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In this dissertation, the low energy limit of the stress tensor, gauge current, and su-

percurrent two-point correlators are calculated in the background of the supersymmetric

magnetic brane solution to gauged five-dimensional supergravity constructed by Almuhairi

and Polchinski. The resulting correlators provide evidence for the emergence of an N = 2
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U(1) ⊕ U(1)-current algebra of left-movers (or the parity transform of left- and right-

movers depending on the sign of the magnetic field), in the holographically dual strongly

interacting two-dimensional effective field theory of the lowest Landau level.
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Chapter 1

Introduction

1.1 Gauge/gravity duality

Gauge/gravity duality has been one of the most intensely studied research topics in the-

oretical physics for the past two decades. The general idea is that a theory of quantum

gravity on a (d + 1)-dimensional space is equivalent to a quantum gauge theory on the

d-dimensional boundary of that space. Gauge/gravity duality is also commonly referred to

as “holography”, since the equivalence implies that all the dynamics and field content in a

quantum gravitational theory can be represented as degrees of freedom in a gauge theory

on the bounding surface of the space in which the gravity theory is formulated, just as a

hologram encodes the information of a 3-dimensional shape onto a 2-dimensional screen.

The explosion of research in this field started with the discovery of the Anti-de Sitter

space/Conformal Field Theory (AdS/CFT) correspondence, which is a particular realiza-

tion of holography that will be discussed shorty. However, the idea of holography has been

pursued before the AdS/CFT correspondence was discovered, in [1,2]. An early indication

of holography emerged when Bekenstein conjectured that the entropy of a black hole is

proportional to the surface area of its event horizon [3], based on arguments using the

second law of thermodynamics. In a typical non-gravitational theory, one expects that the
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entropy of a region of space is proportional to its volume, which can be argued by consid-

ering a lattice of quantum spins and computing the number of possible states. However,

Bekenstein argued that in a theory of quantum gravity, the maximum entropy of a region of

space is the entropy of a black hole occupying that space, and furthermore that entropy is

proportional to its surface area. Hawking made Bekenstein’s conjecture precise by showing

the relation is given by [4],

SBH = kc3A

4G~ (1.1.1)

where k is Boltzmann’s constant, G is Newton’s constant, ~ is Planck’s constant, c is the

speed of light in vacuum, and A is the area of the event horizon of the black hole. The

formula suggests that the total information contained in the black hole is encoded on its

boundary.

As cited earlier, this idea was explored further in the context of quantum gravity by

’t Hooft and Susskind, who suggested that it may be possible to describe all phenomena

in a quantum theory of gravity within a volume V by a set of degrees of freedom residing

on the surface of the boundary of V . While explicit examples of holographic duality have

existed since then (see for example [5]), the field did not take off until Maldacena [6] argued

that Type IIB string theory on a spacetime of the form AdS5 × S5 with coupling constant

gs and N units of 5-form flux on S5 is equivalent to N = 4 Super Yang-Mills theory in

four dimensions, with gauge group SU(N) and coupling constant gYM in its superconformal

phase. The equivalence relates the coupling constants by g2
YM = gs. It was also argued that

in the limit N → ∞ and large but fixed λ = g2
YMN , the string theory is weakly coupled

and can be approximated by supergravity. This conjecture has since been checked by many

non-trivial calculations, and suggests that there is a general duality between string theories

in a spacetime known as anti-de Sitter space and conformal field theories on its boundary.

One of the useful aspects of the duality is that it relates strongly coupled field theories

2



to weakly coupled gravity theories. In the N →∞ limit, Type IIB string theory is weakly

coupled and dominated by tree level amplitudes. If we also take λ = g2
YMN � 1 but

fixed, stringy effects are negligible and the theory can be approximated by classical Type

IIB supergravity. However, λ is the effective coupling of Super Yang-Mills theory, which

means that in this limit, strongly coupled Super Yang Mills theory is dual to classical Type

IIB supergravity. This aspect of the duality provides a possible new avenue for studying

strongly coupled field theories, where quantum effects are large and perturbation theory

breaks down. There are almost no analytical tools available to probe strongly coupled field

theories besides lattice gauge theories, in which the degrees of freedom are placed on a

lattice and a computer is used to explicitly solve for the dynamics of the theory. However,

in lattice gauge theories, one can only study Euclidean theories due to the presence of the

lattice. AdS/CFT does not have this restriction and allows for the study of theories with

Minkowski signature.

On the other side of the duality is a classical supergravity theory, in which the interest-

ing dynamics is dominated by black hole physics. Here, the computations are significantly

more tractable. Therefore, gauge/gravity duality seems to provide a powerful tool to study

strongly interacting quantum systems, of which many exist in nature (see section 1.6). It

should be mentioned that of all the well understood examples of the AdS/CFT correspon-

dence, most involve a supersymmetric gauge theory and branes in string theory. This is

because supersymmetry places very tight constraints on the quantities that can be calcu-

lated in a gauge theory, which makes computation significantly simpler when comparing

with the results one obtains from the gravity side.

In this dissertation, we provide an example of the computations one can do within

the AdS/CFT duality. Specifically, we study the example of Type IIB string theory and

Super Yang-Mills theory in a particular phase. On the field theory side, we have (3 + 1)-

dimensional Super Yang-Mills theory in a constant external magnetic field, which undergoes

RG flow to a (1 + 1)-dimensional effective theory of bosons and fermions at low energy.
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The dual description is a magnetic brane, which is a solution to 5-dimensional non-minimal

supergravity (a consistent truncation of Type IIB supergravity). The magnetic brane ge-

ometry roughly interpolates between a 5-dimensional AdS space and a 3-dimensional AdS

space. The AdS/CFT dictionary (described in section 1.4) allows us to compute correlation

functions of various operators in the field theory in the low energy limit, and the results

show the emergence of a symmetry algebra which does not exist in the full Super Yang-

Mills theory. The model provides a holographic example of how new symmetries can emerge

from RG flow, which is a phenomena known to exist experimentally and theoretically in

real-world systems (for a review, see [7]).

For the remainder of this chapter, we introduce some basic background information

on the AdS/CFT correspondence. In section 1.2 we discuss the symmetries of conformal

field theories and the special case of d = 2. In section 1.3, we discuss the properties of

anti-de Sitter space. In sections 1.4 and 1.5, we describe the AdS/CFT correspondence

and provide some details of the dictionary between the two sides of the duality. Lastly,

in section 1.6 we discuss some applications of the AdS/CFT correspondence to condensed

matter physics and provide an example of quantum criticality, which is a phenomena that is

not well-understood theoretically but is a strong candidate for the application of holographic

techniques.

1.2 Conformal symmetry in d dimensions

The conformal group of Rd−1,1 with metric ηµν = diag(− + + · · ·+) consists of spacetime

translations xµ → xµ + aµ, Lorentz transformations xµ → Λµ
νx

ν , dilatations xµ → λxµ,

and special conformal transformations

xµ → xµ + bµx2

1 + 2xνbν + b2x2 (1.2.1)
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where µ, ν = 0, . . . , d − 1 and a2 ≡ aµa
µ. These transformations form a group which

collectively preserve the form of the metric up to an arbitrary scale factor, gµν(x) →

Ω2(x)gµν(x). The conformal group is the minimal group that includes the Poincaré group

and the inversion symmetry, xµ → xµ/x2.

The generators of the translation, Lorentz, dilatation, and special conformal transfor-

mations, denoted by Pµ, Mµν , D, and Kµ, respectively, obey the commutation relations of

the conformal algebra, given by

[Mµν , Pρ] = ηνρPµ − ηµρPν [D,Pµ] = Pµ

[Mµν , Kρ] = ηνρKµ − ηµρKν [D,Kµ] = −Kµ

[Mµν ,Mρσ] = (ηµρMσν − ηµσMρν)− (µ↔ ν) [Pµ, Kν ] = 2(ηµνD +Mµν) (1.2.2)

with all other commutators vanishing. This algebra is isomorphic to the algebra of SO(d, 2)

with signature ηNM = diag(−,+, . . . ,+,−), which can be seen by identifying the generators

of the two algebras. Denoting JMN as the generators of SO(d, 2), we have the mapping

Jµν = Mµν Jµd = 1
2(Kµ − Pµ) Jµ(d+1) = 1

2(Kµ + Pµ) Jd(d+1) = D (1.2.3)

where the SO(d, 2) generators satisfy the commutation relations

[JMN , JPQ] = (ηMPJQN − ηMQJPN)− (M ↔ N) (1.2.4)

Functions on Rd−1,1 transform in the differential representation of the conformal algebra,

where the generators take the form

Pµ = ∂µ Mµν = xµ∂ν − xν∂µ

D = xµ∂µ Kµ = x2∂µ − 2xµxν∂ν (1.2.5)
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For example, under dilatations, coordinates transform infinitesimally as x → (1 + ε)x.

Expanding in powers of ε, one can easily see that under this transformation a function f(x)

on Rd−1,1 transforms as f(x) → f(x) + εxµ∂µf(x) + O(x2). Therefore, the generator of

dilatations in this representation is xµ∂µ.

The conformal group is special in d = 2. In this case, it is larger than SO(d, 2) and is, in

fact, infinite-dimensional. This is because the conformal Killing equations in 2 dimensions

have an infinite set of solutions, which make up a direct sum of two Virasoro algebras

representing a holomorphic and anti-holomorphic sector. The generators of the Virasoro

algebra, Lm where m ∈ Z, in the holomorphic sector satisfy the commutation relations

[Lm, Ln] = (m− n)Lm+n + c

12(m3 −m)δm+n (1.2.6)

where c is a constant called the central charge. The generators of the anti-holomorphic

sector, L̄m, satisfy the same relations, and the two sectors commute with each other.

The supersymmetric extension of the Virasoro algebra, the super-Virasoro algebra, is

also infinite-dimensional and is defined by the commutation relations between generators

of the stress tensor and its super-partner, the supercurrent. The commutation relations of

the holomorphic sector are given by [8],

[Lm, Ln] = (m− n)Lm+n + c

12(m3 −m)δm+n

{Gm, Gn} = 2Lm+n + c

12(4m2 − 1)δm+n

[Lm, Gn] = 1
2(m− 2n)Gm+n (1.2.7)

where Lm is the generator for the stress tensor, Gm is the generator for the supercurrent,

and {· , ·} denotes anti-commutation. The index on Gm can either be a half-integer, in

which case the algebra above is called the Neveu-Schwarz algebra, or an integer, in which

case it is known as the Ramond algebra. The anti-holomorphic sector obeys they same
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relations, and the two sectors commute with each other. This high amount of symmetry

allows one to classify 2-dimensional conformal field theories more precisely than in higher

dimensions, and in some cases completely solve for the spectrum of the theory [9].

1.3 Anti-de Sitter space in d + 1 dimensions

Anti-de Sitter space in (d+1)-dimensions, denoted as AdSd+1, can be represented as a sub-

manifold of the embedding space Rd,2. Let XM = (X0, X1, . . . , Xd, Xd+1) be coordinates

on Rd,2 with metric ηMN = diag(−,+, . . . ,+,−). Then AdSd+1 is the set of points on the

hyperboloid

−(X0)2 + (X1)2 + · · ·+ (Xd)2 − (Xd+1)2 = −g−2 (1.3.1)

where g−1 is the radius of AdSd+1, and the induced metric is

ds2 = −(dX0)2 +
d∑

µ=1
(dXµ)2 − (dXd+1)2 (1.3.2)

It is clear from the definition that the isometry group of AdSd+1 is SO(d, 2), since both the

metric ηMN and embedding equation (1.3.1) are invariant under SO(d, 2) transformations.

To establish the causal structure and give a precise definition of AdSd+1, we can change

to global coordinates (t,Ωµ, ρ) via the transformations

X0 = g−1 cos t cosh ρ

Xµ = g−1Ωµ sinh ρ

Xd+1 = −g−1 sin t cos ρ (1.3.3)

where µ = 1, . . . , d and Ωµ are coordinates on the (d−1)-dimensional sphere, or ∑µ(Ωµ)2 =
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1. The induced metric becomes

ds2 = g−2
(
− cosh2 ρ dt2 + sinh2 ρ dΩ2

d + dρ2
)

(1.3.4)

These coordinates cover the original hyperboloid once if ρ ≥ 0 and 0 ≤ t < 2π. Near

ρ = 0, the metric has the asymptotic form ds2 ∼ g−2(−dt2 + dρ2 + ρ2dΩ2
d+1), which means

the topology of the hyperboloid is S1 × Rd. The S1 factor signifies the existence of closed

timelike curves in the t direction, which means the spacetime is acausal. To obtain a

causal spacetime, one can unwrap the t coordinate by taking −∞ < t <∞. The resulting

spacetime is the universal cover of AdSd+1 as defined above. The universal cover, which

has no closed timelike curves, is what is usually referred to as AdSd+1.

To exhibit additional symmetries of AdSd+1, we change to Poincaré coordinates (t, xi, u),

defined by

X0 = 1
2u
(
1 + g−2u2 + u2δijx

ixj − u2t2)
)

X i = g−1uxi

Xd = 1
2u
(
1− g−2u2 − u2δijx

ixj + u2t2)
)

Xd+1 = g−1ut (1.3.5)

where xi ∈ Rd−1 and u > 0. These coordinates only cover half of the hyperboloid. The

metric in these coordinates is given by

ds2 = g−2
(
−u2dt2 + u2δijdx

idxj + du2

u2

)
(1.3.6)

In Poincaré coordinates, invariance under Poincaré transformations on (t, xi), which form

the subgroup ISO(1, d− 1), and the SO(1, 1) transformation

(t, xi, u)→ (ct, cxi, c−1u), c > 0 (1.3.7)

is manifest. In the AdS/CFT correspondence, the latter is identified with the dilatation
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transformation D in the conformal group on Rd−1,1.

Finally, we can change to a set of coordinates (xµ, r) that allow the radial direction to

be unrestricted. These are the coordinates we will use for the bulk of this dissertation. The

coordinate transformation is given by

Xµ = xµer Xd = gx2er

2 − sinh r
g

Xd+1 = gx2er

2 + cosh r
g

(1.3.8)

where xµ ∈ Rd−1,1 and −∞ < r < ∞. Like Poincaré coordinates, these coordinates only

cover half of the hyperboloid (1.3.1). The induced metric is

ds2 = dr2

g2 + e2rηµνdx
µdxν (1.3.9)

The AdSd+1 Killing vectors in these coordinates can be shown to satisfy the commutation

relations (1.2.2) and are given by

Pµ = ∂µ Mµν = xµ∂ν − xν∂µ

D = −∂r + xµ∂µ Kµ = x2∂µ − 2xµxν∂ν + g−2e−2r∂µ + 2xµ∂r (1.3.10)

Note that on a constant r-slice of the metric (1.3.9), as we take r →∞ the AdSd+1 Killing

vectors match the conformal generators of (1.2.5). The limit just described is how the

boundary of AdSd+1 on which the dual d-dimensional field theory lives is defined, up to

conformal transformations. We will see in the next section how fields and operators in the

respective bulk and boundary theory are matched according to the AdS/CFT correspon-

dence.
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1.4 The AdS/CFT correspondence

Our review of the symmetries of conformal field theories and anti-de Sitter space suggests

a connection between theories with conformal symmetry in d-dimensions and theories on

a AdSd+1 background, since the conformal group on Rd−1,1 matches the isometry group

of AdSd+1. This suggestion can be pushed much further and in fact a dictionary can be

established between conformal field theories in d dimensions and gravitational theories in

an asymptotically AdS spacetime in d+ 1 dimensions.

Before we describe this dictionary, we first elaborate on what we mean by a “asymp-

totically AdS spacetime”. Anti-de Sitter space is a maximally symmetric solution to the

matter-free Einstein field equations,

RMN −
1
2RGMN = ΛGMN (1.4.1)

The AdSd+1 solution satisfies

RMNPQ = g2(GMPGNQ −GMQGNP ) (1.4.2)

which shows it is a maximally symmetric spacetime, and the cosmological constant is

negative, Λ = −d(d− 1)g2/2. The metric is given by (1.3.9).

The Einstein equations also have solutions ds2 = GMNdx
MdxN which take the form

Grr ∼ 1, Grµ ∼ 0, and Gµν ∼ e2r as r → ∞. As example of this is the AdS-Schwarzchild

black hole, with metric

ds2 = g−2 dr
2

f(r) + e2r
[
−f(r)dt2 + δijdx

idxj
]

(1.4.3)

where f(r) ≡ 1 − e(d+1)(rh−r) and rh is the radius of the black hole’s event horizon. Note

that as r → ∞, f(r) → 1 and we recover the AdSd+1 metric (1.3.9) (with x0 = t). For
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the description of the AdS/CFT correspondence that follows, this is what we will mean

by asymptotically AdS spacetime. In other words, an asymptotically AdS spacetime is

one in which the metric “approaches” the metric of pure AdSd+1 as the radial coordinate

approaches the boundary. A more precise definition is given in [42] and in section 1.5 in

terms of the asymptotic expansion of the metric.

With this notion defined, we can now illustrate the AdS/CFT correspondence with

the simplest case of a scalar field. Let φ(x, r) be a real scalar field in an asymptotically

AdSd+1 spacetime, in coordinates where the spacetime metric approaches (1.3.9). In these

coordinates, the radial coordinate is in the range −∞ < r <∞ and the boundary is located

at r → ∞. At large r, the action of the real scalar field of mass m is dominated by the

quadratic terms,

S =
∫
dd+1x

√
−G

(1
2∂µφ ∂

µφ− 1
2m

2φ2
)

(1.4.4)

since all higher order terms in φ are suppressed by powers of e−r. At large r, the field

equation takes the form

0 = e−dr∂r
(
edr∂rφ

)
− m2

g2 φ (1.4.5)

This second order differential equation has two independent solutions which have the form

∼ e(∆−d)r and ∼ e−∆r. The constant ∆ satisfies the equation ∆(∆ − d) = m2/g2. The

asymptotic solution of φ may then be written as

φ(x, r) = A(x)e(∆−d)r [1 + · · · ] +B(x)e−∆r [1 + · · · ] (1.4.6)

where the dots refer to terms with higher powers of e−r.

We would like to identity the structure of this solution with some aspect of the dual

operator O(x) with conformal dimension ∆ in the dual conformal field theory. If we perturb

11



the field theory with the source J(x) for O(x), the field theory action changes by

δS =
∫
ddxJ(x)O(x) (1.4.7)

For the action to remain classically invariant under dilatations, we should assign J the

conformal dimension d−∆. From the dilatation transformation on φ, which acts through

a Lie derivative in the direction of the AdS Killing vectors (1.3.10), and from the solution

(1.4.6), it is clear that J(x) transforms in the same way as the coefficient A(x). Similarly,

the expectation value of the operator O(x) transforms in the same way as the coefficient

B(x). Therefore, we identify the source for the operator O(x) (up to some normalization)

with the coefficient of e(∆−d)r and the expectation value of O(x) with the coefficient of

e−∆r, in the asymptotic solution of φ(x, r).

The correspondence between bulk scalar fields and boundary operators can be gener-

alized to fields and operators with higher spins. In addition to the requirement that the

bulk field and operator transform in the same way under dilatations, one also requires that

the fields transform in the same representation of the Lorentz group. This forces the index

structure of the bulk field and boundary operator to match. A similar analysis to the one

in the previous paragraph can be done for these fields as well. However, in general it is not

always clear which bulk fields are dual to which boundary operators.

The AdS/CFT correspondence can be made more precise in Euclidean signature, which

was laid out independently in [10] and [11]. Given a bulk field φ in Euclidean AdSd+1,

which approaches a given function φ0 on the boundary, there is a dual operator O in a

d-dimensional conformal field theory living on the boundary such that

〈
exp

∫
ddxφ0O

〉
CFT

= ZS(φ0) (1.4.8)

where ZS(φ0) is the string (or supergravity) partition function computed with the given

boundary condition on φ. In the classical supergravity approximation, the partition func-
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tion is dominated by classical solutions to the supergravity field equations and can therefore

take the form

ZS(φ0) ≈ exp (−IS(φ)) (1.4.9)

where IS is the on-shell classical supergravity action. If the supergravity approximation is

not valid, one must include stringy corrections to IS or quantum loop corrections to the

partition function. Usually one encounters divergences when integrating over AdSd+1 to

define the classical action, particularly near the boundary. These divergences correspond

to ultraviolet divergences and anolomies in the boundary conformal field theory, and can

therefore be renormalized. They can be subtracted out systematically by adding certain

boundary terms to the action, rendering it finite. This procedure is called holographic

renormalization and is described in section 1.5 (see [42] for a review). Once a finite on-shell

gravity action is obtained, one can use the relation (1.4.8) to compute correlation functions

of O in the conformal field theory by taking functional derivatives of the gravity partition

function with respect to φ0,

〈O(x1) · · · O(xn)〉 = (−1)n+1 δnIS
δφ0(x1) · · · δφ0(xn)

∣∣∣∣∣
φ0=0

(1.4.10)

1.5 Holographic renormalization

In this section we review the systematic asymptotic expansion of bulk fields in order to

relate them to operators on the boundary. A natural starting point is to consider the bulk

metric in the absence of matter fields. In this case, Fefferman and Graham [12] showed that

the metric can be expanded in powers of the radial coordinate, and the Einstein equations

can be solved order by order in the radial coordinate to relate higher order coefficients to
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the boundary metric.∗ Setting the AdS radius g−1 = 1, in the coordinates (1.3.9), Grr = 1

and Gµr = 0, and the metric has the form†

ds2 = GMNdx
MdxN = dr2 + gµν(x, r)dxµdxν (1.5.1)

The metric gµν(x, r) can be expanded in powers of e−2r as

gµν(x, r) = e2rg(0)
µν (x) + · · ·+ e−(d−2)rg(d)

µν (x) + re−(d−2)rg(ln)
µν (x) + · · · (1.5.2)

The logarithmic term, g(ln)
µν , only appears for even d and can be computed from the field

equations in terms of the conformal structure, g(0)
µν . In fact, it is proportional to the metric

variation of the holographic conformal anomaly. For the coefficient g(d)
µν , only the trace and

covariant divergence can be obtained from the Einstein equations. To compute it fully, one

needs extra data from the boundary field theory, in particular, the expectation value of the

dual stress tensor. All the preceding terms, g(2), . . . , g(d−2), are determined explicitly from

the Einstein equations (which are algebraic in these coefficients) in terms of g(0)
µν .

