 2.4: Multiplicative tuning and exponential growth of linear dimension
with intrinsic dimension. (a) Schematics of common examples of multiplicative tun-
ing. Top: Gain modulation of tuning to a sensory stimulus by attention. Bottom:
Separable spatio-temporal receptive field of retinal ganglion cell as product of spatial
tuning (horizontal) and temporal tuning (vertical). Panels (b)-(d) show results from a
multiplicative tuning model where tuning along each dimension is sigmoidal. (b) Sample
tuning along each dimension. Tuning curves are sigmoidal with slopes chosen uniformly
in range [−5, 5]. (c) Fraction of variance explained vs PC number for the model shown in
(b) for different values of intrinsic dimension (D). Circles show numerical simulations and
lines show result from tensor product of 1D tuning curves. Inset shows the eigenvalues in
the 1D case. (d) Linear dimension against intrinsic dimension for the data in (c). Circles
show simulations and solid line shows theoretical lower bound of 2D(H−0.05), where H is
the entropy of the eigenvalue distribution shown in the inset of panel (c). Panels (e)-(g)
show results from a multiplicative tuning model where tuning along each dimension is
Gaussian. Gaussians are not translation-invariant and the width of the Gaussian depends
on position, with tuning sharpest at the center of the stimulus space (as in visual recep-
tive fields). (e) Sample tuning along each dimension. (f), (g) As in (c), (d) but for the
model shown in (e).
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eigenvalues of the overall covariance matrix C are given by all products of the form∏
d γpd , where each pd ∈ [1, . . . , ND]. To compute a lower bound on the linear dimension

we reframe the problem as a problem in probability theory.

We first divide the set {γ1, . . . , γND
} by its sum, so that each element denotes the

fraction of variance explained along a PC. We consider D independent multinomial ran-

dom variables, Z1 · · ·ZD, each having outcome probabilities {γ1, . . . , γND
}. Therefore

each eigenvalue of the covariance matrix C corresponds to the probability of a particular

realisation of the string Z1 · · ·ZD. Thus finding the smallest number of eigenvalues whose

sum is at at least 1− ϵ is equivalent to the size of the smallest set of such strings which

has a probability at least equal to 1− ϵ.

This subset is often referred to as an ϵ high-probability set [39]. Probabilistic ar-

guments in information theory shows that the size of this set approaches 2DHγ , where

Hγ = −
∑

p γp log2 γp is the Shannon entropy of the distribution {γ1, . . . , γNd
}. Since

the size of this set corresponds to the L1−ϵ dimension of our original problem, the linear

dimension grows exponentially as 2DHγ with D. In general, 2D(Hγ−δ) provides a lower

bound for the size of this set, where δ < 1. We show this lower bound as a solid line in

Fig. 4d, h as solid lines with δ = 0.05. This is an arbitrary choice, however and small δ

works.

While this is an asymptotic argument, exponential scaling holds for small D as well.

For a non-asymptotic lower bound on the linear dimension of these models, consider the

case where only two of the eigenvalues of the matrix Cd are nonzero. By normalizing to

sum to 1, we can write these eigenvalues as 1 − γ and γ, for some γ ≤ 0.5. As for the

multinomial case, the eigenvalues of C are the tensor product of [1−γ, γ] taken D times,

i.e. [1 − γ, γ] ⊗ · · ·⊗
D times

[1 − γ, γ]. In descending order of magnitude, there is 1 eigenvalue

of magnitude (1 − γ)D,
(
D
1

)
eigenvalues of magnitude (1 − γ)D−1γ, and so on, with

(
D
k

)
eigenvalues of magnitude (1− γ)D−kγk.

To bound the linear dimension below, note that if F is such that

F∑
k=0

(
D

k

)
(1− γ)D−kγk ≤ (1− ϵ), (2.24)
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then the linear dimension L ≥
∑F

k=0

(
D
k

)
. Thus, we will first find such a F and then use

it to estimate a lower bound for the linear dimension L.

Consider a random variable Z distributed according to the binomial distribution with

probability γ. That is, X ∼ Bin(D, γ). Note that
∑F

k=0

(
D
k

)
(1− γ)D−kγk = P (X ≤ F ).

The median of this binomial distribution is at least ⌊γD⌋. The function ⌊.⌋ returns the

greatest integer smaller than its argument. Thus if we choose F = ⌊γD⌋ − 1 we have

F∑
k=0

(
D

k

)
(1− γ)D−kγk < 0.5 < 0.95. (2.25)

For simplicity, define γ′ such that γ′D = ⌊γD⌋ and note that we can rewrite F = ρD,

where ρ > γ − 2/D (or, using results bounding the distance of the mean to the median

of a binomial, this can be improved to ρ > γ − (1 + ln(2))/D). We can now lower bound

L as L ≥
∑ρD

k=0

(
D
k

)
.

A standard bound on the sum of binomial coefficients [39] yields

ρD∑
k=0

(
D

k

)
≥ 1√

8Dρ(1− ρ)
2H(ρ)D =

1√
8ρ(1− ρ)

2(Hb(ρ)−
log2(D)

2D
)D (2.26)

where Hb(ρ) = −ρ log2 ρ− (1− ρ) log2(1− ρ) is the binary entropy function.

Thus, except when D is small enough that H(ρ) < log2(D)
2D

the lower bound grows

exponentially with D, with the exponent asymptotically approaching Hb(γ)D.

2.5 Discussion

We considered population codes in which neural responses can be expressed as a function

of D dimensional latent variables. We considered two classes of such “‘’tuning curve

models’’” and found the linear dimensions of the manifold traced out by activities of

neural populations. The central result of this work is that for both translation invariant

tuning curves and multiplicative tuning curves the linear dimension of these manifolds

grow exponentially with D the number of latent variables. Thus we conclude that the

manifolds obtained from such models are highly non-linear and linear methods such
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as PCA fail dramatically to estimate the number of latent variables that the neural

population is encoding.

For translation invariant tuning curves in our model we assumed the tuning curve

parameters are spaced uniformly along each dimension. We verify that with this assump-

tion the eigenvalues of the neuron-neuron covariance profile/matrix is given by a Fourier

transform. These eigenvalues give the variance along each dimension of a linear subspace

that can be fitted to the neural activities over time of this population. Using uncertainty

principles relating functions and their Fourier transforms we showed that the linear di-

mension of translation invariant tuning curves grows at least exponentially. In Section

6.3, we will show that for translation invariant covariance profiles with fixed support, i.e.

each neuron is correlated to neurons within a fixed radius in the latent space the linear

dimension grows supra exponentially with D, i.e. as
√
D

D
. Note that the eigenvalues

of the covariance profile can be obtained from a Fourier transform if the tuning curve

parameters α of the neurons are distributed uniformly in the D dimensional latent space.

However, if the neurons are not distributed uniformly in the latent space, meaning that

there are more neurons in a particular region of the latent space and fewer neurons in

another region of the latent space, the eigenvalues can no longer be obtained by Fourier

transform. We are currently exploring if the eigenvalues of such covariance matrices can

be approximated by Fourier transforms.

A commonly used dimensionality measure in the literature is the Participation Ratio

(PR) [40]. PR is defined as

PR =
(
∑

i λi)
2∑

i λ
2
i

(2.27)

where λi’s are the eigenvalues of the neuron-neuron covariance matrix. For translation

invariant covariance matrices with uniformly spaced tuning curve parameters we can

define a similar quantity for the covariance profile centered on a particular neuron

PR′ =
(
∑

nCmn)
2∑

nC
2
mn

(2.28)

The result does not depend on m because of the translation invariant property. There is
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an uncertainty relation relating these two quantities

PR .PR′ ≥ N (2.29)

where N is the total number of neurons. This uncertainty principle again shows us that

the fall-off of the covariance profile and the eigenvalues are inversely related. It has been

shown in [41], that the PR is equivalent to L1−ϵ defined by us for ϵ ∼ 0.15. Thus our

results hold for dimensionality defined by PR as well.

The other class of tuning curves is the multiplicative tuning curves where the total

tuning curve can be expressed as a product of tuning along each dimension. We used

information theory and bounds on binomial co-efficients to show that the linear dimension

grows exponentially with the number of latent variables (D). However, we assumed that

the tuning along each dimension is given by the same function. We are currently exploring

how this result can be generalized to the case where tuning along each dimension is

different and the case where the tuning is a product of groups of latent variables.

The present analysis cautions us against concluding that neural data is high dimen-

sional from linear dimensionality estimation methods. This tells us that if linear dimen-

sions are high, non-linear dimensionality estimation methods or manifold learning meth-

ods such as the methods described in [42–44] are required to estimate the dimensions

and extract the low dimensional manifold the neural data lies on. From an experimen-

tal point of view, high dimensionality of already recorded data might lead scientists to

record from more neurons to sample independent directions but this again comes from

a linear view of the data-points. We are currently applying these non-linear techniques

to the data derived from tuning curve models. Another direction our result points to

is a dimensional analysis for data from multiple connected regions. This might give us

insight into how representations are transformed from one region to another and specific

computations being performed by different regions. For example, [17] hypothesizes that

the function of the visual pathway is to untangle object manifolds and make them flatter.

If this were true then linear dimensions of representations from subsequent areas in the

visual pathway starting from the retina should decrease. Thus our work has important
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implications for neural data analysis and can be used by the community to ask questions

about the nature of encoding and computations from analysing neural manifolds.

2.6 Appendix

2.6.1 Linear dimension of mean subtracted data is bounded be-

low by the linear dimension of non-mean-subtracted data

minus 1

We consider a population of N neurons with activities at time t given by

y(t) = [y1(t), · · · , yN(t)]. The mean of the population activity is µ = Et [y(t)], where

the expectation value is taken over time. The non-mean subtracted covariance matrix

is given by C = Et

[
yyT

]
. And the mean-subtracted covariance matrix is given by

T = Et

[
(y − µ)(y − µ)T

]
. Note that C = T + µµT .

The matrices C, T and µµT are Hermitian and positive semi-definite. Moreover,

µµT is rank 1, with 1 non-zero eigenvalue ||µ||2 and remaining eigenvalues 0. Let the

eigenvalues of these matrices be denoted as follows

C : λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0

T : ρ1 ≥ ρ2 ≥ · · · ≥ ρN ≥ 0

µµT : ν1 ≥ ν2 = · · · = νN = 0

(2.30)

The Weyl inequality for Hermitian matrices yields

ρa + νb ≤ λp ≤ ρr + νs a+ b−N ≥ p ≥ r + s− 1 (2.31)

With a = p, b = N, r = p− 1, s = 2 we get

ρp ≤ λp ≤ ρp−1 for p ≥ 2. (2.32)
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And with a = 1, b = N, r = 1, s = 1 we get

ρ1 ≤ λ1 ≤ ρ1 + ||µ||2 (2.33)

Thus we have the eigenvalue bounds

0 ≤ ρN ≤ λN ≤ ρN−1 ≤ · · · ≤ λ2 ≤ ρ1 ≤ λ1 ≤ ρ1 + ||µ||2 (2.34)

Now assume that the (1 − ϵ) linear dimension of the non-mean-subtracted system is L

and that L is at least 2. Thus ∑L−1
k=1 λk∑N
k=1 λk

< (1− ϵ) (2.35)

Define ∆ =
∑L−2

k=1 (λk − ρk) + λL−1. Note that 0 ≤ ∆ ≤ λ1 by the above inequalities.

(1− ϵ) >

∑L−1
k=1 λk∑N
k=1 λk

≥
∑L−1

k=1 λk −∆∑N
k=1 λk −∆

=

∑L−2
k=1 ρk∑L−2

k=1 ρk +
∑N

k=L λk

≥
∑L−2

k=1 ρk∑L−2
k=1 ρk +

∑N−1
k=L−1 ρk

=

∑L−2
k=1 ρk∑N−1
k=1 ρk

≥
∑L−2

k=1 ρk∑N
k=1 ρk

(2.36)

Thus
∑L−2

k=1 ρk∑N
k=1 ρk

< (1− ϵ).

Consequently if the (1 − ϵ)-linear dimension of C is L, the (1 − ϵ)-linear dimension

of T is at least L − 1. In general, depending on ||µ||2 the linear dimension of T can

be much higher than that of C. Thus, lower bounds on the linear dimension of the

non-mean-subtracted case transfer simply to lower bounds on the linear dimension of the

mean-subtracted case.

2.6.2 Covariance matrix of translation invariant tuning curves

The neuron-neuron covariance matrix is given by

Cmn =
1

Nx

AAT

=
1

Nx

∑
s

f(xs,αm)f(xs,αn)
(2.37)
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where Nx is the number of latent variable values. In the limit of large Nx this sample

mean will converge to E[f(x,αm)f(x,αn)]x, where the expectation is taken over the

latent variable distribution. Thus the covariance matrix can also be written as

Cmn =

∫
S
dx p(x)f(x,αm)f(x,αn) =

∫
S
dx f(x,αm)f(x,αn) (2.38)

where p(x) is the the distribution over the latent variable, which we assume to be uniform,

and the integral
∫
S dx =

∫
S dx1 · · · dxD, is over all points x in the region S = [0, 1]D.

