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ABSTRACT OF THE DISSERTATION 

 

Symmetry and Feature Selection in Computer Vision 

 

by 

 

Yu Sun 

 

Doctor of Philosophy, Graduate Program in Electrical Engineering 

University of California, Riverside, June 2012 

Dr. Bir Bhanu, Chairperson 

 

In the dissertation, two advanced computer vision techniques, named symmetry and 

feature selection, are proposed. The wide existence of symmetry in many image 

objects generates the motivation of using symmetry as a high level feature in region 

growing image segmentation and region-of-interest (ROI) detection in brain MRI 

sequences. The symmetry is explicitly applied in different forms as symmetry affinity 

matrix, high-level segmentation cue, statistical analysis and 3D asymmetry volume in 

classification features. The incorporation of symmetry provides a new effective 

feature to achieve the performance improvement. In the second field of my research, 

the feature selection with Sequential Floating Forward Selection (SFFS) as the search 

strategy, and with the Bayesian classifier as the evaluation metric, is applied in 

content-based image retrieval (CBIR), semi-supervised learning with relevance 

feedback, local kernel based distance metric, image classification, and online 

ensemble learning. It provides more compact and optimal feature sets to generate 

robust learning models. Experimental results on wide range of image datasets indicate 

the advantages of using symmetry and feature selection in computer vision tasks. 
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Chapter 1 

Introduction 

1.1. Symmetry and Feature Selection in Computer Vision 

In many areas of commercial, academic and medical institutes, large collections of 

digital images are being created and analyzed. Traditionally, the only way of analyzing 

these collections was by keyword indexing, or simply by browsing. State-of-the-art 

computer vision techniques however, open the way to content-based image analysis. The 

term "Content-Based" means that the system will analyze the actual contents of the image 

rather than the metadata such as keywords, tags, and/or descriptions associated with the 

image. The term 'content' in this context might refer to features that can be derived 

directly from the image itself. In this dissertation, the symmetry is used as a high level 
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feature in image segmentation and object recognition tasks. Moreover, the feature 

selection is also applied in multiple computer vision tasks, e.g., the content based image 

retrieval (CBIR) and the image classification. Generally speaking, the computer vision 

tasks using the features facilitates the process of, 

 Image preprocessing: that is, digitizing existing collections of analogue image forms, 

and then performing numerous preprocessing methods on the image, e. g., de-noising, 

contrast enhancement, smoothing and so on. 

 Image feature extraction, processing and learning: that is, transforming the input 

image into set of features (feature extraction), and process the features to an effective 

forms (feature selection and learning). 

 Computer vision and pattern recognition: different tasks performed based on the 

image features. 

The feature based methods has become ubiquitous as a fundamental tool for 

analyzing and managing digital image, as the requirements of processing of large amount 

of image data increases and storage space becomes more affordable. The current research 

in this area mainly focus on feature extraction, feature selection/learning, and using 

image features on different computer vision tasks such as image segmentation, content 

based image retrieval (CBIR), or image classification and indexing. 

As the main roll, the image features support low level features (e.g., color, shape, 

texture), which are adequate in traditional application domains such as image 

segmentation and object edge detection. However, the low level features have the 

problems of high dimensionality, large redundancy and low accuracy. On the other hand, 
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high level features (e.g., concepts, semantics) are proven to be more effective both in 

performance and time complexity. As a result, they are widely applied in much more 

complex and real-time tasks, e.g., object recognition and image retrieval. The wide 

existence of symmetry in many natural and manmade image objects generates the 

motivation of using symmetry as a high level feature in different computer vision tasks. 

In this dissertation, the symmetry is used in the following tasks, 

(1) Image segmentation: symmetry is used as a new constraint to improve the region 

growing image segmentation performance. 

(2) ROI detection in brain MRI: symmetry is integrated in several steps to make the 

region-of-interest (ROI) detection automatic and with higher performance. 

The feature selection works as selecting a subset of relevant image features to 

generate a feature sets with reduced dimensions. The objective of feature selection is 

three-fold: improving the performance of the learning models, providing faster and more 

cost-effective models, and providing a better understanding of the underlying process that 

generated the image data. The feature selection also alleviates the problems of curse of 

dimensionality, feature redundancies and feature noises. In this dissertation, I apply the 

feature selection into complex computer vision and pattern recognition tasks to improve 

their performance,  

(3) Content based image retrieval (CBIR): retrieval model design by combination of user 

relevance feedback and feature selection. 

(4) Region-based image classification: classification design by local-kernel with feature 

selection. 
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(5) Online ensemble learning: classification design by ensemble classification, online 

incremental learning and parallel feature selection. 

The contribution of the dissertation is shown in the following section. And the 

details of above five work will be explained in Chapters 2, 3, 4, 5, and 6. 

1.2. Contributions of the Dissertation 

This dissertation presents high level features, as well as the feature selection 

methods to handle computer vision problems and improve their performance.  

For high level features, a new symmetry constraint is used into the region growing 

image segmentation. It segments the symmetric regions effectively with more symmetric 

and complete region boundaries. It also alleviates the problems of over-segmentation and 

incomplete regions. Experimental results shows it has better performance than other 

well-known image segmentation methods. Furthermore, the symmetry is also integrated 

in several steps for segmentation, region extraction and classification, in a 

region-of-interest (ROI) detection system on brain MRI. It is free from manual training of 

models and prior knowledge. 

For feature selection, it is widely applied in different complex computer vision tasks. 

In content-based image retrieval (CBIR), the feature selection is combined with the user 

relevance feedback, as a new term called “measure of inconsistency”. It highly improves 

the retrieval accuracy, with lower user feedback iterations. In image classification, a new 

local kernel is invented in the Bayesian classification model, to enables the region-based 

image distance measure. A feature selection scheme is also performed to generate more 
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effective feature subsets. In online ensemble learning, a parallel feature selection is 

proposed to train multiple classifiers, which are then ensemble for a more effective 

classification model. 

1.3. Dissertation Organization 

This dissertation consists of six chapters. 

Chapter 2 presents a symmetry integrated region based image segmentation method 

to improve the segmentation of images with symmetric objects. This method use 

symmetry as a high-level feature, along with traditional low level features such as colors 

and textures. 

Chapter 3 presents an automatic symmetry based ROI detection method for brain 

MRI. The symmetry is used in segmentation to partition brain image into tissue regions, 

filter out symmetric regions using statistical computation on symmetry affinity, and 

classify the asymmetric regions into ROI using 3D asymmetry volume. 

Chapter 4 presents a content based image retrieval (CBIR) system using feature 

selection and relevance feedback. In user feedback iteration, the relevant and 

non-relevant images generate a “measure of inconsistency”, which is then used to guide 

the feature selection procedure. The selected feature subsets are used in the K-nearest 

neighbor (KNN) search to retrieve the images upon the user query. The user feedback 

takes place again on the retrieved images, to build a closed CBIR loop. 

Chapter 5 presents a local kernel based image classification scheme. A region based 

image distance is integrated into the kernel of Bayesian classifier, to train an image 
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classification system. The feature selection is performed based on the local (region-based) 

features. 

Chapter 6 presents an ensemble learning using parallel feature selection. Multiple 

Bayesian classifiers are learned using different selected feature subsets. They are further 

ensemble using Arc-x4 to generate an improved image classification accuracy. 

Chapter 7 summarizes this document and points out our future work. 
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Chapter 2 

Symmetry Integrated Image Segmentation 

2.1. Introduction 

Symmetry is one of the important features that is present in all forms of objects, and 

it plays a crucial role in machine perception.  Symmetry is an intrinsic property of an 

object which causes it to remain invariant to certain classes of transformations. In the 

field of computational symmetry, four primitive types of symmetry exist in the two 

dimensional (2D) Euclidean space [51]: (1) reflection symmetry, (2) rotational symmetry, 

(3) translational symmetry, and (4) glide-reflection symmetry, a combination of reflection 

by a line and a translation along that line. Four primitive symmetry types are shown in 

Fig. 2.1(a). Combinations of the primitive symmetry types generate more symmetry 

categories [51], as shown in Fig. 2.1(b). This paper is concerned with the segmentation of 



8 
 

2D images having reflection symmetry possessed by many natural and manmade objects. 

In the computer vision and pattern recognition literature, symmetry has been used 

extensively for object boundary interpretation [1, 3], shape symmetry analysis [2, 5, 6, 

44-48, 55, 56] and symmetry extraction [7-10, 50, 51, 53, 54, 57]. Since symmetry is a 

high level geometric feature compared to other lower level features like color and texture, 

there is an extensive literature concerning application of symmetry into higher level 

computer vision tasks. Many approaches have been developed for the segmentation and 

abnormality detection in brain in magnetic resonance images [16-19, 33]. There is also 

extensive work on face detection [20-23], human tracking and identification [24, 25, 60, 

61], and image pattern detection [58, 59]. 