When matter fields are present and coupled to gravity, the bulk field equations have a

matter contribution to the bulk stress tensor, TMN . The Einstein equations are given by

RMN −
1
2RGMN = 8πGd+1TMN (1.5.3)

where the cosmological constant term has been absorbed into the stress tensor term, and

Gd+1 is Newton’s constant in d + 1 dimensions. If the matter part of TMN diverges faster

than the cosmological constant term, ΛGMN , the matter fields correspond to irrelevant

∗The boundary metric is actually not defined uniquely by the asymptotic value of the bulk metric since
bulk metrics satisfying the Einstein equations have a second order pole at infinity. Instead, the asymptotic
value of the bulk metric induces a boundary metric up to conformal transformations.

†A more familiar choice of holographic Fefferman-Graham coordinate is given by ρ = e−r so that the
boundary of AdSd+1 is located at ρ = 0, and the metric is ds2 = dρ2/ρ2 + gµν (x,− ln ρ) dxµdxν .
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operators in the boundary field theory. To obtain a solution near the boundary, one must

treat the matter sources as infinitesimal. On the other hand, if the matter stress tensor

has a softer divergence than the cosmological constant term, the near-boundary solution

has the same form as in the case of pure gravity. Here, the matter fields correspond to

marginal or relevant operators. The matter fields in the main analysis of this dissertation

fall into the latter category.

What about other bulk fields? The field equations are second order ordinary differen-

tial equations with respect to r, so there are two independent solutions. The asymptotic

solutions fall off as e−2mr and e−2(m+n)r, respectively, where in almost all examples in the

literature, 2m and n are non-negative integers for all bosonic fields, while 2m can be a

half-integer for fermionic fields (see [13] for a counterexample). In general, the expansion

of the field Φ(x, r) involves integral powers of e−2r, and has the form

Φ(r, x) = e2mr
(
Φ(0)(x) + Φ(2)(x)e−2r + · · ·+ e−2nrΦ(2n)(x) + re−2nrΦ(ln)(x) + · · ·

)
(1.5.4)

where all spacetime and internal indices have been suppressed.

The boundary field Φ(0)(x) in (1.5.4) is interpreted as the source for the boundary

operator dual to the bulk field Φ(r, x). Expanding the field equations order by order in

the small parameter e−2r gives algebraic equations for Φ(2k) when k < n. These equations

uniquely determine Φ(2k) in terms of the source Φ(0) and its derivatives up to order 2k.

The logarithmic term Φ(ln) is also determined algebraically as a function of Φ(0) and is

related to the conformal anomalies of the dual theory. Φ(2n) is partially determined from

the equations, and is interpreted (up to normalization) as the expectation value of the dual

boundary operator. The proper normalization is obtained by using (1.4.8).
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1.6 AdS/CFT in condensed matter physics

Equipped with the AdS/CFT correspondence, a natural question to ask is whether one can

use the duality to solve previously intractable problems in either quantum gravity or field

theories. In particular, strongly coupled field theories, which appear in condensed matter

physics and for which there are almost no analytical tools to do computations, are possibly

dual to weakly coupled gravitational theories. In this light, the AdS/CFT correspondence

appears to be a very powerful tool to study strongly coupled condensed matter systems that

have not been successfully studied using traditional methods, which often involve descrip-

tions in terms of quasiparticles or symmetry breaking. In fact, holographic methods are

especially useful when there is no quasiparticle description of the system in consideration,

such as non-Fermi liquids.

One example of a strongly interacting system is the quark-gluon plasma produced in

heavy ion collisions at the LHC, in which deconfined quarks and gluons at extremely high

energy density cannot be analyzed perturbatively for most calculations. The only tool

outside of AdS/CFT used to study it is lattice gauge theory, where certain transport co-

efficients have been computed [14]. In condensed matter physics, many systems for which

no quasiparticle description exists have been observed and engineered in the laboratory.

Such systems include “strange metals” occurring in the normal state of high temperature

cuprate superconductors and heavy electron systems near the quantum critical point. Sys-

tems at a quantum critical point are a natural place to apply AdS/CFT because they have

a spacetime scale invariance. This suggests the possibility of applying AdS/CFT without

extending the duality much beyond the simplest examples. For reviews on these methods,

see [15, 22].

At a quantum critical point, a system undergoes a continuous phase transition at zero

temperature. Since there are no thermal fluctuations at zero temperature, the phase tran-

sition is driven by quantum fluctuations of the ground state as an external parameter,
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Figure 1.1: Phase diagram showing the quantum critical point gc in insulating and doped
antiferromagnets. For small coupling constant g < gc, the ground state is magnetically
ordered and the excitations are doublets of gapless spin-waves. For g > gc, the ground
state is in a paramagnetic phase with excitations that are triplets of gapped quasiparticles.
In the quantum critical region, the system is in a highly non-trivial spin liquid phase with
no quasiparticle excitations. Figure taken from [18].

such as doping or external magnetic field, is varied. As the quantum critical point is ap-

proached, the energy gap between the ground state and the excited states (called the mass

gap) shrinks to zero and the correlation length of the system diverges according to a specific

scaling law. This leads to both the scale invariance of the theory at this point, and the

lack of a quasiparticle description, as fluctuations are no longer localized but extend across

the entire system. Although the quantum phase transition occurs at zero temperature,

the quantum critical point can influence large regions of the phase diagram where T > 0,

leading to phase diagrams such as figure 1.1.

For an example of a system with a quantum phase transition, let us consider a model

of S = 1
2 spins residing on the sites of a square lattice (this example is taken from [17]).

The Hamiltonian (in units where ~ = 1) is given by

H = J
∑
〈ij〉

Si · Sj −Q
∑
〈ijkl〉

(
Si · Sj −

1
4

)(
Sk · Sl −

1
4

)
(1.6.1)
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where J,Q > 0, 〈ij〉 denotes nearest-neighbor interactions, and 〈ijkl〉 denotes sites on

a plaquette, or a square quadruple of spins on each corner. This Hamiltonian has Z4

symmetry since the lattice in invariant under Z4 rotations of the plaquettes.

In the limit g = Q/J → 0, the ground state is described by an isotropic Heisenberg

antiferromagnet with Néel order. In this state, the rotational symmetry of the first term

in (1.6.1) is spontaneously broken, and 〈Si〉 = (−1)iΦ. (−1)i alternates in value between

adjacent sites, which is crudely represented by a lattice with anti-aligned neighboring spins,

and Φ is a vector which represents the orientation and magnitude of the Néel order. In

the other limit where g = Q/J → ∞, the ground state is in a valence bond solid (VBS)

phase, where the spins decouple into pairs of singlet states, 1√
2(| ↑↓〉 − | ↓↑〉). The state is

characterized by a complex field defined by

Ψ = (−1)jxSj · Sj+x̂ + i(−1)jySj · Sj+ŷ (1.6.2)

which has a vanishing expectation value whenever the Z4 symmetry is preserved. Since

this symmetry is broken in the VBS phase, 〈Ψ〉 6= 0. The tendency to form singlet pairs

can be seen from the Hamiltonian. Since Si ·Sj = −3
4 in a spin singlet state and Si ·Sj = 1

4

in a spin one state, pairs of spin singlets in each plaquette are energetically favored when

g is large.

The quantum critical point, which occurs around g ∼ 1 and describes the transition

between the Néel phase and VBS phase, can be described by a continuous field theory with

action

S[zα, Aµ] =
∫
d3x

[
|(∂µ − iAµ)zα|2 + r|zα|2 + u|zα|4 + 1

2e2
0
(εµνλ∂νAλ)2

]
(1.6.3)

The fields zα and Aµ are a complex spinor and U(1) gauge field, respectively. S describes

the Néel phase for r < rc (in mean field theory rc = 0). When r > rc, a topological

symmetry is broken. Defining a topological current by Jµ = εµνλ∂νAλ = ∂µζ, it can be
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argued that the shift symmetry ζ → ζ + c, where c is a constant, is spontaneously broken

in the r > rc phase. Here, ζ is a massless scalar field, and the associated Goldstone boson

of the spontaneously broken symmetry (this Goldstone boson is just the Aµ photon). The

key point is that this shift symmetry is physically observable, and it was shown that the

breaking of the shift symmetry in the r > rc phase implies that 〈Ψ〉 6= 0, which signifies

the presence of VBS order. Therefore, S describes the transition from the Néel order to

the VBS order with parameter r.
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Chapter 2

Emergent super-Virasoro algebra via

magnetic branes

This chapter is an edited version of [19].

2.1 Introduction

Holography provides a powerful method for the study of strongly interacting gauge theories

with fermionic matter. It allows for a geometric interpretation of renormalization group

(RG) flow in the dual gravity theory in terms of motion along a holographic coordinate. The

dual geometry of a UV fixed point in the gauge theory is asymptotic to an AdS spacetime,

while that of an IR fixed point is asymptotic to another AdS. The dimensions of the UV

and IR asymptotic AdS geometries need not be the same, and often differ from one another

in concrete solutions. For reviews on holographic methods, see for example [20–23].

The case of four-dimensional N = 4 supersymmetric Yang-Mills in the presence of an

external magnetic field provides a non-trivial illustration of an RG flow between two fixed

points which is physically relevant. The external magnetic field is associated with the

gauging of a U(1) subgroup of the SU(4) R-symmetry group of N = 4 super Yang-Mills,

and couples to the scalars and gauginos of the theory, but not to its gauge fields. In the low
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energy limit, only fermions in the lowest Landau level contribute, and their dynamics is

confined to the spatial dimension along the magnetic field. The IR fixed point theory thus

consists of an effective two-dimensional conformal field theory (CFT) of strongly interacting

fermions of the Luttinger-liquid type (see for example [24] on strongly interacting fermion

systems in one spacial dimension).

The holographic dual to the above field theory set-up is a magnetic brane, which was

constructed in [25] (see also [26] for a review) as a solution to minimal five-dimensional

gauged supergravity. The fact that minimal five-dimensional supergravity is a consistent

truncation of Type IIB supergravity was established in [27], building on earlier results

in [?], and guarantees that the solutions of [25] can be lifted up to the UV completion,

namely Type IIB string theory. The magnetic brane is a smooth solution which interpolates

between an asymptotic AdS5 in the UV and an asymptotic AdS3 × T 2 in the IR. The

torus T 2 occupies the two spatial dimensions perpendicular to the magnetic field, and may

be represented by C/Λ for a lattice ω1Z + ω2Z with arbitrary period ω1, ω2 ∈ C. This

geometric picture indeed reflects the expected dual RG flow from four-dimensional N = 4

super Yang-Mills to a two-dimensional CFT. The qualitatively different IR behavior which

occurs in superconductors in the presence of an external magnetic field has been studied

by holographic methods as well, for example, in [28, 29].

The asymtptotic symmetry of AdS3 is enhanced from the SO(2, 2) isometry of AdS3

to left- and right-moving copies of the Virasoro algebra [30], characteristic of a dual two-

dimensional CFT. A holographic calculation of two-point correlators of the U(1) current and

stress tensor in the IR reveals the presence of a single chiral current algebra as well as left-

and right-moving Virasoro algebras [31]. The coordinate transformations on AdS3 by which

these Virasoro symmetries act in the IR originate in the UV from physical deformations

on AdS5 which are not pure coordinate transformations. This effect provides a holographic

realization for the emergence of symmetries in the IR which were not present in the UV.

The magnetic brane solution discussed above preserves no supersymmetry, and minimal
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five-dimensional supergravity has no magnetic solutions that do. Correspondingly, the

supersymmetry of the N = 4 theory is completely broken in the IR limit, as the energy

levels of scalars and gauginos are split by the magnetic field. As a result, the low energy

behavior is entirely in terms of fermions.

A generalization of the magnetic brane was proposed in [32] within the framework of

a non-minimal gauged five-dimensional supergravity in which the gauged SU(4) is trun-

cated to its U(1)3 Cartan subgroup [33, 34] (see also [35] for domain wall solutions in this

theory). In addition to the fields of the minimal five-dimensional supergravity, this non-

minimal supergravity further contains two Maxwell super-multiplets, thereby adding a pair

of Maxwell gauge fields, two real scalars, and two gauginos. Embedding the magnetic field

into the truncated U(1)3 gauge group leads to a supersymmetric magnetic brane [36]. More

precisely, the supersymmetric magnetic brane is actually a two-parameter family of solu-

tions, one parameter being the magnitude of the magnetic field, the other parametrizing its

embedding into U(1)3. A smooth supersymmetric magnetic brane solution was shown to

exist via numerical methods in [37] for a special choice of embedding with enhanced sym-

metry. To realize the corresponding low energy supersymmetry in the dual gauge theory,

it suffices to turn on a suitable constant background auxiliary D-field in addition to the

constant background magnetic field, as was shown in [36].

The supersymmetric magnetic brane solution is again asymptotic to an AdS3 × T 2

spacetime, and the IR fixed point of the dual theory is again a two-dimensional CFT.

However, the universality classes in the IR of the duals to the supersymmetric and non-

supersymmetric magnetic branes are different. The dual to the non-supersymmetric mag-

netic brane contains only fermions in the IR, while the dual to the supersymmetric brane

contains both fermions and bosons in the IR, and exhibits supersymmetry.

In the present chapter, we shall argue that the supersymmetric magnetic brane solution

has an asymptotic symmetry governed by a unitary chiral N = 2 super Virasoro algebra

for one chirality, and a purely bosonic unitary chiral Virasoro algebra plus two unitary
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chiral U(1) current algebras for the other chirality. To do so, we shall compute the two-

point functions for the stress tensor, the U(1)3 currents, and the supercurrent in the low

energy limit. In the supergravity theory, these correlators may be extracted from the

perturbations of the metric, the Maxwell gauge fields, and the gravitinos and gauginos

respectively. We shall solve the linearized field equations for the perturbations, and use the

method of overlapping expansions to extract the correlators.

We shall then show that the functional form of these correlators is consistent with

the emergence in the IR of the symmetries, including the N = 2 super Virasoro algebra,

announced earlier in this paragraph. In addition, the overall normalizations of the identity

operator in the OPE of two stress tensors, and of two supercurrents, are accessible from

the calculation of the two-point correlators of these operators, and are shown to match

precisely with the form required by the N = 2 superconfomal algebra. The corresponding

calculation of the absolute normalization for two U(1) currents is significantly complicated

by the mixing effects of the three U(1) gauge fields by the Chern-Simons term, and a

derivation of the absolute normalization of the current will not be achieved here, but will

be left for future work.

The calculations of these correlators generally follow the procedures used in [31] for the

minimal supergravity. For the case of non-minimal supergravity of interest here, however,

they become considerably more involved, especially for the correlators of the gauge currents

and supercurrent. We shall take this opportunity to present the derivations of the proper

normalizations of the holographically renormalized supercurrent in some detail.

2.1.1 Organization

The present chapter is organized as follows. In Section 2.2 we briefly review the essentials

of the non-minimal five-dimensional supergravity theory and the formalism for the holo-

graphic calculation of stress tensor and current correlators. We discuss the structure of

the supersymmetric magnetic brane solutions and demonstrate their existence numerically
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for a wide range of parameters. In Section 2.3, we compute the correlators for the stress

tensor in the IR limit, following closely the methods used in [31]. In Section 2.4 we com-

pute the correlators for the U(1)3 currents in the IR limit, and disentangle their chirality

dependence on the embedding parameters. In Section 2.5 we review the formalism for the

holographic calculation of the fermionic fields in supergravity, and extract the supercurrent

two-point function in the IR limit. In Section 2.6 we discuss the emergence of the super

Virasoro symmetry in the IR limit, by putting together the information gathered from the

preceding correlator calculations. A brief discussion of our results and outlook to future

work is presented in section 2.7. In Appendix A, a comprehensive overview is presented of

non-minimal five-dimensional supergravity, in which we pay careful attention to the vari-

ous normalizations used in the existing literature. The construction and renormalization

of the holographic supercurrent for this theory is presented in detail in Appendix B.3. The

asymptotic expansion of the Fermi fields is relegated to Appendix C.

2.2 Supersymmetric magnetic brane solution

In this section, we shall give a synopsis of non-minimal five-dimensional gauged super-

gravity [33, 34], and discuss the supersymmetric magnetic brane solutions including their

symmetries and asymptotic behavior.∗ We shall also present numerical evidence confirming

the existence of the supersymmetric magnetic brane as a regular global solution interpo-

lating between AdS5 in the UV and AdS3 × T 2 in the IR for a wide range of parameters.

2.2.1 Five dimensional supergravity synopsis

The starting point is the U(1)3 truncation of gauged five-dimensional supergravity with

gauge group SU(4). This supergravity is a truncation of the holographic dual to N = 4

∗A detailed review of non-minimal five-dimensional supergravity, including the notations and conven-
tions used in this dissertation, is relegated to Appendix A. In particular, summation over repeated indices
will be assumed throughout, unless explicitly stated otherwise.
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four-dimensional super-Yang Mills. The bosonic fields are the spacetime metric gMN where

M,N = 0, 1, 2, 3, 4 denote Einstein indices, three Maxwell fields AIM labelled by I = 1, 2, 3,

and two neutral scalars φA with coordinate index A = 1, 2. The fermionic fields are the

gravitino ψM and the gaugino λa with frame index a = 1, 2, each of which is a doublet

under the SU(2) R-symmetry, and is subject to the symplectic-Majorana condition.

The complete supergravity action Ssugra will be given by,

Ssugra = 1
8πG5

∫
d5x
√
g
(
L0 + L2 + L4

)
+ Sbndy + Sct (2.2.1)

Here, G5 is Newton’s constant in five spacetime dimensions, g = − det(gMN), while L0,L2,

L4 refer to those parts of the classical Lagrangian density which are homogeneous in Fermi

fields of degrees zero, two, and four respectively. For the purpose of holographic calculation

and renormalization the spacetime of interest will ultimately be asymptotically AdS5 and

will require a regularization cut-off near the boundary of AdS5. These holographic proce-

dures will require the addition of a boundary term Sbndy and a counter-term Sct needed for

holographic renormalization [38–42], which are computed in Appendix B.3.

Bosonic part

The bosonic part of the Lagrangian density is given by,

L0 = −1
2Rg −

1
4GIJF

I
MNF

JMN − 1
2GAB∂Mφ

A∂MφB − g2P

+ 1
48
εMNPQS

√
g

CIJKF
I
MNF

J
PQA

K
S (2.2.2)

Here εMNPQS is the totally anti-symmetric symbol in five dimensions, F I
MN = ∂MA

I
N −

∂NA
I
M is the field strength of AIM , and g is the gauge coupling constant. The rank three

totally symmetric tensor CIJK is constant by U(1)3 gauge invariance. With the above

normalization in the Lagrangian, its only non-zero component is C123 = 1 and permutations
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thereof with all other components vanishing [43]. The potential P is given by,

P = −6 (X1 +X2 +X3) (2.2.3)

while the metrics GIJ and GAB take the form,

GIJ = δIJ

2 (XI)2 GAB = 1
2δAB (2.2.4)

Both metrics are flat, a result which is special to the U(1)3 case, as was shown in [43]. The

real scalar fields XI(φ) satisfy the constraint X1X2X3 = 1. A convenient parametrization

of XI in terms of φA (on the branch where XI > 0 for all I = 1, 2, 3) is as follows,

XI = e−a
I
Aφ

A

aI1 = (1, 1,−2)I/
√

6

aI2 = (1,−1, 0)I/
√

2 (2.2.5)

The field equations for the metric gMN , the Maxwell fields AIM , and the scalars φA in the

presence of vanishing Fermi fields are as follows,

0 = RMN +GIJ

(
gPQF I

MPF
J
NQ −

1
6gMNF

I
PQF

JPQ
)

+ 1
2δAB∂Mφ

A∂Nφ
B + 2

3g
2gMNP

0 = ∂M
(√

g GIJF
JMS

)
+ 1

16ε
MNPQSCIJKF

J
MNF

K
PQ

0 = δAB∆gφ
B + 12 g2aIAXI −

9
4

3∑
I=1

F I
MNF

IMN∂A (XI)2 (2.2.6)

where ∂A are the partial derivative with respect to φA, aIA are given in (2.2.5), and ∆g is

the scalar Laplacian for the spacetime metric gµν defined by ∆gφ =
√
g−1 ∂M(√ggMN∂Nφ).

Fermionic part

The Lagrangian densities L2 and L4 were derived in [34]. The terms bilinear in the fermions

ψM and λa have been collected in L2 and are reviewed in (A.5.20) of Appendix A, while L4
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will not be needed for the calculations of the correlators, and will not be presented here.

The fermion field equations, to linear order in ψM and λa, may be found in (A.6.27)

and (A.6.28), where the SU(2) R-symmetry doublets ψM and λa have been decomposed

into pairs of single-component Dirac spinors ψM± and λa±. The field equations for the +

components of the gravitino ψM = ψM+ and of the gaugino λa = λa+ are given by,

ΨM = Λa = 0 (2.2.7)

where we have defined,

ΨM = ΓMNPDNψP + 3i
8 XI

(
ΓMNPRψNF

I
PR + 2ψNF IMN

)
− i

2ΓNΓMλafaA∂NφA

−1
4

√
3
2X

a
I ΓNPΓMλaF I

NP + 3
2gΓMNψNVIX

I − 3i√
6
gΓMλaVIXIa

Λa = ΓMDMλa + i

2ΓMΓNψMfaA∂NφA −
1
4

√
3
2X

a
I ΓMΓNPψMF I

NP

− i2

(1
4δ

abXI + T abcXc
I

)
ΓMNλbF I

MN −
3i√

6
gΓMψMVIXIa − 1√

6
gλbP ab (2.2.8)

The corresponding equations for the components ψM− and λa− of the SU(2) doublets are

given by equations (2.2.7) and (2.2.8) with the sign of g reversed g → −g. The covariant

derivative DM in (2.2.8) is defined in (A.2.10) and (A.2.11) of Appendix A, while the frame

faA, the variables XIa, and the tensor P ab are defined respectively in (A.8.31), (A.5.24), and

(A.5.23).

Supersymmetry transformations and the BPS equations

The supersymmetry transformations, to lowest order in the Fermi fields, are as follows,

δψM =
(
DM + i

8XIF
I
NP

(
ΓMNP − 4δMNΓP

)
− 1

2gVIX
IΓM

)
ε

δλA =
(
− i2GABΓM∂MφB + 3

8∂AXIF
I
MNΓMN − 3i

2 gVI∂AX
I
)
ε (2.2.9)
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Here VI is a constant vector which governs the U(1) gauging specified in (A.2.9). We are

exhibiting the supersymmetry transformation on λA = faAλ
a in (2.2.9) rather than on λa in

order to match the notations of [32,35]. The full supersymmetry transformations, including

all orders in the Fermi fields, were derived in [34].