Since the tuning curves are translation invariant we have

Cmn =

∫
S
dx f(x,αm)f(x,αn)

=

∫
S
dx f(x−αn,αm −αn)f(x−αn, 0)

=

∫
S−αn

dx′ f(x′,αm −αn)f(x
′, 0)

=

∫
S
dx f(x, 0)f(x, δ)

= c(δ) = c(αm −αn).

(2.39)

In going from the first to the second line, we have used the translation invariance of the

tuning curves (f(x,α) = f(x−γ,α − γ)); in going from the second line to the third line

we have made a change of variable, x′ = x−αn and defined δ = αm−αn; and in going

from the third line to fourth line we have used the periodic boundary conditions to shift

the integral over S − αm to S. c is a periodic function of the difference in tuning curve

centers with period 1 along each dimension. Thus the covariance between two neurons is

translation invariant for translation invariant tuning curves.

In the one-dimensional case (D = 1), if we take the tuning curve centers to be uni-

formly spaced (i.e., αn = n/N for n = 0, · · ·N−1), then the covariance matrix is circulant
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meaning that each row is a shifted version of the row above.

Cm+1,n = c(αm+1 − αn)

= c((αm+1 − 1/N)− (αn − 1/N))

= c(αm − αn−1)

= Cm,n−1

(2.40)

Note that this holds for m,n = 1, · · ·N , since the periodic boundary conditions allow us

to define CN+1,n = C1,n and Cm,0 = Cm,N .

Finally, note that the results approximately hold if the boundary conditions are hard

rather than periodic, provided that the tuning curves are not too wide. In this case, the

deviations from perfect translation-invariance caused by the boundary conditions will be

mild and restricted to a small subset of neurons.

2.6.3 Eigenvalues of translation invariant covariance matrix

It is well-known that matrices with translation-invariant structure have eigenvalues that

are given by the Fourier transform of the function that generates the matrix (i.e., c) [31,

45]. We briefly review those results here.

First, consider tuning curve centers that tile the latent space, forming the points of

a lattice with Nd tuning curve centers along the d-th dimension. Thus, the spacing of

tuning curve centers along the d-th dimension is 1/Nd, and there are N =
∏

dNd neurons

in total, in a volume of 1D. The tuning curve centers are given by

αn =
1

Nd

(an1 , · · · , anD) (2.41)

where each and belongs to [0, 1, · · · , Nd − 1].

The covariance matrix has entries Cmn = c(αm − αn) = c(δ). Note that because of

the periodicity of c (as a consequence of the periodic boundary conditions), the vector δ

can be considered to take the same set of possible values as the tuning curve centers.
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Next, consider the set of N vectors kp given by

kp = 2π(ap1, · · · , a
p
D), (2.42)

where as before each apd belongs to [0, 1, · · · , Nd − 1]. Corresponding to each kp, define

the vector vp = (eikp.α1 , · · · , eikp.αN ). Multiplying this vector by the matrix C yields

(Cvp)m =
N∑

n=1

c(αm −αn)e
ikp.αn

=

(
N∑

n=1

c(αm −αn)e
−ikp.(αm−αn)

)
eikp.αm

=

(
N∑

n=1

c(δn)e
−ikp.δn

)
eikp.αm

(2.43)

Here we have defined δn = αm−αn. As a consequence of the uniform spacing of tuning

curve centers and periodic boundary conditions, the term in parentheses is a sum over

all possible values of δn = 1
Nd

(an1 , · · · , anD), where as before each and ∈ [0, 1, · · ·Nd − 1].

Thus, it is independent of both m and n and we can define λp =
∑N

n=1 c(δn)e
−ikp.δn .

Consequently, vp is an eigenvector of C with eigenvalue λp. Note that λp is the term with

frequency kp of the discrete Fourier transform of c.

In particular, for the one-dimensional case, C is a circulant matrix. In this case, we

have tuning curve centers αn = n
N
, where n ∈ [0, · · · , N−1]. For each p with 0 ≤ p ≤ N−

1, vp = (eikp.α1 , · · · , eikp.αN ) is an eigenvector with eigenvalue λp =
∑N−1

n=0 c(αn)e
−2πip n/N .

Alternatively, if tuning curve centers are uniformly distributed through the latent

space, either evenly spaced or randomly chosen, then in the large N limit we can con-

sider the translation invariant kernel c(αm − αn), which is a continuous function of

αm,αn ∈ RD. This is the continuous generalisation of the covariance matrix for trans-

lation invariant tuning curves derived above. The product of the matrix C with a vector

can then be approximated by the convolution of the kernel with a function f1(αn),

f2(αm) =

∫
dαn c(αm −αn) f1(αn) (2.44)
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where
∫
dαn means an integral over all D dimensional vectors αn. f(αn) is an eigen-

function if ∫
dαn c(αm −αn) f(αn) = λf(αm) (2.45)

Consider f(αn) = eik.αn where k is an arbitrary D dimensional vector.

∫
dαn c(αm −αn) e

ik.αn

=

∫
dαn c(αm −αn) e

−ik.(αm−αn) eik.αm

=

(∫
dδ c(δ) e−ik.δ

)
eik.αm

(2.46)

As before in going from line 2 to line 3, we have defined a new variable, αm − αn =

δ and used the periodic boundary conditions to replace the integral over αn with an

integral over δ. The expression in parenthesis does not depend on αm or αn and is the

Fourier transform of c(δ). So eik.αn is an eigenfunction of c(αm − αn) with eigenvalue∫
dδ c(δ) e−ik.δ.

Finally, while these results are for uniformly distributed data with periodic boundary

conditions, note that covariance matrices are symmetric and thus normal. Consequently,

the effect of perturbations on the eigenvalue spectrum is as mild as possible, and the

results should hold approximately for matrices that only approximately satisfy these

conditions.

2.6.4 Exponential and faster growth of linear dimension for lo-

calized tuning curves from uncertainty principles

We assume that the neurons have ND equally spaced tuning parameters along each di-

mension in the hypercube [−1/2, 1/2]D. Thus there are a total of ND
D neurons in a volume

of 1D. We also assume that the covariance profile of a neuron is supported on a fixed

radius R = kσ around each neuron, such that kσ < 0.5 since the covariance profile cannot
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be supported outside [−1/2, 1/2]D. Thus

c(αm −αn) = c(δ) > 0, |δ| ≤ R

= 0, |δ| > R

(2.47)

The support of the covariance profile c is thus given by the number of points inside a

sphere of radius R. Since there are ND
D points in a volume of 1D, the support of the

covariance profile c is,

|supp(c)| =V olD(R)×ND
D

=
πD/2

Γ(D/2 + 1)
(kσ)DND

D ∼ 1√
Dπ

(
2πe

D

)D/2

(NDkσ)
D

(2.48)

As we have shown for translation-symmetric tuning curves the eigenvalues of the covari-

ance profile are given the Fourier transform of the covariance profile c. Let the eigenvalue

profile be c̃. From the uncertainty principle [34]

|supp(c)||suppϵ(c̃)| ≥ND
D (1− ϵ)

|suppϵ(c̃)| ≥N
D
D (1− ϵ)

|supp(c)|

|suppϵ(c̃)| ≥(1− ϵ)
√
Dπ

(
D

2πe

)D/2(
1

kσ

)D

(2.49)

Therefore, for translation tuning curves which are localized within a fixed radius, the

linear dimension L1−ϵ = |suppϵ(c̃)| grows faster than exponentially as
(
kσ

√
D
)D

.
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Chapter 3

Interactions between brain regions

via sparse random connections

3.1 Introduction

The brain can be divided into spatially localized regions which share certain neurobio-

logical properties such as cellular and circuit properties [46]. Identifying and defining the

boundaries of parcellated brain areas itself is a subject of active research. The advent

of noninvasive imaging techniques like fMRI has produced brain maps with greater de-

tail identifying parcellated brain regions with and connections among them. However,

whether each of these areas are involved in a particular brain function or functions are

distributed over many regions has been a subject of intense debate. Certain brain ar-

eas which are engaged in particular mental functions have indeed been identified [47],

for example: the fusiform face area (FFA), which responds selectively to faces [48, 49],

the parahippocampal place area (PPA), which responds selectively to places [50], and

the extrastriate body area (EBA), which responds selectively to bodies and body parts

[51]. Though certain regions are more engaged in specific mental functions than other

functions, it has been observed that many brain regions are active during more than one

cognitive/mental task. For example, the visual area MT/V5 is involved in perception of

visual motion [52, 53] and also contains information about stereo depth [54]. The activity
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of more than one brain area during a mental task suggests that different areas dynami-

cally interact with each other to implement a task. Multiple distributed regions underlie

coginitive processes such as language [55], cognitive control [56], emotion [57] and social

cognition [58]. To understand how interactions between different brain regions enable it

to perform various cognitive functions, Olaf Sporns and collaborators in a series of pa-

pers [59–62] have proposed a complex network theory to study the organization of brain

networks. In this approach, the brain network is a graph where each node can represent

a brain region or a neuron or a group of neurons depending on the spatial resolution of

the model and edges represent the connectivity between the nodes. In this set-up one can

study different questions, like the subnetworks involved in different functions, or dynam-

ics evolving on this network. We take a graph theory approach to study the connectivity

between brain regions and the dynamics of information exchange between the regions as

a dynamical system evolving on this graph.

Understanding the interactions between brain regions requires a knowledge of con-

nectivity between these regions. Brain regions communicate and exchange information

through white matter tracts which are bundles of axons surrounded by myelin sheaths.

Brain connectivity maps are created using white matter tract tracing from imaging meth-

ods such as diffusion MRI and resting state fMRI [63]. Several white matter tracing

studies have shown that there are very few long distance connections in the brain. In

particular, the number of connections between neurons has been shown to fall off expo-

nentially with distance [9].

We ask the question: how can information be efficiently transmitted between distant

brain regions using sparse connections? We do not consider any particular brain region,

but model a generic region as a collection of neurons. We assume that the target region

has fewer neurons than the source region, thus there is information also gets compressed

while being transmitted. Can information be preserved in such kind of communication?

We show that information can indeed be conserved in such a situation in Section 3.2.2.

Connectivity in the brain is neither entirely random nor entirely regular [64]. Ran-

domness is a good proxy whenever the exact connectivity between neurons is not known
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and randomly connected networks has been studied extensively [65–67]. In this work, we

model the sparse connectivity between distant brain regions as sparse random connectiv-

ity. In particular we assume that each neuron in a source region is randomly connected

to a small fixed number of neurons in the target region. Such a network is an expander

graph with high probability. These graphs are well connected in spite of being sparse. We

formally define expander graphs in Section 3.2. In this work we consider different neural

networks with the expander property and explore the computational and information

processing advantages that this property confers on these networks.

In Sections 3.3 and 3.4 we consider long distance interactions between brain regions

with sparse expander connections in two different architectures. The first architecture

consists of two regions connected by convergent feedforward and reciprocal divergent

feedback connections. Such networks are hypothesized to play a role in working memory

[68–70] and recall [71–73]. In Section 3.3.1 we define dynamical equations on this network

which lead to maintenance of activity patterns corresponding to a sensory signal (working

memory) and reconstruction of sensory signal corresponding to recall of a mental image.

We discuss how expander connections lead to faster convergence to a fixed point. We

discuss how these computations can be recast as compressed sensing problem in signal

processing and propose a neurally plausible algorithm which can be used for working

memory or recall dynamics.

In Section 3.4 we revisit the problem of communication between distant brain regions

as considered in [74]. In particular we ask: can randomly compressed patterns received

by the target area be re-expanded in a way to perform computations on it? To answer

this, we make a connection between compressed sensing and sparse approximation. We

consider an algorithm for sparse approximation known as locally competitive algorithms

(LCA) [75]. We explore the consequences of expander connectivity in LCA. It has been

hypothesized that the brain forms expanded sparse representations because it is easier to

classify them or separate them [76–78]. We check if the sparse expanded patterns can be

arbitrarily classified using a perceptron like neuron.
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3.2 Expander Graphs

Expander graphs are graphs in which small sets of vertices have large number of neighbors.

Therefore, the edges coming out of any small subset of vertices in the graph expands out to

reach a large set of vertices which form the neighbor subset. We will quantify this notion

below for bipartite expander graphs which have been used for compressed sensing/sparse

signal recovery.

