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Abstract

PDP networks that use nonmonotonic activation functions
often produce hidden unit regularities that permit the internal
structure of these networks to be interpreted (Berkeley et al,
1995; Dawson, 1998; McCaughan, 1997). In some cases,
these regularities are associated with local interpretations
(Dawson, Medler & Berkeley, 1997). Berkeley has used this
observation to suggest that there are fewer differences be-
tween symbols and subsymbols than one might expect
(Berkeley, 1997). We suggest below that this kind of conclu-
sion is premature, because it ignores the fact that regardless
of their content, the local features of these networks are not
combined symbolically. We illustrate this point with the in-
terpretation of a network trained on a variant of Hinton’s
(1986) kinship problem, and show how the network’s be-
havior depends on the coarse coding of information repre-
sented by hidden unit bands, even when these bands have lo-
cal interpretations. We conclude that nonmonotonic PDP
networks actually provide an excellent example of the differ-
ences between symbolic and subsymbolic processing.

Introduction

Networks of value units are a PDP architecture whose
processors use a Gaussian activation function, and whose
connection weights are trained using a variation of the gen-
eralized delta rule (Dawson & Schopflocher, 1992).

One property that emerges from this PDP architecture is a
marked “banding” of its hidden unit activities (Berkeley et
al., 1995; Dawson, 1998; Dawson et al., 1997). This band-
ing is revealed when the responses of hidden units to each
of a set of training patterns are plotted in a type of one-
dimensional scatter plot called a jittered density plot
(Chambers, Cleveland, Kleiner, & Tukey, 1983). One jit-
tered density plot is drawn for each hidden unit in a net-
work. For each pattern in a training set, a dot is added to
the density plot. The x-position of the dot indicates the ac-
tivity produced in that hidden unit by an input pattern. The
y-position of the dot is randomly selected to reduce the
overlap of different points. For the hidden units of a value
unit network, the dots in a jittered density plot are not
“smeared” uniformly across the graph. Instead, the plot is
typically organized into a set of distinct bands or stripes (see
Figure 1).

This banding phenomenon is important, because the
bands often enable a researcher to determine the algorithm
that is used by a trained network to accomplish a particular
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pattern recognition task. Training patterns that fall into the
same band in a hidden unit do so because they share one or
more properties, called definite features (Berkeley et al.,
1995). By identifying the definite features in a layer of hid-
den units, and by determining how they are combined by a
layer of output units, one can specify in great detail how a
network of value units accomplishes a mapping from inputs
to outputs.

For example, a network of value units has been trained on
a set of logical problems devised by Bechtel and Abraham-
sen (1991). When this network was analyzed, its hidden
units were highly banded, and bands were associated with
specific local features (e.g., type of logical connective, rela-
tions among variables in the logic problems). The network
combined these local features in such a way that its internal
structure represented many of the traditional rules of logic,
such as modus ponens (Dawson et al., 1997).
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Figure 1. Jittered density plots for the kinship network
described below. Each plot is for one of the 6 hidden
units in that network. Each plot is comprised from 312
different points, which are organized into distinct
bands for each hidden unit
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Bands, Symbols, And Subsymbols

One major debate in cognitive science concerns potential
differences (and similarities) between symbolic models and
connectionist networks (Dawson, 1998). For example,
Smolensky has argued that, in contrast to symbolic theories,
PDP networks are subsymbolic (Smolensky, 1988). To say
that a network is subsymbolic i1s to say that the activation
values of its individual hidden units do not represent inter-
pretable features that could be represented as individual
symbols. Instead, each hidden unit is viewed as indicating
the presence of a microfeature. Individually, a microfeature
is unintelligible, because its “interpretation” depends cru-
cially upon its context (i.e., the set of other microfeatures
which are simultaneously present (Clark, 1993)). However,
a collection of microfeatures represented by a number of
different hidden units can represent a concept that could be
represented by a symbol in a classical model.

It has recently been argued that the banding phenomenon
found in value units is relevant to understanding the sub-
symbolic nature of PDP networks (Berkeley, 1997). This
argument is based on an interpretation of a network trained
1o solve the logic problem (see also Dawson et al., 1997).
Berkeley noted that the bands in the logic network are asso-
ciated with a local interpretation (e.g., some bands represent
which connective is present in a stimulus problem, while
other bands represent relationships between specific vari-
ables in a stimulus problem, such as “Sentence | variable 2
is equal to the variable in the conclusion™). Berkeley also
noted how such local features become interpretable (as
symbols) only after considering a collection of individual
hidden unit activations (i.e., a collection of individual dots
which in turn produce a band of the sort depicted in Figure
1). Berkeley concluded that the fact that the bands in this
network could be construed as being symbols under a lib-
eral interpretation of the term (Vera & Simon, 1993), and
suggested that the differences between symbols and sub-
symbols was smaller than one would believe from the extant
literature.