The action Ssugra is invariant under the supersymmetry transformations (2.2.9) on the

fermions, along with the supersymmetry transformations on the Bose fields (which we are

not exhibiting here as we do not need them), provided variations trilinear in the Fermi

fields ψM and λa are neglected. The Fermi field equations to linear order in the Fermi fields

(2.2.8) are, however, invariant under (2.2.9) to leading order in the Fermi fields without

transforming the Bose fields.

The BPS equations are obtained by enforcing the conditions,

δψM = δλa = 0 (2.2.10)

on a configuration with vanishing Fermi fields. A bosonic field configuration is referred

to as being BPS provided the BPS equations (2.2.10) admit a non-zero supersymmetry

transformation ε subject to mild asymptotic conditions on ε.

2.2.2 Holographic asymptotics, stress tensor, current correlators

The maximally symmetric solution to the field equations for this non-minimal gauged

supergravity is AdS5 spacetime obtained by setting AIM = φA = 0. The only remaining

non-trivial equation is then RMN = 4g2 gMN whose maximally symmetric solution is an

AdS5 with radius 1/|g|. AdS5 admits the maximal number of 8 real supersymmetries.

We shall seek solutions which are asymptotically AdS5 in the sense that they satisfy the

Fefferman-Graham expansion. We shall choose the corresponding holographic coordinate

r = x4 and use the decomposition xM = (xµ, r) with µ = 0, 1, 2, 3 the four-dimensional

Einstein index. The asymptotic AdS5 is chosen to be located at r = +∞. In these
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Fefferman-Graham coordinates, the metric admits the following expansion,

ds2 = dr2 + gµν (x, r) dxµdxν

gµν (x, r) = e2rg(0)
µν (x) + g(2)

µν (x) + e−2rg(4)
µν (x) + re−2rg(ln)

µν (x) +O(e−4r) (2.2.11)

while the asymptotic expansions for the gauge fields and scalars are given by,

AIµ(x, r) = AI (0)
µ (x) + e−2rAI (2)

µ (x) +O(e−4r)

φA(x, r) = φA (0)(x) + e−2rφA (2)(x) + r e−2rφA (ln)(x) +O(e−4r) (2.2.12)

Here, x stands for the dependence on xµ, while Fefferman-Graham gauge is governed by

gµr = grµ = 0, grr = 1, and Ar = 0. The holographic source fields are g(0)
µν , AI (0)

µ and φA (0).

Use of the field equations in (2.2.6) shows that the coefficients g(2)
µν , g(ln)

µν , the trace of g(4)
µν ,

and φA (ln) are local functionals of g(0)
µν , AI (0)

µ and φA (0).

The response of the action Ssugra to infinitesimal variations of the source fields is given

by the expectation values of the dual operators in the field theory [38–42]. In the present

case, the response to the variation of the source fields g(0)
µν , AI(0)

µ , and φA(0) is given by the

expectation values T µν , JµI and YA respectively of the stress tensor T µν , the gauge current

J µ
I , and scalar operator YA,

δSsugra =
∫
d4x

√
g(0)

(1
2T

µν δg(0)
µν + JµI δA

I (0)
µ + YA δφ

A (0)
)

(2.2.13)

The expectation values are given in terms of the boundary field data by,

4πG5Tµν = g(4)
µν + local

4πG5J
I
µ = AI (2)

µ + local

2πG5Y
A = φA (2) + local (2.2.14)
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The indices µ, ν are lowered with the help of g(0)
µν , while the indices I and A are lowered

respectively with the help of the metrics GIJ(φ) and GAB(φ) = δAB/2 evaluated at the

fields φA (0). In equations (2.2.14) the “local” terms refers to local functionals of g(0)
µν , AI (0)

µ ,

and φA (0) which will not contribute to two-point functions of local operators evaluated at

distinct points, and will not be retained further.

The Fefferman-Graham expansion for the fermion fields ψM and λa will involve more

formalism and will be presented in Section 2.5.

2.2.3 The supersymmetric magnetic brane solution

The magnetic brane solutions considered here are holographic duals to N = 4 four-

dimensional supersymmetric Yang-Mills theory in the presence of a constant uniform ex-

ternal magnetic field. The magnetic field is taken to be in the 1-direction, perpendicular

to the 23-plane. The symmetries of this set-up are translation invariance along the four

physical spacetime directions xµ with µ = 0, 1, 2, 3, Lorentz invariance in the 01-plane, and

rotation invariance in the 23-plane. The most general Ansatz, for the bosonic fields, which

is consistent with these symmetries in this supergravity theory is given as follows,

ds2 = dr2 + e2W (r)ηmndx
mdxn + e2U(r)δijdx

idxj

F I = F I
23 dx

2 ∧ dx3

φA = φA(r) (2.2.15)

where η = diag(−1,+1) is the flat Minkowski metric in the 01-plane while δij is the flat

Euclidean metric in the 23-plane, with m,n = 0, 1 and i, j = 2, 3. It will often be convenient

to parametrize the 01-plane by light-cone coordinates x± and the 23-plane by complex

30



coordinates xu and xv = (xu)∗ defined as follows,

ηmndx
mdxn = 2dx+dx− x± = (±x0 + x1)/

√
2

δijdx
idxj = 2dxudxv xu = (x2 + ix3)/

√
2 (2.2.16)

The functions U,W, φA depend only on r in view of translation invariance in xµ, while the

field strength components F I
23 are constant in view of the Bianchi identities. The constants

F I
23 may be parametrized by the magnitude of a magnetic field B > 0 and a vector of

charges qI which specifies the embedding of the magnetic field in U(1)3 by setting,

F I
23 = qIB (2.2.17)

This parametrization is not unique, as B and qI may be rescaled while leaving their prod-

uct fixed. We shall shortly impose a normalization on qI to eliminate this arbitrariness.

Translation invariance of the Ansatz in the 23 directions allows us to consider solutions in

which the topology of the 23-space is either flat R2 or a compactification of R2 to a flat

torus T 2 which may be represented in R2 = C as the quotient C/Λ by a lattice ω1Z + ω2Z

with arbitrary period ω1, ω2 ∈ C.

Minimal five-dimensional supergravity may be obtained from non-minimal supergravity

by setting AIM = AM for I = 1, 2, 3, which amounts to setting all charges qI equal to one

another. The scalars may then be set to zero, φA = 0, so that XI = 1, which allows us to set

the gaugino to zero λa = 0. The magnetic brane solution constructed in [25] for this minimal

five-dimensional Einstein-Maxwell-Chern-Simons theory breaks all supersymmetries.

Supersymmetric magnetic brane solutions exist if and only if the relation q1+q2+q3 = 0

holds and VI satisfies VIqI = 0. We shall set,

VI = 1
3 I = 1, 2, 3 (2.2.18)
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This condition forces the composite U(1)-gauge field AM to vanish on the solution so that

the covariant derivative DM on a spinor ε reduces to the covariant derivative with the spin

connection ωM given by (A.2.11), and takes the following form on the Ansatz (2.2.15),

dxMDMε = dε− 1
2dx

mW ′ ΓrΓmε−
1
2dx

iU ′ ΓrΓiε (2.2.19)

where ′ denotes differentiation in r.

The reduced BPS equations

The supersymmetric magnetic brane solution proposed in [32,36], and further investigated

in [37], is a solution to the BPS equations (2.2.9) and (2.2.10) reduced to the Ansatz of

(2.2.15). These reduced BPS equations are invariant under Lorentz transformations in the

01-plane and rotations in the 23-plane respectively generated by,†

Γ+̂−̂ = Γ0̂1̂ = Γ+
+ = −Γ−−

Γûv̂ = −iΓ2̂3̂ = −iΓ2
3 = iΓ3

2 (2.2.20)

The generators Γ+̂−̂ and Γûv̂ square to unity, mutually commute, and commute with Γr̂ =

Γr. Their product Γ+̂−̂Γûv̂Γr̂ = −iΓ0̂1̂2̂3̂4̂ equals ±I. The two possible signs distinguish the

two irreducible representations of the Clifford algebra in odd dimensions which, however,

lead to equivalent representations of the Lorentz group, mapped into one another by parity.

Using the convention adopted in Section A.1, we choose,

Γ+̂−̂ Γûv̂ Γr̂ = I (2.2.21)

†No hats are required on the indices in Γ+
+ = −Γ−− and iΓ2

3 = −iΓ3
2 as the lowering of one index

absorbs the corresponding scale factor of the metric.
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The BPS equations may be separated by simultaneously diagonalizing Γr̂ and Γûv̂,

Γr̂ ε = γ ε Γûv̂ ε = −η γ ε (2.2.22)

where γ and η are independent from one another and may take the values ±1.

The reduced BPS equation for the index M = r is a differential equation for ε which

we shall not need here. Assuming the existence of a non-vanishing spinor ε, the reduced

BPS equations of (2.2.10) for M = µ = 0, 1, 2, 3 are algebraic and given by,

0 = W ′ − g γVIX
I + 1

2η B qIXI e
−2U

0 = U ′ − g γVIX
I − η B qIXI e

−2U

0 = δAB(φB)′ + 6g γVI∂AXI + 3η B qI∂AXI e
−2U (2.2.23)

The magnitude of g may be scaled to 1 by rescaling B and r. The eigenvalue γ is correlated

with the sign of g. To see this, note that the supersymmetric magnetic brane solution should

reduce to the AdS5 solution upon letting B → 0. For this solution to exist, given that we

have chosen the branch XI > 0 in (2.2.5), along with (2.2.18), we must have,

γ = g (2.2.24)

Having set γ = g for |g| = 1, the BPS equations are independent of the sign of g. Similarly,

the eigenvalue η is given as follows,

η = sign(q1q2q3) (2.2.25)

a relation which is required in order to have a solution asymptotic to AdS3 × T 2.
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The AdS3 × T 2 solution

The reduced BPS equations, with a supersymmetric charge arrangement q1 + q2 + q3 = 0

and none of the charges qI vanishing, admit an exact AdS3 × T 2 solution [32] given by,

W = r

L
e2U = q̄ B XI =

(
qI
)2

4q̄2 F I
23 = qIB (2.2.26)

Recall our choice B > 0, and the charges qI characterizing the embedding of the magnetic

field in the U(1)3 gauge group. The AdS3 radius L and the combination q̄ are given by,

1
L

= 3
2VIX

I q̄ = 1
2 |q

1q2q3|
1
3 (2.2.27)

The above AdS3×T 2 solution is regular, and preserves one of the four symplectic Majorana

supersymmetries. When one of the charges qI vanishes, the number of supersymmetry

generators is doubled but, as is clear from the above expressions, there is no regular solution

with an asymptotic AdS3 × T 2 behavior in the IR. Henceforth, we shall assume that none

of the charges vanishes and, by suitably rescaling B, we shall choose,

q̄ = 1 (2.2.28)

As a function of the three real charges qI , subject to the condition VIq
I = 0, one readily

establishes the allowed range of the AdS3 radius L, which is 0 < L < L0 with L0 = 22/3/3.

The maximum value L0 is uniquely attained when any two of the charges qI coincide.

Asymptotic AdS3 × T 2 behavior of the supersymmetric magnetic brane

The supersymmetric magnetic brane solution, for given magnetic field B and embedding

charges qI , has F I
23 = BqI and the leading asymptotics for its remaining fields coincide with

the exact AdS3 × T 2 solution given in the preceding subsection. The detailed r → −∞

asymptotics near AdS3 × T 2, including the leading deviation away from the exact solution
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of (2.2.26), is found to be given as follows,

W (r) = r

L
+ 1
σ

(
2VI∂AXI

(0)c
A − 2

3Lc
0
)
eσr +O

(
e2σr

)
U (r) = 1

2 lnB + c0 eσr +O
(
e2σr

)
φ1 (r) = −

√
6 ln

(
q1q2

)
+ c1 eσr +O

(
e2σr

)
φ2 (r) = −

√
2 ln

(
q1

q2

)
+ c2 eσr +O

(
e2σr

)
(2.2.29)

The coefficients c0, c1, c2 are components of an eigenvector, associated with eigenvalue σ,

of a symmetric matrix S. Explicitly, these relations are given by,

S


c0

cA

 = σ


c0

cA

 (2.2.30)

where the indices A,B take the values 1, 2, and S is given by,

S00 = 4
3L

S0A = −VI∂AXI

SAB = −6VI∂A∂BXI − 3ηBqI∂A∂BXIe
−2U (2.2.31)

Here, it is understood that the fields XI and U are evaluated on the AdS3 solution of

(2.2.26), which is exclusively in terms of the charges qI . Since S is a symmetric matrix, its

eigenvalues σ are guaranteed to be real and they solve the characteristic equation,

σ3 − 4
L2σ + 16 = 0 (2.2.32)

For 0 < L < 1/
√

3, the three roots are real, two being positive and one negative. The

root chosen here is always the largest positive root. At L = 1/
√

3, we have σ = 2, and for
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L < 1/
√

3 the value of σ monotonically increases with decreasing positive σ, reaching the

asymptotic expression σ ≈ 2/L as L → 0. The range 0 < L < L0 = 22/3/3 established

earlier for L is strictly contained in this interval since L0 < 1/
√

3, so that the two positive

roots never become degenerate for 0 < L < L0, and the largest root always satisfies σ > 2.

The overall magnitude of the vector (c0, c1, c2) is not fixed by the local asymptotic ex-

pansion, but may be related, by numerical integration of the full supersymmetric magnetic

brane solution which interpolates between AdS3×T 2 and AdS5, to the asymptotic behavior

near AdS5, to be given below.

Asymptotic AdS5 behavior of the supersymmetric magnetic brane

Given the magnetic field B and the embedding charges qI , as well as the AdS3 × T 2

asymptotics of the solution spelled out in the preceding subsection, the r →∞ asymptotics

of the metric fields U,W are as follows,

W (r) = r + lnW0 +O
(
e−4r

)
U(r) = r + lnU0 +O

(
e−4r

)
(2.2.33)

The constants W0 and U0 are functions of the magnetic field B, the charges qI , and the

overall magnitude of the coefficient vector c0, c1, c2 in the AdS3 × T 2 asymptotics, and can

be read off from the numerical solution, where the metric at r →∞ takes the form,

ds2 = dr2 +W 2
0 e

2rηmndx
mdxn + U2

0 e
2rδijdx

idxj (2.2.34)

The physical meaning of the constants W0 and U0 is to provide the constant rescaling

factors between the coordinates of spacetime xm, xi between the IR region for r → −∞

and the UV region for r → +∞. Naturally, one could rescale the coordinates xm by W0 and

xi by U0 to recover standard normalizations in the AdS5 region, at the expense of rescaling

the coordinates also in the AdS3 × T 2 region. The present choice of normalization will be
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the more convenient one for our purpose.

The leading asymptotic behavior of the scalar fields φA is given by (2.2.26) and the

second line in (2.2.12). Its sub-leading asymptotics will not be presented here, as it will

not be needed in the sequel. The coefficients g(4)
µν and φA (2) are not determined by the local

expansion, but may again be determined by numerically integrating the field equations.

Global regular solutions obtained numerically

The existence of a regular solution to the reduced BPS equations of (2.2.23) for the charge

assignment q1 = q2 was shown numerically in [37]. We shall supplement this result by

exhibiting regular solutions to (2.2.23) which interpolate between AdS3×T 2 and AdS5 over

a range of charge assignments, again by numerical integration. Without loss of generality,

we permute the qI so that q1 and q2 have the same sign and q2 < q1. We introduce a single

parameter α to characterize the solution, as follows,

α = q2

q1 0 < α < 1 sign(q3) = η (2.2.35)

where η is the sign factor introduced in (2.2.25).

The corresponding asymptotics of the metric as r →∞ is given by (2.2.34) and XI → 1,

while the asymptotics as r → −∞ for the metric function U is constant, and is given for

all functions in (2.2.29). In particular, for the scalar fields XI , the asymptotics as r → −∞

is given by the AdS3 × T 2 solution in (2.2.26) and we have,

X1 =
(

1
α(1 + α)

) 2
3

X2 =
(

α2

1 + α

) 2
3

X3 =
(

(1 + α)2

α

) 2
3

(2.2.36)

We have verified that by using the largest positive root σ of (2.2.32) in the initial conditions

for the AdS3×T 2 region, there always exists a solution that matches onto AdS5 in the UV
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Figure 2.1: The r-dependence of the metric functions U and W , obtained numerically for
α = 1, 0.25, 0.1, 0.05, and 0.01.

Figure 2.2: The r-dependence of the scalar functions X1 and X2, obtained numerically for
α = 1, 0.25, 0.1, 0.05, and 0.01.
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for the following values,

α = 1, 0.5, 0.25, 0.1, 0.05, 0.025, 0.01, 0.005, 0.0025, 0.001 (2.2.37)

of which we have depicted a subset in figures 2.1 and 2.2. The dependence on α from one

value to another appears to be smooth.

2.3 Stress tensor correlators

In this section, we shall compute the two-point correlators of the components in the 01-

plane of the stress tensor in the presence of the supersymmetric magnetic brane solution,

in the IR limit. We follow the method of [31] and solve the linearized Einstein equations for

the corresponding components of the metric fluctuations δgµν with specified holographic

boundary condition δg(0)
µν . From this solution, we obtain the induced expectation value

T µν (x) of the stress tensor via the first equation of (2.2.14) and read off the correlator

from the linear response formula,

T µν(x) = i

2

∫
d4y

√
g(0) 〈T µν(x)T ρσ(y)〉 δg(0)

ρσ (y) (2.3.1)

We begin by isolating the fluctuations needed to calculate the desired correlators.

2.3.1 Structure of the perturbations

In this section we shall determine the structure of the perturbations around the super-

symmetric magnetic brane solution needed to compute the two-point correlators of the

components of the stress tensor and the currents in the directions of the 01-plane.

Since the supersymmetric magnetic brane solution is invariant under translations in xµ

for µ = 0, 1, 2, 3 a general linear perturbation is a linear combination of plane waves, each

with given momentum pµ. Physically relevant to probing the dynamics of the effective low
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energy CFT in the 01-plane is the dependence of the perturbations on the components p±

only, so that we may set p2 = p3 = 0.

Arbitrary perturbations of the metric around the supersymmetric magnetic brane will

generally mix with gauge field and scalar perturbations. However, if we restrict the per-

turbations of the metric to the directions in the 01-plane, namely if we turn on only the

components δg±± and δg+− then it may be seen from the action that no mixing with

the other components of metric fluctuations, the gauge fields, and the scalar fields will

occur as long as p2 = p3 = 0. Key ingredients in the argument are the invariances of

the supersymmetric magnetic brane under translations along xµ for µ = 0, 1, 2, 3, Lorentz

transformations in the 01-plane, and rotations in the 23-plane.

Consider, for example, the effect of turning on the fluctuation δg++ = g+−g+−δg−− on

the gauge kinetic energy term proportional to GIJ(φ)gMNgPQF I
MPF

J
NQ. Since the gauge

field strength of the supersymmetric brane solution is in the direction F I
23 only, a fluctuation

linear in δg++ can turn on neither the fluctuation δF I
+− nor the fluctuation δF23. It can

also not turn on the fluctuations of the scalar field. The arguments for the other couplings

in the action are similar.

Therefore, we consider the following plane wave perturbation hmn(r, p±)eip·x with mo-

mentum p± of the supersymmetric magnetic brane,

ds2 = ds2
B + hmn(p±, r) eip·x dxmdxn

F I = qIB dx2 ∧ dx3

φA = (φB)A (2.3.2)

where ds2
B and (φB)A are respectively the metric and the scalar fields of the supersymmetric

magnetic brane given by the Ansatz (2.2.15) with U,W, (φB)A provided by the numerical

solution to (2.2.23). The indices m,n take the values 0, 1 or equivalently ± and we shall
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use the following notations throughout for the inner product and norm in the 01-plane,

p · x = p+x
+ + p−x

− p2 = 2p+p− (2.3.3)

Finally, we shall be interested only in momenta which are small compared with the inverse

radius |g| of AdS5, which here has been set to 1, so that we shall work in the regime,

0 < p2 � 1 (2.3.4)

In this limit the equations for the metric perturbations h±± may be solved by matching

the asymptotic expansion valid in the near and far regions. The near region is the range

of r where AdS3 × T 2 is a good approximation, namely e2r � 1, while the far region is

the range of r for which we can neglect the momenta, namely p2 � e2r. In view of (2.3.4),

the overlap region p2 � e2r � 1 is parametrically large, and matching the solutions in the

near and far regions in the overlap region will produce a linearized solution valid for all r.

The linearized field equations for the perturbations (2.3.2) of the metric are,

0 = 3h′′±± − 6(W ′ − U ′)h′±± + 12(W ′)2h±± − Fh±±

0 = (p∓h±± − p±h+−)′ − 2W ′(p∓h±± − p±h+−)

0 = 3h′′+− + 6U ′h′+− + 3e−2W (p2
−h++ + p2

+h−− − 2p+p−h+−)− Fh+−

0 = h′′+− − 2W ′h′+− − 2W ′′h+− (2.3.5)

Here, the prime denotes differentiation with respect to r, the dependence on r and p± is

understood, and we have introduced the following abbreviation,

F = B2e−4U

( q1

X1

)2

+
(
q2

X2

)2

+
(
q3

X3

)2
+ 8

( 1
X1 + 1

X2 + 1
X3

)
(2.3.6)

We shall need of this function only its asymptotic values in the AdS5 and AdS3×T 2 regions,
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which evaluate to 24 and 12/L2, respectively.