A bipartite graph is one in which the vertices can be divided into two sets such that there

are no edges in between vertices belonging to the same set. Let G = (V,E) be a bipartite

graph, where V = L1 ∪L2 and L1 ∩L2 = Φ. We will call one set of nodes, the left nodes

L1 with |L1| = N and one set of nodes, the right nodes L2 with |L2| =M . The degree of

a vertex is defined as the number of edges coming out of that vertex. We consider graphs

where each vertex in L1 has c edges. Such graphs are known as graphs with regular left

degree. The neighbors of a node A are defined as the nodes which are connected to A by

an edge. The neighbor set N (S) of a subset S of nodes are the neighbors of the nodes in

S.

Definition 3.2.1. The graph described above is an expander graph with parameters

(c, α, ϵ) if for every subset S of left nodes with |S| ≤ αN , |N (S)| > (1 − ϵ)c|S| with

constants α, ϵ < 1 where N (S) ⊂ L2 is the neighbor set of S which is a subset of L2.

It turns out that random bipartite graphs with regular left degree are expander graphs

with high probability [79]. For example, Fig 3.6b shows a the distribution of the sizes of

the neighbor subsets. For this particular random graph the parameters can be inferred

as N = 1000,M = 500, c = 5, α = 0.04, ϵ = 0.25. Note here that α depends on M, ϵ.

3.2.1 Can evidence for expander connections be found experi-

mentally?

Suppose an experiment can find all the connections between neurons of two regions of

interest with N and M neurons respectively. Let us assume for now that we are not

interested in the connections between the neurons with each region. We can express the
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connections between these two regions as the (N +M) × (N +M) adjacency matrix of

a bipartite graph where the matrix would have the following block form

 0 A

AT 0

 (3.1)

This matrix has a typical spectrum of eigenvalues as shown in Fig 3.1c . As can be seen in

the figure all eigenvalues occur in positive and negative pairs. Eigenvalues are real since

this is a symmetric matrix. There is a gap between eigenvalues of maximum magnitude

and the eigenvalues of the second maximum magnitude which is known as the spectral

gap and is a feature of the eigenvalues of an expander graph. In general, large expansion

implies large spectral gap and large spectral gap implies large expansion [80]. A bound

on the spectral gap in bipartite expander graphs has been proven in [81].

3.2.2 Communication in distant brain regions using expander

graphs

The model for long distance communication has been set-up in two different ways in the

literature. Since any area sends only a few long distance connections, it was assumed in

[74], that the information in a source region is first compressed into the activities of a few

neurons in the source area which then send long distance axon projections to the target

area. The authors assumed that this compression is akin to compression by a random

matrix and considered the question, how the target area “makes sense” of this randomly

sub-sampled information transmitted to it without any information about how it was sub-

sampled. To make matters more difficult the source area and the target area may have

different number of neurons. We consider a slightly different set-up where each neuron in

the source area is directly connected to a few neurons in the target area and the target

area has a smaller number of neurons than the source area thus serving as an information

bottleneck. [74] assume that the information is compressed in the source area before

being transmitted thus only a few long distance projections are required while we assume
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that information is being compressed while being transmitted using a few projections.

Our setup is equivalent to [74], when the information in the source area is compressed

using sparse random projections. Both of these situations are shown in Fig 3.1d.

As shown in Fig 3.1a, sparse random expander like projections map separate patterns

in the source area to separate patterns in the target area. Mathematically, this can

be understood from the definition of expander graphs as given in Def. 3.2.1. Using this

definition one can show that any vector x of size N , with k non-zero entries with k ≤ αN ,

when mapped to a vector of sizeM by a bipartite expander graph with parameters α, ϵ, c

has a ℓ1 norm at least equal to (1−2ϵ)c|x|1. Theorem 6.2 and 6.3 (SI Section 6.2) tells us

when M ×N binary random matrices with c ones in each of its columns is the adjacency

matrix of a bipartite expander graph. Fig 3.1b shows the distribution of |N (S)|/c|S|

for different values of leftnode subset sizes |S|. We want to find the parameter value α

for this random graph with regular left degree with parameter N = 1000,M = 500, c =

5, ϵ = 0.25. In this Figure, the horizontal dashed line is at y = 0.75. Therefore in this

example, α = 0.04, since the |N (S)| > (1− ϵ)c|S| for |S| < 40.

3.3 Reciprocally connected networks

Neuroanatomical evidence shows that there are successive levels of convergence in the

brain starting from early sensory cortices onto sensory-specific association cortices and to

multisensory association cortices, culminating in maximally integrative regions such as

in medial temporal lobe cortices and both lateral and medial prefrontal cortices [82]; and

the convergence of sensory pathways is reciprocated by successive levels of divergence,

from the maximally integrative areas to the multisensory association cortices, to the

sensory-specific association cortices, and finally to the early sensory cortices [83–86]. In

this section we consider two regions as two sets of neurons with sparse expander like

convergent feedforward projections and reciprocal divergent feedback connections. We

explore if dynamics evolving over such a network can maintain persistent signals (working

memory) and reconstruct signals (recall).
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Figure 3.1: Properties of expander graphs and two models of communication.
a) Two regions connected by sparse expander connections and connections with no expan-
sion. The sparse expander connections separate patterns in the source area to different
patterns in the target area where as the connections with no expansion map separate pat-
terns in the source region to same pattern in the target region. b) Violin plot showing the

distribution of |N (S)|
c|S| as function of |S| where S is a subset of L1 and N (S) is the neighbor

set of S. This distribution was created for a random bipartite graph with regular left
degree c. It turns out to be an expander graph with parameters ϵ = 0.25, α = 0.04, c = 5.
The dashed line is at 0.75. Note that according to Def. 3.2.1, the y-axis gives (1 − ϵ)
hence we can find the parameters of the expander graph from the plot. c) The spectrum
of the adjacency matrix of the expander graph shown in panel b, as in Eq. 3.1. d) The
two models of communication discussed below. In the first model, the source regions
transmits signals to a target region with a smaller size using sparse random connections.
In the second model, information is compressed in the source region and then transmitted
to the target region via few long range projections as considered in [74].

3.3.1 Working memory

Working memory is the ability to hold information in mind over periods of seconds or

minutes. This information can be sensory information such as the image of an object

or the tune of a song or it can be abstract information like a number. Thus, one of

the main features of working memory is that it can hold any kind of information. The

neural mechanisms underlying this ability have been the subject of intense research both

experimentally and computationally [87–89]. One of the main findings of this research

is that information is maintained in working memory by the persistent firing of groups

of neurons distributed in the brain network [90]. This network consists of the prefrontal
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cortex, the parietal and temporal association areas of the cerebral cortex, cingulate and

limbic areas, and subcortical structures such as the mediodorsal thalamus and the basal

ganglia. Persistent activity is thought to be maintained by the reverberating activity

of neurons in these areas. The persistent activity is content specific – different sets

of neurons fire persistently to represent different objects or information in the working

memory.

We present a network model of two regions connected by random reciprocal connec-

tions where content specific activity can be maintained through reverberations in the

network. The first region or layer which we call L1 has N neurons and the second region

or layer L2 has M neurons with M < N . A stimulus is presented briefly to L1 and then

removed. In our model the stimulus is a binary signal of size N which also represents the

activity of the neurons in L1. One can imagine that there is some network mechanism

prior to L1 which leads to a particular binary signal for the neurons of L1 for the pre-

sentation of a stimulus. Each neuron in L1 is randomly connected to c neurons in L2, as

shown in Fig 3.5a.

Such a random regular graph with a fixed left degree is an expander graph with high

probability as discussed above. Thus activities corresponding to different stimuli are

mapped to different activity patterns in L2. The dynamics of the network as described

below is able to maintain sparse patterns of activity in both L1 and L2 even after the

stimulus is removed.

Let x and y represent the activities of populations L1 and L2 respectively. The network

has the following dynamics

x(t) =x0, t < tstim

τ1
dx

dt
=− x+ ϕx(A

Ty), t > tstim

y(0) =0

τ2
dy

dt
=− y + ϕy(Ax).

(3.2)

The stimulus x0 which is a random binary vector with k ones is presented for time tstim.
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ϕx and ϕy are thresholding functions as follows

ϕx(x) =
1

1 + exp(−αx(x− xth))
, x > xth

=0, x < xth,

ϕy(y) =
1

1 + exp(−αy(y − yth))
, y > yth

=0, y < yth

(3.3)

These thresholding functions were chosen so that the activities of the neurons quickly

saturate to 1 after crossing the the threshold. This also prevents the network from be-

coming unstable due to arbitrarily high firing rates. The values of the various parameters

are given in the following Table.

Parameters Values
tstim 2× τ2
τ1 5ms
τ2 20ms
αx 8
αy 8
xth [0.8c]
yth 0

Table 3.1: Parameter values for Eq.3.2

To gain intuition into why this particular connection structure is helpful, let us con-

sider only one active neuron in the pattern x0. This neuron has c outgoing connections

to L2 and c incoming connections from L2. Thus this neuron receives exactly c inputs.

Since the threshold is ⌈(0.8c)⌉, this neuron remains active (⌈.⌉ is a function that gives the

closest integer greater than the argument). For any other neuron in L1 to get activated,

it has to be connected to at least ⌈(0.8c)⌉ of the c neurons the original active neuron is

connected to. The probability of this happening given by
( c
⌈(0.8c)⌉)
(Mc )

which is 3.9 × 10−12

for M = 500, c = 5. An error occurs in a situation where the pattern of activity that is

maintained differs from the original activity pattern. We quantify the error by |x(t)−x0|1.

Now suppose a small set S of neurons in L1 are active. Let N (S) be the set of

neurons in L2 that they are connected to. The probability of selecting a neuron outside
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S is (N − |S|)/|S|. A neuron outside S will be activated by reciprocal connections from

L2 if it is connected to more than ⌈(0.8c)⌉ neurons in L2. Let AL1 be a node outside S.

Let X be the number of neighbors AL1 has in N (S). Since AL1 has a total of c neighbors,

it must have X neighbors in N (S) and c−X neighbors in L2/N (S). The probability for

such an occurrence is given by

P (X = ⌈0.8c⌉) =

( |N (S)|
⌈(0.8c)⌉

)(
M−|N (S)|
c−⌈(0.8c)⌉

)(
M
c

)
P (error = 1

∣∣∣ |S|) =P (X = ⌈0.8c⌉)× N − |S|
|S|

× Pmax(|N (S)|
∣∣∣ |S|)

(3.4)

The distribution of |N (S)| for each |S| is shown in Fig. 1b. Using the probability for

most probable |N (S)| given |S|, we find the probability for an error as shown in Fig.3.2c.

Thus a binary pattern with k = 25, N = 1000,M = 500, c = 5 ones can be maintained

quite accurately since the probability for an error is roughly 0.009. We also note that the

delay period activity might not be exactly the same as the stimulus activity and a few

errors might be allowed as long as the stimulus identity can be decoded from the activity

of the delay period [70].

We would like to emphasize that the connectivity in our model is different from

Hopfield networks [6] whose connection weights are constructed from the patterns that

the network can store as fixed point. The expander property of random regular graphs

combined with the non-linearity allows our model to maintain any binary pattern up to

a given number of nonzero elements without any errors through reverberatory activity

between areas. A natural next step would be to extend this model to include multiple

areas as persistent activity related to working memory has been observed in multiple

brain areas [90].

The same network structure with two layers of neurons connected to each other to

maintain persistent activity was used in [70]. The three main differences between [70] and

our model are: 1) In [70], the sparse random reciprocal connections are modelled by an

Erdos-Renyi graph where each connection occurs with a small probability p where as in

our model each neuron in L1 sends and receives a small fixed number of connections, 2)
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Figure 3.2: Performance of reconstruction dynamics as in Eq.(3.2). (a) Cartoon
of the network architecture and dynamics. Stimulus as a binary signal is presented to
L1 neurons for a short period of time and then removed. Signal is maintained in the
network through reverberatory activity. (b) Normalized error defined as |x(t)−x(0)|1

|x(0)|1 as a

function time for |x(0)|1 = k = 25 (blue) and k = 30 (orange). Solid lines are medians
and shaded area represents 100% confidence interval. For more details see Section 3.4.
(c) Probability of an error verses k as in Eq. 3.4 (d) Shaded area corresponds to region in
M − k plane where perfect reconstruction is possible. (e) Normalized error as a function
time for dynamics as in Eq. 3.2 on a Erdos-Renyi bipartite graph where the connection
between a neuron in L1 and L2 occurs with probability p = c/M with parameters as in
panel (b). Note that the normalized error is >> 1 which means that the signal being
maintained has many more active units than the original signal.

In [70], the first layer was either considered to have a ring structure with lateral inhibition

or to be a Hopfield network with structured inhibition which is closer to our models. We

have compared the reconstruction errors of a network with random regular connections

with Erdos-Renyi connections where the probability p = c/M so that the average sparsity

in the Erdos-Renyi case is the same as the random regular case in Figure 3.2e . We see

that the network with random regular connections is able to maintain original pattern

with fewer errors than the network with Erdos-Renyi connections. 3) We consider a firing

rate model whereas [70] have considered a linear-nonlinear spiking model.