Unfortunately, this conclusion is premature. This is be-
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specilic component of the logic problem, along the lines
cxplored by Vera and Simon, 1993) are actually rarely seen
in value unit networks. When most other examples of such
networks are interpreted with the banding technique, we
find that individual bands do not typically denote entities
that would be represented as symbols in a classical theory.
Instead, the bands themselves seem much more akin to sub-
symbols, and the “symbolic” interpretation of a network’s
internal structure only emerges after considering combina-
tions of bands distributed over a number of different hidden
units. Furthermore, even when the representations at the
level of hidden units are local (e.g., in the logic network,
when individual bands of activity could be assigned local
interpretation, and as a result each hidden unit represented a
collection of different local features), these local features
are not combined into a more global response using sym-
bolic operations.

To illustrate these points, let us consider the interpretation
of a different value unit network, one which has been
trained to solve a variation of a kinship problem originally
reported by Hinton (1986) in the context of interpreting
internal network representations.

Simulation
Problem Representation

In Hinton's kinship problem (Hinton, 1986), a network
was given an individual's name and a relationship (e.g.,
“James, father”). This input represented a question about a
person (i.e., “Who is James’ father?”). The network’s task
was to generate the name or names representing the correct
answer to the question (i.e., “Andrew”).

In Hinton's original version of the problem, a network
was trained on 100 of the 104 possible relationships in two
different family trees of identical structure (i.e., the structure
illustrated in Figure 2). In our version of this problem, we
used six different versions of this family tree (i.e., six dif-
ferent families with the identical family tree structure),
training the network on 52 relationships in each tree, for a
total of 312 instances.
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Figure 2. One of the 6 family trees modeled after Hinton (1986). The 9 bits at each node represent the binary code
used to represent an individual in the network. The top 3 represent the family, the next three represent gender (white
bit) and generation (gray bits), and the bottom 3 represent a code to distinguish individuals of the same generation (see

text for more details).

cause the “symbolic” nature of the bands in the logic net-
work (i.e., a local interpretation denoting or representing a
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The network had 21 input units. The first 9 represented a
person’s name using the following coding scheme: The first



three bits indicated which of the six families the individual
belonged to (001 = family 1, 010 = family 2, 011 = family
3, 100 = family 4, 101 = family 5, 110 = family 6). The
fourth bit indicated whether the individual was male (activ-
ity = 1) or female (activity = 0). The fifth and sixth bats
indicated the generation within the family tree to which the
person belonged (01 = first generation, 10 = second genera-
tion, 11 = third generation). The seventh, eighth, and ninth
bits were local codes that, in combination with gender bit 4,
individuated different people belonging to the same genera-
tion of the family tree (see Figure 2). The advantage of the
local code in these final bits is that the network could gener-
ate two names by turning two of these bits on, which is nec-
essary when asked to name the aunts or uncles of Genera-
tion 3 children.

The remaining 12 input units of the network represented
a relationship using Hinton’s local coding scheme (Hinton,
1986). A relationship was encoded by turning one of these
12 units on and by turning the other 11 off. In order from
input unit 10 to input unit 21 the represented relations were
nephew, niece, aunt, uncle, brother, sister, father, mother,
daughter, son, wife, and husband.

The network had 6 hidden units and 9 output units, all of
which were value units. The 9 output units encoded an in-
dividual’s name using the same coding scheme that was
used to represent names in the input units.

In each family tree, there is a total of 52 different rela-
tionships that can be queried (4 nephew, 4 niece, 2 aunt, 2
uncle, 3 brother, 3 sister, 6 father, 6 mother, 6 daughter, 6
son, 5 wife, 5 husband). Note that there are only 2 aunt and
2 uncle queries because each of these queries results in the
network generating a name output that represents two dif-
ferent individuals by turning two of the “local bits” on.
Because we trained the network on these 52 relationships
for 6 different family trees there was a total of 312 patterns
in the training set.

Network Training

The network biases and connections were randomly se-
lected from the range [-0.1,0.1], and the network was
trained using a variation of the generalized delta rule devel-
oped for value unit networks (Dawson & Schopflocher,
1992) with a learning rate of 0.001 and a momentum of 0.
Connection weights and biases were updated after every
pattern presentation. During one sweep of training, each of
the 312 training patterns was presented to the network. The
order of pattern presentation was randomized before every
sweep.