2.3.2 Near Region

In the near region, where e2r � 1, we set the background metric equal to the metric of the

AdS3 × T 2 solution of (2.2.26) given by,

ds2
B = dr2 + e

2r
L ηmndx

mdxn +Bδijdx
idxj (2.3.7)

and the scalar fields XI equal to the values given in (2.2.26). All dependence on the

charges qI and the magnetic field B is through the AdS3 radius L only. The linearized field

equations derived from (2.3.5) in the near region are given by,

0 = h′′±± −
2
L
h′±±

0 = (p±h+− − p∓h±±)′ − 2
L

(p±h+− − p∓h±±)

0 = h′′+− −
4
L2h+− + e−

2r
L

(
p2
−h++ + p2

+h−− − 2p+p−h+−
)

0 = h′′+− −
2
L
h′+− (2.3.8)

where the prime denotes differentiation with respect to r. From the equations on the first

and last lines of (2.3.8), it is clear that the solutions for the components h±± and h+− are

all of the form,

hµν(p±, r) = sµν(p±) e 2r
L + tµν(p±) (2.3.9)

where the Fourier coefficients sµν and tµν depend on p±, but are independent of r. The

equations on the second and third lines in (2.3.8) impose the following relations between
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the Fourier coefficients sµν(p±) and tµν(p±),

t++(p±) = p+

p−
t+−(p±)

t−−(p±) = p−
p+

t+−(p±)

t+−(p±) = L2

4

(
p2
−s++(p±) + p2

+s−−(p±)− 2p+p−s+−(p±)
)

(2.3.10)

As is familiar from [31], we can identity the Fourier coefficients sµν and tµν as contributing

to the Fourier transforms of the perturbation of the conformal boundary metric δg(0)
µν and

the boundary stress tensor δg(4)
µν , respectively. The top two lines of (2.3.10) express the

linearized conservation equations of the stress tensor‡ while the last line expresses the

linearized trace anomaly of the stress tensor.

2.3.3 Far region

In the far region, where p2 � e2r, we can ignore the momentum dependent terms, and we

shall no longer exhibit the dependence on the momenta of the fluctuations hµν . We will

also take h+− = 0 in the far region, since this term will contribute to correlators involving

T+− which contain only contact terms.

The linearized field equations for h±± with the momentum terms dropped are identical

to the equations for e2W in the Einstein equations (2.2.6) with Ansatz (2.2.15). Therefore,

a first solution is given by,

h1 (r) = e2W (r) (2.3.11)

where W is the interpolating solution of the BPS equations. By analogy with [31], we find

‡Care is required in relating the AdS3 stress tensor t̂µν to tµν as their relation involves accounting for
a trace term whose net effect is to reverse a sign as follows: t̂±± = t±± and t̂+− = −t+−, as is explained
for example in [41,44].
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that another linearly independent solution is given by,

h2(r) = e2W (r)
∫ r

∞
dr′ e−2W (r′)−2U(r′) (2.3.12)

Asymptotically, these functions have the following form. As r →∞, we have, §

h1(r) ∼ e2r h2(r) ∼ − 1
4U2

0
e−2r (2.3.13)

while the asymptotics in the overlap region where p2 � e2r � 1, namely as r → −∞, is

given as follows,

h1(r) ∼ e
2r
L h2(r) ∼ − L

2B (2.3.14)

Therefore, our solution in the far region is given by the linear combination,

h±±(r) = h1(r) δg(0)
±± − 4U2

0h
2(r) δg(4)

±± (2.3.15)

with coefficients chosen to obtain the following asymptotic form at r →∞:

h±±(r) ∼ e2r δg
(0)
±± + e−2r δg

(4)
±± (2.3.16)

The r → −∞ asymptotics of (2.3.15) then follows, by

h±±(r) ∼ e
2r
L δg

(0)
±± + 2U2

0L

B
δg

(4)
±± (2.3.17)

§The solution h1(r) actually has a pre-factor of W−2
0 which may be absorbed into the momenta, p±, be-

cause the momenta are defined as conjugate to coordinates x± on the AdS5 boundary with the conventional
normalization. Therefore, we will not carry these factors around in the sequel.
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2.3.4 Matching and IR Correlators

In the overlap region where p2 � e2r � 1, the solutions (2.3.9) and (2.3.17) should match.

Eliminating sµν and tµν between (2.3.9), (2.3.17), and (2.3.10) gives the following relations

between δg
(0)
±± and δg

(4)
±±,

δg
(4)
++ = BL

8U2
0

(
p3

+
p−

δg
(0)
−− + p+p− δg

(0)
++

)

δg
(4)
−− = BL

8U2
0

(
p3
−
p+

δg
(0)
++ + p+p− δg

(0)
−−

)
(2.3.18)

From (2.2.14), the stress tensor is given by 4πG5T±± = δg
(4)
±± up to local terms. In order to

normalize the stress tensor correlator to the conventional form suitable for two-dimensional

CFTs, we define the two-dimensional stress tensor by T̃±± = U2
0V2T±±, where V2 denotes

the volume of the compactified 23-plane. Writing T̃±± in terms of the Brown-Henneaux

central charge of the 1+1 dimensional CFT, given by,

c = 3L
2G3

= 3LV2

2G5
B (2.3.19)

we obtain,

T̃±± = c

48π
p3
±
p∓

δg
(0)
∓∓ + local (2.3.20)

If the 23-plane is left uncompactified, c should be viewed as the central charge per unit

area instead. Reading off the two-point functions from (2.3.1), we find,

〈
T̃±±(p)T̃±±(−p)

〉
= c

24π
p3
±
p∓

(2.3.21)
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up to contact terms. All other correlators involve only contact terms. Fourier transforming

this correlator to position space, we obtain,

〈
T̃±±(x)T̃±±(0)

〉
= c

8π2
1

(x±)4 (2.3.22)

This is the standard formula for the stress tensor correlator in a 1+1 dimensional CFT

with central charge c.

2.4 Current-current correlators

We now compute the two-point correlators for the U(1)3 currents, following the method of

the previous section. The results are qualitatively different from those of [31] because we

have three Maxwell fields instead of one, and a corresponding dependence on the values of

the charges qI , and qualitatively on the signs of the charges. We solve the linearized field

equations (2.2.6) for the Maxwell fields with specified boundary condition AI(0)
µ (x), read

off the current from the second equation in (2.2.14), and extract the correlators from the

linear response formula,

J Iµ (x) = i
∫
d4y

√
g(0)

〈
J Iµ(x)J Jν(y)

〉
δA

(0)
Jν (y) (2.4.1)

We begin by isolating the fluctuations needed to calculate the desired correlators.

2.4.1 Structure of the perturbations

We shall consider only the correlators of the components J I
± of the currents along the 01-

directions, since we restrict here to probing the effective CFT that lives in the x± space. As

with the stress tensor correlators, translation invariance of the supersymmetric magnetic

brane in xµ for µ = 0, 1, 2, 3 is used to Fourier decompose the fluctuations into plane waves

of given momentum pµ. Restricting to the correlators of J I
±, we retain dependence on p±
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only, and set p2 = p3 = 0. The perturbed gauge field takes the form,

F I = qIBdx2 ∧ dx3 + dAIp

AIp = aIm (p±, r) eip·x dxm (2.4.2)

Turning on an arbitrary fluctuation of the gauge fields will generally induce perturbations of

the metric and of the scalar fields. But having set p2 = p3 = 0, using translation invariance

in xµ, Lorentz invariance in the 01-plane, and rotation invariance in the 23-plane, we find

that turning on perturbations of the gauge fields in the directions of only the 01-plane will

turn on perturbations of neither the metric nor the gauge field in the 23-directions, nor the

scalar fields. We can therefore consistently set all those perturbations to zero.

It will be convenient to define εI± ≡ p−a
I
+ ± p+a

I
−. In this notation, the linearized

equations (2.2.6) for the Maxwell fields reduce to,

e2W
[
e2UGIJ

(
εJ−
)′]′
− B

2 e
2WMIK

(
εK+
)′
− p2e2UGIJε

J
− = 0

e2UGIJ

(
εJ+
)′
− B

2MIKε
K
− = 0 (2.4.3)

Throughout, it will be convenient to define the following 3× 3 constant matrix,

MIJ =
∑
K

CIJKq
K (2.4.4)

We will solve equations (2.4.3) in the low energy limit given by (2.3.4).

2.4.2 Near region

In the near region we have e2r � 1, the background metric and scalars are given by (2.2.26),

and the metric GIJ = 8δIJ/(qI)4 is constant. Substituting these values into (2.4.3) and
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simplifying by a factor of B, we obtain after some further rearrangements,

(
GIJ ε

J
−

)′′
− 1

4MIJG
JKMKL ε

L
− − p2e

2r
L GIJ ε

J
− = 0(

GIJε
J
+

)′
− 1

2MIJε
J
− = 0 (2.4.5)

To decouple this system of equations, we seek to diagonalize the matrices involved. While

it may seem natural to multiply the first line to the left by G−1, this would lead to a matrix

G−1MG−1M in its second term, and this matrix is not generally symmetric. Instead, we

multiply on the left by (qI)2 (which is essentially the square root of GIJ), and rearrange

the equations as follows,

(
εI−
)′′

(qI)2 −
∑
JK

M IJMJK εK−
(qK)2 − p

2e−
2r
L
εI−

(qI)2 = 0
(
εI+
)′

(qI)2 −
∑
J

M IJ εJ−
(qJ)2 = 0 (2.4.6)

where the matrix M is defined by

M IJ = 4
∑
K

CIJK

qK
(2.4.7)

In view of the normalization of the product of the charges qI adopted in (2.2.28), the matrix

M is related to the matrix M of (2.4.4) by the diagonal matrix of charges Q,

Q2MQ2 = 16M Q = diag
(
q1, q2, q3

)
(2.4.8)

Since M is manifestly symmetric its eigenvalues mI for I = 1, 2, 3, are real and M can

be diagonalized by a real orthogonal matrix R, so that we have M = RDRt where D =
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diag (m1,m2,m3). In terms of the new functions ε̂I±, defined in terms of εI± and R by,

εI±
(qI)2 =

∑
J

RIJ ε̂J± (2.4.9)

the set of equations (2.4.6) decouples and we have,

(
ε̂I−
)′′
−
[
(mI)2 + p2e−

2r
L

]
ε̂I− = 0(

ε̂I+
)′
−mI ε̂

I
− = 0 (2.4.10)

The first line in (2.4.10) is the modified Bessel equation in the variable pLe−
r
L for index

LmI and using the definition p =
√
p2. The solutions which are regular at the horizon are

proportional to the modified Bessel function K as follows,

ε̂I− (r) ∼ KLmI

(
pLe−

r
L

)
(2.4.11)

In the low energy limit of (2.3.4), we shall expand the above solutions in the limit p2e−
2r
L �

1 where r/L � 1. Using the asymptotics of the modified Bessel function, the asymptotic

of ε̂I− takes the following form,

ε̂I− (r) = kI+ e
+mIr − kI− e−mIr (2.4.12)

The pre-factors kI± are given by,

kI± = CI

Γ (1∓ LmI)

(
pL

2

)∓LmI
(2.4.13)

where CI are integration constants which do not depend on the subscript ±. Using this

result, we obtain ε̂I+ by integrating the second equation in (2.4.10) to get,

ε̂I+ (r) = kI+ e
+mIr + kI− e

−mIr + ε̂I0 (2.4.14)
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where ε̂I0 are integration constants which depend on p± and qI , but are independent of r.

Converting back to aI±, we find,

aI± (r) =

(
qI
)2

p∓

∑
J

RIJkJ± e
±mJr + p±a

I
0 (2.4.15)

where the constants aI0 are related to ε̂I0 as follows, p2aI0 = ∑
J(qI)2RIJ ε̂J0 .

2.4.3 Far region

In the far region, p2 � e2r, we neglect the momentum dependent terms in (2.4.3). The

first equation may then be integrated exactly, and we obtain the first order system,

e2UGIJ

(
εJ+
)′
− B

2MIJε
J
− = 0

e2UGIJ

(
εJ−
)′
− B

2MIJε
J
+ = ã0I (2.4.16)

where ã0I is a set of integration constants. Since the matrixMIK is constant and invertible,

we can absorb ã0I by a constant shift in εJ+, which we shall denote by p2αI . Converting

back to aI±, the equations reduce to the following form,

(
aI± − p±αI

)′
∓HI

J

(
aJ± − p±αJ

)
= 0 (2.4.17)

where H is a 3× 3 matrix-valued function of r defined by,

HI
J(r) = B

2 G
IK(r)MKJ e

−2U(r) (2.4.18)

The solutions of equations (2.4.17) are given by path ordered exponentials, defined by,

U±(r, r′) = P exp
{
±
∫ r

r′
dρH(ρ)

}
(2.4.19)
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where the ordering is such that H(r) is to the left of H(r′) in the expansion of the expo-

nential in powers of H or, equivalently, that

∂r U±(r, r′) = ±H(r)U±(r, r′)

∂r′ U±(r, r′) = ∓U±(r, r′)H(r′) (2.4.20)

The path ordered exponentials satisfy U±(r, r) = I and the composition law,

U±(r, r′)U±(r′, r′′) = U±(r, r′′) (2.4.21)

The solution to (2.4.17) may then be expressed in matrix notation, as follows,

(a± − p±α) (r) = U±(r,∞)
(
a

(0)
± − p±α

)
(2.4.22)

Note that the r′ →∞ limit of U±(r, r′) is well-defined since H(r′) tends to zero exponen-

tially due to the e−2U factor in (2.4.18), while the metric GIK tends to a finite limit.

Asymptotics of the far region solution for r → +∞

The asymptotics of a±(r) as r → +∞ may be evaluated in terms of the asymptotics of XI

and e2U by substituting the AdS5 solutions into the integral and keeping only the first two

leading orders in the expansion, and we find,

aI± (r) = a
I(0)
± + a

I(2)
± e−2r (2.4.23)

where

a
I(2)
± = ∓ B

2U2
0

∑
J,K

δIJMJK

(
a
K(0)
± − p±αK

)
(2.4.24)

51



In the AdS5 approximation which is valid here, we have GIJ = 2δIJ which has allowed for

further simplification in this formula. The unknown in this equation is the constant αI ,

which we shall now determine by matching with the solution in the near region.

Asymptotics of the far region solution for r → −∞

To obtain the r → −∞ asymptotics in the far region we use (2.4.21) to factorize the

path-ordered exponential in (2.4.22) at an arbitrary point r0 in the overlap region,

a±(r)− p±α = U±(r, r0)U±(r0,∞)
(
a

(0)
± − p±α

)
(2.4.25)

When both r and r0 are in the overlap region, the matrix H in U±(r, r0) may be evaluated

on the AdS3 × T 2 solution and is constant. The corresponding path ordered exponential

may then be readily evaluated,

U± (r, r0) = exp
{
± 1

16Q
4M (r − r0)

}
(2.4.26)

where we recall that Q = diag (q1, q2, q3). Next, we define the combinations,

Ω± = exp
{
∓ 1

16Q
4Mr0

}
U±(r0,∞) (2.4.27)

Within the approximations made, the matrices Ω± are independent of r0 in the overlap

region. If need be, they may be evaluated numerically from the numerical supersymmetric

magnetic brane solution to the BPS equations. Making use also of the relation Q4M =

16Q2MQ−2 we obtain the following expression for the coefficients a±,

a±(r)− p±α = Q2 e±rM Q−2 Ω±
(
a

(0)
± − p±α

)
(2.4.28)

Finally, in order to match the behavior of the far and near region solutions in the overlap

region, we shall need a decomposition of the solution onto the exponential modes, analogous
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to the one we had obtained in (2.4.15) for the near region solution. This may be done by

diagonalizing M = RDRt by an orthogonal matrix R, and we have,

aI±(r)− p±αI =
∑
JK

(
Q2R

)IJ
e±rmJ

(
RtQ−2 Ω±

)JK (
a

(0)K
± − p±αK

)
(2.4.29)

in component notation. By inspection, it may be verified that the functional behavior

of (2.4.29) in the overlap region is via the exponentials e±mIr and matches the functional

behavior of the near region solution in (2.4.15).

2.4.4 Matching

In the overlap region, we relate the solutions of the near and far regions by matching

(2.4.15) and (2.4.29) as functions of r. This allows us to solve for the constants CI , aI0

and αI , though we shall neither need nor evaluate CI . Matching the constant terms in

(2.4.15) and (2.4.29), we immediately find aI0 = αI . Matching the coefficients of the ratios

of the exponential terms for indices + and − we obtain three relations labeled by the index

I = 1, 2, 3 for the three parameters αJ ,

p+

p−

kI+
kI−

=
∑
J (RtQ−2 Ω+)IJ

(
a
J(0)
+ − p+α

J
)

∑
J (RtQ−2 Ω−)IJ

(
a
J(0)
− − p−αJ

) (2.4.30)

Note that the integration constants CI which arose in (2.4.13) drop out of these relations.

We shall solve these equations by introducing a 3× 3 matrix Z, defined by,

ZI
J ≡

∑
K

(
(Ω+)−1Q2R

)IK
f (mK)

(
RtQ−2 Ω−

)K
J (2.4.31)

Here, f is a function obtained from the ratio kI+/kI−, and is given as follows,

f(x) = Γ (1 + Lx)
Γ (1− Lx)

(
p2L2

4

)−Lx
(2.4.32)
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Equivalently Z may be defined by the corresponding matrix relation,

Z = (Ω+)−1Q2Rf(D)RtQ−2 Ω− (2.4.33)

In terms of the matrix Z, we solve for αI in (2.4.30) as follows,

α = I

I − Z

a(0)
+

p+
− Z a

(0)
−

p−

 (2.4.34)

Substituting this result into (2.4.24) we obtain,

a
I(2)
+ = B

2U2
0

∑
JK

δIJ
(
M Z

I − Z

)
JK

(
a
K(0)
+ − p+

p−
a
K(0)
−

)

a
I(2)
− = B

2U2
0

∑
JK

δIJ
(
M I

I − Z

)
JK

(
a
K(0)
− − p−

p+
a
K(0)
+

)
(2.4.35)

where again in the AdS5 approximation we have used GIJ = 2δIJ .

2.4.5 Extracting the current-current correlators

From (2.4.35), the current in terms of the asymptotic data of the gauge field is given by

4πG5J
I
µ = aI(2)

µ (2.4.36)

Similar to the two-dimensional stress tensor, we can define the two-dimensional current by

J̃ I
± ≡ U2

0V2J I
±. The modified current in terms of the gauge field perturbation is

J̃ I± = U2
0 c

6πBL a
I(2)
± (2.4.37)
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Using (2.4.1), we can read off the correlators, which are given by

〈
J̃ I

+ (p) J̃ J
+ (−p)

〉
= − c

6πL
p+

p−

(
M Z

I − Z

)
IJ〈

J̃ I
− (p) J̃ J

− (−p)
〉

= − c

6πL
p−
p+

(
M I

I − Z

)
IJ〈

J̃ I
− (p) J̃ J

+ (−p)
〉

= + c

6πL

(
M I

I − Z

)
IJ

(2.4.38)

where the 〈J̃−J̃+〉 correlator was read off from the second line in (2.4.35). We would have

obtained the same result, up to contact terms, if we had instead read off the correlator

from the first line in (2.4.35).

2.4.6 The axial anomaly

The two-dimensional axial anomaly relations are obtained by forming the following linear

combinations from (2.4.38),

p+a
I(2)
− + p−a

I(2)
+ = B

2U2
0

∑
JK

δIJMJK

(
p+a

K(0)
− − p−aK(0)

+

)
(2.4.39)

which are independent of Z. Using the above definition of the currents J̃ I
±, the anomaly

equation may be recast as an operator relation in spacetime coordinates, given by,

∂+J̃ I
− + ∂−J̃ I

+ = c

12πL
∑
JK

δIJMJK(∂+A
K
− − ∂−AK+ ) (2.4.40)

We shall see below how the anomaly equation is saturated by massless states in unitary

representations of U(1)-current algebras only.

2.4.7 Bose symmetry

Bose symmetry of the current correlators 〈J̃ I
±(p) J̃ J

± (−p)〉 requires that they be symmetric

under the interchange of the internal indices I and J , given that both correlators are even
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under p± → −p±. Although the expressions given in (2.4.38) do not exhibit this symmetry

manifestly, the correlators are actually symmetric, as we shall now show.

The following simple but fundamental relation,

(
MU±(r, r′)

)t
=MU∓(r′, r) =MU∓(r, r′)−1 (2.4.41)

may be established using the differential equations satisfied by U± in the variables r and

r′, the boundary conditions U±(r, r) = I, and the relation (MH)t =MH. Letting r′ →∞

and setting r = r0, and using the defining relations for Ω±, we deduce the following relation,

(
MΩ±

)t
=M (Ω∓)−1 (2.4.42)

The expressions for Z and for its inverse Z−1 may be recast in terms of Ω− and Ω+

respectively, instead of in terms of both Ω±, and we have,

Z = M−1Σt
−Df(D) Σ− Σ± = 4RtQ−2 Ω±

Z−1 = M−1Σt
+Df(D)−1 Σ+ (2.4.43)

It is now manifest that the combinationsMZn are symmetric matrices for all integer n, as

are the combinationsM(I −Z)−1 andMZ(I −Z)−1, thereby establishing Bose symmetry

of the two-point correlators. The symmetry may be exhibited conveniently by re-expressing

the correlators in terms of the currents Ĵ I± as follows,

J̃ I± =
∑
J

(MΣ−1
± )IJ ĴJ± (2.4.44)
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The non-local correlators then take the following form,

〈
Ĵ I

+(p)Ĵ J
+ (−p)

〉
= + c

6πL
p+

p−

(
A+ −Df(D)−1

)−1

IJ〈
Ĵ I
− (p) Ĵ J

− (−p)
〉

= − c

6πL
p−
p+

(
A− −Df(D)

)−1

IJ
(2.4.45)

where we have defined,

A± = (Σ−1
± )tMΣ−1

± (2.4.46)

The matrix D being diagonal, and the matrices A± being symmetric by construction, Bose

symmetry of the correlators in (2.4.45) is now manifest.

2.4.8 The IR limit of the current-current correlators

The calculation of the IR limit of the current-current correlators may be carried out directly

on the expressions for the correlators presented in (2.4.45). To evaluate their IR limit as

p2 → 0 we note that all dependence on p2 is concentrated in the function f(D), and it will

be convenient to decompose D and f(D) in terms of the rank one projection operators ΠI

onto the eigenspace with eigenvalue mI for I = 1, 2, 3,

D = m1Π1 +m2Π2 +m3Π3

f(D) = f(m1) Π1 + f(m2) Π2 + f(m3) Π3

f(D)−1 = f(m1)−1 Π1 + f(m2)−1 Π2 + f(m3)−1 Π3 (2.4.47)

Since the eigenvalues mI are all real and distinct they may be ordered such that m1 <

m2 < m3. In view of the relation m1 +m2 +m3 = 0, it follows that m3 > 0 while m1 < 0.