 
Reflection 
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Rotational 

symmetry 

Translational 

symmetry 

Glide-reflecti

on symmetry 

    

(a)  

Dihedral 

Symmetry 

(reflection + 

rotation) 
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Discrete 
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Continuous 
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(b)                        (c) 

Fig. 2.1. (a) primitive symmetry categories, (b) combined (extended) symmetry 

categories, (c) discrete and continuous symmetry. 

 

The above work on symmetry provides us the motivation for integrating symmetry 

into an image segmentation algorithm. The work in this chapter incorporates high-level 
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symmetry feature for improved region growing image segmentation. It develops a 

systematic approach and provides detailed comparisons using publicly available 

databases.  

     Symmetry detection can be conducted at a local or a global level [51]. For the 

global symmetry detection [8, 10, 20, 25, 47], all object points, or the points in the entire 

image, contribute to the determination of symmetry. The computation of global 

symmetry is time efficient and always free from prior models, but it is sensitive to 

distortions. For the local symmetry detection [2, 6, 7, 22, 46, 50], the symmetry element 

is supported locally by some subset of an object. It is more robust to distortions, but has 

high time complexity, and generally it relies on prior geometric model. In the field of 

local symmetry detection, the local features are always used, e.g., the object contour and 

the gradient orientation. The method of [29] can detect both local and global symmetries, 

and multiple occurrences of symmetry. 

     The type of symmetry can be discrete or continuous [27, 51]. Under discrete 

symmetry group, its invariant transforms (related to its symmetry properties) have 

discrete (non-continuous) generators, e.g., the reflection symmetry by an axis and the 

rotational symmetry of a regular polygon. As shown in Fig. 2.1(c), the hexagon possesses 

discrete rotational symmetry, as only rotations by discrete angles preserve the original 

appearance. For the continuous symmetry group, its invariant transforms are continuous 

and smooth, e. g., the rotation of a circle (rotation by infinite number of angles preserves 

its original shape, as shown in Fig. 2.1(c)).  
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The existence of symmetry can be measured as a binary (exists or not) or a 

continuous (variable) feature. The work in [28, 29] treats the symmetry as a continuous 

feature, in which intermediate values of symmetry denote some intermediate amount of 

symmetry. Since symmetry in real-world is not perfect, it does not restrict the symmetry 

as a binary feature, where the object is either symmetric or non-symmetric. The work in 

this chapter detects the discrete reflection symmetry axis of an image (see Section 

2.3.1.1), and it uses a continuous symmetry magnitude to measure the amount of 

symmetry in an image [29]. Based on the selection of a threshold for symmetry 

magnitude, the presence/absence of the symmetry axis can be detected. 

As mentioned above, the global symmetry detection has the advantages of freedom 

from a priori model. It is considered to be useful in our region-based segmentation scheme. 

Although these segmentation methods vary in principle on how to form the regions, all of 

them have one thing in common – they all define a similarity measure related to their 

segmentation cues, e.g., color and texture. Thus, these methods have the potential to 

incorporate a symmetry cue. In this chapter, symmetry is combined as a new cue in region 

growing image segmentation method. 

The rest of this chapter is organized as follows. In Section 2.2, we give an overview 

of the related work on symmetry-based image segmentation and identify our contributions. 

In Section 2.3, we present the details of technical approach for symmetry-integrated image 

segmentation. In section 2.4 we provide extensive comparison between symmetry 

integrated segmentation and other state-of-the-art segmentation methods. Finally, in 

Section 2.5 we conclude this chapter. 
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2.2. Related Work and Contributions 

2.2.1. Related Work 

Image segmentation attracts a great deal of attention in computer vision and pattern 

recognition. Although regions with coherences like color and texture are segmented 

successfully, most methods fail to achieve appropriate segmentation due to the 

unavailability of higher level features. Recently, the integration of symmetry into image 

segmentation as a high level feature, has attracted attention [12-17, 49], but the field is 

still immature. 

Several reasons make the symmetry-integrated image segmentation a challenging 

problem. First, symmetry is a higher level feature. It is difficult to be combined with 

low-level features like color and texture. It makes segmentation a challenging and 

error-prone task. It is called the feature gap that commonly exists. In this paper, the 

feature gap is narrowed by using symmetry as a pixel-based affinity [10, 14], and it is 

integrated into other segmentation cues to form a unified constraint. Second, symmetry 

features like shape [2, 5, 6, 44-48, 55] are only used for object detection. This paper 

extends the use of symmetry by applying it as a segmentation cue. Third, there exists a 

gap between global and local symmetry integrations. Previous work applies local 

symmetry which segments only the local symmetric objects. Our method uses the global 

symmetry, which is able to refine the symmetry of the entire segmented image. 

The symmetry-based image segmentation can be traced back to the work of [11]. In 

the current literature, only a limited number of papers can be found for symmetry-based 

image segmentation [12-17, 49]. Tables 2.1 and 2.2 provide a summary of their methods. 
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Table 2.1. State-of-the-art Symmetry Based Image Segmentation Methods Integrating 

Symmetry: Summary and Their Limitations. 

Authors Approaches 

No. of  

limitations in 

Table 2.2 

Liu et al. [12] 
Segments a symmetric shape from an image, 

by Dijkstra’s algorithm. 
1,2,3,6 

Shor et al. [13] 
Segments symmetric parts of image by 

symmetry and color cues.  
1,2,3,4 

Gupta et al. [14] 
Integrates global symmetry into edge weights 

of the normalized cut segmentation.  
3,6,7  

Riklin-Raviv   

et al. [15] 

Combines local symmetry into an objective 

function of the level-set segmentation to 

segment the boundary of symmetric objects. 

2,4,6,7 

Jiao et al. [16] 
MRI segmentation using symmetry to detect 

position and boundary of brain tumors. 
2,3,6 

Saha et al. [17] 
Segments MRI using a fuzzy point symmetry 

based genetic clustering technique. 
3,5 

Cho et al. [49] 
Segments symmetric patterns by matched 

pairs of local features via symmetry growing. 
2,3,6 

Table 2.2. State-of-the-art Image Segmentation Methods Integrating Symmetry: List of 

Their Key Limitations 

Limitation 

Numbers 
Key Limitations 

1 They concern with local symmetry only [12, 13]. 

2 
They do not segment the whole image. They only extract symmetric 

objects [12, 13, 15, 16, 49]. 

3 
They only segment image into symmetric parts. Thus, multiple region 

properties like color and texture, are missed [12, 13, 14, 16, 17, 49]. 

4 They need prior knowledge or training data [13, 15]. 

5 
They fail to combine symmetry with other cues to build a single 

segmentation criterion [17]. 

6 The approaches are sensitive to noise [12, 14, 15, 16, 49]. 

7 
Symmetric regions cannot be refined when the number of segmented 

regions becomes large [14, 15]. 

 

2.2.2. Contributions 

As compared to the previous work (see Tables 2.1 and 2.2), the contributions of the 

paper are: 

1. Integrated symmetry and segmentation: This is the first work that integrates the 
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high-level symmetry concept into the low-level region-based image segmentation 

method. 

2.  Global symmetry detection: Our method addresses Limitation 1 (see Table 2.2) by 

using global symmetry detection, which is more robust to asymmetric distortions. 

3. Multi-region segmentation: Limitation 2 and 7 (see Table 2.2) are overcome by region 

growing as a multi-region segmentation with symmetry (see Fig. 2.5). 

4.  Integration of symmetry with color and texture: Limitation 3 (see Table 2.2) is 

addressed by integration with symmetry. Thus, regions with different properties like 

color, texture and symmetry are segmented simultaneously.  

5.  No need of prior knowledge: Limitation 4 (see Table 2.2) is addressed by using 

symmetry affinity, which does not need any prior model (see Equation (2.10)). 

6.  Different cues into a single criterion: Limitation 5 (see Table 2.2) is overcome by 

using the symmetry with other constraints as a single criterion (see Equation (2.5)). 

7. Robust to distortions: Limitation 6 (see Table 2.2) is overcome by global symmetry 

detection and symmetry as a continuous feature, that is more robust to distortions. 

8. Both quantitative and qualitative analyses: This is the first work to use qualitative and 

quantitative analyses (see Fig. 2.6) in symmetry-integrated segmentation. 

9. Segmentation of both symmetric and non-symmetric regions: It not only refines 

symmetric regions, but also segments non-symmetric regions properly (see Fig. 2.5). 