The network was said to have converged on a solution to
the problem when a “hit” was recorded for the output unit
for every pattern presented during the epoch. A “hit” was
defined as output unit activity of 0.9 or greater when the
desired output was 1.0, or as output unit activity of 0.1 or
less when the desired output was 0.0. Convergence was
achieved after 2734 sweeps.
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Results
Network Interpretation

The jittered density plots that were presented in Figure 1
were actually plots for each of the 6 hidden units in the con-
verged kinship network. It is apparent from these diagrams
that there is marked banding in all six of these units. The
interpretation of these bands was accomplished by using
descriptive statistics to identify the definite unary and bi-
nary features in each of these bands in accordance with pre-
viously published methods (Berkeley et al., 1995). The
interpretations of the definite features that were found are
presented in Table 1.

From Table 1, it can be seen that two of the hidden units
are completely devoted to representing which of the six
possible family trees is being queried. Each of the six bands
observed in hidden unit 0 is composed of stimulus questions
about only one of the six families. For example, Band A
contains all of the questions about family 3 (see Table 1 for
more details). Similarly, each non-zero band in Hidden unit
4 contains questions about a specific family.

The network’s discovery that some of the input bits corre-
spond to family name is important, because the remaining
hidden units can be used to represent regularities within the
family tree structure. These regularities can be applied to
all six of the family trees. Therefore, the regularities repre-
sented in the bands of the remaining four hidden units ig-
nore the first three bits of any input name. Table | indicates
that all four of the remaining hidden units have bands asso-
ciated with specific definite features, all of which pertain to
structure within the family tree, and which ignore the family
feature.

Given the Table 1 account of the bands for the hidden
units in this network, how does it solve the kinship prob-
lem? Qualitatively speaking, the network's algorithm ap-
pears to involve two different tasks. When asked a question
like “Who is person X’s mother?”, the network uses two of
its hidden units (i.e., units 0 and 4) to identify the family
name that is required in the answer, and to write this family
name into the first three output units by activating them
appropriately. There does not appear to be much of a mys-
tery about how this “writing” is done: hidden units 0 and 4
act as the bottleneck in a 3-2-3 encoder network. In such a
network, the values of 3 input units are compressed into a
2-hidden unit representation; the hidden unit activity is then
uncompressed to produce a copy of the input bits into the 3
output units.

The second task for the network is to identify the individ-
ual's name, and to “write” this into the remaining six output
units. How this task is accomplished is much more myste-
rious, though, because the kind of definite features listed in
Table 1 appear to refer to groups of people, and do nor refer
to individuals. How does the network utilise these general
features to represent the identity of the individual whose
name is to be “written” into the output units?

The answer to this question is that the network uses
coarse coding to represent individuals (or more specifically,
particular nodes in the family tree) using the Table 1 fea-
tures. In general, coarse coding means that an individual
processor is sensitive to a broad range of features, or at least



Table 1: Definite features for each band in each hidden unit. Beside each band label is the number of patterns that
belong to that band. Key for definite features: IF = father, M = mother, B = brother, Sr = sister, Sn = son, D =
Daughter, W = wife, H = husband, Nc¢ = nicce, Np = nephew, U = uncle, A = aunt, G = generation, P = person, FG =
female of generation, MG = male of generation.