We note that this simple network with just reciprocal excitatory connections is able

to maintain any binary sparse pattern with number of non-zero elements determined

by the parameters N,M, c. For random bipartite graphs with regular left degree, these

parameters can be determined probabilistically. A more physiologically plausible network
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should include broad inhibition in each of the areas [91–93] to ensure excitation-inhibition

balance.

3.3.2 Future extensions of the working memory model

This problem can also be recast as sparse signal reconstruction problem. Suppose the

stimulus x0 is presented for long enough such that the neurons in L2 reaches a steady state

ϕy(Ax0). Since the neurons in L1 have a smaller time constant, the activity corresponding

to x0 decays quickly, and is reconstructed from the activity of neurons in L2. This is a

classic problem called compressed sensing in applied math and has been well studied [94].

We will describe this problem briefly in Section 3.6.1. In Section 3.6.3 we will describe

how expander graphs have been used in compressed sensing. We propose an algorithm,

similar to these algorithms to reconstruct sparse binary signals which we call the signed

transpose algorithm as described in Section 3.3.5. As a next step, we are trying to include

inhibition in such a way that the network dynamics mimic the signed transpose algorithm,

thereby increasing the number of patterns that the network dynamics can maintain. In

addition to this, as already mentioned we need to include global inhibition to maintain

excitation-inhibition balance.

The above model is a combination of binary neurons with firing rate models. We start

with an activity pattern which is represented by neurons being on or off and combine it

with a firing rate model for neurons to maintain persistent activity. The firing rates for

the neurons are still bounded by 1 due to the saturating non-linearity. As a next step

We will consider the case where the stimulus is still represented by the neurons which

are active but the firing rates of the neurons are not bounded by 1. In such a model

the activities have to be stabilized by inhibition. Such a model would correspond more

closely to physiological neurons with analog firing rates. In addition, if this model is able

to reproduce low irregular firing rates of the neurons which are active during the delay

period it will take our model one-step closer to experimentally observed delay period

activity.

Working memory related activity has been observed in multiple brain areas [90]. In our
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model, content specific activity is maintained in two areas through reciprocal connections.

A natural next step is to extend this model beyond two areas to include multiple areas

connected by reciprocal connections.

3.3.3 Recall

We are able to recall sensory information such as mental images, full songs from cues

such as words, situations, beginning of a song, a tune similar to the song. Such cues can

be hypothesized to produce content specific activity in the pre-frontal cortex (PFC). We

can think of the L2 neurons in our model as PFC. The top-down connections from PFC

to a sensory cortex (L1 neurons) can activate the pattern of activity corresponding to

the information one is trying to recall. This would be same as reconstructing the initial

pattern of activity representing the object in L1. Such reconstruction of representations of

information in the sensory cortex through top-down activation and reciprocal connections

has been hypothesized as a mechanism for recall [71, 95].

In our model this corresponds to initial conditions

x(0) = x0

y(0) = Ax0

(3.5)

where x0 is the activity pattern representing some sensory information. The pattern

in L1 is no longer held fixed for tstim. We show that the initial activity pattern can be

reconstructed in L1, for sparse binary patterns with a given number of non-zero elements k

determined by N,M, c, the parameters of the network. This is exactly the reconstruction

problem that compressed sensing solves. We show that the dynamics described in Eq. 3.2

can recover sparse binary patterns of activity which corresponds to recall of the sensory

information. Note that we use the same parameters for the network dynamics as in Table

1.

We also considered the case of pattern completion. The cue maybe such that some

of the neurons in L1 are also activated due to the cue. In this case we observe that the
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dynamics is able to reconstruct the original activity pattern x0 if

x(0) = x̂0

y(0) = Ax0

(3.6)

where x̂0i = x0i for i ∈ S ⊂ T where T is the set of indices where x0j = 1. Thus x̂0 is equal

to x0 in a few indices. We assumed that S is randomly chosen from T and |S| = 0.4|T |.

Thus x̂0 is nonzero in 40% of the indices where x0 is 1. An example of this is shown in

Fig 3.3 d . We noticed that reconstruction fails with this dynamics if y(0) ̸= Ax0. In

other words the current dynamics will fail to recover the original pattern if the cue does

not activate the original sensed vector Ax0 in L2. The performance of this dynamics is

shown in Figure 3.3 b,d. An interesting question We are going to consider next is if the

above mentioned extensions of the model (see Section 2.1.1) is able to reconstruct the

original vector when the cue only activates the sensed vector in L2 partially.

3.3.4 Simulation details for Figure 2 and Figure 3

Sparse random binary vectors of sparsity k were created by selecting k random indices of a

length N 0-vector and setting them to 1. TheM×N random binary connectivity matrix

A between the two layers were created by setting c randomly selected indices in each

column of the matrix A to 1. The input to the layer 1 was held fixed for 2× τ2 = 10ms.

Eq. (3.2) was integrated using the Euler method with the parameters given in Table 1 and

dt = 1ms. Fig. 3.2b shows the normalized difference of the ℓ1 norm of the original vector

and the reconstructed vector over time. For each sparsity k, the dynamics was run 50

times with different inputs of sparsity k. The lines represent the median and the shaded

region represents the spread in the error of the reconstructed vector in the first layer.

For Fig. 3.2d, a connectivity matrix A was created for each combination of N,M, c. The

reconstruction dynamics of Eq. (3.2) was run 50 times for different inputs with sparsity

k. The shaded region corresponds to the area where the fraction of times there was

perfect recovery was > 0 and ≤ 1 for combinations M,k. For Fig. 3.2e, each entry of the

connectivity matrix is an i.i.d Bernoulli random variable withAij ∼ Bernoulli(c/M). The
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Figure 3.3: Recall as reconstruction of original activity pattern starting from
two different initial conditions and using the dynamics in (3.2). (a) Initial
conditions where the neurons in L1 are completely inactive and the neurons in L2 are
have activity given by y = Ax0. (b) Ratio of errors in activity of L1 and original
activity over time. Lines are median and shaded area is 100% confidence interval. For
|x(0)|1 = k = 25, perfect reconstruction is possible since the minimum number of errors
|x(t) − x(0)|1 goes to 0 with time whereas for k=30 it remains positive. For k=25, the
median of |x(t)−x(0)|1 = 8 while for k=30, the median of |x(t)−x(0)|1 = 18. (c) Initial
condition in which the L1 neurons are partially active to correspond to the original signal.
(d) Ratio of errors and k with time for initial conditions as in (c). For k=25, the median
of |x(t)− x(0)|1 = 7 while for k=30, the median of |x(t)− x(0)|1 = 16.

recall and the pattern completion dynamics were implemented using the same equations

and same parameters. For Fig. 3.3, the initial condition for the dynamics in Eq.(3.2)

was x(0) = x0 and nothing was held fixed for tstim. For Fig. 3.3, x(0) = x̂ where x̂i = xi

for 40% of the indices where xi = 1. As in Fig. 3.2, the dynamics was run 50 times for

different inputs with given sparsity. The lines represent the median errors and the shaded

regions represent the spread.

3.3.5 Signed transpose algorithm

Expander graphs have been used in different fields like computer science, signal process-

ing, error correcting codes. The property of expander graphs that small subsets of nodes
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have large neighbor subsets has been used in error correcting codes [96] and compressed

sensing [97] as described in Section 5.3. We have modified this algorithm slightly to

propose the following approach, which we call the signed transpose algorithm.

Let x be the original signal and A be the measurement matrix and Ax = y be the

sensed signal. let x̂ denote the signal being reconstructed. The vector g = y − Ax̂ is

known as the gap vector. The algorithm is as follows:

1. Start with x̂ = 0.

2. If g = y − Ax̂ = 0 then terminate. If not, find a node x̂i which is connected to > c/2

non-zero gaps.

3. If this node is connected to > c/2 positive gaps then x̂i = 1, otherwise if it is connected

to ≥ c/2 negative gaps then x̂j = 0. Go to 2.

We note that this algorithm works for only sparse binary vectors. As shown in Section

5.3, for an expander graph with parameters α, c, 1/4, and |x|l0 < αN we can always find a

node x̂i which is connected to > c/2 unique gaps. This algorithm is slightly different from

the rest, in that a node in L1 is turned on if it is connected to > c/2 positive gaps and

turned off if it is connected to ≥ c/2 negative gaps. This algorithm is able to reconstruct

vectors with greater number of nonzero elements k than the bit-flip (see Section 3.6.3)

and the greedy gap algorithms (see Section 3.6.3). The reconstruction performance for

different combinations of k,N,M, c is shown in Figure 3.4. We are currently trying to

develop semi-analytical results to explain this performance. We think the results in [81]

might be helpful in finding analytical limits of the performance. In particular we would

like to findM/N as a function of k/N which would be required for perfect reconstruction.

The results from simulations for two different values of c are shown in Fig. 3.4b. Such a

result will help us find the scaling of M with k as in other traditional compressed sensing

results [94, 97–100]. Fig. 3.4d shows that the reconstruction is perfect for c in the range

7− 12. We would like to check if this range is possible to find theoretically as well. The

algorithm converges faster for small values of c as shown in Fig. 3.5f. As a next step

we would like to implement this dynamics in a neurally plausible way to model working

memory or recall as discussed above.
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Figure 3.4: Performance of the signed transpose algorithm for various com-
binations of the parameters N,M, k, c. (a) Network used in the signed transpose
algorithm. Original signal is represented in the bottom layer and compressed signal is
represented in the top layer. The two layers are connected by a sparse binary random
matrix with fixed column sums. For all the following results, N=1000. (b) Shaded region
corresponds to the area in the M − k plane where perfect recovery is possible for two
different values of c. (c)-(e) correspond to various slices in the parameter space. The thick
lines with the dots correspond to the median error/time for 50 runs. The shaded region
corresponds to the spread in the error/convergence time for 50 runs. For each plot the
values of the parameters N,M, k, c are shown on the plot. (c) |xrec − x0|1 as a function
of |x0|1. (d) |xrec − x0|1 as a function of left degree c of the left regular random graph
used to connect the two layers. (e) |xrec − x0|1 as a function of size of the compressed
signal (M). (f) No. of time-steps required for the algorithm to converge as a function of
sparsity (k) for two different values of c.
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3.3.6 Details of simulations and results for signed transpose al-

gorithm

Sparse binary vectors were created by selecting k random indices of a zero vector of

size N and setting them to 1. Sparse random binary M × N matrices were created by

selecting c indices from each column randomly and setting them to 1. For Fig.3.4, a

measurement matrix A with parameters was created with parameters N,M, c in each run

the signed transpose algorithm with measurement matrix A was used to reconstruct a

random sparse binary vector with k ones. The algorithm was run 50 times.The shaded

region corresponds to the area where the fraction of times there was perfect reconstruction

was > 0 and ≤ 1. Fig. 3.4 c,d,e show slices in the parameter space. For each of these

plots, one variable was varied keeping the other 3 fixed and the algorithm was run 50

times. The lines show the median errors and the shaded area shows the spread.

3.4 Compression and sparse dictionary learning as

a model for communication and computation in

the brain

3.4.1 Sparse coding

Sparse coding is the principle that sensory information or stimuli are encoded by a few

active neurons in a population. We have been implicitly assuming that the populations

we consider follow this principle so far, since each stimulus is represented as a sparse

pattern of activity in our neural population. Experimental evidence for sparse coding has

been found in several different sensory modalities in a variety of animals. V1 neurons in

primates produce sparse responses when stimulated with naturalistic stimuli, i.e. stimuli

resembling images that occur during natural vision [101]. De Weese et al. [102] have

found that neurons in the auditory cortex of rats can produce a single spike in response

to certain stimuli and the responses do not change across trials. Odor evoked responses
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in the olfactory cortex are sparse [103].

Sparse coding confers several advantages in computation for a neural population [104].

It is useful in formation of associations and storing patterns in memory as we have already

seen in the last section. Sparse codes are energy efficient since they require a few neurons

to be active to represent a stimulus.

Sparse approximation Let s ∈ RM be a signal. Let D = {ϕ1, · · · ,ϕN} be a set of

N basis vectors with N > M . In this situation there are infinitely many solutions for the

equation s =
∑N

i=1 aiϕi for a. The optimal sparse approximation seeks to find a such

that it has the smallest possible number of non-zero entries, thus solving the following

optimization problem

mina||a||0 subject to s =
N∑
i=1

aiϕi. (3.7)

where |a|0 represents ℓ0 norm of a or the number of nonzero entries of a. This problem

is NP-hard [105]. The signal processing community has found a solution by replacing ℓ0

norm by ℓ1 [106] norm which makes it a convex optimization problem

mina||a||1 subject to s =
N∑
i=1

aiϕi. (3.8)

It has been shown that this substitution leads to the same sparse approximation [107].