2.3. Symmetry Integrated Region Growing Segmentation 

The overall approach is summarized in Fig. 2.2. An input image is processed with 
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discrete reflection symmetry detection to obtain a global symmetry axis. It is used to 

compute the symmetry affinity, which is carried forward as the symmetry cue to be 

integrated into the region growing segmentation. Table 2.3 presents the definition of 

symbols used in this section. 

Table 2.3. Definition of symbols used in Section 2.3. 

Symbols Definitions 

( , )pi pix y  Two dimensional position of pixel i.  

ip
 

Symbol for i
th

 pixel. 

ir  Symbol for i
th

 region. 

( , )i jp r  Homogeneity between pixel jr  and neighboring region ip .  

( , )S i jp r  Symmetry homogeneity criterion.   

( , )R i jp r  
Region homogeneity criterion. It is a combination of             

and             . 

( , )Color i jp r
 

Color homogeneity criterion for pixel    and region   . 

( , )Texture i jp r
 

Texture homogeneity criterion for pixel    and region   . 

ColorW  Weights of color homogeneity criterion           . 

TextureW
 

Weights of texture homogeneity criterion             . 

ColorF  Color feature vector.  

TextureF
 

Texture feature vector. 

piC  Symmetry affinity value of pixel    .  

riC
 

Mean symmetry affinity value for region   . 

( , )i jm r r
 

Region merging criterion for two neighboring regions. 

g , m  Thresholds for pixel aggregation and region merging. 

R colorStd 
 Region’s standard deviations (std.) of color features.  

R textureStd   
Region’s standard deviations (std.) of texture features. 

R colorGra   Region’s gradient value of std. of color feature. 
  

R textureGra   
Region’s gradient value of std. of texture feature. 

( , )Color i jp r

ip

jrip

( , )Color i jp r

( , )Texture i jp r

ip

ir

jr

( , )Texture i jp r
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Fig. 2.2. System diagram for symmetry-integrated image segmentation. 

 

2.3.1. Discrete Reflection Symmetry Detection and the Symmetry 

Affinity Matrix 

2.3.1.1. Discrete Reflection Symmetry Detection 

The reflection symmetry axis of an image is extracted by the global symmetric 

constellations of features [29]. The algorithm is capable of finding a dominant symmetry 

axis, when an image has one or multiple symmetric objects. Table 2.4 shows the key 

steps of the symmetry detection algorithm. 

Table 2.4. The Symmetry Detection Algorithm 

Input: the original image.             

Output: the computed global dominant symmetry axis of the image is found; or no axis is found. 

1. Compute the SIFT feature points [30]. Find the pairs of locally symmetric points from the available SIFT points, 

by threshold of symmetry magnitude. 

2. Constellate the local symmetric pairs of points into different votes. 

                            % The ‘constellate’ is equal to the unsupervised clustering of the feature points. 

3. Find the set of votes where the number of votes is more than half of the highest vote,    % ‘half’ is a threshold 

     if     the set is empty                                      % not enough symmetry in the image 

     Then  no axis is extracted and the algorithm terminates. 

            Set Equation (2.10) to 1.        % Algorithm is the same as the region growing without symmetry 

     if      the set is not empty   

Then   examine the votes in this set 

            if    only one vote remains                              % one symmetric object in image 

Then  Extract the axis corresponding to this vote, as the global dominant axis of the image and 

terminate the algorithm. 

            if     multiple votes remain                      % multiple symmetric objects in the image 

Then  Extract the axis corresponding to the highest vote. It is the global dominant axis of the image  

and terminate the algorithm. 

 

Discrete Reflective 

Symmetry Detection

Symmetry-integrated Region 

Growing Segmentation

Multi-objective Optimization
Segmentation 

Results

Image

I(x)

L(x)

Symmetry Affinity

Symmetry Evaluation
Segmentation Evaluation
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2.3.1.2. The Symmetry Affinity Matrix 

The symmetry axis is used to compute a symmetry affinity matrix, which is the 

correlation between original and the symmetrically reflected image. Each pixel has a 

symmetry affinity value between 0 (perfectly symmetric) and 1 (totally asymmetric), as 

shown in Fig. 2.4(d). It is computed by the Curvature of Gradient Vector Flow (CGVF) 

[10]. The Gradient Vector Flow (GVF) of an image is denoted by: 

[ ( , ), ( , )]V u x y v x y                                                           (2.1) 

Then, the CGVF is computed as: 

2 2

3

1
( , ) [( ) ]

| |
x y x yCurv x y v u uv u v v u

V
                                   (2.2) 

where
 

/xu u x   , /yu u y   , /xv v x   , /yv v y  
 
are the first derivatives of 

pixel’s GVF values along x and y directions. The symmetry affinity of a pixel  

( , )pi pix y
 
is given by: 

_ _

_ _
,

( , )

    | ( , ) ( , ) |
pj pj

pj k pj pj v pj

pi pi

x m y m

pi pi pj k pj v
k v

x x m y y m

C x y

min Curv x y Curv x y

 

   

 
  

 
 
                  (2.3)    

 

where ( , )pj pjx y  is the symmetric counterpart of ( , )pi pix y  reflected by the axis. It is 

realized by searching local window of pixels with size 2m+1 centered at the pixel 

( , )pj pjx y , and the minimum curvature distance is used as the symmetry affinity. The 

window size is set to 7*7 (m=3) in the experiments. The symmetry affinity value of 
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Equation (2.3) measures the level of symmetry. In this paper, the level of symmetry 

quantifies the amount of symmetry exhibited by an image (or a pixel, or a region). The 

higher symmetry level means that an image is more similar to its mirrored counterpart 

reflected by the global symmetry axis (see Fig. 2.3(a)). The value of symmetry level of an 

image (or a region), is the average symmetry affinity value of its pixels (computed by 

Equation (2.3)). For a pixel, the symmetry level is equal to the pixel’s symmetry affinity. 

2.3.2. Symmetry Integrated Region Growing 

The region growing starts the segmentation from initial seeds of pixels, and 

agglomerates their neighboring pixels having similar features, to form uniform regions 

iteratively. Our method aims to improve the region growing segmentation by integrating 

the symmetry cue, using the symmetry affinity matrix obtained from Section 2.3.1.2. 

2.3.2.1. Pixel Aggregation Criterion ( , )i jp r
 

Region growing concerns the aggregation of a region by its neighboring pixels 

having similar properties measured by the homogeneity criteria, based on color, texture, 

shape, etc. Let us denote it as the homogeneity aggregation criterion ( , )i jp r . The 

criterion holds true when: 

( , )i j gp r                                                                   (2.4) 

The rationale behind the equation is that pixel ip
 
will be aggregated into neighboring 

region jr
 
if the region homogeneity criterion ( , )i jp r  between them is below a 

predetermined region growing threshold g . This threshold  can be tuned to allow more 

or less tolerance to the aggregation criterion, resulting in different segmentations. 
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Typically, the region homogeneity criteria used are color and texture, with a single region 

homogeneity criterion ( , ) ( , )i j R i jp r p r  . In this paper, the aggregation criterion is 

modified to integrate the symmetry cue, defined as: 

( , ) ( , ) ( , )i j R i j S i jp r p r p r                                                  (2.5) 

Table 2.5. Region Growing Segmentation with Dynamic Region Weights Allocation 

Algorithm. 

Input: Image to be segmented.    Output: The segmented regions of the image, with pixel labels. 

Pixel_Label=1;                                                      %% pixel label for segmented regions. 
Region_Stack=blank;                                               %% stack of pixels belonging to a region. 

 

1.  Search the image row-wise. 
     if        there is no pixel unlabeled, finish the segmentation. 

     elseif    find an unlabeled pixel 

Region_stack=blank;                                           %% new region to be grown. 
Region_stack  <-  P;                                   %% put pixel P into the region stack. 

          Update mean region features 
ColorF  and 

TextureF . 

          
0.5Texture colorW W  ;                              %% Initialize feature weights for the region.   

          Label (P) = Pixel_Label;                              %% label the pixel as grown into region. 

2.  For the pixel P, search all its 8-neighbor pixels, as 
kP , [1,8]k  . 

     if        Label (
kP )=0;                                                       %% unlabeled pixel. 

          Compute criterion   between pixel 
kP  and the region in stack, with feature weights   

,Texture colorW W  and symmetry integration.                %% see Equations (2.5), (2.6) and (2.10).  

          if    
g                                                       %% see Equation (2.4) 

Label (
kP ) = Pixel_Label;                                        %% label the pixel. 

               Region_stack_old = Region_stack;  

           Region_stack  <-  
kP                                %% grow the pixel into the region. 

               Update region features 
ColorF  and 

TextureF . 

                                                                 %% Dynamic region weights allocation. 