The sign of m2 is correlated with the sign of the charges qI as follows,

sign(m2) = −sign(q1q2q3) = −η (2.4.48)
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Given the expressions for f(mI) and f in (2.4.32), the asymptotic behavior as p2 → 0 is

given by f(m1)→ 0, f(m3)→∞ for either value of η, while f(m2)→∞ when η < 0 and

f(m2)→ 0 when η > 0. We find the following limits,¶

η > 0 lim
p2→0

(
A+ −Df(D)−1

)−1
= 1

(A+)33
Π3 =

(
Π3A+ Π3

)−1

η < 0 lim
p2→0

(
A− − Df(D)

)−1
= 1

(A−)11
Π1 =

(
Π1A−Π1

)−1
(2.4.49)

where we have assumed that (A+)33, (A−)11 6= 0. The remaining limits may be expressed

in terms of the same notations, as follows,

η < 0 lim
p2→0

(
A+ −Df(D)−1

)−1
=
(

(I − Π1)A+ (I − Π1)
)−1

η > 0 lim
p2→0

(
A− −Df(D)

)−1
=
(

(I − Π3)A− (I − Π3)
)−1

(2.4.50)

The final expressions for the correlators simplify and we find, for η > 0,

〈
Ĵ I

+ (p) Ĵ J
+ (−p)

〉
= + c

6πL
p+

p−

(
Π3A+ Π3

)−1

IJ〈
Ĵ I
− (p) Ĵ J

− (−p)
〉

= − c

6πL
p−
p+

(
(I − Π3)A− (I − Π3)

)−1

IJ
(2.4.51)

while for η < 0 we have,

〈
Ĵ I

+ (p) Ĵ J
+ (−p)

〉
= + c

6πL
p+

p−

(
(I − Π1)A+ (I − Π1)

)−1

IJ〈
Ĵ I
− (p) Ĵ J

− (−p)
〉

= − c

6πL
p−
p+

(
Π1A−Π1

)−1

IJ
(2.4.52)

We note that these expressions are consistent under an overall reversal of the sign of the

charges qI . Indeed, under qI → −qI , we have of course η → −η, and M → −M so that

¶The utmost right objects in (2.4.49) have been cast in a notation where the left and right multiplication
by a projector ΠI is to be understood as an instruction to invert the projected matrix on the subspace
corresponding to the range of ΠI , and to set the inverse to zero on the kernel of ΠI .
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mI → −mI and f(mI) → f(mI)−1. From these, we deduce that U± → U∓, and thus

Ω± → Ω∓, Σ± → Σ∓, and A± → −A∓. Combining these results, it is manifest in both

(2.4.45), (2.4.51), and (2.4.52) that an overall reversal of the sign of qI corresponds to a

reversal of the chirality of the currents, namely Ĵ± → Ĵ∓.

2.4.9 Unitarity of the IR current algebras

In this section, we verify that the current correlators computed above are unitary by check-

ing the sign of the position space correlators. We shall specialize to the case η > 0, since

the opposite case is simply related by a reversal of the chirality of the currents, as shown

in the preceding section. Fourier transforming the correlators of (2.4.51), we find,

〈
Ĵ I

+ (x) Ĵ J
+ (0)

〉
= − c

12π2L

1
(x+)2

(
Π3A+ Π3

)−1

IJ
(2.4.53)

〈
Ĵ I
− (x) Ĵ J

− (0)
〉

= + c

12π2L

1
(x−)2

(
(I − Π3)A− (I − Π3)

)−1

IJ

As was shown in Appendix C of [31], the proper sign of the current two-point correlator in a

unitary theory should be negative. Thus, to have unitarity in the IR, the non-zero entry of

Π3A+Π3 should be positive, while the non-zero 2×2 part of the matrix (I−Π3)A− (I−Π3)

should be negative.

To determine these signs from the explicit form of the correlators, we have computed

the corresponding matrices numerically for special values, namely,‖

α = 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.25, 0.1, 0.05 (2.4.54)

which form a subset of the numerical values where the supersymmetric magnetic brane

solution was evaluated numerically in (2.2.37). This calculation is done by solving (2.4.20)

‖Recall that we may restrict α to the interval 0 < α ≤ 1 since permutations on the charges induce the
transformation α→ 1/α and α→ −1− α.
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numerically, extracting Ω± numerically from the solutions, and using these ingredients to

compute A± and their projections. For each of the above values of α, we have verified

that the value λ3 of (A+)33 is positive, and that both non-zero eigenvalues λ1 and λ2 of

(I − Π3)A−(I − Π3) are negative. Numerical results for α < 0.05 become significantly

less reliable. Thus, all numerically accessible signs are consistent with unitarity for all

current-current correlators.

Away from the above range of values, we can make a partially analytical argument

that the signs will remain consistent with unitarity. In particular, the sign of a correlator

cannot change by the correlator vanishing. This is because the coefficient of the correlator

is given by the inverse of a combination of matrices M and Σ± all of which are regular

and finite at all values of the charges. Thus, the only other possibility left is that the signs

of the eigenvalues could change by having the correlator diverge for special values of the

charges qI . While it is not yet clear how this possibility can be ruled out analytically,

certainly our numerical evidence points to the contrary.

Finally, we note that these signs are consistent with the ones obtained from considering

the anomaly equation (2.4.40) in the IR limit. The mixing matrix M has the following

characteristic polynomial,

m3 − 8
L
m− 16 η = 0 (2.4.55)

satisfied by the three eigenvalues m1,m2,m3 ofM. In particular, the sum of the eigenvalues

vanishes, m1 + m2 + m3 = 0, and the product of the eigenvalues satisfies m1m2m3 = 16η.

When η > 0, as was assumed throughout this subsection, two of the eigenvalues of M

must be negative, and one positive, in agreement with the counting obtained above from

studying the full current correlators in (2.4.53), and in agreement with the fact that the

anomaly equation is saturated by the unitary part of the correlator.

Therefore, we conclude that, for η > 0, the IR limit of the two-point correlator of
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the operator J̃ I+ corresponds to a single component of the three currents associated with a

unitary current algebra. In section 2.6, we shall see that the corresponding current operator

fits into the emergent N = 2 superconformal algebra of the IR limit. The other two

components of J I
+ do not correspond to a current algebra, but will receive contributions

from double-trace operators, as was shown in [31] for the non-supersymmetric magnetic

brane. The two unitary components of J̃ I
− generate unitary current algebras, but they are

not part of any superconformal algebra.

2.5 Supercurrent correlators

In this section, we shall compute the two-point correlators of the supercurrent in the back-

ground of a general magnetic brane solution, in the IR limit. We follow the methods of the

preceding sections. We begin by decoupling and solving the linearized field equations for

the fermion fields ψM and λa subject to specified holographic boundary conditions ψ(0)
µ and

λ(0)
a . We then extract the supercurrent two-point correlator. Since holographic calculations

involving fermion fields in non-trivial backgrounds are somewhat less standard than those

with bosons, our presentation will include more details than the calculations for boson

fields did. Some of these details have been relegated to Appendices B.3, and C. Useful

references to holographic calculations involving fermions in general, and the supercurrent

in particular, may be found in [45–48].

The Fermi field equations for the ± components ψM± and λa± of the SU(2) R-symmetry

doublets under which the Fermi fields transform are related by reversing the sign of g on the

one hand, and by complex conjugation on the other hand (see Appendix A). As a result,

we may analyze the field equations for the component corresponding to case g = +1, with

the field equation for the component corresponding to g = −1 being given by complex

conjugation. Henceforth, we shall set g = 1 without loss of generality.
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2.5.1 Holographic asymptotics

The asymptotic form of the gravitino field ψM̂(r, x) near the AdS5 boundary where r →∞

is given by the following expansions, expressed in frame indices M̂ = (µ̂, r̂),

ψµ̂(x, r) = e−(∆−3)rψ
(0)
µ̂ (x) + · · ·+ e−∆rψ

(3)
µ̂ (x) + re−∆rψ

(ln)
µ̂ (x) +O(e−(∆+1)r) (2.5.1)

ψr̂(x, r) = e−(∆−2)rψ
(1)
r̂ (x) + · · ·+ e−(∆+1)rψ

(4)
r̂ + re−(∆+1)rψ

(ln)
r̂ (x) +O(e−(∆+2)r)

The conformal dimension of the four-dimensional supercurrent is denoted by ∆ = 7/2.

The coefficients ψ(0)
µ̂ and ψ

(3)
µ̂ are respectively the source and expectation value of the

supercurrent, while ψ(1)
r̂ and ψ

(4)
r̂ are auxiliary fields without dynamical contents.

The complete expansion of the gravitino field ψM̂ , including the terms with coefficients

ψ
(`)
µ̂ and ψ(`+1)

r̂ for ` = 1, 2, is presented in Appendix C, as is the expansion of the gaugino

field λa, and the interrelation between the coefficients in the expansion which result from the

fermion field equations in the background of the supersymmetric magnetic brane solution.

Of these results, we shall highlight here the following projection relations,

(I − Γr)ψ(0)
µ̂ = 0 (I + Γr)ψ(3)

µ̂ = 0 (I + Γr)ψ(ln)
µ̂ = 0

(I − Γr)ψ(1)
r̂ = 0 (I + Γr)ψ(4)

r̂ = 0 (I + Γr)ψ(ln)
r̂ = 0 (2.5.2)

Alternatively, the asymptotic expansion may be cast in terms of the gravitino field ψM

expressed in Einstein indices. The relation is, of course, obtained in terms of the orthonor-

mal frame eM
M̂ , and we have, ψM = eM

M̂ψM̂ . The orthonormal frame itself admits a

Fefferman-Graham expansion which must be consistent with that of the metric in (2.2.11).

It will be convenient to choose a gauge for the frame structure group SO(1, 4) given by,

er
r̂ = 1 er

µ̂ = eµ
r̂ = 0 (2.5.3)
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while the remaining components have the following expansion,

eµ
µ̂(x, r) = er e(0)

µ
µ̂(x) + e−r e(2)

µ
µ̂(x) + e−3r e(4)

µ
µ̂(x) + r e−3r e(ln)

µ
µ̂(x) +O(e−5r) (2.5.4)

As a result, the expansion of ψM , expressed in Einstein indices, is given as follows,

ψµ(x, r) = e−(∆−4)rψ(0)
µ (x) + · · ·+ e−(∆−1)rψ(3)

µ (x) + re−(∆−1)rψ(ln)
µ (x) +O(e−∆r) (2.5.5)

ψr(x, r) = e−(∆−2)rψ(1)
r (x) + · · ·+ e−(∆+1)rψ(4)

r + re−(∆+1)rψ(ln)
r (x) +O(e−(∆+2)r)

where ψr(x, r) = ψr̂(x, r) and ψµ(x, r) = eµ
µ̂(x, r)ψµ̂(x, r). By expanding each of these

equations in powers of er we derive relations between the expansion coefficients. For ψr̂

these are simply obtained by dropping the hat on r, while for the other components, they

generate relations of the type ψ(0)
µ (x) = e(0)

µ
µ̂(x)ψ(0)

µ̂ (x), and so on.

Finally, we comment on gauge-fixing local supersymmetry. The choice of gauge affects

our ability to separate variables in the solution of the supergravity equations for the Fermi

fields, and must therefore be made with care. In pure AdS spacetime, natural gauge

choices for local supersymmetry include DMψM = 0 and ΓMψM = 0, since they preserve

the symmetries of AdS, and these choices were indeed made, for example in [47]. For

the supersymmetric magnetic brane background, the symmetries are reduced, and the

above gauge choices do not allow for a suitable separation of variables in the Fermi field

equations. Therefore, we shall, for the time being, refrain from choosing a gauge, and retain

all components of the Fermi fields. The natural choice of gauge will then be identified during

the solution of the supergravity equations, and will include the fermionic counterpart of

Fefferman-Graham gauge ψr = 0, which was used earlier in [45]. The residual gauge freedom

left by this gauge choice will be fixed by setting a suitable projection (associated with the

particular supersymmetric magnetic brane solution) of the spinor-tensor Γµψν to zero.
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2.5.2 Holographic supercurrent correlators

The response of the on-shell action Ssugra to an infinitesimal variation of the source field

ψ(0)
µ is given by the expectation values Sµ of the supercurrent operator Sµ,

δSsugra = 1
2

∫
d4x

√
g(0) S̄µiδψ

(0)
µi (2.5.6)

where i = ± is the SU(2) index on the Fermi fields. The value of Sµi in terms of the

boundary gravitino data is given by,

8πG5S
µ
+ = −Γµνψ(3)

ν+ + local

8πG5S
µ
− = +Γµνψ(3)

ν− + local (2.5.7)

The normalizations of these formulas will be carefully derived in Appendix B.3. They

will be obtained using a boundary action to ensure that the variational principle for the

gravitino is well-defined, and a counter-term to cancel out UV divergences and regularize

the action near the boundary of AdS5. The “local” terms depend locally on ψ(0)
µ ; they will

not contribute to the correlator at non-coincident points, and will be omitted here.

Finally, the supercurrent correlator may be extracted using linear response theory,

Sµi(x) = i

2

∫
d4y

√
g(0)

〈
Sµi(x)S̄νj(y)

〉
δψ

(0)
νj (y) (2.5.8)

The method used to compute the low energy correlators is as follows. We solve the linearized

field equations in the near region e2r � 1 where the geometry is effectively AdS3×T 2, and

in the far region p2 � e2r where we can effectively set p2 = 0. The solutions in the near

and far regions are then matched in the overlap region p2 � e2r � 1. Since we assume

p2 � 1, the matched solution is valid in this parametrically large region, and we use it to

obtain the expectation value Sµ of the supercurrent Sµ.
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2.5.3 Structure of the perturbations

Since the supersymmetric magnetic brane solution is purely bosonic, linear fluctuations in

the Fermi fields do not mix with bosonic fields. Thus, the bosonic fields are as follows,

ds2 = dr2 + 2e2W (r)dx+dx− + 2e2U(r)dxudxv

F I = qIB dx2 ∧ dx3

φA = φA(r) (2.5.9)

where U,W and φ are the functions of the supersymmetric magnetic brane solution, given

in Section 2.2. Translation invariance in xµ of the brane solution is used to Fourier de-

compose the fluctuations in plane waves of given momentum pµ. We shall consider only

the correlators of the components S± of the supercurrent along the 01-plane, and retain

only their dependence on the coordinates x± of the 01-plane. Thus, we may set to zero the

momentum components p2 = p3 = 0, and retain only dependence on p±, as follows,

ψM(x, r) = ψ̃M(p, r) eip·x

λa(x, r) = λ̃a(p, r) eip·x (2.5.10)

where the tildes indicate Fourier components, and we continue to use the notations of

(2.3.3) for the inner product. Again we shall be interested in the IR limit, where p2 � 1.

Finally, in the following equations, we will denote the coordinates by x+, x− with indices

m,n, . . . and by xu, xv with indices α, β, . . ..

The linear fluctuations of the fields ψM and λa of (2.5.10) in the presence of the super-

symmetric magnetic brane solution satisfy the supergravity equations ΨM = Λa = 0 given

in (2.2.8) to linearized order in the Fermi fields, and the bosonic fields are given in (2.5.9).

To solve (2.2.8), we decompose these equations according to their representation under

the symmetries of the supersymmetric magnetic brane solution, specifically the SO(1, 1)
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Lorentz symmetry in the 01-plane and the SO(2) rotational symmetry of the 23-plane.

Under SO(1, 1) × SO(2), the field equations Ψr = 0 and Λa = 0 are irreducible and

transform under helicity ±1
2 for SO(1, 1) as well as SO(2). The remaining field equations

Ψm = Ψα = 0 are, however, further reducible into helicity ±1
2 components ΓmΨm = ΓαΨα

components, and helicity ±3
2 components. The latter may be formulated in a variety of

ways, such as by explicitly implementing the subtraction of the helicity ±1
2 components,

2Ψm − Γm ΓnΨn = 0

2Ψα − Γα ΓβΨβ = 0 (2.5.11)

An equivalent formulation, which will be more convenient in the present context, is by the

explicit use of the light-cone and complex coordinate indices +,−, u, v, for which we have,

(
Γ+
)2

=
(
Γ−
)2

= (Γu)2 = (Γv)2 = 0 (2.5.12)

In summary, the Fermi field equations decompose into the following irreducible components.

The helicity ±3
2 components respectively under SO(1, 1) and SO(2) are given by,

Γ+Ψ+ = 0 ΓuΨu = 0

Γ−Ψ− = 0 ΓvΨv = 0 (2.5.13)

The helicity ±1
2 components under both SO(1, 1) and SO(2) are given by,

ΓmΨm = 0 Ψr = 0

ΓαΨα = 0 Λa = 0 (2.5.14)

In the subsequent sections, we shall decouple these equations for the different helicity

components of the fields ΨM and λa.
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2.5.4 Covariant derivatives for the brane Ansatz

Before we reduce the fermionic field equations in the next sections, we summarize the

covariant derivatives on spinors in the background of the magnetic brane Ansatz,

ds2 = dr2 + 2e2Wdx+dx− + 2e2Udxudxv (2.5.15)

where U,W are functions of r only. The associated frame fields and spin connection are

given by (frame indices are hatted),

er
r̂ = 1 e+

+̂ = e−
−̂ = eW ω+−̂r̂ = ω−+̂r̂ = W ′eW

eu
û = ev

v̂ = eU ωuv̂r̂ = ωvûr̂ = U ′eU (2.5.16)

and the covariant derivatives are given by,

DMψN = ∂MψN + 1
4ωMRSΓRSψN − ΓPMNψP

DMλ
a = ∂Mλ

a + 1
4ωMRSΓRSλa (2.5.17)

Note that in the last term on the right side of the first line ΓPMN is the affine connection

(not to be confused with Dirac matrices represented by the same symbol), which will in

fact cancel in the subsequent covariant derivatives since there MN will enter only anti-

symmetrically. The covariant derivative terms in the field equations (2.2.8), reduced from

the magnetic brane Ansatz (2.2.15), are given by,

ΓMDMλ
a = Γr(∂r + U ′ +W ′)λa + ipmΓmλa (2.5.18)
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and

2ΓrΓrNPDNψP = 2iΓ+−(p+ψ− − p−ψ+) + (W ′ + 2U ′)Γrmψm

+(2W ′ + U ′)Γrαψα + ipmΓmαψα

ΓmΓmNPDNψP = Γrm(∂r + U ′ +W ′)ψm + (2∂r + 3U ′ +W ′)Γrαψα

+ipmΓmαψα + ipmΓmrψr − (W ′ + 2U ′)ψr

ΓαΓαNPDNψP = 2iΓ+−(p+ψ− − p−ψ+) + (2∂r + 3W ′ + U ′)Γrmψm

+ipmΓmαψα + Γrα∂̂ψα + 2ipmΓmrψr − (U ′ + 2W ′)ψr

where m = +,− and α = u, v.

2.5.5 Reducing the helicity ±3
2 equations

Decomposing the general Fermi field equations for ΨM of (2.2.8) into the helicity ±3
2 equa-

tions Γ+Ψ+ = Γ−Ψ− = 0 of (2.5.13) gives,

Γ+Γ+NPDNψP + 3i
4 XIΓ+Γ+NuvF I

uvψN = 0

Γ−Γ−NPDNψP + 3i
4 XIΓ−Γ−NuvF I

uvψN = 0 (2.5.19)

while decomposing the general field equations for ΨM of (2.2.8) into the helicity ±3
2 equa-

tions ΓuΨu = ΓvΨv = 0 of (2.5.13) gives,

ΓuΓuNPDNψP −
3i
4 e−2UXIΓuF I

uvψv = 0

ΓvΓvNPDNψP + 3i
4 e−2UXIΓvF I

uvψu = 0 (2.5.20)

where F I
uv = iqIB is constant. The contributions to the covariant derivative terms in

(2.5.19) vanish unless either N or P equals the index − on the first line, and equals the

index + on the second line. Similarly, the contribution to the covariant derivative terms
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in (2.5.20) vanishes unless N or P equal v on the first line, and u on the second line. The

resulting simplified equations for the helicity ±3
2 fields under SO(1, 1) are as follows,

(
Γr∂̂r + 3i

4 XIF
I
uvΓuv + 3

2VIX
I
)

Γ+ψ− + ip−Γ+(Γrψr + Γαψα) = 0(
Γr∂̂r + 3i

4 XIF
I
uvΓuv + 3

2VIX
I
)

Γ−ψ+ + ip+Γ−(Γrψr + Γαψα) = 0 (2.5.21)

Here and in the sequel, we use the following abbreviation,

∂̂r ≡ ∂r + U ′ +W ′ (2.5.22)

Similarly, the simplified equations for the helicity ±3
2 fields under SO(2) are as follows,

(
Γr∂̂r + ipmΓm + 3i

4 e
−2UXIF

I
uv + 3

2VIX
I
)

Γuψv = 0(
Γr∂̂r + ipmΓm − 3i

4 e
−2UXIF

I
uv + 3

2VIX
I
)

Γvψu = 0 (2.5.23)

Note that in the presence of the supersymmetric magnetic brane solution, the helicity ±3
2

spinors Γuψv and Γvψu completely decouple from the rest of the equations, in both the near

and far regions. Since our interest is in the components S± of the supercurrent only, we

shall set the sources Γuψ(0)
v and Γvψ(0)

u to zero, so that the entire fields then vanish,

Γuψv = Γvψu = 0 (2.5.24)

Equivalently, the field components ψu and ψv may be expressed entirely in terms of the

helicity ±1
2 combination Γαψα by the relations,

ψu = −1
2Γuu Γu Γαψα

ψv = −1
2Γvv Γv Γαψα (2.5.25)
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where Γuu = −Γvv is the chirality involution matrix for the group SO(2).