Olshausen and Field in their famous work [108, 109] have shown that natural images

have sparse structure and the dictionary elements obtained from optimizing for sparsity

resemble receptive fields of V 1 neurons. They have also shown that the coefficients ai

obtained by them are statistically independent i.e. P (a) =
∏

i P (ai), thus satisfying

the efficient coding hypothesis. Note that the efficient coding hypothesis [110] does not

imply sparse coding and sparse structure can only be obtained if it is present in the

data as in natural images. Natural sounds have also been shown to have such a sparse

decomposition [111].

Sparse expanded representations have been observed in granule cells of cerebellar cor-

tex and Drosophilla mushroom body. The purpose of these systems is pattern discrim-

ination and associative learning [76, 77]. The following papers have considered sparse
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expanded formed by randomly mapping a dense pattern onto a large number of neu-

rons. Ref. [78] have used clustered sensory stimuli and projections that incorporate

the clustered structure of the inputs to map the sensory stimulus onto a large num-

ber of neurons. They have shown that these expanded representations reduce distance

between intra-cluster patterns and increase distance between intercluster patterns thus

aiding cluster categorization. [40] consider a similar set up in which the input patterns

are mapped to much larger mixed layer and each neuron in the mixed layer receives a

fixed number of input. The authors have shown that sparse connectivity between the

input layer and mixed layer, i.e. low fixed synaptic degree leads to a high dimensionality

of the mixed layer representations. The dimensionality of the mixed layer representations

can be directly related to the performance of a perceptron classifier which associates each

pattern to a valence ±1 with equal probability. In these examples, the sparse expanded

patterns are formed by random mapping from a small source area to a large target area

to facilitate associative learning. This is different from expressing a set of vectors as a

sparse combination of an overcomplete dictionary of basis vectors.

3.4.2 Locally competitive algorithms (LCA) for sparse dictio-

nary learning

The network dynamics of a two layer neural network as shown in Fig 3.5 can be used to

obtain a sparse approximation of a signal s [75]. The activity of the neurons in the first

layer represent the signal s. The equilibrium firing rates a of the neurons in the second

layer gives the sparse approximation of s. Let A be a M × N matrix whose columns

are given by ϕi the elements of D, A = [ϕ1 · · ·ϕN ]. Assume that the ϕi’s are normalized

to 1. In the set-up considered in [75], ϕi’s can be considered to be the receptive fields

of the neurons in the second layer. The neurons in the first layer and the second layer

are connected by the matrix AT , such that (AT )ij represents the strength of connection

between j-th neuron in layer one and i-th neuron in layer two. The neurons in the

second layer have recurrent inhibitory connections given by the weight matrix ATA− I.

This inhibition induces competition between neurons having similar receptive fields which
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would be given by large overlap between any two columns of A. The columns of A are

normalized so that the diagonal elements of ATA are one and subtracting the identity

matrix I from this connectivity matrix ensures that there is no self inhibition. This

competition allows a more active neuron i with receptive field ϕi suppress a less active

neuron j with similar receptive field ϕj, when the inner product (ϕi,ϕj) is high. For this

reason, this algorithm is known as a locally competitive algorithm (LCA). The dynamics

settles into an equilibrium where only a few neurons in the second layer are active thus

building a sparse representation of the signal s.

Let u(t) be the membrane potential of the neurons of the second layer and a(t) be

the firing rates of the neurons in the second layer. The dynamics of the neurons are given

by

τ
du(t)

dt
= −u+ AT s− (ATA− I)a(t)

a(t) = Tλ (u(t))

(3.9)

where the firing rate a(t) is given by a nonlinear function Tλ(.) of the membrane potential

u(t). In general Tλ is a thresholding function which is 0 below a threshold and equal to

the input above the threshold. The most general form considered in [75] is given by

Tα,γ,λ(um) =
um − αλ

1 + eγ(um−λ)
(3.10)

In signal processing literature, T0,∞,λ = limγ→∞T0,γ,λ is known as the hard thresholding

function which is the one we have used in our simulations.

The authors of Ref.[75] have also analyzed the stability of the equilibrium points of

the above dynamics with two notions of stability. The first notion is the one usually

considered in nonlinear dynamics, where a fixed point is defined as asymptotically stable

if the system returns to the fixed point asymptotically if it is slightly perturbed. The

second notion of stability is that the firing rates of the neurons do not grow exponentially.

They have identified that the following criteria should hold for both notions of stability.

Criteria for stability Define Mu(t) as the set of neurons in {1, · · ·N} whose mem-
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brane potential um(t) is above the threshold, Mu(t) = {m : um(t) > λ}. Then LCA meets

the stability criterion if the set of basis vectors {ϕm|m ∈ Mu(t)} is linearly independent.

It is interesting to note here that this stability criterion is met by matrices A which

satisfies the restricted isometry Eq. (3.14), defined by [94] for measurement matrices in

compressed sensing. This property implies that any set T of the columns of the matrix

A with |T | < S behaves approximately as an orthonormal system. Though the criteria

for stability just demands linear independence which is weaker than demanding that the

vectors be orthonormal. However, an orthonormal set of vectors is of course linearly

independent.

3.4.3 Compressed sensing and sparse dictionary learning

We note here that compressed sensing and sparse approximation are essentially the same

problem if the signal s is obtained by compressing a sparse signal x using a measurement

matrix A.

s = Ax (3.11)

The compressed sensing problem is deterministic in the sense that it solves to find the

particular sparse x from s rather than finding any sparse approximation of s. Thus,

it is not surprising that the stability criterion for LCA matches the restricted isometry

property of compressed sensing. Since there has been considerable research on the classes

of matrices A that satisfy the restricted isometry property, this tells us the classes of

matrices A that can be used for LCA. It would be interesting what these A’s tell us when

viewed as collection of basis vectors and if any of them make sense as receptive fields

of neurons. We are still trying to uncover if there is a deeper mathematical reason for

why the stability criteria for LCA and the restricted isometry property from compressed

sensing turns out to be the same.

We want to note another similarity here between LCA and the signed transpose

algorithm proposed earlier. In LCA, while using hard thresholding when u(t) > λ the

RHS of (3.9) can be expressed as AT (s− Au(t)) = ATgap where gap = s− Au(t). In

the signed transpose algorithm we calculate the same quantity and apply a thresholding
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function on ATgap while updating neurons in the first layer. Note that the layer structure

in the signed transpose and LCA are switched, the first layer or the layer containing the

sparse signal in the signed transpose set-up is the second layer or the layer constructing

the sparse approximation in the LCA set-up. Therefore the layer reconstructing the

sparse signal in the signed transpose set-up receives a similar input as received by the

layer constructing the sparse approximation in LCA. The main difference between the

two algorithms is this: in the signed transpose the threshold is applied afterwards and

neurons are updated asynchronously (at each time step a neuron is chosen at random

and updated). We are currently exploring the relationship between applying the non-

linearity (the thresholding function) at different points and the relationship between the

synchronous and asynchronous dynamics.

3.4.4 LCA using expander graphs

We implemented the LCA algorithm with the adjacency matrix of a bipartite random

left regular graph as the connectivity matrix A. We used this algorithm to perform

compressed sensing in a way described above. A sparse binary signal x was compressed to

form the signal s = Ax. Then the algorithm was run on s to find a sparse approximation

a in the (3.9). The performance of the algorithm is measured by error = |x−a|1. Fig.

3.5b shows the region in the M − k plane where |error|1 < 0.1.

[81] shows that random rectangular zero-one matrices with fixed row and column

sums are full rank with high probability. We think this result holds for random binary

matrices with fixed column sums that we consider as well which is something we are trying

to prove. We think the other results in this paper might help us to prove bounds on the

compressed sensing algorithms we have considered which is also something we would like

to explore. We also note that the adjacency matrices of random regular bipartite graph

has the RIP −1 property as discussed in Section 6.2. This property can be used to upper

bound the angle between subspaces spanned by disjoint subsets of columns of A as shown

in SI analogous to matrices with RIP − 2 property [94].

The columns of a random binaryM×N matrix with a fixed number of ones probably
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do not make sense as receptive fields of neurons. We are exploring the possibility that

there might be a transformation taking overcomplete sets of visual or auditory receptive

fields to a matrix with few ones in each column. Even if such a transformation does not

exist, random regular graphs might be a connectivity strategy used by the brain. Since

these connections are sparse, they reduce wiring costs and uses fewer neurons to perform

a computation. Thus they are energy efficient. As discussed here they can also be used

to construct sparse expanded representations using the LCA algorithm.

3.4.5 Details of LCA simulations and plots

Sparse random binary vectors x of length N with sparsity k were created by randomly

choosing k indices of a length N 0-vector and setting them to 1. The M ×N adjacency

matrix A of sparse random left regular graphs were created in a similar manner, c indices

from M were chosen randomly in each column and set to 1. All the columns were

normalized to 1. In the case of random Gaussian matrix, each entry was drawn from

N (0, 1) The sparse binary random vectors x were compressed using A to obtain s = Ax.

s serves as the input to the LCA network. The equations (3.9) were integrated using the

Euler method, with τ = 0.1, dt = 1, λ = 0.5. We assumed that the algorithm converges

when |a(t) − a(t − dt)|ℓ2 < 10−4. For Fig. 3.5b, a matrix A is created for each M .

The LCA is run 50 times for different random binary vectors x which produce different

compressed vectors s. Errors are computed using the ℓ1 norm of the difference |a(t)−x|ℓ1 .

The shaded region in Fig. 3.5 is the area where the |error|1 < 0.1 in at least 1 run.

Errors are plotted against k, c,M in Fig. 3c,e,f respectively. These plots show that sparse

random binary matrices as connectivity perform better than random Gaussian matrices.

Fig. 3.5 shows that the algorithm converges faster when A is a sparse binary random

matrix.
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3.4.6 Compression as a form of communication between brain

regions and re-expansion for computation

We consider communication between spatially localized brain regions as in [74]. As

discussed in the introduction, the number of connections between neurons fall-off with

distance [9]. All neurons in a source region do not send axonal projections to all neurons

in a target region [112]. Thus the representation in the source region undergoes some sort

of compression before being transmitted and the target region does not know how it was

compressed. The problem considered in [74] is how does the target region make sense

of this subsampled information incoming from the source region. They propose that the

representations are expanded into sparse representations on which computations can now

be performed akin to expanded representations considered in [75, 78].

We consider a slightly different set-up where we assume that the source region is larger

than the target region, thus information has to be compressed while being transmitted.

Furthermore, each neuron in the source region is connected to a few neurons in the target

region thus the connectivity between the two regions have the sparse expander structure.

In Fig 1, we have shown that information is preserved during such kind of communication.

In this section, we explore if the compressed patterns in the target region can be

re-expanded to perform any kind of computation. In particular, we consider the pattern

separation problem as in [40]. Each pattern in the source area is associated with a valence

±1 with equal probability. The compressed pattern in target region is re-expanded using

the LCA algorithm. The A′ used in the LCA algorithm is not the same as the one used

for communication, thus the re-expanded pattern is different than the original pattern.

A classifier is trained on the re-expanded pattern, to associate them with ±1 which were

associated with the original patterns. The performance of this classifier is shown in

Fig. 3.6 bottom panels. For the simulations given above, the classifier can associate the

patterns with their given valences perfectly. More details of the simulations are given in

the methods section below.

We check if the same process can be repeated multiple times. So we consider another

random association of the patterns with valences ±1. The expanded pattern in target
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region 1 is compressed while being communicated to target region 2. It is re-expanded

to form a sparse representation in target region two. A classifier is then trained on this

re-expanded pattern to associate them with the second set of valences. The performance

of this second classification is also shown in Fig. 3.6 bottom right panel. This shows

that this method of compression and re-expansion can be repeated multiple times, and

relevant information can be extracted from the re-expanded patterns in different brain

regions.

We have used bipartite expander connections to model the projections between dis-

tant brain regions as well as to model connectivity within a region to construct sparse

expanded representations. We have shown that these connections perform extremely

well, both when the patterns are compressed while being transmitted as well as for the

LCA algorithm which can be used to form sparse expanded representations with multiple

generic neural populations.

3.4.7 Details of simulations and plots

For the simulation results shown in Fig 3.6 we used the following region sizes. Acomp1 :

(500, 1000), Aexp1 : (1200, 500), Acomp2 : (600, 1200), Aexp2 : (1200, 600). All the matrices

were constructed as random binary matrices with c 1s in each column. The LCA was run

as described above. For each sparsity, we took 100 patterns randomly associated with

±1. We trained a perceptron like classifier with weights W and bias b. The weights W

and the bias b were trained to minimize the loss tanh(W.a+ b)− valence(x), where a is

the expanded pattern corresponding to x and valence(x) is the sign associated with x.

The classifier was trained in tensorflow using the Adam optimizer to minimise the loss

function. As can be seen from the bottom panels of Fig 3.6 re-expanded patterns in each

region could be separated perfectly.