               _Texture old TextureW W  ; 
_Color old ColorW W ; 

%% Compute gradient of standard deviation of color and texture features of region  

    
( _ ) / ( _ _ )R color R color R colorGra Std Region stack Std Region stack old    

              
( _ ) / ( _ _ )R texture R texture R textureGra Std Region stack Std Region stack old    

                  if     
R color R textureGra Gra 

  
% If std. changes showing more color uniformity than texture: 

                            %% Larger weight is put on color to prefer more color uniformity in criterion.
   

_ /Texture Texture old R color R textureW W Gra Gra   ;  1Color TextureW W  ; 

                   elseif  
R color R textureGra Gra 

  
 

                        _ /Color Color old R texture R colorW W Gra Gra   ;  1Texture ColorW W  ; 

                   Set 
kP  as new pixel P, go to step 2. 

           else    Go to step 2, search other unlabeled pixels. 

    else     Go to step 2, search other unlabeled pixels. 

    if    all neighboring pixels of P is searched and processed by step 2 

         Region_Stack=blank;                                      %% finish growing of the current region. 
         Pixel_Label=Pixel_Label+1;                                     %% update label for a new region. 

         Go to step 1. 
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where we enforce symmetry constraint ( , )S i jp r
 
along with the region homogeneity 

criterion ( , )R i jp r to guide the segmentation. The region homogeneity criterion 

( , )R i jp r  is the combination of color and texture cues, which will be introduced in 

Section 2.3.2.2. The symmetry constraint ( , )S i jp r  is introduced in Section 2.3.2.3. 

2.3.2.2. Region Homogeneity Criterion ( , )R i jp r  

The region homogeneity criterion ( , )R i jp r , is given by:  

( , ) ( , ) ( , )R i j Color Color i j Texture Texture i jp r W p r W p r                              (2.6) 

where 1Texture colorW W  . The weights ColorW  and TextureW  can be allocated in a dynamic 

manner, depending on whether a region shows more uniformity in color or texture, as 

described in the dynamic weights allocation with the region growing algorithm shown in 

Table 5. For a region R, let the standard deviation of its pixel-level color and texture feature 

distributions ( R colorStd   and R textureStd  ) denote its region uniformity. At each region 

growing iteration, a region absorbs one pixel, and the region’s color and texture 

uniformities are changed as more pixels are aggregated. The algorithm is able to 

dynamically track the changes of color and texture uniformities, and assign weights to put 

more emphasis on color or texture as the region growing process is iterated. The larger 

weight will be assigned to the feature whose region uniformity is increased (with the 

decreased standard deviation).  

We use HSV as the color feature [37]. It is composed of a vector that is a nonlinear 

transform of HSV values: 
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( ) ( cos(2 ), sin(2 ), )ColorF V S H V S H V                                     (2.7) 

where H, S and V correspond to HSV components of a pixel or average for a region. The 

color homogeneity criterion in Equation (2.6) can be expressed as: 

( , ) || ( ) ( ) ||Color i j Color i Color jp r F p F r                                            (2.8) 

which is the Euclidean distance of color features between pixel
ip and its neighboring 

region jr . 

    The 8-dimensional texture feature TextureF  is obtained by: (1) filtering an image 

with a bank of Gabor filters at 4 orientations ( 0 ,45 ,90 ,135    ), and (2) computing the 

mean and standard deviation of the filtered image or region. The texture feature of a pixel 

is extracted from its local window. Thus, the texture homogeneity criterion is: 

( , ) || ( ) ( ) ||Texture i j Texture i Texture jp r F p F r                                           (2.9) 

Both color and texture features are normalized into [0, 1]. 

2.3.2.3. Symmetry Homogeneity Criterion ( , )S i jp r  

The motivation of using symmetry constraint ( , )S i jp r  is as follows: If both the 

pixel ip  and its neighboring region jr  are symmetric with their counterparts (both 

have low symmetry affinities), they will decrease the criterion S , by which the pixel 

will more likely to be grown into the region to form a integrated symmetric shape. The 

symmetry constraint
 

( , )S i jp r
 
in Equation (2.5) is given below: 
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( (1 )(1 )) 1 | |
2( , )

2

pi rj
pi rj

S i j

arctan C C C C
p r






    
 

           
(2.10) 

where piC  and 
rjC  are symmetry affinities of pixel ip  and its neighboring region jr . 

This equation is non-linearly related to the symmetry affinity values. This constraint is 

developed for estimating whether pixel ip  can be grown into region jr  by the 

symmetry criterion. Equation (2.10) provides the following symmetry constraints: the 

first term means that if both patterns i and j indicate low symmetry affinities (highly 

symmetric) to their symmetric counterparts i’ and j’, as seen in Fig. 2.3(a), pixel i is more 

likely to be grown into region j by decreasing ( , )S i jp r . The second term means that 

the two patterns with closer values of symmetry affinities, will also reduce ( , )S i jp r . As 

a result, the criterion ( , )S i jp r  has a lower value under the two conditions given below, 

(a)  Symmetry affinities of pixel i and region j have lower values; 

(b)  Symmetry affinity values of pixel i and region j are closer with each other. 

                                        
             (a)                                       (b) 

Fig. 2.3. (a) Integration of symmetry in region growing, (b) graphic illustration of 

Equation (2.10): plot of symmetry criterion  ( , )S i jp r  related to a pair of symmetry 

affinity values piC  and rjC . 
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The above relationship is explained by a plot of ( , )S i jp r
 
in Fig. 2.3(b). It is clear that 

the lowest value of ( , )S i jp r  is reached when both symmetry affinity values 
piC  and 

rjC
 
have 0 values (both of them stay in perfect symmetric field). Consequently, both the 

lower and closer symmetry affinity values of the two patterns will lead to a lower value 

of the criterion ( , )S i jp r . The lower value of symmetry criterion ( , )S i jp r  will 

decrease the overall segmentation criterion ( , )i jp r
 
(see Equation (2.5)). Thus, the 

criterion ( , )i jp r  is more likely to pass the threshold g  
(see Equation (2.4)). This 

means that patterns i and j in a more symmetric field are easier to be grown into an 

integrated symmetric region, and at the same time eliminate many small noisy regions 

within symmetric objects. Work in [14] also uses a symmetry criterion integrated into an 

edge weight in the graph-cut image segmentation method [39], and its limitations are 

stated in Table 2.1. Experimental results in Section 2.4.5 provide an analysis which will 

show the advantages of our method over that of [14]. 

2.3.2.4. Symmetric Region Merging Criterion ( , )i jm r r  

Initial segmentation by the aggregation criterion ( , )i jp r  (see Equation (2.5)) is an 

over-segmented result. During the region merging, neighboring regions are merged using 

the criterion ( , ) || ( ) ( ) || || ( ) ( ) ||i j Color i Color j Sym i Sym jm r r F r F r F r F r     , which is the 

Euclidean distances of mean color and mean symmetry affinity values of two regions ir  

and jr . A region with higher symmetry level with its symmetric counterpart, is more 

likely to be merged into neighboring region. For the two thresholds g  
(Equation (2.4)) 
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and m  (Section 2.2.4.1), related to the aggregation criterion ( , )i jp r  and region 

merging criterion ( , )i jm r r , we establish a 2D parameter space of the two criteria,  that 

is used for segmentation optimization (Section 2.3.4). 

2.3.3．Performance Evaluations of Segmentation and Symmetry 
 

In this paper, three evaluation schemes are used for estimating the segmentation and 

symmetry, as given below. 

2.3.3.1. The Unsupervised Segmentation Evaluation 

We use the following metric for unsupervised segmentation evaluation [38], and it is 

defined as, 

 
2

1

( )1
_ 1  1 log( ) [ ]

1 log( )

NR
SEG i

unsuperervised

i i

e r
EVA SEG NR

M N N

  
 


               

(2.11) 

where M, N are the number of rows and columns of an image, and NR is the total number of 

segmented regions. The term 
2 ( )SEG ie r  is the inter-region contrast of region ir : 

2

__ __

1

( )

|| ( ) ( ) || || ( ) ( ) || /
i

SEG i

N

Color TextureColor j i Texture j i i

j

e r

F p F r F p F r N




 
   

 
               

(2.12) 

where 
__

|| ( ) ( ) ||ColorColor iF j F R  is the Euclidean distance of HSV color features between pixel 

jp and its region ir  
(mean HSV), and 

__

|| ( ) ( ) ||TextureTexture j iF p F r  is the Euclidean 

distance of texture features derived by Gabor filters. iN  is the number of pixels of ith 

region. Lower inter-region contrast indicates a better segmentation. (1 log( ))NR  and 
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(1 log( )iN ) are a punishments for over-segmentation and small segments, respectively. 