2.5.6 Reducing the helicity ±1
2 equations

The reduced helicity ±1
2 gravitino equations of (2.5.12) may be written out as,

0 = ΓrΓrNPDNψP + 3i
4 XIΓrΓrNuvψNF I

uv −
i

2ΓrλafaA∂rφA

−1
2

√
3
2X

a
I ΓuvλaF I

uv + 3
2ΓrΓrNψNVIXI − i

√
3
2λ

aVIX
I
a (2.5.26)

0 = ΓmΓmNPDNψP + 3i
4 XIΓmΓmNuvψNF I

uv + iΓrλafaA∂rφA

−
√

3
2X

a
I ΓuvλaF I

uv + 3
2ΓmΓmNψνVIXI − 2i

√
3
2λ

aVIX
I
a (2.5.27)

0 = ΓαΓαNPDNψP + 3i
4 XI(F I)αβΓαψβ + iΓrλafaA∂rφA

+
√

3
2X

a
I ΓuvλaF I

uv + 3
2ΓαΓαNψNVIXI − 2i

√
3
2λ

aVIX
I
a (2.5.28)

The gaugino field equations are given by,

0 = ΓMDMλ
a + i

2ΓMΓNψMfaA∂NφA −
1
2

√
3
2X

a
IF

I
uvΓMΓuvψM

−i
(1

4δabXI + TabcX
c
I

)
F I
uvΓuvλb − i

√
3
2ΓMψMVIXI

a

−2VI
(1

4δabX
I + TabcX

Ic
)
λb (2.5.29)

When recast in the form of equations for the helicity ±3
2 fields Γ+ψ− and Γ−ψ+ with van-

ishing fields Γuψv and Γvψu as stated in (2.5.24), and the helicity ±1
2 fields Ψr,Γmψm,Γαψα

and λa, one shows by inspection that the equations decouple into the eigenspaces of Γûv̂.

Choice of an adapted basis of spinors

To implement the decoupling of the helicity ±1
2 equations argued in the preceding subsec-

tion, we decompose the spinors onto a basis in which the generators Γr̂ and Γûv̂ are diagonal.
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This basis of spinors will be denoted χ± and χ̃±, and are defined by the relations,

Γr̂ χ± = ±η χ± Γr̂ χ̃± = ±η χ̃±

Γûv̂ χ± = −η χ± Γûv̂ χ̃± = +η χ̃± (2.5.30)

In view of the conventions adopted in Section A.1 and expressed in (2.2.21) for the super-

symmetric magnetic brane solution, Γ+̂−̂ Γûv̂ Γr̂ = I, we may read off the corresponding

eigenvalues of Γ+̂−̂ on these basis spinors,

Γ+̂−̂χ± = ∓χ± Γ+̂−̂χ̃± = ±χ̃± (2.5.31)

From these relations, it readily follows that we have,

Γ+̂χ− = Γ−̂χ+ = 0

Γ+̂χ̃+ = Γ−̂χ̃− = 0 (2.5.32)

The representation of Γ±̂ on the basis spinors is then fixed, up to an simultaneous sign

reversal of both Γ±̂. We shall make the following consistent choice,

Γ+̂χ+ = −
√

2χ− Γ+̂χ̃− =
√

2 χ̃+

Γ−̂χ− = −
√

2χ+ Γ−̂χ̃+ =
√

2 χ̃− (2.5.33)

Field decomposition onto the spinor basis (supersymmetric sector)

Given the decoupling of the fermion equations into eigenspaces of Γûv̂, the two sectors may

be treated independently of one another. The two sectors are not equivalent to one another,

and in fact behave quite differently from a physical point of view.

Given that we have set g = 1, it follows from the analysis of the BPS equations that

supersymmetry exists in the sector where the eigenvalue of Γr̂ equals γ = 1 in view of
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(2.2.24) and (2.2.22), and where the eigenvalue of Γûv̂ equals −η in view of (2.2.22). In the

other three sectors, we have no supersymmetry. Since the supercurrent is the generator

of supersymmetry, its spinor properties must coincide with those of the supersymmetry

parameter. Hence the supercurrent correlator lives in the sector where the fields ψm and λa

belong to the eigenspace of Γûv̂ with eigenvalue −η. As a result of their Γ-matrix structure,

so do the fields Γ+ψ−, Γ−ψ+, Γmψm, Γaψa and ψr. This in turn means that every field

in the supersymmetric sector admits a decomposition onto the spinors χ± only, without

components along χ̃±.

We use the following notation for the decomposition of the helicity ±3
2 fields,

Γ+ψ− = ω− χ−

Γ−ψ+ = ω+ χ+ (2.5.34)

Note that the presence of Γ+ on the left side of the first line sets to zero the expansion

coefficient onto the basis spinor χ+ on the right side, in view of (2.5.29) and (2.5.33), and

similarly sets to zero the coefficient of χ− on the second line. The helicity ±1
2 gravitino

components and the gaugino decompose a follows,

Γrψr = R+ χ+ +R− χ−

Γmψm = M+ χ+ +M− χ−

Γαψα = A+ χ+ + A− χ−

λa = `a+ χ+ + `a− χ− (2.5.35)

2.5.7 Supersymmetry transformations for the brane

The supersymmetry transformations (2.2.9) acting on the magnetic brane Ansatz reduce

as follows. Expanding the supersymmetry parameter, ε, in eigenspinors of Γr, Γûv̂, and
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Γ+̂−̂, and in Fourier modes for the boundary coordinates,

ε = ε+(r)eip·xχ+ + ε−(r)eip·xχ−

The supersymmetry transformations of the components of ψM and λa are given by,

δω+ = −i
√

2e−Wp+ε− δω− = −i
√

2e−Wp−ε+

δM+ = −i
√

2e−Wp−ε− δM− = −i
√

2e−Wp+ε+ − 2W ′ε−

δR+ = ∂rε+ −
1
2W

′ε+ δR− = −∂rε− −
1
2W

′ε−

δA+ = 0 δA− = −2U ′ε−

δλa+ = 0 δλa− = ifaAφ
A′ε− (2.5.36)

The field equations, reduced in the magnetic brane Ansatz, are invariant under these trans-

formations.

2.5.8 Reduced Fermi equations in the near region

The near region is defined by the condition e2r � 1. We shall set η = +1 without loss of

generality, as the case η = −1 may be recovered by reversing the chiralities. With these

assumptions, we solve equations (2.5.21–2.5.29) with the bosonic fields set to (2.2.26), in

the χ± sector. In terms of the components (2.5.34–2.5.35), the helicity ±3
2 components

satisfy,

0 = ω′+ + 3
2Lω+ − i

√
2p+e

− r
L (A− +R−)

0 = ω′− + 1
2Lω− + i

√
2p−e−

r
L (A+ +R+) (2.5.37)
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The gaugino equations reduce to,

0 = (`a+)′ + 5
6L`

a
+ − i

√
2p−e−

r
L `a− − 2TabcBqIXc

Ie
−2U`b+ − i

√
3
2Bq

IXa
I e
−2UA+

0 = (`a−)′ + 7
6L`

a
− + i

√
2p+e

− r
L `a+ + 2TabcBqIXc

Ie
−2U`b− + i

√
3
2Bq

IXa
I e
−2UA− (2.5.38)

Setting the following abbreviation,

l± ≡ 2i
√

3
2 q

IXa
I `

a
± (2.5.39)

the equations for the helicity ±1
2 components of the gravitino simplify to,

0 = − i√
2
e−

r
L (p−M− − p+ω−) + 1

L
(M+ + 2A+)− i

√
2p−e−

r
LA−

0 = i√
2
e−

r
L (p+M+ − p−ω+) + i

√
2p+e

− r
LA+

0 = (M+ + 2A+)′ + 3
2L(M+ + 2A+)− i

√
2p−e−

r
L (A− +R−)

0 = (M− + 2A−)′ + 1
2L(M− − 2A− − 4R−) + i

√
2p+e

− r
L (A+ +R+)

0 = (2M+ + A+)′ + 1
2L(6M+ − 5A+) + i

√
2p−e−

r
L (A− − 2R−)− l+

0 = (2M− + A−)′ + 1
2L(A− − 8R− + 2M−)− i

√
2p+e

− r
L (A+ − 2R+) + l−(2.5.40)

We shall now proceed to further decouple these equations.

Further decoupling

Eliminating M+ and its derivative M ′
+ between the third and fifth lines of (2.5.40) also

eliminatesR−, and we obtain an equation involving only A+ and l+. Proceeding analogously

for M− on the fourth and sixth lines also eliminates R±, and we find,

0 = 3A′+ + 17
2 A+ − 3i

√
2p−e−

r
LA− + l+

0 = 3A′− −
5
2A− + 3i

√
2p+e

− r
LA+ − l− (2.5.41)
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These equations are equivalent to the last two equations in (2.5.40), and give l± in terms

of A±. The remaining gravitino equations may be further simplified by defining,

R̂± = R± + A±

M̂± = M± + 2A± (2.5.42)

The third and fourth equations in (2.5.37) are dependent on the first two and (2.5.37). The

remaining independent gravitino equations in the near region are thus given by,

0 = ω′+ + 3
2Lω+ − i

√
2p+e

− r
L R̂−

0 = ω′− + 1
2Lω− + i

√
2p−e−

r
L R̂+

0 = p+M̂+ − p−ω+

0 = − i√
2
e−

r
L (p−M̂− − p+ω−) + 1

L
M̂+ (2.5.43)

The equations for A± and `a± in (2.5.38) and (2.5.41) are manifestly decoupled from the

equations for ω±, M̂±, and R̂± in (2.5.43). Since for the computation of the supercurrent

it is only the modes ω± that are of interest, we see that turning on ω± requires turning on

M̂± and R̂±, but not A± and `a±. Hence, we may consistently set,

A± = `a± = 0 (2.5.44)

The only remaining equations are then those of (2.5.43). To analyze them, we first discuss

the choice of gauge.

The choice of Fefferman-Graham gauge for the gravitino

We have postponed making a choice of gauge for the gravitino field until now. At this

point, it becomes clear that there is a natural and useful gauge choice to be made, namely
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Fefferman-Graham gauge for the gravitino field,

ψr = 0 (2.5.45)

This gauge choice is natural because ψM is a vector-spinor, and the gauge choice for its

vector part is analogous to the Fefferman-Graham gauge for a gauge field AM for which

the Fefferman-Graham gauge choice sets Ar = 0. The gauge choice is also useful because,

in view of (2.5.35) it will imply R± = 0 which along with the results of (2.5.44) implies

that also R̂± = 0. Therefore, in the near-region, we are left with the following system of

equations,

0 = ω′+ + 3
2Lω+

0 = ω′− + 1
2Lω−

0 = p+M+ − p−ω+

0 = − i√
2
e−

r
L (p−M− − p+ω−) + 1

L
M+ (2.5.46)

which involve only ω± and M±.

2.5.9 Reduced Fermi equations in the far region

The far region is defined by p2 � e2r. For the fluctuations of the metric and the gauge

field, we could solve in the far region simply by dropping all dependence on the momenta

p± in the reduced differential equations for the far region. For the fluctuations of the Fermi

fields, additional care is needed. While it will indeed be permissible to omit the dependence

on p± in the region 1� e2r, the same will be true in the full overlap region for all reduced

differential equations but two, and these will need to be analyzed with additional care.
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The helicity ±3
2 equations in the far region

For the helicity ±3
2 equations, the dependence on p± may indeed be neglected in the reduced

differential equations throughout the far region p2 � e2r � 1. From (2.5.21), it can be

seen that by dropping the momentum dependent terms, the modes ω± decouple from the

other components of ψµ. Expanding in the basis (2.5.30), equations (2.5.21) reduce to

(
∂r + U ′ +W ′ + 3

4Bq
IXIe

−2U + 3
2VIX

I
)
ω+ = 0(

∂r + U ′ +W ′ − 3
4Bq

IXIe
−2U − 3

2VIX
I
)
ω− = 0 (2.5.47)

Since the bosonic fields satisfy the BPS equations (2.2.23), the dependence on the scalars

XI may be eliminated in favor of U and W , and we obtain,

(
∂r + 2U ′ + 3

2W
′
)
ω+ = 0(

∂r + 1
2W

′
)
ω− = 0 (2.5.48)

These equations are easily integrated to obtain,

ω+(r) = −
√

2 b+U
2
0 e
− 3

2W (r)−2U(r)

ω−(r) = −
√

2 b− e−
1
2W (r) (2.5.49)

The coefficients are chosen so that ψ± has the form given by (2.5.1) in the r →∞ limit,

ψµ̂ = ψ
(0)
µ̂ e−

r
2 + · · ·+ ψ

(3)
µ̂ e−

7r
2 + · · · (2.5.50)

with,

ψ
(0)
−̂ = b−χ+ ψ

(3)
+̂ = b+χ−
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The remaining components of ψµ̂ in the expression (2.5.50), ψ(0)
+̂ and ψ

(3)
−̂ , are related to

the helicity ±1
2 components M±.

Helicity ±1
2 equations in the far region

In terms of the asymptotic form of M±, given in Appendix C, the fields ψ± take the form,

ψ+̂ = − 1√
2
M

(0)
− χ+e

− r2 + · · ·+ b+χ−e
− 7r

2 + · · ·

ψ−̂ = b−χ+e
− r2 + · · · − 1√

2
M

(0)
+ χ−e

− 7r
2 + · · · (2.5.51)

It remains to enforce the reduced helicity ±1
2 equations in the far region and establish

the required remaining relation between ω± and M±. These equations decouple between

the +1
2 helicity components M+, A+, `

a
+, and R+ on the one hand, and the −1

2 helicity

components M−, A−, `a−, and R− on the other hand. For both helicities we continue to use

Fefferman-Graham gauge so that R± = 0, and we express the components M± is terms of

M̂± and A±, as we had already done for the near region.

The helicity −1
2 equations in the far region

Since we are only interested in the helicity ±3
2 sources, we set the sources of all the helicity

±1
2 fields to zero in the AdS5 region. We begin analyzing the fields in the χ− sector. In

this sector, we can consistently neglect all terms involving the momenta p± throughout the

full far region. The resulting reduced equations are as follows,

0 = M̂ ′
− + 1

2W
′M̂− + 2(U ′ −W ′)A− + 2ifaAφA′`a−

0 = A′− + 1
6 (8U ′ − 5W ′)A− + 2

3if
a
Aφ

A′`a− −
2
3i
√

3
2Bq

IXa
I e
−2U`a−

0 = `a′− + 1
6(7W ′ + 8U ′)`a− +

√
2
3Tabc

2BqIXc
Ie
−2U −

√
2
3f

c
Aφ

A′

 `b−
+i
√

3
2Bq

IXa
I e
−2UA− (2.5.52)
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Recall that the constraint equation, which corresponds to the M = r component in the first

line of (2.5.26), is automatically satisfied on the supersymmetric brane solution. The source

terms for these fields behave as follows in the AdS5 region, M̂ (0)
− ∼ e−r/2, A(0)

− ∼ e−r/2 and

(`(0))a− ∼ e−3r/2. Each one of these source terms must vanish in the solution we seek, so

that the actual behavior of the fields must be suppressed at least by one power of e−r.

The actual suppression power is by e−2r since the bosonic field coefficients in the above

equations all have an expansion in powers of e−2r. It is now easy to see that the iterative

expansion of A− and `a− in the last two equations of (2.5.52) implies that these fields must

then vanish identically. The remaining equation for M̂− then has a solution which is only

the source term, and thus must vanish as well. In summary, we must have,

R− = M− = A− = `a− = 0 (2.5.53)

Thus, in the far region, only the helicity ±3
2 fields ω± as well as the helicity ±1

2 with

subscript plus may be non-zero.

The helicity +1
2 equations in the far region

In the far region, all the reduced helicity +1/2 equations, except for the constraint equation

in (2.5.26), admit a smooth limit as p2 � 1, and the corresponding limit may be taken as

we did for the stress tensor and current correlators, as well as for the helicity ±3
2 and −1

2

components. The constraint of (2.5.26) does not admit such a smooth limit and its analysis

requires more care and will be handled separately.
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Setting the momenta p± equal to zero in equations (2.5.27-2.5.29) gives,

0 =
(
∂r + 2U ′ + 3

2W
′
)
M̂+

0 = A′+ + 1
6(17W ′ + 4U ′)A+ + 2

3(U ′ −W ′)M̂+ + i

√
2
3Be

−2UqIXa
I `
a
+

0 = `a′+ + 1
6(5W ′ + 4U ′)`a+ −

√
2
3Tabc

2BqIXc
Ie
−2U +

√
2
3f

c
Aφ

A′

 `b+
−ifaAφA′M̂+ + ifaAφ

A′A+ − i
√

3
2Bq

IXa
I e
−2UA+ (2.5.54)

The remaining equation is for the constraint, which results from the component M = r.

Omitting the dependence on p± in this equation is consistent in the region 1 � e2r, but

not in the full far region. Thus, we shall keep all p±-dependence here, and obtain,

0 = (W ′ + 2U ′)M̂+ − 3U ′A+ − ifaA∂rφA`a+ + i√
2
e−Wp+ω−

0 = p+(M̂+ − A+)− p−ω+ (2.5.55)

In the overlap region, where U ′ = ∂rφ
A = 0, and W ′ = 1/L, we recover precisely the

near-region equations (2.5.43) with M̂− = 0, as should be expected.

The consistency of setting all the sources terms for the helicity ±1
2 fields to zero is now

easily assured. First of all, the differential equation in (2.5.54) for M̂+ guarantees that it

contains no source terms. Next, the differential equation in (2.5.54) for A+ contains a term

in M̂+ which behaves as e−11r/2 and a term in `a+ which behaves as e−7r/2 for the sources

term of `a+ and e−9r/2 for its vev term. In all these cases, the source term for A+ must

vanish by the second equation.

In the next section, we shall match the solutions for ω± obtained in the far region with

those obtained in the near region to obtain a solution valid in an overlap region defined

by p2 � e2r � 1. From the discussion above, we can consistency set M− = 0 throughout.
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The solutions to the near region equations (2.5.46) are therefore

ω+(r) = C+e
− 3r

2L M+(r) = p−
p+
C+e

− 3r
2L

ω−(r) = i
√

2
L

p−
p2

+
C+e

− r
2L M−(r) = 0 (2.5.56)

where C+ is an integration constant which remains to be determined.

2.5.10 Matching and IR correlators

To obtain a full solution in the overlap region, we match the solutions in the near and far

region in the limit p2e−2r � 1. Matching equations (2.5.49) in the r → −∞ limit to the

left-hand column of (2.5.56), we get,

C+ = −
√

2
B
U2

0 b+
i
√

2
L

p−
p2

+
C+ = −

√
2b− (2.5.57)

From this, we can solve for b+ in terms of b−. Writing the result in terms of the source and

expectation value parts of the spinors, ψ(0) and ψ(3), we get,

ψ
(3)
+ = − iLB√

2U2
0

p2
+
p−

χ−χ
t
+ψ

+(0) (2.5.58)

From general arguments based on super-conformal symmetry of the boundary theory, the

gamma trace of the spinor ψ(3)
µ should be composed of only local terms. This can be verified

explicitly from the asymptotic expansion of ψµ in Appendix C. Therefore, up to these local

terms, we can set Γµψ(3)
µ = 0. Then (2.5.7) can be written as

8πG5Sµ = ψ(3)
µ + local
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Using this expression and redefining S̃µ = U2
0V2Sµ, where V2 is the volume of the T 2 factor

in the AdS3 × T 2 geometry, equation (2.5.58) can be rewritten as

S̃+ = − ic

12
√

2π
p2

+
p−

χ−χ
t
+ψ

+(0)

where the central charge is given by (2.3.19). Comparing this expression to (2.5.8), the

Euclidean momentum space two-point correlator of the supercurrent can be extracted.

Restoring the SU(2) index and including the result of analyzing the i = − sector, we

obtain

〈
S+,+(p)S̄+,−(−p)

〉
= ic

6
√

2π
p2

+
p−

χ−χ
t
+〈

S+,−(p)S̄+,+(−p)
〉

= − ic

6
√

2π
p2

+
p−

χ̃+χ̃
t
− (2.5.59)

where the first index is the spacetime index of the vector-spinor Sµ and the second is the

SU(2) index. All other correlators vanish. Note that these two correlators are related via

conjugation with the charge conjugation matrix C,

(
C
〈
S+,+(p)S̄+,−(−p)

〉)t
= −C

〈
S+,−(p)S̄+,+(−p)

〉

A similar analysis with η = −1 gives the same equations in the near and far region, but

with the roles of χ+ and χ− switched. To avoid repetition, we simply write down the final

result for the two-point correlator, which is,

〈
S−,+(p)S̄−,−(−p)

〉
= ic

6
√

2π
p2
−
p+

χ+χ
t
−〈

S−,−(p)S̄−,+(−p)
〉

= − ic

6
√

2π
p2
−
p+

χ̃−χ̃
t
+ (2.5.60)
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Fourier transforming the non-zero momentum space correlators to position space gives us

the expected two-point correlators for the supercurrent,

〈
S+,+(x)S̄+,−(0)

〉
= c

6
√

2π2

1
(x+)3 χ+χ

t
− η > 0 (2.5.61)

〈
S−,+(x)S̄−,−(0)

〉
= c

6
√

2π2

1
(x−)3 χ̃+χ̃

t
− η < 0 (2.5.62)

We see from this result that the overall sign of the charges, given by η, determines whether

the left- or right-movers have a non-vanishing correlators, similar to what we saw for the

gauge current correlators. We will see in the next section how this fits with the stress tensor

and gauge current correlators computed in the previous sections.

2.6 Emergent super-Virasoro symmetry

The presence of an asymptotic AdS3 spacetime in the near region signals the appearance of

a Brown-Henneaux Virasoro algebra [30], which carries over to a Virasoro symmetry in the

IR limit of the dual field theory. For the magnetic brane solution without supersymmetry,

the presence of a Virasoro algebra was derived directly from the structure of the stress tensor

two-point correlators in [31]. There is also an additional unitary U(1) current algebra is

generated by the Maxwell field on an asymptotically AdS3 spacetime, thereby producing

an additional Kac-Moody symmetry in the IR limit of the dual field theory.

For the supersymmetric magnetic brane solution, discussed in the present chapter, there

again appears an asymptotic AdS3 region, producing again a Virasoro algebra, but now with

three extra U(1) current algebras, as well as superconformal generators. This extended set

of generators is responsible for extending the Virasoro algebra into anN = 2 super-Virasoro

algebra, as we shall argue below. The presence of an asymptotic N = 1 super-Virasoro

symmetry algebra near the boundary of AdS3 has been studied in the context of three-

dimensional Chern-Simons supergravity in a number of earlier papers, including [49–52].
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2.6.1 Matching correlators with superconformal central terms

In this section, we shall assemble all the results of the calculations of two-point functions

for the stress tensor T , the U(1)3 current J I , and the supercurrents S and S̄, to support

the emergence of an extended N = 2 super-Virasoro algebra. To begin, we recall the

structure of the low energy limit of the correlators of these operators in Table 1. Purely

local contributions will be omitted throughout. In Table 1, we collect the non-vanishing

two-point correlators calculated in this chapter, as a function of the sign of the charges qI .