UNIT BAND DEFINITE FEATURES
Hidden A N=352 Family 3
Unit B N=52 Family 1
0 C N=352 Family 2
D N=52 Family §
E N=52 Family 6
F N=52 Famuly 4
Hidden A N=156 Not A and Not U
Unit B N=i6 (Sn of GO1 POOL) or (A or U of G11 P0OO1)
1 CN=18 (H of FG10 POO1) or (W of MG10 POO1) or (B of F G0 POI(0)
D N=24 (D of GOI POO1) or (Srof GIU POOL) or (B of G10 P100)
E N=30 (D of GO1 POLO) or (Sror W or H of G10 PO10) or (Sror W or
Hofl G0 PLOO)
FN=12 Sn of GOl PO1O
G N=36 (For M or W or H of GI10 PO10) or (F or M of G11 POOI
Hidden A N=240 No definite features
Unut B N=12 (M of FG10 P010) or (F of FG10 PO10)
2 CN=24 (H of FGO1 POOL) or (W of MGO1 P0O1) or (M or F of MG10
P0OO1)
D N=12 (F of FG10 P100) or (M of FG10 P100)
E N=24 (H or W of GO1 PO10) or (For M of G10 P0O10)
Hidden A N=66 Not Np and Not Nc and Not U and Not Sn
Unit B N=96 Np or Nc or B or Sror D
3 C N=24 {Sn of GO1 POO1) or (Sn of G10 P010)
D N=36 (W or H of GO1 P010) or (For M of G10 PO10)
E N=6 B of FGI10 PO10
FN=24 (Sn of GO1 PO10) or (W or H of G110 POO1)
G N=60 (For M or W or H of POO1) or (F or M or W or H of PO10)
Hidden A N=156 Family 2 or Family 3 or Family 4
Unit B N=52 Famuly |
4 C N=52 Family 6
D N=52 Famly §
Hidden A N=156 NporUorBorForSnorH
Unit B N=72 Nc or Sror D or W
5 CN=12 D of GO1 POID
D N=6 Srof MGI10 POLO
EN=/2 (W of MGO1 POO1) or (W of MG PO10)
F N=24 (M of G10 POO1) or (M of G11 POO1) or (M of GO1 P1001
G N=6 W of MGO1 PO10
HN=/2 M of GOl PUIO
IN=12 A of Gl POOI
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to a broad range of values of an individual feature (e.g.,
Churchland & Sejnowski, 1992, pp. 178-179). As a result,
individual processors are not particularly useful or accurate
feature detectors. However, if different processors have
overlapping sensitivities, then their outputs can be pooled,
which can result in a highly uscful and accurate representa-
tion of a specific feature. Indeed, the pooling of activities
of coarse-coded neurons is the generally accepted account
of hyperacuity, in which the accuracy of a perceptual sys-
tem is substantially greater than the accuracy of any of its
individual components (e.g., Churchland & Sejnowski,
1992, pp. 221-233).

In the trained kinship network, each of the four hidden
units that is not involved in representing a particular family
tree is instead involved with the coarse coding of a particu-
lar node within a family tree. The network can pick out an
individual node in the family tree by pooling (or combining,
or intersecting) the coarse coded representation of the four
hidden units.

To illustrate this, let us imagine that for any one of the
family trees, we asked the network “Who is the father of the
female Person 2 Generation 27" (e.g., for the family tree
given in Figure 2, the network would be asked “Who is
Victoria's father?”). Ignoring hidden units 0 and 4 (which
are concerned with picking out family trees, and not con-
cerned with picking out relations within the tree structure),
this query will produce activity that falls in Band A of hid-
den unit 1, Band B of hidden unit 2, Band D of hidden unit
3, and Band A of hidden unit 5.

Importantly, none of these bands picks out an individual
node in the family tree by itself, as is revealed in Table 1.
Hidden unit 1 Band A picks out 156 different individuals
(across family trees) who are not aunts and not uncles.
Hidden unit 2 Band B picks out 12 different individuals
who are either the mother or the father of the female person
010 in the second generation. Hidden unit 3 Band D picks
out the 36 different individuals who are the wife or husband
of person 010 in generation 1, or who are the father or
mother of person 010 in generation 2. Band A of hidden
unit 5 picks out the 156 different individuals who are either
nephews, uncles, brothers, fathers, sons, or husbands (i.e.,
any individual who is male).

While none of the bands by themselves pick out an indi-
vidual, the intersection of the nodes picked out by each of
these four bands selects the appropriate individual within
the family tree: the only node pointed to by every one of
these bands is the male Person 1 in Generation 1. This is
the essence of coarse coding -- the overlap of the receptive
fields of broadly tuned detectors can be used to represent
finely detailed information.

Likewise, we could ask the network a very similar ques-
tion: “Who is the mother of the female Person 2 Generation
27" This question will produce the identical band activity in
the network as was produced in the previous example, with
one exception: it will produce activity in hidden unit 5 that
falls in Band H, and not in Band A. Because of this change,
the result of intersecting the subsets of nodes pointed to by
all the bands changes: now, the only node pointed to by all
of the bands is the female Person 1 in Generation 1.
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Finally, let us consider the two hidden units that detect
which of the 6 family trees is being queried. As was noted
earlier, and as can be observed in Table 1, the bands for
both of these units have very specific local interpretations.
However, it is important to realize that their activities must
also be pooled in order to “write” the correct family name
into the appropriate output units. For instance, when a net-
work is asked about a relationship for a person in Family 5,
this will produce activity that falls in Band D of hidden unit
0 and that falls in Band D of hidden unit 4. Both of these
bands must be active for the correct family output to be gen-
erated. For instance, if hidden unit 0 was ablated from the
network, and the network was asked a question about Family
5, the activity of hidden unit 4 by itself would not produce
the correct output in the network, even though the local in-
terpretation of hidden unit 4’s activity is “Family 5”. For
the network, the complete representation of family is a result
of a distributed representation -- a combination of hidden
unit 0 and hidden unit 4 activities.