The second term in the right side of Equation (2.11) is normalized within [0, 1]. The 

larger values of Equation (2.11) are for better segmentation. In this paper, segmentation 

results of Caltech-101 [42] database are optimized by unsupervised evaluation. 

2.3.3.2. The Supervised Segmentation Evaluation 

The supervised segmentation evaluation [41] is used as,  

_
1

I
supervised

M m
EVA SEG

m

 


                                                   
(2.13) 

where IM  is the region matching evaluation term,  

,? )

( )

( )Ref Seg
i i j

Ref Seg

i j

I jRef Seg

j max Card r r i j

Card r r
M

Card r r
 

                               
(2.14) 

Card (  ) computes the number of pixels of a region. For the segmented region 
Seg

jr , its 

reference region 
Ref

ir  is chosen from the ground-truth segmentation, with the maximum 

overlap with 
Seg

jr . Larger the overlap means a better segmemntation. The normalization 

term
     

is given by, 

( )

( )

Seg

j

j Seg

Card r

Card I
 

                                                               
(2.15) 

where 
SegI  is the segmentation of the entire image. The term   in Equation (2.13) is a 

punishment for both over-segmentation and under-segmentation, 

j
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(1 )?
       

Ref Seg Seg Ref

Seg Ref

NR NR NR NR

log NR NR otherwise



 

                                  
(2.16) 

Where 
SegNR (

RefNR ) is number of regions in real segmentation (ground-truth/reference 

segmentation). In conditions of both over-segmentation and under-segmentation, the 

above term decreases. m in Equation (2.13) is the weight parameter, set to 0.5 for all the 

experiments, that means to put the weight on punishment term for over-segmentation that 

is half of the weight of the region matching term. The larger the value of 

_ supervisedEVA SEG  the better the segmentation is. The supervised evaluation requires the 

ground-truth segmentation, which prevents its wide application. In this paper, the 

segmentation results of UCB database [43] (with ground truth benchmark) is optimized 

and analyzed by the supervised evaluation.   

2.3.3.3. The Symmetry Evaluation 

In this paper, a new symmetry evaluation of a segmented image is defined as: 

'

2

1

1
_ 1  ( , )

NR

SYM i i
i

EVA SYM e r r
NR 

  
                                        

(2.17) 

For symmetry evaluation of Equation (2.17), NR is the number of segmented regions, 

and '( , )SYM i i
e r r

 
is the difference in region properties between region 

ir  and its 

symmetric counterpart region 'i
r  according to the symmetry axis. The region properties 

used are: region’s centroid, mean color value, and its orientation. For each region ir , the 

smaller '( , )SYM i i
e r r  means that the region ir  is more symmetric to its counterpart 'i

r . 
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The second term in the right side of Equation (2.17) is normalized within [0, 1]. A larger 

value of Equation (2.17) is for the better. But the symmetry axis detection (Section 

2.3.1.1) cannot be optimized by these thresholds. The thresholds for symmetry detection 

(see Table 2.4) are fixed for all the results shown in this paper.  

2.3.4. Multi-objective Optimization for Segmentation and Symmetry 

It is able to search the segmentation results with optimal performance for both 

segmentation and symmetry. It is formulated as a multi-objective optimization (MOP), 

which is the process of optimizing multiple objectives subject to certain constraints. We 

use Non-dominated Sorting Genetic Algorithm (NSGA-II) [31], a multi-objective 

optimization algorithm to search for optimum matched segmentation parameters ( g  
and 

m ), by using measures of the objective functions of segmentation and symmetry (see 

section 2.3.3). Our optimization problem (see Fig. 2.2) can be formulated as follows: given 

an image I(x), the system outputs a segmentation L(x), with a combinatorial objective 

function F(L(x)), composed of evaluations of both segmentation and symmetry as 

Equations (2.11) or (2.13), and (2.17): 

_ ( ( ))
( ( ))

_ ( ( ))

EVA SEG L x
F L x

EVA SYM L x

 
  
                                                      

(2.18) 

where _ ( ( ))XXEVA SEG L x  is Equation (2.11) or (2.13). The goal is to get a segmentation 

L(x) where both segmentation and symmetry are optimized. It’s formulated as a 

Multi-Objective Optimization (MOP) defined below: 

By searching the parameter space, seek an optimal segmentation result 0 ( )L x from all 
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possible results ( )L x  in segmentation space  , such that: 

0
( )

( ( )) arg_ max  ( ( ))
L x

F L x F L x


                                         (2.19) 

It aims to seek a segmentation that optimizes both the segmentation and symmetry 

performance F(L(x)), along with its optimal parameter of thresholds ( g and m ) for 

aggregation criterion ( , )i jp r  and region merging criterion ( , )i jm r r .  

Table 2.6. The Overall Algorithm for the Proposed Method. 

Input: the original image.             

Output: the segmented regions of the image. 

Global Symmetry Detection  

1. Extract SIFT interesting points from the image; 

2. Compute global symmetry axis by symmetric pairs of SIFT points; 

       if  symmetry axis is detected 

           if  multiple symmetry axes are detected 

               Extract the axis belonging to the dominant symmetric object. 

       Compute symmetry affinity by Curvature of GVF (see Eq. (2.3)).  

Symmetry-integrated Region Growing Segmentation 

4. Compute region homogeneity criterion    : color criterion by HSV basis, texture criterion by 

Gabor filters (Eq. (2.6));   

5. Compute symmetry criterion    by (Eq. (2.10)).  

    if  symmetry axis is detected 

        Use Eq. (2.10) to compute    by symmetry affinity. 

    else    =1. 

6. Combine     and    as a single criterion   (Eq. (2.5)), with its threshold    (see Section 

2.4.1 and Eq. (2.4));                                                                             

7. Run the region growing by the integrated criterion   (see Table 2.5); 

8. Use HSV color space and symmetry to compute region merging criterion          , with its 

threshold (see Section 2.4.1); 

9. Perform region merging by the merging criterion; finish segmentation. 

Segmentation Optimization 

10. Evaluate segmentation and symmetry by Eq. (2.11) (2.13) (2.17);                                                              

11. Multi-objective optimization by NSGA-II, in parameter space     and     , using the 

following rules: 

    if  segmentation and symmetry performance from step 9 are acceptable (see Section 2.4.1)  

        End the optimization, finish segmentation; 

    if  not acceptable  

       Search different parameter setting of    and    , Jump to step 4, and run the  

segmentation and optimization again. 

 

2.3.5. Algorithm for the Proposed Segmentation Method 

The overall algorithm for the system is given in Table 2.6. 

S

S

R

S

R S g

m

( , )i jm r r

g

g m
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2.4. Experimental Results 

In this section we present both quantitative and qualitative analysis to demonstrate 

the improvements in image segmentation by the integration of symmetry. The 

symmetry-integrated region growing is compared to the region growing [34] without the 

symmetry integration. Thus, the segmentation improvement is carried by the symmetry 

integration alone. Our method shows superior performance over other commonly used 

segmentation approaches [35, 36, 39]. Moreover, our method also outperforms the 

symmetry-integrated normalized cut [14]. 

2.4.1. Datasets and Parameters 

The proposed method was tested on two commonly used image databases, 

demonstrating different levels of object symmetries. The two image databases used are:  

(a) The Caltech-101 image database [42]. It contains images of both natural and 

manmade objects belonging to 101 categories. Segmentation results are shown in Fig. 

2.5. They are optimized using unsupervised segmentation evaluation (without 

ground-truth) of Equation (2.11). 

(b) The Berkeley segmentation dataset and benchmark (UCB) [43]. It contains 

hand-labeled (ground-truth) segmentations of 1000 Corel dataset images. Example 

images and their delineated ground-truth segmentations are shown in Fig. 2.6. The 

segmentation results on this dataset are optimized using supervised segmentation 

evaluation (with ground-truth) of Equation (2.13).  

The parameter space for segmentation optimization is composed of 2 thresholds: the 
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aggregation criterion threshold 
g , introduced in section 2.3.2.1, and the region merging 

criterion threshold m . The value for g  
varies between [0.015, 0.035] and the range 

for m  is [0.02, 0.05]. These ranges are obtained by experiments and they are 

unchanged. The multi-objective optimization [31] is run on the search space of these two 

parameters, with objective functions of both symmetry and segmentation evaluations 

introduced in section 2.3.3. The optimization stops if the results are acceptable as 

follows: (a) Both segmentation and symmetry performances are better than the 

pre-defined thresholds (0.62 and 0.89 for segmentation and symmetry, respectively). The 

values are set based on our experimental experience; (b) The combination of the 

performance reaches its optimal value reported by NSGA-II [31]. The optimization stops 

with the optimal segmentation if both conditions are met, otherwise it continues by 

searching different parameters until maximum number of iterations (equals to 500 in this 

paper) is reached.  