Since the magnetic brane solution is supersymmetric, we expect the two-point correlator

to reflect this supersymmetry. That is, we should find an equal number of bosonic and

fermionic operators in the supersymmetric sector. For both signs of η, we indeed find this

to be the case. The tilde on some of the indices denote a basis which diagonalizes the

rank 2 projection matrices that are present in some of the gauge current correlators.

helicity Left-movers Right-movers

1 〈J̃ 3
+J̃ 3

+〉 〈J̃ 1̃
−J̃ 1̃
−〉, 〈J̃ 2̃

−J̃ 2̃
−〉

η > 0 3
2 〈S+S̄+〉

2 〈T̃++T̃++〉 〈T̃−−T̃−−〉

1 〈J̃ 2̃
+J̃ 2̃

+〉, 〈J̃ 3̃
+J̃ 3̃

+〉 〈J̃ 1
−J̃ 1
−〉

η < 0 3
2 〈S−S̄−〉

2 〈T̃++T̃++〉 〈T̃−−T̃−−〉

Table 2.1: Non-zero correlators in the presence of the supersymmetric magnetic brane

Next, we recall the part of the structure of the N = 2 super-Virasoro algebra to which

the two-point functions give access. These algebras enter chirally, and we shall concentrate

here on the + chirality part, as is appropriate for the case η > 0. The super Virasoro

algebra is generated by the chiral stress tensor, T++(z+), a chiral U(1)-current J+(z+), and

the chiral supercurrent components S+(z+) and S̄+(z+). The singular parts of their OPE
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relations are given as follows (see for example [53]),

T++(z+)T++(w+) ∼
c
2

(z+ − w+)4 + 2T++(w+)
(z+ − w+)2 + ∂+T++(w+)

z+ − w+

S+(z+) S̄+(w+) ∼
2c
3

(z+ − w+)3 + 2J+(w+)
(z+ − w+)2 + 2T++(w+) + ∂+J+(z+)

z+ − w+

J+(z+) J+(w+) ∼
c
3

(z+ − w+)2 (2.6.1)

We have not included the OPEs between distinct operators, as these are not accessible via

the two-point functions, but require genuine three-point correlators. The terms beyond

those proportional to the identity in (2.6.1) are not accessible by our two-point function

calculations either, but have been included here for the sake of completeness.

Normalization of the stress tensor

We have expressed the OPE relations of (2.6.1) in terms of the customary Minkowski

coordinates z± used to write down the super-Virasoro algebra, for example [53], namely

z± = ±x0 + x1 and w± = ±y0 + y1, while the normalization of coordinates used in the

preceding sections of this chapter was rather x± = (±x0 +x1)/
√

2 and y± = (±y0 +y1)/
√

2.

This change of variables amounts to a constant rescaling, which is conformal, and leaves the

OPE for the stress tensor unchanged. As a result, upon comparing the two-point function

of T++ in (2.3.22) with the term on the right side of the first line in (2.6.1), and absorbing

a standard factor of (2π)−2 in the definition of the two-point correlator, we are led to set,

T++(x+)(dx+)2 = 1
2π T++(z+)(dz+)2 (2.6.2)

and we find perfect agreement between the predictions of our stress tensor correlators and

the structure of the N = 2 superconformal algebra.
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Normalization of the supercurrents

The comparison for the supercurrent is slightly more tricky, for the following reason. In

the current algebra of (2.6.1), the operators T++, S+, S̄+, and J+ are viewed as conformal

fields of respective weights (2, 0), (3
2 , 0), and (1, 0). This is also true for the operators

T̃++ and J̃ I
+ with only Einstein indices arising from supergravity and holography. But

the operators S+ and S̄+ emerge from supergravity as a component of an Einstein vector

tensored with a Lorentz spinor. As a result, the transformation law for conformal rescaling

involves only the vector index, and we must identify the operators accordingly,

S+(x+)dx+ = 1
2π S+(z+)dz+

S̄+(x+)dx+ = 1
2π S̄+(z+)dz+ (2.6.3)

With this relation, we find again perfect agreement between the result of the holographic

calculations in (2.5.61) and the second line in (2.6.1).

Normalization of the currents

Finally, the normalization of the U(1) current that enters into the N = 2 superconformal

algebra poses a new challenge, which we have not resolved in the present chapter, and

leave for future work. The difficulty arises from the mixing of the three U(1) gauge fields

due to the Chern-Simons interaction in the presence of the supersymmetric magnetic brane

solution. This mixing is in effect in both the near and far regions, as well as in the axial

anomaly equation (2.4.40) for the U(1)3 currents. Disentangling which of the three U(1)

currents plays the role of J+ in (2.6.1) appears to require the normalization of the J+ term

in the OPE of S+ and S̄+, which requires a three-point correlator and is not at present

available. This ambiguity of normalization is likely related to the fact that there is no

natural prescription for identifying the graviphoton, Aµ, that belongs to the supergravity

multiplet in terms of the gauge fields, AIµ, as was explained in [34].
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2.6.2 Virasoro generators in AdS3 as physical modes in AdS5

An interesting issue addressed in [31] is the compatibility of the infinite-dimensional Vira-

soro asymptotic symmetry of the AdS3 × T 2 geometry with the finite-dimensional asymp-

totic symmetry SO(2, 4) of the AdS5 geometry. For the non-supersymmetric magnetic

brane solution, the pure coordinate transformations on the AdS3 geometry were shown to

become physical modes in the AdS5 region. These physical modes cannot be undone by a

coordinate transformation on AdS5. In this section, we will show that this is the case for

the supersymmetric magnetic brane solution as well.

Starting with the metric (2.3.7) of the AdS3×T 2 geometry, we consider an infinitesimal

Brown-Henneaux coordinate transformation in which we reparametrize x+ by a transfor-

mation of the following form,

r → r + ξr eip+x+

x+ → x+ + ξ+ eip+x+

x− → x− + ξ−(r) eip+x+ (2.6.4)

where ξ+ and ξr are constant and related as follows,

ξr = −iL2 p+ξ
+ ξ− (r) = L2

4 e−
2r
L p2

+ξ
+ (2.6.5)

To first order in ξ+ the metric takes the form,

ds2 = dr2 + 2e 2r
L dx+dx− + iL2

2 p3
+ξ

+ eip+x+ (
dx+

)2
+Bδijdx

idxj (2.6.6)

Comparing this to the perturbed metric in (2.3.2) and (2.3.17), we can read off,

t++ = iL2

2 p3
+ξ

+ = 2U2
0L

B
δg

(4)
++ (2.6.7)
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with s++ = s−− = t−− = t+− = p− = 0. The second equality in (2.6.7) gives the full

asymptotically AdS5 solution with the near horizon behavior (2.6.6). Specifically, this

component is given by

h++(r) = −4U2
0h

2(r) δg(4)
++ (2.6.8)

with h2(r) defined in (2.3.12). This perturbation mode cannot be undone by a coordinate

transformation on AdS5, and is therefore physical.

We can also show that the corresponding AdS5 stress tensor transforms under the

Brown-Henneaux coordinate reparametrization with a Schwarzian derivative properly nor-

malized for central charge c. This is expected since (2.6.7) shows that the AdS3 stress tensor

is proportional to the AdS5 stress tensor and therefore transfers its Schwarzian derivative

transformation law. In particular, the AdS5 stress tensor is given by,

T̃++ = c

24π∂
3
+ξ

+ (2.6.9)

where the right side is the Schwarzian derivative with the correct normalization for central

charge c. Interchanging the + and − indices, a similar computation gives the expression

T̃−− = c ∂3
−ξ
−/(24π).

2.6.3 Supercurrent generators in AdS3 as physical modes in AdS5

Under a local supersymmetry transformation the supercurrent defined on the AdS5 bound-

ary transforms with a term analogous to the Schwarzian derivative for the stress tensor.

We expect this to be the case for the same reason as the stress tensor, that is, the AdS3 su-

percurrent was shown to be proportional to the AdS5 supercurrent and so should transform

with a similar term. This can be seen by applying the linear response formula (2.5.8) to a

local supersymmetry transformation. For simplicity, we use the momentum space version
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of (2.5.8), given by

S̃+,+ = −1
2〈S+,+(p)S̄+,−(−p)〉δψ−,+(p)

S̃+,− = 1
2〈S+,−(p)S̄+,+(−p)〉δψ+,−(p) (2.6.10)

Using the result for the two-point correlator of the supercurrent when η > 0 and a super-

symmetry transformation with local supersymmetry parameter ε(r, x), we obtain,

S̃+i = − c

12
√

2π
χ−χ

t
+∂

2
+εi (2.6.11)

2.6.4 Composition of supersymmetry transformations

The computation and matching of the two-point correlators by itself does not suffice to

guarantee the existence of an N = 2 superconformal algebra. In particular, we may ask

whether the U(1) current algebra that appears in the same sector as the supercurrents

genuinely is a part of the superconformal algebra, or whether it is simply an additional

current algebra as we had already in the case of the non-supersymmetric brane. In this

last subsection, we shall provide additional arguments that demonstrate that indeed this

current algebra is part of the superconformal algebra.

The arguments are derived from the composition of two supersymmetry transforma-

tions. The action of a general 10-dimensional supersymmetry transformation εi on the

frame eMM̂ , gauge fields AIM , and gravitino ψiM are as follows,

δeM
M̂ = 1

2 ε̄
iΓM̂ψMi

δAIM = iXIψ̄iMεi +O(λ)

δψiM = DMεi + i

8XIF
I
NP

(
ΓMNP − 4δMNΓP

)
εi + 1

2gVIX
IΓMδijεj (2.6.12)

up to higher order terms in the Fermi fields. The 2-dimensional conformal supersymmetry
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transformations which are asymptotic symmetries of the AdS3 near region form a subset of

these supersymmetry transformations. The action on the bosonic fields of the composition

of two supersymmetries may be easily read off from the above transformation rules, ignor-

ing contributions involving the dilatino. Clearly, the composition of two supersymmetries

produces a variation in the metric, which accounts qualitatively for the T++ term in the

OPE of two supercurrents on the second line in (2.6.1), and a variation in the gauge field

proportional to XI which accounts for the J+ term in the second line in (2.6.1). This

provides confirmation that the U(1) current algebra generated by J I
+ indeed is part of the

superconformal algebra.

The above arguments are clearly rather qualitative, and we shall leave a quantitative

investigation of these issues for future work.

2.7 Discussion

There are several avenues along which the study of this chapter could be extended. One

immediate direction for future work, already mentioned in the previous section, is to obtain

a quantitative derivation of the superconformal algebra as an asymptotic symmetry algebra

in the near region.

Another direction is along the following lines. Magnetic branes may be dressed with an

electric charge density and placed at finite temperature [54,55]. For the non-supersymmetric

brane, using a blend of analytical and numerical studies, we were led to the discovery of a

quantum critical point across a non-zero value of the magnetic field [56,57]. Physics in the

critical region may be explored completely by analytical methods alone [58].

Finite temperature or chemical potential will of course break whatever supersymmetry

existed at zero temperature. Perhaps the most interesting question that can be exported

from the non-supersymmetric magnetic brane to its supersymmetric counterpart studied

in this chapter is the fate of the quantum phase transition, which was identified in [56,
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57] for the non-supersymmetric magnetic brane. Having shown here that the asymptotic

symmetries of the supersymmetric and non-supersymmetric branes are different, we should

expect the universality classes to which the corresponding dual CFTs belong to be different

as well. Therefore, critical exponents and scaling functions should be different, and for

the supersymmetric magnetic brane depend on the extra free parameter specifying the

embedding of the magnetic field into U(1)3.

Another avenue of interest is the identification of a twisted super-Virasoro structure

when a background electric charge density is turned out, extending the analysis of [59] for

the non-supersymmetric brane.
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Appendix A

Review of gauged five-dimensional

supergravity

Our starting point is five-dimensional N = 2 supergravity with N Maxwell supermultiplets

in which a U(1) subgroup of the SU(2) automorphism group of the supersymmetry algebra

has been gauged [33,34]. Einstein indices are denoted M,N = 0, 1, 2, 3, 4, while spacetime

frame indices are denoted by M̂, N̂ = 0̂, 1̂, 2̂, 3̂, 4̂. The orthonormal frame metric is given

by ηM̂N̂ = diag(−+ + + +)M̂N̂ , while the totally antisymmetric symbol in five-dimensional

spacetime will be denoted by εMNPQR and normalized to ε01234 = ε0̂1̂2̂3̂4̂ = 1.

The fields of the theory are the spacetime metric gMN , or equivalently the orthonormal

frame eM
M̂ ; N+1 Maxwell fields AIM with I = 1, · · · ,N+1 (one Maxwell field arising from

the supergravity multiplet); N scalars φA with A = 1, · · · ,N; one gravitino field ψµi which

is a doublet under SU(2) labelled by i = 1, 2; and N gaugino fields λai with a = 1, · · · ,N,

which are doublets under SU(2).
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A.1 Spinors

We denote by ΓM a basis of the Clifford algebra (written in Einstein indices),

{ΓM ,ΓN} = 2gMN I (A.1.1)

by I the identity matrix, by ΓM1M2···Mr the rank r antisymmetric product of Γ-matrices,

and by C the charge conjugation matrix defined by (ΓM)t = CΓMC−1 and Ct = −C. The

charge conjugation relation on all Clifford generators is given by,

(C ΓM1M2···Mr)t = tr C ΓM1M2···Mr (A.1.2)

with −t0 = −t1 = t2 = t3 = −t4 = −t5 = 1. Dirac matrices with frame indices are related

as usual by ΓM̂ = ΓMeM
M̂ . Since the dimension of spacetime is odd, we have the relation,

ΓM̂1M̂2M̂3M̂4M̂5 = ±i εM̂1M̂2M̂3M̂4M̂5 I (A.1.3)

The sign choice distinguishes between the two inequivalent irreducible representations of the

Clifford algebra, related by ΓM̂ → −ΓM̂ , and which give rise to equivalent representations

of the Lorentz algebra. Throughout, we shall choose the + sign in (A.1.3).

All spinors are doublets under SU(2), as is indicated by the label i on λai and ψMi.

They are subject to the symplectic-Majorana condition on a Dirac spinor χi (which may

be either the fields ψMi, λai , or the supersymmetry generator εi) which takes the form,

χ̄i ≡ (χi)†Γ0̂ = (χi)tC (A.1.4)

The SU(2)-indices are raised and lowered by,

χi = εij χj χj = χi εij ε12 = ε12 = 1 (A.1.5)
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It will be convenient to introduce the following complex combinations of the real indices i,

χ± = 1√
2

(χ1 ± iχ2) χ± = 1√
2

(χ1 ∓ iχ2) (A.1.6)

In terms of these indices, the relations of (A.1.5) take the form,

χ+ = iχ− χ− = −iχ+ ε+− = −ε+− = i (A.1.7)

The symplectic-Majorana condition of (A.1.4) then becomes,

(χ+)†Γ0̂ = i(χ−)tC (A.1.8)

Therefore, the symplectic-Majorana condition requires the components χ+ and χ− of any

spinor to be essentially complex conjugates of one another. As a result, we may just retain

the analysis for one, that of the other being given by complex conjugation.

A.2 Gauging U(1) ⊂ SU(2)

Gauging a U(1)-subgroup of the SU(2) automorphism group of the supersymmetry algebra

is achieved by coupling a linear combination AM of the Maxwell fields,

AM = 3
2 VI A

I
M (A.2.9)

to each SU(2) doublet. Here, VI is a vector whose components are fixed numerical constants

independent of the scalar fields φA. Minimally coupling each SU(2) doublet to AM is

achieved by using the following covariant derivative,

(DMλa)i = DMλ
ia + gAMδijλaj (A.2.10)
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where g is the U(1)-gauge coupling, δij acts as a (traceless) generator of SU(2), and DM

is the covariant derivative with respect to the spin connection ωM , given by,

DMλ
a
i = ∂Mλ

a
i + 1

4(ωM)αβΓαβλai (A.2.11)

and affine connection when acting the the gravitino field ψMi.

A.3 The bosonic part of the Lagrangian

The bosonic part L0 of the full gauged supergravity Lagrangian is given as follows,

L0 = −1
2Rg −

1
4GIJ(φ)F I

MNF
JMN − 1

2GAB(φ)∂MφA∂MφB − g2P (φ)

+ 1
48√gCIJK ε

MNPQSF I
MNF

J
PQA

K
S (A.3.12)

Here, Rg is the Ricci scalar∗ of the metric g; the volume form is given by g = − det(gMN);

and εMNPQS/
√
g is the totally anti-symmetric tensor in five-dimensional spacetime. Gauge

invariance under the gauge transformations of the N+ 1 Maxwell fields requires the totally

symmetric tensor CIJK to be constant, namely independent of the scalar fields φA.

The remaining ingredients in the Lagrangian are functions of the scalars φA which

parametrize an N-dimensional Riemannian manifold M. Given the constant totally sym-

metric tensor CIJK , all these data can be constructed uniquely, up to scalar field redefini-

tions. One embedsM into an N+ 1-dimensional Riemannian manifold C parametrized by

scalars XI with I = 1, · · · ,N + 1, and introduces an auxiliary potential,

V(X) = 1
6CIJKX

IXJXK (A.3.13)

∗Our conventions for the Riemann tensor, Ricci tensor, and Ricci scalar are those of [33, 34], namely
RMN

P
Q = ∂MΓPNQ − ∂NΓPMQ + ΓPMSΓSNQ − ΓPNSΓSMQ along with RMQ = RMP

P
Q and R = gMQRMQ.

95



The manifoldM is specified as a hypersurface in C by the relation V(X) = 1. The scalars

φA are local coordinates on M, independence of their choice being guaranteed by the

tensorial structure of the Lagrangian. The Riemannian metric GIJ on C, and the induced

Riemannian metric GAB on M are respectively given by,

GIJ = −1
2
∂2 lnV
∂XI∂XJ

GAB = GIJ ∂AX
I ∂BX

J

∣∣∣∣∣
V=1

(A.3.14)

where ∂A = ∂/∂φA. The notation GIJ(φ), used in the Lagrangian, indicates that GIJ is

evaluated at points in the submanifold M of C. Throughout, it will be useful to define a

variable XI dual to XI by,

XI = 1
6CIJKX

JXK = 1
3
∂ V
∂XI

(A.3.15)

Restricted toM by the condition V = 1, the vector XI is normal toM at the point XI |V=1.

With the help of this notation GIJ may be calculated explicitly, and we have,

GIJ = 9
2XIXJ −

1
2CIJKX

K (A.3.16)

It was shown in [33] that the requirement of positive definiteness of the metric GIJ on

M imposes restrictions on the allowed choices for the constant tensor CIJK , so that of its

(N+ 1)(N+ 2)(N+ 3)/6 entries only N(N+ 1)(N+ 2)/6 can be chosen independently. For

the case N = 2, of interest to us in this dissertation, these constraints will be very simple,

and may be solved by choosing C123 = 1 along with its 5 permutations, and all other entries

equal to 0. For the discussion of the general case, we refer to [33,34].

From the above considerations, it follows that 3
2XI = GIJX

J , as well as

CIJK =
(3

2

)3
GII′

GJJ ′
GKK′

CI′J ′K′ = CIJK

GIJ = 2XIXJ − 6CIJKXK (A.3.17)
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Note that due to the last equality on the first line CIJK is a constant symmetric tensor

just as CIJK is. Finally, the scalar potential P (φ) occurring in the Lagrangian is given by,

P = −27CIJK VI VJ XK (A.3.18)

which is again a function of M in view of the implicit restriction V = 1.

A.4 Relation with the notations of [34]

For completeness, we spell out the relation of our notations with those of [33, 34], where

the metrics GIJ and GAB are respectively denoted by âIJ and gxy, the indices x, y playing

the role of the indices A,B here. Furthermore, we have,

VI = 2
3 V

GST
I XI =

√
3
2 h

I

CIJK = 4
√

2
3 C

GST
IJK XI =

√
2
3 hI (A.4.19)

where V GST
I , CGST

IJK , h
I , and hI are the notations used in [33,34].

A.5 The fermionic part of the Lagrangian

The part of the Lagrangian involving the fermion fields ψMi and λai contains terms bilinear

in the fermion fields, and terms of higher order. For the purpose of this dissertation, only

the bilinear terms will be needed, and we shall henceforth specialize to those, and denote
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the part of the Lagrangian bilinear in fermions by L2. From [34], it is given as follows,†

L2 = −1
2 ψ̄

i
MΓMNPDNψPi −

1
2 λ̄

iaΓM
(
δabDM + Ωab

A ∂Mφ
A
)
λbi −

i

2 λ̄
iaΓMΓNψMifA

a∂Nφ
A

+1
4h

a
I λ̄

iaΓMΓNPψMiF
I
NP + i

8
√

6
(
δabhI + 4T abchcI

)
λ̄iaΓMNλbiF

I
MN

− 3i
8
√

6
hI

(
ψ̄iMF

I
PQΓMNPQψNi + 2ψ̄MiψNi F

I
MN

)

−i
√

6
8 g ψ̄iMΓMNψjNδijP0 −

1√
2
g λ̄iaΓMψjMδijP a + i

2
√

6
g λ̄iaλjbδijP

ab (A.5.20)

where we use the index A instead of x used in [34]. Here, fAa and Ωab
A are respectively the

SO(n+ 1) frame and connection of M, and P0, P
a, P ab are given as follows,

P0 = 2hIV GST
I P a =

√
2hIaV GST

I P ab = 1
2δ

abP0 + 2
√

2T abcP c (A.5.21)

where T abc is a covariantly constant tensor onM. Its proper definition and detailed prop-

erties were analyzed in [34], and will not be needed here beyond the case N = 2, for which

its explicit formulas are given in (A.8.33).