3.4.8 Future extensions of the communication model

We are planning to consider different compression and expansion ratios to evaluate

the performance. We are also planning to use dense matrices for compression and re-
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expansion to compare the performance of these matrices with sparse connectivity matri-

ces.

3.5 Discussion

We considered distant brain regions interacting via long range sparse connections. We

modeled these connections with expander graphs and explored the consequences of sparse

expander connections on a few computations that these regions might perform. We

found that for regions connected with feedforward convergent connections and reciprocal

feedback divergent connections, sparse connectivity gives the network more flexibility.

Networks with sparse connectivity can maintain or reconstruct patterns with greater

number of non-zero elements without error than networks with dense connectivity. We

also found that sparse connectivity leads to faster convergence in the dynamics. We have

already discussed the future directions we would consider for this model in Section 3.2.

We would like to make this model more biophysically plausible by including excitation-

inhibition balance, adding multiple areas, having neurons with any positive firing rates

and let network mechanisms stabilize the dynamics.

In addition to this, We believe that this network can be used for associative learning.

For example, certain experiments have observed that in a task where the subject has

to identify an instrument by its sound or its image, neurons in the visual cortex are

also activated when a sound is played and neurons in the auditory cortex is activated

when an image is shown [113, 114]. We think such models where activity in one area is

associated with activity in one area can activate activity in another area can be modeled

by the two layer reciprocal network we considered. The first layer can be divided into

multiple areas which project to an integrative region such as the association cortex. Then

the activity in one area can activate associated patterns in another area through the

divergent feedback connections from the association cortex to the early sensory cortices

[73]. Recently Steinberg and Sompolinsky used a network with the same structure for

associative learning [115].
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We also considered a different architecture where the patterns compressed from the

source region to target region are re-expanded to form sparse representations. Such

sparse re-expansion could either be a sparse approximation of a vector [104] or a sparse

expansion for pattern separation [78]. An interesting question is if optimising for one

of these gives the other too. In particular if expanded representation is built such that

the over complete dictionary is optimised to give the sparsest representations for each

vector will this also optimize the pattern separation performance? Different regions in

the brain might build sparse representations for different purposes. For example, in the

visual cortex the brain might want to represent an image as a sparse combination of

edges so the random connectivity will not work whereas in other areas it might just want

a sparse expanded representation for pattern separation where the random connectivity

works perfectly well. The LCA algorithm suggests that the same algorithm can be used

to build sparse representations irrespective of the purpose.

We want to note that we did not consider optimising the connectivity (dictionary ele-

ments) for building the sparse representation. Instead we just considered sparse expander

connectivity for the LCA network. We used LCA for the compressed sensing problem as

discussed in Section 4.3 . We found that the sparse expander connection indeed perform

well to solve this compressed sensing problem. The problems of sparse approximation

and compressed sensing are related and have drawn inspiration from each other for their

solutions. Overcomplete dictionaries that optimize sparse representations for different

data sets are different. For example, the overcomplete dictionary for natural images is

different from the overcomplete dictionary for natural sounds. From our simulations we

findM×N random binary matrices with fixed column sums orM×N random Gaussian

matrices serve as good connectivity matrices for LCA for finding sparse approximations

of any compressed patterns with positive entries. We would like to check if specific over

complete dictionaries optimized for specific datasets can build better sparse representa-

tions. We would also like to explore if the transformations relating specific over complete

dictionaries to random matrices make sense.

In this work we have drawn on different areas in applied mathematics such as graph
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theory, compressed sensing, sparse approximations and dynamical systems to model and

study two computations the brain might perform. We hope that these ideas can be

extended to study specific brain regions and their computations, for example the interac-

tions of the prefrontal cortex with other areas to model cognitive control. We also hope

that brain connectivity maps will help us check is sparse expander connectivity indeed

exists in the brain which would validate using such connectivity and methods to study

brain functions.

3.6 Appendix

3.6.1 Compressed sensing

Let x ∈ RN be a signal and A be a M × N measurement matrix, with M < N . The

measured vector y ∈ RM is

y = Ax (3.12)

Can x be reconstructed with knowledge of A and y. In general this is not a well-posed

problem since the number of unknowns(N) are more than the number of equations(M).

Now suppose that x is sparse, ie it has only K nonzero components with K << N .

In this case, Candes et. al. [94, 98] proved that x can be recovered by solving the

optimisation problem

min||x||l1 subject to y = Ax (3.13)

if A satisfies certain properties. Let AT , T ⊂ {1, · · · , N}, be the n × |T | matrix which

extracts the columns in A corresponding to the indices in T . Then [94] defines the

restricted isometry constants δS as the smallest quantities such that

(1− δS)||x||22 ≤ ||Ax||22 ≤ (1 + δS)||x||22 (3.14)

for all subsets T with |T | < S. This property requires that any set of columns of A with

cardinality less than S behaves like an orthonormal system. The reconstruction is exact
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when δ3S + 3δ4S < 2.

For matrices A whose entries are random i.i.d Gaussian with mean 0 and variance

1/N , the above condition is satisfied with overwhelming probability when [116–118]

S < C.N/log(M/N) (3.15)

3.6.2 Theorems on expander graphs

For a subset S of the left nodes we define Nunique(S) ⊆ N(S) to be the subset of N(S)

which receive only one edge from S. In other words, the right nodes in Nunique(S) are

unique neighbors of left nodes in S.

Theorem 3.6.1. For any subset S of left nodes |S| ≤ αN , |Nunique(S)| ≥ (1− 2ϵ)c|S|.

Proof. Let us call the nodes in N(S) which receive more than 1 edge N> 1(S). From the

expansion property of expander graphs we have |N>1(S)|+|Nunique(S)| > (1−ϵ)c|S|. The

total number of edges coming out of S, c|S|. Each node in N>1(S) must receive atleast 2

edges, so counting the number of edges coming out of S we have |Nunique(S)|+2|N>1(S)| ≤

c|S|. So, |N>1(S)| ≤ 1
2
(c|S| −Nunique(S)). Substituting the maximum value possible for

|N>1(S)| in the above inequality, we get |Nunique(S)| ≥ (1− 2ϵ)|S|.

Definition 3.6.1. An M × N matrix A is said to satisfy RIPp,k,δ if, for any k-sparse

vector x, we have

|x|ℓp ≤ ||Ax||ℓp ≤ (1 + δ)||x||ℓp (3.16)

Theorem 3.6.2. Consider any M × N matrix,A that is an adjacency matrix of a bi-

partite expander graph with parameters (c, α, ϵ). The scaled matrix A/c(1/p) satisfies the

RIP(p,αN,δ) with δ = Cϵ for some absolute constant C.

Theorem 3.6.3. Consider a M × N matrix, A that has c ones in each column. If for

some scaling factor S > 0, S A satisfies the RIP(1,k,δ) property then A is an adjacency

matrix of an expander graph with parameters (k/N, ϵ) where

ϵ =

(
1− 1

1 + δ

)
/(2−

√
2) (3.17)
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For the proofs of these two theorems see [99].

3.6.3 Compressed sensing using expander graphs

Bit flip algorithm

Expander graphs have been used to build error correcting codes in the famous work by

[96]. In their set up, the left nodes of a bipartite expander graph represents a binary

message x and the right nodes represent constraints y. The constraint equations are

given by Ax = y(mod2) = 0 for correct messages, where A is the adjacency matrix

of an expander graph with parameters (α, c, 1/4). For a corrupt message x′, some of

the constraint nodes are going to be unsatisfied (there values will be 1). The above

paper shows that it possible to correct a message with less than αN/2 errors with their

algorithm. We modify their arguments for recovery (compressed sensing of sparse binary

signals).

In the compressed sensing set-up, the left nodes represent the binary signal x, the

adjacency matrix A of the expander graph connecting the left nodes and the right nodes

represents the measurement matrix and the right nodes y = Ax (mod2) represents the

measured vector. Compressed sensing asks if we can recover x once we know A and y.

Note that in this case, unlike the error correcting code case, y = Ax ̸= 0 , but we know

its components.

The algorithm is given by:

1. Start with x̂ = 0.

2. Let ŷ = Ax̂. Unsatisfied constraints in the compressed sensing set up are given by the

components where ŷ ̸= y.

3. Find the components of x̂ connected to > c/2 unsatisfied constraints. If no such

component of x̂ exist, then terminate. Otherwise pick a random node which is connected

to > c/2 unsatisfied constraints and flip its value.

Note that since we always flip a node which is connected to more unsatisfied con-

straints than satisfied constraints, the number of unsatisfied constraints decreases.
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Theorem 3.6.4. If |x − x̂|l0 ≤ αN we can always find some component to flip. If

|x|l0 ≤ αN/2 we can recover x where A is an adjacency matrix for an expander with

(α, c, 1/4).

Proof. Let S be the set of components where x − x̂ ̸= 0. If ŷ is a unique neighbor of

an element in S it is unsatisfied by the definition of an unsatisfied constraint. We have

shown that for a subset S of left nodes with |S| ≤ αN , the set of unique neighbors of S,

NuniqueS satisfies |Nunique(S)| > c|S|/2 for an expander with the above parameters. Each

node in S has c neighbors. If ≤ c/2 of these neighbors for each node are unique, then the

number of unique neighbors of S would be ≤ c|S|/2, which is a contradiction.Therefore

there is at least one node in S with > c/2 unique neighbors. This implies we can find a

left node x̂i which is connected to > c/2 right nodes where y ̸= ŷ. So we can always find

a node to flip.

Since |x|l0 ≤ αN/2, the maximum number of unsatisfied constraints that the nodes

in the S it can be connected to is cαN/2. We have shown above that we can always

find a node to flip if |S| < αN . Thus the algorithm fails if |S| ≥ αN during the

algorithm. For this to happen, there must be a step when |x − x̂|l0 = αN .At this step,

|Nunique(S)| > c|S|/2 = cαn/2. This is a contradiction since the maximum number of

unsatisfied constraints possible is cαN/2 and the algorithm always decreases the number

of unsatisfied constraints. Therefore, this algorithm can recover x whenever |x| < αN/2.

Greedy gap algorithm

The greedy gap algorithm also uses the adjacency matrix of an expander graph as the

measurement matrix and relies on the number of unique neighbors of the left nodes but

its update rule is a bit different from the bit flip algorithm. We can only recover a binary

signal using the bit flip algorithm but we can recover a sparse signal with arbitrary

components using the greedy gap algorithm. [100],[97] We assume that |x|l0 ≤ αN/2.
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Like before, we start with a estimate vector x̂. We define a gap vector

g = y − Ax̂ (3.18)

The algorithm is as follows:

1. Start with x̂ = 01×N .

2. If g = 0, declare that x̂ is the solution and terminate. If not, then we can find i such

that x̂i is connected to > c/2 identical gaps g.

3. Set x̂i = x̂i + g. Go to 2.

Since the |x|l0 < αN/2, we know from 3.6.1 that there must be at least one component

of x̂ that is connected to more than c/2 unique neighbors for an expander (α, c, 1/4). The

value of the gap g for all these unique neighbors are identical. Therefore one can always

find a component to update at the first step.

Note that the algorithm always reduces the number of nonzero components of the

gap vector. The number of nonzero gaps at the beginning can be at most cαN/2. The

algorithm will fail if at some time |x−x̂|l0 > αN . If this has to happen, then at some time

|x− x̂|l0 = αN . At this time according to 3.6.1 the number of unique neighbors of these

components is > cαN/2. The gaps which are unique neighbors of the components of

|x− x̂|l0 are also non zero. So the number of non zero components of gap becomes greater

than cαN/2. This is a contradiction since the algorithm always reduces the number of

nonzero components of the gap vector. Therefore using this algorithm we can recover

any signal x with |x|l0 < αN/2.
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Figure 3.5: LCA for compressed sensing using adjacency matrix of bipartite
expander graphs as A (a) The LCA neural network as considered in [75]. The first
layer represents the sigal s(t) and the sparse approximation is given by firing rates a(t) of
second layer. (b) Shaded region in theM−k plane shows the area where |a−x|1 < 0.1 for
at least 1 run out of 50 runs.(See details in Section 3.4.5 ). The orange and light red areas
correspond to LCA with random left regular graph with left-degrees 6 and 8 respectively.
The turquoise area corresponds to LCA with a matrix where each entry is iid Gaussian
drawn from N (0, 1). The sparse random matrix performs better than the Gaussian
random matrix. The next 3 plots show errors verses the various parameters in the model.
Blue lines and shaded regions are from LCA using random regular graph with left degree
c. Orange lines and areas are from LCA with Gaussian random matrix with i.i.d entries
N (0, 1) (c) Reconstruction error verses sparsity of original vector. Thick lines represent
median and shaded area represents spread of the error over 50 runs (d) Reconstruction
error verses left degree of random left regular graph used in LCA. (e) Reconstruction
error vs size of compressed signal(M) that is input into the LCA algorithm. (f) Number
of timesteps the algorithm required to converge verses the sparsity of the original vector.
LCA with Gaussian random matrices require more time than adjacency matrix of random
graphs with regular left degree.
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Figure 3.6: Model of communication between spatially localized brain regions
as in [74]. Neural representations in source region 1 are compressed while being trans-
mitted to target region 2 using Acomp1 . They are re-expanded in region 2 using LCA
with connectivity Aexp1 . The recurrent inhibitory connections required for LCA are not
shown in the figure. Each source pattern is associated with ±1 with equal probability.
A classifier is trained to discriminate the patterns according to the associations. The
performance of this classifier is shown below region 1 (left). The classifier network is also
not shown in the figure. The exppanded pattern in region 2 is compressed while being
transmitted to region 3 using Acomp2 . This pattern is re-expanded using LCA in region 3
with Aexp2 . The classifier is now trained to learn a different set of associations ±1. The
performance of this classifier is shown below region 3 (right). For more details of region
sizes and simulations see Section 3.4.7 .
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Chapter 4

Biological neural network for the

localisation of sound

4.1 Introduction

The interaction of sound with the outer ear (pinna) modifies the energy in certain fre-

quency bands in the spectrum of a broadband noise in a way dependent on the location

of the sound in the vertical plane.The function mapping the original sound spectrum to

the modified one after interaction with the outer ear is known as the head related transfer

function (HRTF) [119–121]. More specifically, the interaction of the sound with the outer

ear produces notches (frequency bands where energy is decreased) in the spectrum; the

frequency and magnitude of these notches are a function of the angle of elevation of the

sound source.