2.4.2. Performance Metrics 

Three performance metrics are used in experiments. 

(a) Performance curve of supervised segmentation measurement of Equation (2.13), with 

respect to the symmetry measurement of Equation (2.17) on the UCB database [43], as in 

subplot (g) in Fig. 2.4 and subplots (i) in Fig. 2.6.  

(b) The ROC plot, a plot of true positive versus false positive of the region pixels (with 

respect to ground-truth segmentation), is shown in subplots of (j) in Fig. 2.6.  

(c) Optimal segmentation obtained by (i) supervised evaluation (Equation (2.13)) with 



30 
 

ground-truth segmentation, for the UCB database, as shown in segmentations in Figs. 2.4, 

2.6, 2.7-2.9 and 2.11-2.12, or by (ii) unsupervised evaluation (Equation (2.11)) without 

ground-truth segmentation, of Caltech-101 database, as for segmentations in Figs. 2.5 and 

2.10. In both (i) and (ii) the evaluations are also optimized by symmetry evaluation of 

Equation (2.17). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) (f) 

  
(g) 

Fig. 2.4. Symmetry-integrated image segmentation using the image from UCB dataset 

[43]: (a) original image, (b) SIFT points, (c) symmetry axis, (d) symmetry affinity of 

image,  (e) symmetry-integrated segmentation, (f) the ground-truth segmentation 

provided by UCB dataset [43], (g) performance curve of segmentation and symmetry. 

  

2.4.3. Performance of the Proposed Method 

2.4.3.1. Realization of the Proposed Method 

In Fig. 2.4, we show our segmentation by an image of the symmetric ‘Triumphal 
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Arch’ [43]. Fig. 2.4(d) shows large symmetry affinity values in red pseudo-color, which 

indicates asymmetric pixels, and small values in yellow, indicating symmetric pixels. Fig. 

2.4(g) shows the performance curve, measured by Equations (2.17) and (2.13). Different 

points on the curve correspond to evaluations of segmentation and symmetry, by running 

the segmentation using different parameters. The segmentation and symmetry are 

improved simultaneously. Other symmetry-integrated segmentation are shown in Fig. 2.5. 

Please refer to Fig. A-3 in the Appendix for more results. 

   

  

  

  

Fig. 2.5. Symmetry-integrated segmentation using images from the Caltech-101 [42]. 

2.4.3.2. Symmetry-integrated Region Growing vs. Region Growing No Symmetry 

In the curves of subplots (i) in Fig. 2.6, also in Figs. A1-A2 in Appendix, the black 

curve and the dotted green curve are the performance of symmetry-integrated region 

growing segmentation and the region growing without symmetry, respectively. The only 

difference in the two methods is the integration of symmetry. Comparison between the 

two performance curves shows the following two advantages of symmetry-integration. 
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(1) The overall segmentation performance is improved compared to the regular region 

growing, and the improvement comes only from the integration of symmetry.  

(2) In regular region growing, its segmentation performance does not improve (subplots (i) 

of image ‘Man’ in Fig. 2.6), even starts to decrease (subplots (i) of image ‘Building’ in Fig. 

2.6), with the improvement of symmetry. But the segmentation on black curve still 

improves at high symmetry evaluation scores.  

Table 2.7. Principles of State-of-the-Art Segmentation Methods. 

Current 

methods 
Principles 

Parameter Space 

(Thresholds) 

Region Growing 

[34] 

Grows neighboring pixels into the 

seeds to form the segments. 

(1) Pixel aggregation; 

(2) Region merging. 

Normalized cut  

[39] 

Partitions the image into segments by 

minimizes the edge weights. 
Number of segmented regions. 

Normalized cut 

-symmetry [14] 

Combines symmetry into the regular 

normalized cut segmentation [39]. 
Number of segmented regions. 

Watershed [36] 
Pixels with highest magnitude in the 

gradient form a segment. 
Region merging. 

Meanshift [35] 
Performs mean shift filter on pixel, 

and merges windows to form regions. 

(1) Filter bandwidth; 

(2) Region merging. 

 

Lack of segmentation improvement with the increase in symmetry is due to the 

over-segmentation. It deteriorates the segmentation, but symmetry still improves since 

small symmetric regions are segmented. Our method solves this problem by segmenting 

symmetric objects into complete regions. So the over-segmentation is overcome and a high 

symmetry evaluation score (by Equation (2.17)) is retained. The ROC curve of subplots (j) 

in Fig. 2.6 (and Figs. A1-A2 in Appendix) shows that our method has higher true positive 

than the one without symmetry. Table 2.8 shows the segmentation improvement from no 

symmetry to symmetry integration. The largest improvement of 8.39% comes from the 
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image ‘Fresco’, with a large symmetric object. Numerous small regions are eliminated by 

the symmetry cue, as compared in Fig. A-2(c) and (d) of ‘Fresco’, in the Appendix. 

Table 2.8. Numerical Comparison of Segmentation Performance: Images in Fig. 2.6, and 

Figs. A1-A2 in Appendix [52]. 

Images in 

UCB 

dataset 

Comparison: proposed method 
Comparison: symmetry-based 

normalized cut [14] Watershed 

[36] 

Meanshift 

[35] With 

symmetry 

No 

symmetry 

% 

improvement 

With 

symmetry 

No 

symmetry 

% 

improvement 

Building 

(Fig. 2.6) 
75.48% 72.57% +2.60% 69.99% 68.36% +2.38% 74.62% 63.37% 

Man 

(Fig. 2.6) 
72.58% 71.67% +1.27% 66.42% 65.01% -2.48% 67.29% 62.83% 

Woman_1 

(Fig. 2.6) 
71.44% 70.57% +1.23% 68.76% 68.13% +0.92% 66.52% 61.28% 

Vase ([52]) 76.70% 76.42% +0.37% 69.13% 69.01% +0.17% 68.34% 61.03% 

Bear ([52]) 75.82% 73.70% +2.88% 71.29% 71.17% +0.17% 72.84% 67.90% 

Woman_2 

([52]) 
73.75% 73.29% +0.63% 73.13% 72.84% +0.40% 71.92% 67.45% 

Butterfly 

([52]) 
76.73% 75.36% +1.86% 61.64% 60.71% +1.53% 68.36% 71.65% 

Fresco 

([52]) 
82.42% 76.04% +8.39% 76.30% 76.57% -0.35% 77.58% 46.41% 

 

2.4.3.3. Results on Images with Different Symmetry Levels – Region Growing 

with/without Symmetry 

The segmentation results obtained through images with different levels of symmetry 

can be used to show the efficacy of the proposed method. The symmetry level in Fig. 

2.7(e) is measured by the average symmetry affinity value of the image, and it is 

quantified into six categories. The segmentation performance is measured by the 

supervised evaluation (see Equation (2.13)), same for the results in Figs. 2.8-2.9 and 

2.11-2.12. The segmentation performance improvement (see Fig. 2.7(f)) by using 

symmetry (see Fig. 2.7(c)), compared from the same method without symmetry (see Fig. 

2.7(d)), indicates that images with higher symmetry level achieve a larger segmentation 

improvement. With the absence of symmetry (see images (1) and (2) in Fig. 2.7), no 
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symmetry axis is detected. Thus, the symmetry constraint (see Equation (2.10)) is set to 1, 

and the performance is the same as the one without symmetry.  

2.4.3.4. Results on Images with Symmetry Distortion – Effect of Occlusion, 

Affine/Perspective Transform, Articulation, and Incorrect Symmetry 

Detection 

 Occlusion: Many of the real world images have symmetric objects with occlusions. 

Fig. 2.8 shows segmentation with symmetric objects occluded by trees. The symmetry 

axis can be detected effectively (see Fig. 2.8(b)). Under partial occlusions, the symmetry 

integration (see Fig. 2.8(d)) can improve the segmentation (see Fig. 2.8(f)), compared 

from the same method without symmetry (see Fig. 2.8(e)). 