Discussion

According to Smolensky (1988), subsymbols are con-
stituents of traditional symbols. “Entities that are typically
represented in the symbolic paradigm are typically repre-
sented in the subsymbolic paradigm by a large number of
subsymbols™ (p. 3). As a result, “ it is often important to
analyze connectionist models at a higher level; to amalga-
mate, so to speak, the subsymbols into symbols”.

The analysis of the kinship network that was reported
above is completely consistent with this view. To summa-
rize this analysis, the following discoveries were made.
First, the jittered density plots revealed a great deal of
structure (i.e., bands). Second, the definite features of most
of these bands did not correspond to a particular local con-
cept (e.g., an individual’s name, or the name of a particular
relationship). Instead, the bands usually corresponded to
disjunctions of general features that picked out sets of indi-
viduals (e.g., Hidden Unit 3 Band D), or in some cases a
single feature shared by a large number of individuals (e.g.,
Hidden Unit 5 Band A’s detection of “male”). Third, an
account of how the network uses such broadly tuned repre-
sentations to identify particular individuals relies on the no-
tion of coarse coding. Specifically, the intersection of the
sets of individuals represented in all of the bands in which
the activity of an input pattern falls picks out a single indi-
vidual, permitting the network to correctly respond to an
input question. In short, the bands illustrated in Figure 1
appear to be acting as subsymbols, and the “symbolic” be-
havior of the network (i.e., its generation of an individual's
name in its output units) depends upon the ability of the out-
put units to combine -- to intersect -- the subsymbolic repre-
sentations.

Results like these are relevant to the comparison between
classical and connectionist architectures. Consider a recent
attempt to incorporate situated action theories (including
connectionism) into classical cognitive science. Vera and
Simon (1993) argued that any situation-action pairing can
be represented either as a single production in a production
system, or (for complicated situations) as a set of produc-



tions. “Productions provide an essentially neutral language
for describing the linkages between information and action
at any desired (sufficiently high) level of aggregation” (p.
42).

Greeno and Moore (1993) take the middle road in their
analysis of ALVINN, suggesting that "some of the proc-
esses are symbolic and some are not" (p. 54). Disagree-
ments about what counts as a symbol are clearly at the heart
of the debate that Vera and Simon initiated (Vera & Simon,
1994).

The problem with Vera and Simon's notion of what de-
fines a symbol is that it focuses exclusively on the content
that the symbol represents, and ignores the operations that
are used to manipulate this information (e.g. symbolic con-
catenation, or the parsing of a string into symbolic constitu-
ents). The definition of a subsymbol in Smolensky’s (1988)
terms not only depends on content (i.e., what subsymbols
might represent), but also upon the mechanisms for proc-
essing this content. Smolensky (p.3) notes that networks
“participate in numerical not symbolic - computation.”
Similarly, Fodor and Pylyshyn (1988) have pointed out that
“even on the assumption that concepts are distributed over
microfeatures, ‘+ has-a-handle’ is not a constituent of CUP
in anything like the sense that ‘Mary' (the word) is a con-
stituent of (the sentence) ‘John loves Mary'” (p. 21). This is
exactly the position of connectionist critics who believe that
Vera and Simon’s (1993) definition of “'symbol™ is too lib-
eral. For example, Touretzky and Pomerleau (1994) argue
against Vera and Simon's symbolic reconstrual of a par-
tcular network, ALVINN, by noting that its internal fea-
tures “are not arbitrarily shaped symbols, and they are not
combinatorial. Its hidden unit feature detectors are tuned
filters” (p. 348). (But for responses to this view, see also
Greeno & Moore, 1993; Vera & Simon, 1994).

The coarse coding interpretation of the kinship network is
a case study in the nonsymbolic processing of subsymbols,
and thus illustrates an important difference between sub-
symbolic and symbolic accounts. Importantly, this proc-
essing difference holds true for value unit networks even
when the content associated with bands is local (i.e., the
family units discussed above, or the units of the logic net-
work discussed by (Dawson et al., 1997)). When Berkeley
used value unit bands to argue for similarities between sym-
bols and subsymbols, he mistakenly focussed on the content
of the bands themselves (Berkeley, 1997). As we have
shown above, when one considers value unit banding in
terms of represented content as well as the processes re-
quired to exploit this content, value unit banding provides an
excellent example of Smolensky’s (1988) subsymbolic level.
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