There is evidence that there are neurons in the auditory pathway dedicated to the

processing of these notches. These neurons are located in the dorsal cochlear nucleus

(DCN) and the inferior colliculus (IC) and are sensitive to the frequency and the mag-

nitude of the notches. Therefore they are believed to be important in the localisation of

sound in the vertical plane.

Fig 4.1 shows the neural circuit that has been proposed to describe the response of the

type 4 neurons of the DCN and the type O neurons of the IC [122], [123]. In this paper,
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we build a firing rate model at steady state for the neural circuit proposed above. This is

a feed forward neural network with each layer consisting of the neurons which are relevant

for the neural circuit which process these notches. Our model describes how neurons up

to the pre-cortex area are tuned to spectral notches essential for the localisation of sound

in the vertical plane.

Figure 4.1: Model Schematics. Schematic of feedforward neural network with 6 layers.
Each layer is labelled on the left. Black arrows represent excitatory connections and red
arrows represent inhibitory connections. The arrows only represent the connections, the
actual weight matrices are given in 4.5.

We consider the response of the relevant neurons to three kinds of stimuli that have

been experimentally recorded : pure tones, broad band noise and notched noise which

is a simulation of the notch produced by the HRTF on the spectrum of the sound.

The different stimuli that we will be considering for our model are: a) pure tone at a

Best Frequency (BF), b) pure tone frequencies swept across the entire range of BFs at
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different intensity levels, c) broadband noise at different spectrum levels d) Notched noise

at different spectral intensity levels, e) notch center frequencies swept across the entire

range. The best frequency(BF) of a neuron is defined as the frequency of pure tone for

which the neuron responds above its spontaneous rate at the lowest intensity. For a

broad band noise we consider a white noise with equal power in each of the frequency

components with a certain center and width. We are of course most interested in the

notched noise response of the type 4 neurons and the type O neurons since these are

sensitive to the frequency of the notches. The complex response properties of these

neurons to the above mentioned stimuli show the non trivial integration properties of

these neurons which makes the modelling task a challenge.

We consider a firing rate model at steady state. One of the reasons for this is that

the experimental results that we compare our results with are rate vs level functions

for the different neurons or rate vs best frequency of the neurons. Since we do not

have experimental data on rate as a temporal function for the different neurons we are

considering, we forego it at our first pass for modelling this circuit. The second reason

for considering a model at steady state is because we are interested in the interactions

between the different populations of neurons in our model and how it gives rise to complex

response properties.

Our motivation in developing this model is to see how the localization network re-

sponds when damaged by a neurodegenerative disease such as Alzheimer’s, which is known

to impair the ability of afflicted individuals to localize sound, particularly in crowded en-

vironments[124]. Moreover, there is substantial evidence to suggest that the auditory

brain stem itself is directly impacted by Alzheimer’s driven neurodegeneration[125].

We show that our model is able to reproduce the responses of the neurons recorded

in the DCN and the IC at least qualitatively. Though we are not able to capture all the

features of the experimentally recorded neurons, we are able to reproduce the features that

are important in the localisation of sound. In section 2, we describe our model in more

details including the behaviour of the neurons in the different layers and the connections

between the layers. In section 3, we describe the successes and the shortcomings of our
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model. In section 4, we discuss the novel features of our model.

We have built a rate based population model to explain the responses of the type 4

neurons and the type O neurons. Our model architecture has been inspired by the model

by Blum and Reed [126],[127]. However, Blum and Reed did not construct a model

with neurons logarithmically arranged in frequency as the auditory fibers are known to

be. Their neurons were also not correlated with observed best frequencies. Additionally

they did not consider responses to notched noise sweeps and their model did not extend

to the type O neurons which have been discovered more recently. The arrangement of

the neurons according to their BFs and the integration of inputs over some range of

frequencies around the BF was inspired by the models of Hancock and Voight [128],[129].

However, the models of Hancock and Voight are spiking models and hence it is more

difficult to simulate and study the effects of integration of the inputs between different

kinds of neurons. Our model is different from that of [130] in that it is a population

model and involves interactions between populations of neurons and has more realistic

weight functions connecting populations of neurons.

4.2 The Model

The model is a feed forward neural network consisting of six layers of neurons. Each layer

has a hundred neurons that are tonotopically arranged, ie, they are arranged according

to the frequency to which they are most sensitive. In our model, we have the BFs of

the neurons spanning four octaves, starting from 1.25 kHz and going up to 20 kHz with

25 neurons in each octave. So the BF of each successive neuron is 20.04 times the BF of

the previous neuron. This is a reasonable hearing range for humans. We refer to all the

neurons below by their BFs.

It is experimentally known that the tonotopic arrangement of the neurons are pre-

served in the higher areas of the auditory pathway, so we have arranged our model in

this way, which was also done in [129] and [126]. However in [126], the authors did not

map their frequencies into the actual range of hearing frequencies like we do. Our model
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is also easily scalable in the number of neurons. Increasing the number of neurons will

increase the number of neurons per octave and decrease the difference in the BFs.

The first layer consists of the auditory nerve fibers which receive all auditory stimuli.

The auditory nerve fibers innervate the neurons in the DCN which is the first relay station

in the auditory pathway. The neurons in the second, third and the fourth layer in our

model lie in the DCN. The neurons in the DCN project to neurons in the IC. The neurons

in the fifth and sixth layer of our model lie in the IC. We will describe the neurons in each

of these layers and their experimentally recorded response properties in details below.

Auditory Nerve Fibers

In this section, we define the rate function to model the response of an auditory nerve fiber

for pure tone stimulus based on its receptive field. Then we generalise it to a response

for more complicated stimulus like broad band noise. The auditory nerve fibers innervate

the hair cells which are present on the basilar membrane. The basilar membrane is a thin

coiled membrane with a gradient in tension and thickness along its axis. So the different

regions of the basilar membrane have different resonant frequencies. The auditory nerve

fibers connected to a particular region the basilar membrane is most sensitive to the

resonant frequency of that region. The auditory nerve fibers are tonotopically arranged

because they connect to different regions of the basilar membrane.

In neuroscience literature [131], the rate of a neuron as a function of a stimulus

parameter s, r = f(s), is defined as a tuning curve. By this definition, (4.1) would

be called the tuning curve of the ANFs for a pure tone. The tuning curve of an ANF

is defined as the minimum intensity as a function of pure tone frequency that elicits a

response from the ANF above its spontaneous rate. We first define the rate of an ANF in

the first sense, ie as a function of stimulus parameters,the frequency of a pure tone fPT ,
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and the intensity of a pure tone s.

rANF (fBF , fPT , s) =θ(s− sth)× h(s− sth)× exp

(
−
(
α(fBF − fPT )

s

)2
)
,

h(x) =
ax2

x2 + b
,

θ(x) =


1, x ≥ 0,

0, x < 0.

(4.1)

This equation is inspired by tuning curves for other neurons found in the literature.

This is the first such function to be defined for an ANF to our knowledge. All other

models have only considered rate as a function of intensity, which is the second factor on

the right side of (4.1). This was modelled based on the observation that as the intensity

increases, the frequency range over which the pure tone elicits a response from an ANF

also increases.The first figure in Fig 4.2 , shows the rate of an ANF as a function of the

frequency of pure tones at different intensities according to (4.1). The second figure in

Fig 4.2 , shows the saturating function h(x) for different parameters. Table 4.1 gives the

values of the parameters in (4.1) and their description.

Table 4.1: Parameters in (4.1)

Parameters Function of the Parameter
sth Threshold for ANF (20 dB)
a Determines the value of saturation of firing rate (200)
b Determines the slope of the saturating function h
α Determines the width of the tuning curve Fig 4.2 (a)

On the left of Fig 4.3 we have the tuning curves obtained experimentally. On the

right of Fig 4.3 we have the tuning curves obtained from (4.1). To get the tuning

curves s(fBF , fPT ) from (4.1), we set rANF (s, fPT , fBF ) = sth. Since the function (4.1) is

symmetric about fBF for the pure tone frequencies we do not get the long tail extending

to the lower frequencies at higher intensities as is seen experimentally. We would need to

modify (4.1) to include this feature.

We model a broadband noise to have a constant flat spectrum over a range of frequen-

cies. We assume that the response of an ANF to such a stimuli is a saturating function
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Figure 4.2: Response of Auditory Nerve Fibers (ANF) as a function of fre-
quency and intensity. a) Rate vs frequency of pure tones for an ANF(BF=10 kHz)
at different intensities (α = 90) obtained from (4.1). b) The saturating function with
different parameters.

of the power in the frequency component corresponding to the BF of the ANF. So the

ANFs whose BFs lie under the nonzero power spectrum of the noise respond to the noise

and the others do not.The first figure in Fig 4.4 shows the noise stimulus and the second

one shows the response of the ANFs to the broadband noise on the left. Similarly Fig 4.5

shows a notched noise stimulus on the left and the rate of the ANFs vs the BFs of the

ANFs for the stimulus to the right.

Neurons in the DCN

The neurons in the DCN and the connections between them are shown in Fig 4.1(a).

This neural circuit was proposed in [122] to explain the responses of the type 4 neurons

of the DCN. They conjectured the existence of the neurons which they called the WBIs

which receive weak inhibitory inputs from a wide range of ANF frequencies. So they

respond weakly to pure tones and strongly to broadband noise. They showed that the

responses of the type 4 neurons and the type 2 neurons could be explained if one consid-

ered the inhibition from these cells. The onset chopper neurons in the Ventral Cochlear

Nucleus(VCN) are known to have responses similar to that of the WBIs [133].

The type 2 neurons are excited by the ANFs and inhibited by the WBIs. The response

properties of these neurons as a result of the interaction of the above two kinds of neurons

75



Figure 4.3: Comparison of experimental and model tuning curves for ANFs.
a) Tuning curves for ANFs obtained experimentally. The tuning curve for an ANF
is intensity as a function of pure tone s(fpt), at which the ANF responds above its
spontaneous rate. Adapted from ([132]) b) Tuning curves obtained from the model of the
ANFs above.

Figure 4.4: Response of ANFs to broadband noise. a) Broadband noise with a
constant power spectrum of 50 dB centered on 5kHz having a width of 7kHz. b) Response
of ANFs labelled by their BFs to the broadband noise on the left.

are discussed in the next section. The type 4 neurons are excited by the ANFs and

inhibited by the type 2 neurons and the WBIs.

We give the input output functions of the above neurons and the weight matrices

connecting them in 4.5. The input output functions are the same as that in [126] but we

do not have any justification for these except that they work well. The weight functions

that we use are closely related to how receptive fields of neurons are modelled. This kind

of weight functions have not been previously used to model this neural network. Our

model helps shed light on the receptive fields of the different neurons and their frequency
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Figure 4.5: Response of ANFs to notched noise. a) Notch of width 1.6 kHz centered
at 9 kHz in a broadband noise of 14 kHz. b) Rate of ANFs labelled by their BFs for the
notched noise described in (a).

integration properties.

Neurons in the IC

Davis et al[123] have recorded the response of the neurons in the inferior colliculus to pure

tone sweeps and notched noise sweeps. They show that the type O neurons of the IC are

sensitive to the position of the notches. They have shown that these neurons receive direct

excitatory inputs from the type 4 neurons of the DCN. They also propose a local circuit

in the IC to explain the response of the type O neurons to the different stimuli described

above. They conjecture the existence of narrow band inhibitors which inhibit the type O

neurons and are excited by frequencies in a narrow range lying below the BF of the type

O neuron which it inhibits. They call these neurons the Narrow Band Inhibitors(NBI).