 Affine/Perspective Transform: Fig. 2.9 shows the symmetry integration under 

distortions. The affine transform shown in Fig. 2.9(1) is composed of linear 

transformations (rotation, scaling or shear) and a translation. It preserves the parallelism 

of lines. The perspective transform shown in Fig. 2.9(2) illustrates that from the view of 

human eyes (or camera), the parts of the object in the distance appear smaller than the 

parts close by. The perspective transform preserves the straight lines of objects. Fig. 2.9(b) 

shows that the symmetry axes for transformed faces are extracted, and the symmetry 

integration can improve the segmentation (see Fig. 2.9(f)) under non-rigid distortions. 
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Building(a) 

 
Building (b) 

 
Building (c) 

 
Building(d) 

 
Man (a) 

 
Man (b) 

 
Man (c) 

 
Man (d) 

 
Building(e) 

 
Building (f) Building (g) 

 
Building(h) 

 
Man (e) 

 
Man (f) 

 
Man (g) 

 
Man (h) 

 
Building (i) 

 
Man (i) 

 
Building (j) 

 
Man (j) 

 
Woman_1(a) 

 
Woman_1(b) 

 
Woman_1(c) 

 
Woman_1(d) 

 
Woman_1(e) 

 
Woman_1(f) 

 
Woman_1(g) 

 
Woman_1(h) 

 
Woman_1 (i) 

 
Woman_1 (j) 

Fig.2.6. Comparison of results on UCB database [43]: ‘Building’, ‘Man’ and ‘Woman_1’. 

(a) original image, (b) ground-truth segmentation provided by UCB database [43], (c) 

symmetry-integrated region growing, (d) region growing without symmetry, (e) 

normalized cut with symmetry, (f) normalized cut without symmetry, (g) watershed 

segmentation, (h) meanshift segmentation, (i) performance curves, (j) ROC curves. 
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 (a) (b) (c) (d) (e) (f) 

(1) 

    

N/A +0% 

(2) 

    

N/A +0% 

(3) 

    

0.827 

very 

Low 

+0.91% 

(4) 

    

0.615 

low 
+1.03% 

(5) 

    

0.535 

medium 
+1.26% 

(6) 

    

0.572 

medium- 

high 

+2.06% 

(7) 

    

0.350 

high 
+2.47% 

(8) 

    

0.174 

very 

high 

+2.54% 

Fig. 2.7. Results for images, with different symmetry levels, from the UCB database [43], 

(a) original image, (b) ground-truth segmentation provided by UCB database, (c) 

symmetry-integrated region growing, (d) region growing without symmetry, (e) symmetry 

level, (f) segmentation improvement (from (d) to (c)). N/A: Not Applicable.  
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 (a) (b) (c) (d) (e) (f) 

(1) 

     

+0.16% 

(2) 

     

+1.77% 

Fig. 2.8. Images with occluded symmetric objects, from UCB database [43]. (a) original 

image, (b) symmetry axis detection, (c) ground-truth segmentation provided by UCB 

database [43], (d) symmetry-integrated region growing, (e) region growing without 

symmetry, (f) segmentation improvement (from (e) to (d)). 

 (a) (b) (c) (d) (e) (f) 

(1) 

     

+1.19% 

(2) 

     

+1.21% 

Fig. 2.9. Image ‘Man’ in Fig. 2.6, with (1) affine transform, (2) perspective transform, 

from UCB database [43], (a) transformed image, (b) symmetry axis, (c) ground-truth 

segmentation provided by UCB database, (d) symmetry-integrated region growing, (e) 

region growing without symmetry, (f) segmentation improvement (from (e) to (d)). 

 (a) (b) (c) (d) (e) 

(1) 

    

+2.08% 

(2) 

    

+1.79% 

Fig. 2.10. Results for images, with articulated symmetry distortions, from the Caltech-101 

database [42] (image (1)), and from the Internet (image (2)), (a) original image, (b) 

symmetry axis detection, (c) symmetry-integrated region growing, (d) region growing 

without symmetry, (e) segmentation improvement (from (d) to (c)). 
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 (a) (b) (c) (d) (e) (f) 

(1) 

 

    

Perspective 

distortion 
+0.27% 

(2) 

    

Occlusion +0.43% 

(3) 

    

Articulation +0.24% 

Fig. 2.11. Results with images for incorrect symmetry detection, from the UCB database 

[42], (a) original image, (b) symmetry detection, (c) symmetry-integrated region growing, 

(d) region growing without symmetry, (e) distortions, (f) segmentation improvement ((d) 

to (c)). 

  Articulation: The articulation refers to the object composed of two or more joint 

components, and each component has rigid movement. Fig. 2.10 shows how the 

symmetry integration improves segmentation of the images with articulated symmetry 

distortions. Since images in Fig. 2.10 are collected from the Caltech-101 database or from 

the Internet, without the ground-truth segmentation, we use Equation (2.11) for the 

unsupervised segmentation evaluation. Image (1) shows the clamp with asymmetric 

handles, and image (2) shows a human with articulated arms and legs. Fig. 2.10(b) shows 

that global symmetric axes are correctly extracted. Fig. 2.10(e) indicates the segmentation 

improvements achieved by using the symmetry integration. 

  Incorrect Symmetry Detection: Fig. 2.11 shows the incorrect symmetry axis 

extraction, because of large distortions for perspective, occlusion and articulation, 

respectively. In these three conditions, Fig. 2.11(f) shows that the performance of 

symmetry integrated segmentation is no worse than that of the same method without 
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symmetry. The conclusion is that even under incorrect or failed symmetry detection, the 

symmetry integration is not worse than that of using no symmetry at all. 

 
 (1) (2) (3) 

(a) 

   

(b) 

   

(c) 

   

(d) 

   

(e) 

   

(f) +1.67% +4.66% +6.87% 

Fig. 2.12. Images with multiple symmetric objects, from UCB database [43]. (a) original 

image, (b) symmetry axis (with high intensity as the dominant axis), (c) ground-truth 

segmentation provided by UCB database [43], (d) symmetry-integrated region growing, (e) 

region growing without symmetry, (f) segmentation improvement ((e) to (d)).  
 

2.4.3.5. Results on Images with Multiple Symmetric Objects 

Complex conditions of symmetry exist in images with multiple symmetric objects. 

Within multiple symmetry objects shown in Fig. 2.12, the global symmetry detection is 

able to extract multiple symmetry axes in an image (see Fig. 2.12(b)), and choose the 
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symmetry axis belonging to the most dominant symmetric object, as the global symmetry 

axis of the image. The dominant symmetric objects in images (1) and (2) in Fig. 2.12 are 

both the rightmost objects, and their symmetry axis (in bright color) is used as the global 

symmetry axis of the image. Another condition of symmetry is shown as image (3), 

where all the three astronauts contribute to a same symmetry axis, and they share the 

same cluster of global symmetric pairs of SIFT points. Image (3) highlights the advantage 

of using the global symmetry detection, which can detect symmetry within the entire 

image, and make use of multiple symmetric objects to derive a global axis. It cannot be 

done by using local symmetry detection only. Fig. 2.12(f) shows that under condition of 

multiple symmetric objects, the symmetry integration also improve the segmentation, 

compared to the same method without symmetry. 

2.4.4. Symmetry-integrated Region Growing vs. Other Segmentation 

Methods 

2.4.4.1. Qualitative Comparison 

We obtain image segmentation improvements as compared to other segmentation 

methods that do not exploit symmetry. The principles of currently popular image 

segmentation methods compared are shown in Table 2.7. In Fig. 2.6 (and Figs. A1-A2 in 

Appendix) we demonstrate the segmentation improvements by symmetry integration, 

using eight example images from UCB database with ground-truth segmentations provided. 

The segmentation results are optimized by NSGA-II and measured using both the 

supervised performance evaluation of Equation (2.13) and the symmetry evaluation of 

Equation (2.17).   
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Results (d)-(h) in Fig. 2.6 (and Figs. A1-A2 in Appendix) have different levels of 

segmentation defects and noisy regions in symmetric objects, compared to 

symmetry-integrated segmentation in (c). The incorporation of symmetry cue is the main 

source of improvement. The symmetric regions are more likely to be aggregated by the 

symmetry constraint, by eliminating small noisy regions within the symmetric objects, 

thus more complete and proper symmetric boundaries are generated. The most complete 

and clear symmetric objects are segmented by the proposed method. For the result (c) of 

image ‘Man’ in Fig. 2.6, our approach can segment the symmetric face without incorrect 

segments, while the other results fail to accomplish so. Similar improvement can be seen in 

image ‘Building’ in Fig. 2.6, where the central part of the building is segmented with less 

flaws and noisy regions than other methods. One of other advantages of our method is that 

we not only refine symmetric regions, but also segment background non-symmetric 

regions more properly.  

2.4.4.2. Quantitative Comparison 

The subplots (i) in Fig. 2.6 (and Figs. A1-A2 in Appendix) show the curves of 

symmetry versus segmentation performances, measured by supervised segmentation 

evaluation of Equation (2.13) and symmetry evaluation of (2.17), respectively. Each point 

in the curve is a symmetry and segmentation performance by running segmentation of an 

image by different parameter values. From comparisons in subplots (i), following 

conclusions can be made: 

(1)  The curve of the proposed method has the highest segmentation performance in all 

images. 
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(2) The curve of the proposed method also reaches the highest symmetry performance 

measures. 