In terms of the notations of (A.4.19), the fermionic part of the Lagrangian reads,

L2 = −1
2 ψ̄

i
MΓMNPDNψPi −

1
2 λ̄

iaΓM
(
δabDM + Ωab

A ∂Mφ
A
)
λbi −

i

2 λ̄
iaΓMΓNψMifA

a∂Nφ
A

+
√

3
4
√

2
Xa
I λ̄

iaΓMΓPQψMiF
I
PQ + i

16
(
δabXI + 4T abcXc

I

)
λ̄iaΓMNλbiF

I
MN

− 3i
16XI

(
ψ̄iMΓMNPQψNiF

I
PQ + 2ψ̄MiψNi F

I
MN

)
−3i

4 g ψ̄iMΓMNψjNδijVIX
I − 3√

6
g λ̄iaΓMψjMδijVIXIa + i

2 g λ̄iaλjbδijP
ab (A.5.22)

where,

P ab =
√

6
2 δabVIX

I + 2
√

6VIT abcXIc (A.5.23)

†In the last term on the last line below, we have corrected for a factor of g which was missing in [34].
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The fields XaI and XI
a are tangent to M and defined as follows,

XIa = fa
AXAI XIA = +

√
3
2 ∂AXI

XI
a = fa

AXI
A XI

A = −
√

3
2 ∂AX

I (A.5.24)

The relations XIX
I
A = XIXIA = 0 follow directly by differentiating V along the manifold

where V = 1, and we have the following further relations as well as,

GIJX
I
aX

J
b = 3

2δab GIJ = 2
3 (XIXJ +Xa

IX
a
J) (A.5.25)

with analogous relations for GIJ . For a detailed discussion, we refer to Section 3 of [34].

Lastly, we note that in the Lagrangian (A.5.22), one can use either the i = 1, 2 or the

i = +,− basis for the SU(2) indices. In the former, we use the standard Kronecker delta,

δij = diag(1, 1)ij, but in the i = +,− basis we must use the rotated matrix

δij =


0 1

1 0


ij

(A.5.26)

A.6 Fermion field equations

The fermion field equations are deduced from the Lagrangian, using the symplectic Ma-

jorana restrictions λ̄ia = (λia)tC and ψ̄iM = (ψiM)tC. Expressing the result in terms of the

fields λa± and ψM± in the SU(2) basis of (A.1.6), the equations become ΨM
± = Λa

± = 0 with,

ΨM
± = ΓMNPDNψP± + 3i

8 XI

(
ΓMNPQψN±F

I
PQ + 2ψN±F IMN

)
− i

2ΓNΓMλa±faA∂NφA

−1
4

√
3
2X

a
I ΓPQΓMλa±F I

PQ ±
3
2 gΓMNψN±VIX

I ∓ 3i√
6
gΓMλa±VIXIa (A.6.27)
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and

Λa
± = ΓM

(
δabDM + Ωab

A ∂Mφ
A
)
λb± + i

2ΓMΓNψM±faA∂NφA −
1
4

√
3
2X

a
IF

I
PQΓMΓPQψM±

− i8
(
δabXI + 4T abcXc

I

)
F I
MNΓMNλb± ∓

3i√
6
gΓMψM±VIXIa ∓ 1√

6
gλb±P

ab (A.6.28)

Expressing the fields λa± and ψM± in the SU(2)-basis of (A.1.6) is responsible for decoupling

the field equations with SU(2)-index − from those with index +. Furthermore, a reversal

of the sign of g reverses the indices on the field equations. Therefore, without loss of

generality, we may restrict attention to the field equations for index +.

A.7 Supersymmetry transformations on fermion fields

The supersymmetry transformations also decouple in the SU(2)-basis of (A.1.6) and we

get,

δψM± = DMε± + i

8XIF
I
NP

(
ΓMNP − 4δMNΓP

)
ε± ∓

1
2 gVIX

IΓMε±

δλa± = − i2f
a
AΓM∂MφAε± + 1

4

√
3
2X

a
I ΓMNF I

MNε± ± i
√

3
2 gVIX

Iaε± (A.7.29)

As we did for the field equations, we restrict attention to the supersymmetry transforma-

tions with index + and henceforth omit this index from the fields.

A.8 The special case N = 2

The truncation to N = 2 was studied in [43]. By performing constant linear transformations

on the gauge fields AIM , the symmetric tensor CIJK may be reduced to C123 = 1 along

with its 5 permutations, all other components being zero. The auxiliary potential V then

reduces to V(X) = X1X2X3 and the scalar manifold is defined by the embedding relation

X1X2X3 = 1. This relation may be solved explicitly by an exponential parametrization in
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terms of two unconstrained scalar fields φA = (φ1, φ2). A convenient choice is given by,

XI = e−a
I
Aφ

A

aI1 = 1√
6

(1, 1,−2)I aI2 = 1√
2

(1,−1, 0)I (A.8.30)

Therefore, the manifoldM of the scalar fields is flat, the induced metric GAB is a multiple

of the Euclidean metric δAB, the frame faA is constant, and the connection Ωab
A vanishes,

GAB = 1
2δAB faA = 1√

2
δaA Ωab

A = 0 (A.8.31)

Furthermore, in terms of the above parametrization of M we have XI = (3XI)−1 and,

GIJ(φ) = 9
2 δIJ(XI)2 = δIJ

2(XI)2

P (φ) = −6
3∑
I=1

XI = −2
3∑
I=1

1
XI

(A.8.32)

Finally, the covariantly constant tensor T abc becomes constant in the coordinates φA of

(A.8.30), since the connection vanishes, and takes the following values,

T 111 = −T 122 = − 1√
2

(A.8.33)

along with permutations thereof, with all other components vanishing.
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Appendix B

Computation of Boundary Actions

and 1-pt Functions

B.1 Stress tensor

In this section we compute the expectation value of the boundary stress tensor, Tµν(x), in

an asymptotically AdS5 spacetime. Consider the supergravity action (2.2.1),

Ssugra = − 1
8πG5

∫
d5x
√
g
(1

2R + g2P + · · ·
)

+ Sbndy + Sct (B.1.1)

where ds2 = gMNdx
MdxN is the 5-dimensional spacetime metric, g = − det (gMN), R is the

Ricci scalar for gMN , and P is the scalar potential given by

P = −6 (X1 +X2 +X3) (B.1.2)

In the limit r → ∞, the scalar potential plays the role of the cosmological constant since

XI ∼ 1 + O(e−2r) near the boundary. The · · · in the action represents the remaining

terms in the supergravity action given in Appendix A. These terms will not contribute to

the calculation in this section because they either fall off faster than the terms above as
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r approaches the boundary, or do not depend on the metric at all and therefore have a

vanishing variation with respect to the metric. Finally, the boundary terms Sbndy and Sct

are used to obtain a well-defined variation and finite action, respectively.

Varying the action with respect to the metric, we get

δSsugra = − 1
16πG5

∫
d5x
√
g GMNδg

MN

− 1
16πG5

∫
d5x ∂L

[√
g
(
gMLδΓNMN − gMNδΓLMN

)]
+ δSbndy + δSc.t. (B.1.3)

where GMN = 0 are the field equations with respect to the metric. When the action is

evaluated on-shell, we impose GMN = 0. We choose coordinates for the metric such that

ds2 = dr2 + gµν(r, x)dxµdxν (B.1.4)

as in section 1.5. In these coordinates, the non-vanishing components of the affine connec-

tion ΓLMN are

Γrµν = −1
2∂rgµν Γνµr = 1

2g
νκ∂rgκµ (B.1.5)

Since the action is divergent near the boundary, we regulate the integral by restricting the

range of integration in the r coordinate to be r ≤ r∞ in (B.1.3). The boundary integrals

are therefore evaluated at r = r∞. The boundary term and counterterm are given by [41]

Sbndy = − 1
16πG5

∫
r=r∞

d4x
√
ggµν∂rgµν

Sct = 1
16πG5

∫
r=r∞

d4x
√
g
(

6− 1
2R[g(0)]− r∞

2 a(4)
)

(B.1.6)
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where R[g(0)] is the Ricci scalar for g(0)
µν , and

a(4) = 1
2
(
g(0)µνg(2)

µν g
(0)ρσg(2)

ρσ − g(0)µνg(2)
νρ g

(0)ρσg(2)
σµ

)
(B.1.7)

This term serves to cancel the logarithmic divergence in the action and is proportional to

the conformal anomaly in the boundary CFT.

Imposing the on-shell condition on the action, the first term in (B.1.3) vanishes. To

expand the remaining terms near the boundary, we use the Fefferman-Graham expansion

of the metric, where

gµν(r, x) = e2rg(0)
µν (x) + g(2)

µν (x) + e−2rg(4)
µν (x) + re2rg(ln)

µν (x) + · · · (B.1.8)

Plugging this into (B.1.3), subtracting out the divergences with the terms in Sct, and taking

the r∞ →∞ limit, we obtain

δSsugra = 1
8πG5

∫
d4x

√
g(0)

(
g(4)
µν + local

)
δg(0)µν (B.1.9)

where the local terms are those which only involve powers of g(0)
µν . These terms contribute

delta functions and derivatives of delta functions in the two-point correlators of the stress

tensor. Since we are interested in the correlators at non-coincident points, these terms

vanish, so we ignore them. Comparing the equation above to (2.2.13), we obtain

4πG5Tµν = g(4)
µν + local (B.1.10)
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B.2 Gauge currents

In this section we compute the expectation value of the abelian gauge currents, J Iµ(x), in

an asymptotically AdS5 spacetime. The relevant terms in the supergravity action are

Ssugra = − 1
8πG5

∫
d5x
√
g

(
1
4GIJF

I
MNF

JMN − εMNPQS

48√g CIJKF
I
MNF

J
PQA

K
S + · · ·

)

(B.2.11)

Varying the action with respect to the gauge fields AIM and regulating the integral by

restricting the range of integration to be r ≤ r∞, we get

δSsugra = − 1
8πG5

∫
r≤r∞

d5x
√
gEM

I δA
I
M

− 1
8πG5

∫
r=r∞

d4xnM

(
√
gGIJF

IMNδAJN + εMNPQS

12 CIJKF
I
NPA

J
QδA

K
S

)

(B.2.12)

where EM
I = 0 are the field equations and nM is the unit normal in the M direction.

Imposing the on-shell condition on δSsugra, the first term vanishes.

To evaluate the variation of the action near the boundary at r → ∞, we expand the

gauge fields in powers of e−2r in a similar fashion to the Fefferman-Graham expansion of

the metric. We choose a gauge where AIr = 0. Then the field equations admit an expansion

for the remaining components of the form

AIµ(r, x) = A(0)
µ (x) + e−2rA(2)

µ (x) + · · · (B.2.13)

Plugging this into δSsugra and taking the limit r∞ →∞, we obtain

δSsugra = 1
4πG5

∫
d4x

√
g(0)

(
AI (2)
µ + local

)
δA(0)µ (B.2.14)
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where the local terms are local functionals of the source A(0)
µ . Comparing this expression

with (2.2.13), we can read off the expectation value of the gauge current to be

4πG5J
I
µ = AI (2)

µ + local (B.2.15)

B.3 Supercurrent

In this section, we provide the details for computing the boundary terms required for a

well-defined variational principle of the supergravity action with respect to the gravitino

fields, and the counter-term required for a finite on-shell action.

We begin by regulating the on-shell action by restricting the range of integration in the

r coordinate to r ≤ r∞, and evaluating the boundary terms at r = r∞, where r∞ � 1 is a

large cutoff parameter. Now given with the most general asymptotic solution to the field

equations for the gravitino, written below for convenience,

ψµ(x, r) = e−(∆−4)rψ(0)
µ (x) + · · ·+ e−(∆−1)rψ(3)

µ (x) + re−(∆−1)rψ(ln)
µ (x) +O(e−∆r) (B.3.1)

we expand the regulated on-shell action in a series which schematically takes the form

Sreg =
∫

r=r∞

d4x
√
g(0)

(
e2r∞a0 + r∞aln +O(r0

∞)
)

(B.3.2)

where a0 and aln are local functions of the sources ψ(0)
µi , and the rest of the terms are finite

in the limit r∞ →∞.

In the remainder of this Appendix, we shall derive Sreg. The ingredients in its construc-

tion will be the bulk action S2 given in the previous Appendix, plus a boundary term Sbndy

required for a well-defined variational principle, and counter-terms needed for holographic

renormalization. The combination of these contributions will then be evaluated on-shell

and expanded using (B.3.1). We will not include explicitly here, however, the terms which
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cancel the logarithmic divergences since they do not contribute to terms needed in the

calculation of the supercurrent. Finally, we will compute the one-point function of the

supercurrent from the finite on-shell action.

B.3.1 Boundary terms

To derive the boundary term, we focus on the kinetic term for the gravitino field in the

supergravity action regularized by a cutoff r ≤ r∞,

S2 = 1
8πG5

∫
r≤r∞

d5x
√
g
(
−1

2 ψ̄
i
MΓMNPDNψPi + · · ·

)
(B.3.3)

Here, the indices i = ± represent the SU(2) indices (see Appendix A), and the ellipses

stand for all the remaining terms in the supergravity action resulting from (A.5.20). The

boundary contribution to the variation of this action results from the N = r term,

S2 = 1
8πG5

∫
r≤r∞

d5x
√
g
(
−1

2 ψ̄
i
µΓµrρ∂rψρi + · · ·

)
(B.3.4)

Evaluating the action on-shell, its contribution is now entirely given by,

δS2 = − 1
16πG5

∫
r=r∞

d4x
√
g ψ̄iµΓµrνδψνi

= − i

16πG5

∫
r=r∞

d4x
√
g
(
ψ̄µ+Γµνrδψν− − ψ̄µ−Γµνrδψν+

)
(B.3.5)

where we have lowered all SU(2) indices using (A.1.7).

To define the supercurrent, Sµ±, we must vary the action with respect to the source of

the supercurrent, ψ(0)
µ±. However, for a well-defined variational principle, we can only vary

the action with respect to half of the components of ψ(0)
µ±. From the symplectic-Majorana
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condition, (A.1.7), one can easily show that,

(I ± Γr)χ+ = 0 ⇒ (I ∓ Γr)χ− = 0

Therefore, we will vary the action with respect to the components of ψ(0)
µ± satisfying,

(I − Γr)δψ(0)
µ+ = 0

(I + Γr)δψ(0)
µ− = 0 (B.3.6)

and remove the remaining variations with a boundary term. To cancel the unwanted

variations in (B.3.5), we add a boundary term to the action given by,

Sbndy = i

32πG5

∫
r=r∞

d4x
√
g
(
ψ̄µ+Γµνψν− + ψ̄µ−Γµνψν+

)

= i

32πG5

∫
r=r∞

d4x
√
g ψ̄iµΓµνψjνδij (B.3.7)

where the last line is written to show that this term has the same structure as the mass

term in the Lagrangian (A.5.22). Adding this to S2, the variation is

δ(S2 + Sbndy) = i

16πG5

∫
r=r∞

d4x
√
g
(
ψ̄µ+Γµν(I − Γr)δψν− + ψ̄µ−Γµν(I + Γr)δψν+

)

(B.3.8)

It is now clear from the structure of this combined on-shell action that half of the variations

are canceled out by the addition of the boundary term.

B.3.2 Counter-terms

Expanding the modified on-shell action, Sreg = S2 +Sbndy, using (B.3.1) and regulating the

integral at r = r∞ � 1, we find that the bulk action S2 vanishes and the leading order part
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is given by the boundary term,

Sreg = i

16πG5

∫
r=r∞

d4x
√
g(0)

(
e2r∞ψ̄+(1)

µ Γµνψ−(0)
ν + e2r∞ψ̄−(1)

µ Γµνψ+(0)
ν +O(r∞)

)
(B.3.9)

We will ignore the logarithmic, O(r∞), divergences here because we only want to compute

the finite terms of the variation of the full action, and the counter-terms which cancel the

logarithmic terms do not contribute to the finite terms. To cancel the divergent terms

above, we try a counter-term given by [48]

Sct = 1
32πG5

∫
r=r∞

d4x
√
g
(
ψ̄iµΓµνρ∂νψρi + r∞F [ψ, λ, φ, . . .]

)

= i

16πG5

∫
r=r∞

d4x
√
g(0)

(
−e2r∞ψ̄+(1)

µ Γµνψ−(0)
ν − e2r∞ψ̄−(1)

µ Γµνψ+(0)
ν − ψ̄+(1)

µ Γµνψ−(2)
ν

−ψ̄−(1)
µ Γµνψ+(2)

ν + ψ̄+(3)
µ Γµνψ−(0)

ν + ψ̄−(3)
µ Γµνψ+(0)

ν + r∞F +O(e−2r∞)
)

(B.3.10)

where F [ψ, λ, φ, . . .] are the terms needed to cancel out the logarithmic divergences in the

full on-shell action. To go from the first equality to the second, we use the field equations,

(A.6.27), to rewrite the first term in terms of derivatives with respect to r rather than with

respect to boundary coordinates. We see in the first line of the second equality above that

the O(e2r∞) divergences cancel, and the full renormalized on-shell action is given by

Ssugra = lim
r∞→∞

Sreg

= i

16πG5

∫
d4x

√
g(0)

(
ψ̄+(3)
µ Γµνψ−(0)

ν + ψ̄−(3)
µ Γµνψ+(0)

ν + local
)

(B.3.11)

All divergences are cancel out, higher order terms vanish in the r∞ → ∞ limit, and what

remains are local terms proportional to the source, ψ(0)
µi , as shown in Appendix C, and

non-local terms proportional to ψ(3)
µi .
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B.3.3 Extracting the supercurrent

To obtain the supercurrent from the definition (2.5.6), we vary the sources in the renor-

malized action Ssugra to get

δSsugra = i

16πG5

∫
d4x

√
g(0)

(
δψ̄+(0)

µ Γµνψ−(3)
ν + δψ̄−(0)

µ Γµνψ+(3)
ν + local

)
(B.3.12)

Comparing this to (2.5.6), we get

8πG5(Sν+)tC = −(ψ+(3)
µ )tCΓµν + local

8πG5(Sν−)tC = −(ψ−(3)
µ )tCΓµν + local (B.3.13)

Solving for the supercurrents by using the transposition properties of the gamma matrices,

we obtain the final result of this Appendix,

8πG5S
µ
+ = −Γµνψ(3)

ν+ + local

8πG5S
µ
− = +Γµνψ(3)

ν− + local (B.3.14)
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Appendix C

Asymptotic expansion of the Fermi

fields

In this section we will show some of the details of the asymptotic expansion of the Fermi

fields. The expansion is done similarly to section 5 of [47]. The fields at r → ∞ take an

asymptotic form given by,

ψµ̂ = e−
r
2ψ

(0)
µ̂ + e−

3r
2 ψ

(1)
µ̂ + e−

5r
2 ψ

(2)
µ̂ + e−

7r
2 ψ

(3)
µ̂ + re−

7r
2 ψ

(ln)
µ̂ + · · ·

ψr̂ = e−
3r
2 ψ

(1)
r̂ + e−

5r
2 ψ

(2)
r̂ + e−

7r
2 ψ

(3)
r̂ + e−

9r
2 ψ

(4)
r̂ + re−

9r
2 ψ

(ln)
r̂ + · · ·

λa = e−
3r
2 λa(1) + e−

5r
2 λa(2) + re−

5r
2 λa(ln) + e−

7r
2 λa(3) + · · · (C.0.1)

where the frame indices µ̂ denote the boundary coordinates {x+, x−, xu, xv}. We can con-

strain the coefficients order by order in equations (A.6.27) and (A.6.28), where the bosonic

fields are set to the interpolating magnetic brane solution to the BPS equations described
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in section 2.2.3. We denote their asymptotic behavior in the following way,

faAφ
A′ = fa0 e

−2r + ga0re
−2r +O(e−4r)

Xa
I = X

a(0)
I +X

a(1)
I e−2r +X

a(ln)
I re−2r +O(e−4r)

W = r + lnW0 +O(e−4r)

U = r + lnU0 +O(e−4r) (C.0.2)

These expansion coefficients can be computed explicitly from the asymptotic form of φA.

Note that we have not chosen a gauge for ψµ. To leading order, e− r2 , we find that,

(I − Γr)ψ(0)
µ̂ = 0 (C.0.3)

At the next order, e− 3r
2 , we have the projection conditions,

(I + Γr)ψ(1)
µ̂ = 0 (I − Γr)ψ(1)

r = 0 (I − Γr)λa(1) = 0 (C.0.4)

and find that the coefficients are determined by the ψ(0)
µ data,

Γ±̂ψ
(1)
±̂ = − i2p±Γ±̂Γαψ(0)

α

Γûψ(1)
û = i

2pmΓm̂Γûψ(0)
û

Γv̂ψ(1)
v̂ = i

2pmΓm̂Γv̂ψ(0)
v̂

Γαψ(1)
α = i

3Γ+̂−(p+ψ
(0)
− − p−ψ

(0)
+ )− i

6pmΓm̂αψ(0)
α

Γmψ(1)
m = −2i

3 Γ+̂−(p+ψ
(0)
− − ψ−ψ

(0)
+ )− i

6pmΓm̂αψ(0)
α (C.0.5)
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where, as stated in the main text, m = +,− and α = u, v. At the next two orders, e− 5r
2

and re−
5r
2 , we have,

(I − Γr)ψ(2)
µ̂ = 0 (I + Γr)ψ(2)

r = 0

(I + Γr)λa(2) = 0 (I + Γr)λa(ln) = 0 (C.0.6)

The coefficients, up to a gauge transformation, are determined by the source data, ψ(0)
µ̂ and

λa(1). Here we write them in terms of the data at the previous order,

Γαψ(2)
α + Γrψ(2)

r = i

3Γ+̂−(p+ψ
(1)
− − p−ψ

(1)
+ )− i

3pmΓm̂αψ(1)
α (C.0.7)

Γmψ(2)
m + Γrψ(2)

r = −2i
3 Γ+̂−(p+ψ

(1)
− − p−ψ

(1)
+ ) + i

6pmΓm̂ψ(1)
r −

i

2pmΓm̂αψ(1)
α

Γ±̂ψ
(2)
±̂ = − i2p±Γ±̂(ψ(1)

r + Γαψ(1)
α )

Γûψ(2)
û = − i2pmΓm̂Γûψ(1)

û

Γv̂ψ(2)
v̂ = − i2pmΓm̂Γv̂ψ(1)

v̂

λa(ln) = i
pmΓm̂λa(1) + i

2(Γmψ(0)
m + Γαψ(0)

α )fa0

− 1
2U2

0

√
3
2Bq

IX
a(0)
I Γûv̂(Γmψ(0)

m − Γαψ(0)
α )− i

√
3
2VIX

I(1)
a (Γmψ(0)

m + Γαψ(0)
α )

(C.0.8)

The coefficient ψ(2)
r can be gauged away to obtain a unique constraint on Γαψ(2)

α and Γmψ(2)
m .
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