They also conjectured the existence of neurons which receive input from a wide range of

frequencies and excite the type O neurons called the Wide Band Excitators (WBE). For

our model, we only consider the NBIs which are necessary to reproduce the sensitivity of

the type O neurons to notched noises. We will describe below what we fail to reproduce

as a result of not considering the WBEs. It has been conjectured in [123] that the type I

and type V units in the IC might be the narrow band inhibitors and the onset units in the

IC could be the WBEs but more experiments are needed to confirm these conjectures.
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4.3 Results

The type 2 neurons respond strongly to pure tones at their BF and are characterised

by their non-monotonic rate level functions. Fig 4.6(a) shows the rate level function

obtained from our model. We get a non-monotonic rate level function as predicted by

experiments. This is because, as intensity increases, the range of ANFs which respond to

a pure tone increases. Therefore the rate of the WBIs as the intensity of the pure tone

increases. Since the WBIs inhibit the type 2 neurons, the increase in their rate brings

down the rate of the type 2 neurons at higher intensities of pure tones. This lends some

support to the widening of the response curves of the ANFs as the intensity increases and

to the existence of WBIs. Fig 4.6(b) shows that the overall rate of the type 2 neurons

decreases as the width of the broadband noise increases. This can again be explained

by the fact that the response of the WBIs increases as the width of the broadband noise

increases. Type 2 neurons are also experimentally found to have a high threshold which

leads to the neurons being completely shut off if the input is below the threshold. In our

simulations the type 2 neurons are completely shut off by a notched noise when the notch

lies above its BF.

Figure 4.6: Response of type 2 neurons. a) Rate vs level curve for the response of a
type 4 neuron to a pure tone at BF. b) Rate vs level curve of a type 2 neuron for noise.
We can see that the rate decreases as the width of the broadband noise increases which
is also observed experimentally.

The type 4 neurons are excited for a narrow range of frequencies at low levels(dB) and

are inhibited or shut off for higher intensities. Fig 4.7(a), shows the rate vs level curve
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for a pure tone at its BF for a type 4 neuron. The type 4 neurons are modelled such

that they have a spontaneous rate of 30 kHz. We see that the rate increases above the

spontaneous rate as intensity increases above 20 dB which is the threshold for the ANFs.

At low intensities the type 4 neurons only receive excitatory inputs from the ANFs since

the type 2 neurons have a high threshold as we discussed above and the WBIs respond

very weakly at low intensities. As the intensity increases, the inhibition of the type 2

neurons and the WBIs soon overcome the excitation from the ANFs. So we have a narrow

peak in the rate vs level curve for the type 4 neurons for pure tones. Fig 4.7(b) shows

the rate vs spectrum level of broadband noise for type 4 neurons. The type 4 neurons are

excited above their spontaneous rates by broadband noise of different widths. The rate

goes down as the width of the broadband noise increases because the inhibitory inputs

from the WBIs increase.

Figure 4.7: Response of a single type 4 neuron to pure tone at BF and broad-
band noise. a) Rate vs level curve for a type 4 neuron to a pure tone at its BF. It is
excited above its spontaneous rate in a narrow frequency range above the threshold and
it is inhibited for higher decibels. b) Rate vs spectrum level curves of a type 4 neuron
for broadband noise.

Fig 4.8(a) shows the response of the type 4 neurons for pure tone sweeps at different

levels. As we discussed above, the type 4 neurons are excited above their spontaneous

rates for a narrow range of frequencies at low levels. At higher levels, the rate of the

type 4 neurons fall below the spontaneous rate. We failed to reproduce the inhibition of

the type 4 neurons for pure tones in the entire frequency range for higher levels. There

is inhibition only over the range from which the WBIs receive inputs. Fig 4.8(b) shows
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the response of a type 4 neuron with BF 9.2 kHz to notched noise sweeps. The notch

has a width of 1.6 kHz and its center is swept over 3 octaves. The type 4 neurons are

inhibited below their spontaneous rate when the notch lies over the best frequency of the

neuron and they are excited above their spontaneous rate when the notch center moves

away from the best frequency. We have not been able to reproduce the different ranges of

inhibitions of the neurons at different spectrum levels of the notched noise. Experiments

have shown that there is maximum inhibition at intermediate levels.

Figure 4.8: Responses of Type 4 neurons to pure tone sweeps and notched
signal sweeps. a)Rate vs frequency of pure tone of a type 4 neuron with BF 5 kHz for
pure tone sweeps at different levels. b) Rate vs notch center frequency of a notched noise
with notch width 1.6 kHz which is swept over 3 octaves, of a type 4 neuron with BF 9.2
kHz.

Fig 4.9(a) shows the rate vs pure tone frequency curve for a type O neuron with BF

5 kHz at different levels. The type O neurons are excited above spontaneous rates at low

levels and a narrow range of pure tone frequencies. This behaviour is similar to the type

4 neurons of the DCN. The drop in the rates just below the BF is due to the inhibition

from the NBIs whose BFs lie in a narrow range of frequencies below the BF of the type

O neuron which they inhibit. As the intensity increases the rates of the type 4 neurons

themselves fall below spontaneous rates and hence the type O neurons are no longer

excited above their spontaneous rates either. Fig 4.9(b) shows the rate vs notch center

frequency curves for a type O neuron with BF 9.2 kHz at different spectrum levels of the

notched noise. The type O neuron is excited above its spontaneous rate when the notch
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lies just below the BF of the neuron. This is because in our model the type O neurons

are inhibited by NBIs whose BFs lie below the BF of the type O neuron it inhibits. So

when the notch lies over the BFs of the NBIs, the type O neurons do not receive any

inhibition and are excited by the type 4 neurons. The width of the excitation depends

on the integration of inputs from the type 4 neurons and the NBIs.

Figure 4.9: Response of type O neurons to pure tone sweeps and notched noise
sweeps at different levels. The black lines represent the spontaneous rates. a) Rate
vs pure tone frequency of a type O neuron with BF 5 kHz. The neuron is excited for a
narrow range of pure tone frequencies at a low intensity like type 4 neurons. b) Rate vs
notch center frequency of a type O neuron with BF 9.2 KHz. The notch had a width of
1.6 kHz and was swept across a range of 2 octaves from 3.5 kHz to 14 kHz.

4.4 Discussion

We have been able to reproduce the main features of the response of the type 4 neurons

and the type O neurons to notched noises and shown their sensitivity to the frequency

of notches as found in experiments. The type 4 neurons of the DCN have been exper-

imentally found to be excited by a narrow range of pure tone frequencies at BF at low

intensities and inhibited at high intensities. They are inhibited by notched noise when

the notch lies over the BF of the neuron. The width of the inhibitory regions for both

the pure tone and the notched noise do not match the experimental results but we have

reproduced the two main features characterising the type 4 neuron mentioned above as

shown in Fig 4.8.
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We have also reproduced the general characteristics for the response of the type O

neurons as shown in Fig 4.9. The pure tone response characteristics are the same as that

of the type 4 neurons of the DCN where they have a narrow region of excitation at low

intensities and are inhibited at high intensities. However, unlike the type O neurons these

neurons are excited when the notch center lies below their BF. We have not been able to

reproduce the broad excitation of the type O neurons at low intensities. This could be

because we have not included the wideband excitators that were conjectured in [123].

We use an approximation for the responses of the auditory nerve fibers for complex

stimuli like broadband noise and notched noise. The response of the auditory nerve fibers

are crucial since it it is the first layer and all subsequent layers receive inputs from the

ANFs, which might be one of the reasons that some of the response features to complex

stimuli for the type 4 neurons and type O neurons are missing. More accurate responses

for the ANFs have to be modeled by filter functions on the stimuli [134],[111] which are

in the time domain. For this work we have assumed our neurons to be in steady state. To

match experimental results more closely, we would have to simulate a dynamical model

for all our neurons and Fourier transform it to obtain rate vs frequency curves. Even

so, rate vs intensity curves would be difficult to obtain from such models. We leave the

development of such a dynamical model to future work. As we have mentioned earlier,

the parameters in the weight matrices of our model might not be optimal since they were

found by a trial and error method. Optimising these parameters would also bring the

responses closer to their experimental analogs.

Recently, convolutional neural nets (CNNs) have been used to model retinal responses

to natural stimuli and to determine the receptive fields of neurons in the visual pathway

[135]. This neural network can also be thought of as a CNN with a single filter (a frequency

dependent filter). It could be trained on various natural stimuli with experimentally

found responses to find the receptive fields of the neurons. We could then compare the

proposed receptive fields to the receptive fields obtained by such training. In a different

approach, we could train our neural network on natural stimuli with experimentally

obtained responses to optimise the parameters in the weight functions defined below.
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This would be a more algorithmic approach to determine these parameters.

As the model stands now, we have shown that the neurons in the DCN and IC are

important in the processing of notches. A full mapping between the position of these

notches to the vertical location of the sound has not yet been found. It is yet to be

experimentally found how the inputs from the IC are processed in the auditory cortex.

The final aim of this neural circuit would be to have a mapping between the position of

the notch in the spectrum to the location of the source of the sound.

4.5 Supplementary Information

Mathematical Description of the Model

In this section we give the equations for our feed forward neural network. As has been

already discussed, we are considering a rate model at its fixed point. This can be easily

generalised to a dynamical model by looking at the stimuli as a function of time and then

performing Fourier transforms to obtain rate vs frequency plots. The different weights

that we use are given in Fig 4.10. The WBIs receives inputs from ANFs 1.6 octaves

around their BFs with strength 0.04.

Figure 4.10: Weights connecting the different neurons in our model a) Weights
from ANFs to WBI(blue) and weights from WBI and ANFs to T2 with BF 10 kHz. (b)
Weights from ANF, WBI, T2 to T4 neuron with BF 10 kHz. (c)Weights from ANF to
NBI(blue) and weights from NBI, T4 to O.

The type 2 neurons receive excitatory inputs from the ANFs and inhibitory connec-

tions from the WBIs.All the neurons are labelled by their BFs. For example, a ANF with

BF f is labelled as fANF .
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IT2 = WT2,ANF rANF −WT2,WBIrWBI (4.2)

WT2,ANF = 0.24exp

(
−
(
fT2 − fANF

0.07fANF

)2
)

WT2,WBI =


0.15, 2−0.08fWBI ≤ fT2 ≤ 20.08fWBI ,

0, otherwise.

(4.3)

f(x) gives the input output function for ANFs. This input output function was taken

from [126]

rT2 =f(IT2),

f(x) =
ax

x+ b
.

(4.4)

In our model, a = 250 sp/s, b = 70 sp/s and the T2 neurons have a threshold of 35sp/s.

Note that the units of the parameter a and b are such that rT2 has the units of spikes/s.

Type 4 neurons receive excitatory connections from ANFs and inhibitory connections

from type 2 neurons and WBIs.

IT4 = WT4,ANF rANF −WT4,WBIrWBI −WT4,T2rT2 (4.5)

WT4,ANF = 0.22exp

(
−
(
fT4 − fANF

0.08fT4

))
(4.6)
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rT4 =g(inpT4),

g(x) =


ce

x
d , x ≤ 0,

x+ c, x > 0.

(4.7)

For our model, c = 30, d = 30.

The type O neurons of the IC are excited by the type 4 neurons of the DCN and

inhibited by the narrow band inhibitor(NBI) in the IC.

IO = WO,T4rT4 −WO,NBIrNBI (4.8)

The input output function for type O units were the same as that of the type 4 units.
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Chapter 5

Conclusion

In this dissertation we have studied different questions related to structure neural ac-

tivity patterns or neural representations an how the structure, connectivity of and the

computations performed by networks and neural representations are linked. In the sec-

ond chapter we found that neural manifolds formed by common population codes are

extremely nonlinear. We are exploring a few future directions. What kind of non-linear

dimensionality reduction methods can we use to find the non-linear structure of these

manifolds? Another question we are interested in exploring is how does the dimension-

ality of representation vary over different regions in the brain and what it means for the

computations performed by these regions?

In the third chapter we considered sets of neurons interacting through expander like

connections. This is an ongoing work and some of the directions we are considering

to finish it are outlined in Chapter 3 itself. In future work, I would like to explore a

network of densely connected recurrently connected subnetworks interacting with each

other through sparse expander like connections and what kind of computations these

networks can perform? Another direction I am interested in exploring is the relation

between efficient coding and sparse coding.

In the fourth chapter we investigated the interaction between different populations

of neurons in the auditory pathway which give rise to the complex repsonses of these

neurons. We would like to extend this network to the cortex and produce an actual map
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between the position of the notches to the angle of elevation of a sound source. We would

also like to explore ways to damage this network to study the effects of neurodegenerative

diseases like Alzheimer’s on the auditory pathway.
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