The above improvements of segmentation and symmetry, comes from integrating the 

symmetry cue to improve the segmentation by refining both the symmetric objects and 

non-symmetric backgrounds. Subplots (j) in Fig. 2.6 (and Figs. A1-A2 in supplemental 

material) show the ROC plot, and our method has the highest true positive rate. The ROC 

plot quantitatively shows that the proposed method is closest to the ground-truth 

segmentation. Table 2.8 shows the comparison among segmentation performances 

(Equation (2.13)) measured on the optimal segmentation results. All segmentations are 

optimized by NSGA-II. The proposed method has the highest performance in all images. 

4.5 Symmetry-integrated Region Growing vs. Current Symmetry-Based 

Segmentation 

We also compare our approach with the method in [14], which is a 

symmetry-integrated segmentation combining symmetry feature into regular normalized 

cut segmentation to refine the symmetry level of the segmented regions. As we can seen 

in subplots (i) in Fig. 2.6 (and Figs. A1-A2 in Appendix), both normalized cut with and 

without symmetry, have worse segmentation performance than region growing with and 

without symmetry, and they also have lower symmetry measurement. We can infer from 

the scalar comparisons in Table 2.8 that, the symmetry-integrated region growing reaches 

higher segmentation improvements than [14]. Take the image ‘Bear’ in Table 2.8 as an 

example, the improvement from normalized cut to symmetry-integrated normalized cut is 

only 0.17%, while the improvement from regular region growing to the 

symmetry–integrated region growing is high as 2.88%. For an extreme case of ‘Fresco’ in 
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Table 2.8, the performance obtained by symmetry integrated normalized cut is even 

decreased by 0.35%, while the improvement of region growing by symmetry integration 

is high as 8.39%. Also for the ROC curves (subplots (j)) of all 3 images in Fig. 2.6, the 

true positive of symmetry-integrated normalized cut is even worse than that of 

normalized cut with no symmetry. In conclusion, the symmetry integrated in normalized 

cut does not always improve the segmentation. The symmetry integrated in region 

growing improves the segmentation in all cases, and it reaches higher improvement 

compared to [14]. The normalized cut separates perceptually coherent region into many 

parts in large number of segments. It prevents the work of [14] with segmentation 

improvement. 

Table 2.9. Numerical Comparison of Optimal Segmentation Performance: Supervised vs. 

Unsupervised Evaluations 

Images in UCB 

dataset 

(Fig. 2.6, and Figs. 

A1-A2 in 

Appendix) 

(a)  Optimal segmentation 

obtained by supervised evaluation  

(Eq. (2.13)) 

(b)  Optimal segmentation obtained 

by unsupervised evaluation 

(Eq. (2.11)) 

(1) 

Segmentation 

performance 

(Eq. (2.13)) 

(2) 

Symmetry 

performance 

(Eq. (2.17)) 

(3) 

Segmentation 

performance 

(Eq. (2.13)) 

(4) 

Symmetry 

performance 

(Eq. (2.17)) 

Building 75.48% 97.26% 70.33% 96.17% 

Man 72.58% 98.48% 71.62% 98.43% 

Woman_1 71.44% 98.79% 70.74% 97.66% 

Vase 76.70% 96.02% 73.19% 96.95% 

Bear 75.82% 99.27% 73.80% 98.24% 

Woman_2 73.75% 95.44% 72.75% 93.50% 

Butterfly 76.73% 86.10% 66.02% 81.78% 

Fresco 82.42% 72.48% 68.44% 67.53% 

2.4.6. Symmetry-integrated Region Growing: Supervised vs. 

Unsupervised Evaluations 

Since two different segmentation evaluation criteria (Equations (2.11) and (2.13)) 

are used in this paper, in this subsection, the effectiveness of these two evaluations are 

compared as shown in Table 2.9, on eight images from the UCB database (see Fig. 2.6 
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and Figs. A1-A2 in Appendix). Note that segmentation of images from the UCB database, 

are optimized by the supervised evaluation (Equation (2.13)), and segmentation of 

images from the Caltech-101 database, are optimized by the unsupervised evaluation 

(Equation (2.11)). But in this subsection, the segmentation of images from the UCB 

database is optimized by both Equation (2.13) and (2.11) to compare the results of the 

two evaluation criteria, by the following steps: 

(1) In column (a) of Table 2.9, segmentation is optimized with the supervised 

segmentation evaluation (Equation (2.13)). The goodness of the optimized segmentation 

is evaluated using Equation (2.13) (see column (1) in Table 2.9). The 2
nd

 column in Table 

2.8 has the same realization. 

(2) In column (b) of Table 2.9, segmentation is optimized with the unsupervised 

evaluation (Equation (2.11)). The goodness of the optimized segmentation is also 

evaluated by Equation (2.13) (see column (3) in Table 2.9).  

(3) The symmetry performance shown in columns (2) and (4) are both evaluated by 

Equation (2.17). 

It is clear from Table 2.9 that the optimal segmentation results obtained by the 

supervised evaluation, are closer to the ground-truth segmentation, with higher evaluation 

score than that obtained by unsupervised evaluation (see comparison between columns (1) 

and (3)). Thus, the supervised evaluation is preferred to guide the optimization for a 

better segmentation, if the ground-truth is available.  
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2.4.7. Statistical Validation of Results 

The proposed method is validated by statistical results with 15 images from the 

UCB database, and with 93 images from the Caltech-101 database (see these images 

listed in Figs. A4-A5 the Appendix). Symmetry axes are detected correctly in all the 108 

images. Table 2.10 shows the comparison of statistical results on images from the two 

databases. Note that the mean and standard deviation are computed from optimal 

segmentation performances of the images. We use the supervised performance evaluation 

(see Equation (2.13)) for the UCB database, but use unsupervised evaluation (see 

Equation (2.11)) for the Caltech-101. Table 2.10 shows that the proposed method 

outperforms all the other methods. The percentage of improvement in parenthesis with 

the positive number, in the last five rows, in Table 2.10 is the segmentation improvement 

achieved by the proposed symmetry integration method, compared to the method in the 

same cell. The performance, in the parenthesis in the second row in each cell, are the 

highest and lowest performance of the method, respectively. Note that even a 1% 

numerical improvement in segmentation leads to a significant visual improvement in 

segmentation results.   

All the 108 images (with correct symmetry axis detected) achieved performance 

improvement by using the symmetry cue (see Table 2.10). Additionally, we also tested 

our algorithm on 374 images (from Caltech-101 database) in which the symmetry axes 

are incorrectly detected. In this situation, still over 99.45% of the images obtained 

improved segmentation performance by using the symmetry cue. There are only two 

exceptional cases as shown in Fig. 2.13 where the improvement did not take place. 
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However, the decrease in performance is minimal in these two exceptional cases. With 

other 598 images (from Caltech-101 database) where no symmetry axes are detected (not 

enough symmetry level in images), the performance of the proposed method is the same 

as the one without using symmetry, for all these images. In conclusion, the proposed 

method has robust performance as evidenced by experiments on large image datasets. 

Table 2.10. Statistical Validation on 15 Images from UCB Database, and on 93 Images from 

Caltech-101 Database (See Figs. 2.4-2.5 in Supplemental Material [52] for Images) 

 UCB Database Caltech-101 Database 

 

Mean 

segmentation 

performance 

Standard 

deviation of 

segmentation 

performance 

Mean 

segmentation 

performance 

Standard 

deviation of 

segmentation 

performance 

Region growing 

- with symmetry 

76.54% 

(87.56%, 75.93%) 
4.31% 

83.26% 

(91.01%, 67.41%) 
6.17% 

Region growing 

– no symmetry 

72.53% (+5.53%) 

(83.78%, 68.55%) 
4.57% 

76.29% (+9.13%) 

(82.87%, 59.70%) 
6.30% 

Normalized cut 

- with symmetry 

67.83% (+12.84%) 

(81.61%, 62.09%) 
4.79% 

72.60% (+15.80%) 

(81.04%, 63.51%) 
6.74% 

Normalized cut 

– no symmetry 

66.42% (+15.24%) 

(76.42%, 61.84%) 
4.90% 

70.39% (+18.28%) 

(77.63%, 61.96%) 
6.39% 

Watershed 
69.73% (+9.77%) 

(80.11%, 57.94%) 
6.16% 

68.51% (+21.53%) 

(74.92%, 58.18%) 
6.33% 

Meanshift 
61.07% (+25.33%) 

(75.30%, 44.23%) 
6.54% 

64.03% (+30.03%) 

(73.46%, 45.00%) 
6.82% 

 

(a) (b) (c) (d) (e) 

    

-0.07% 

    

-0.12% 

Fig. 2.13. Results with decreased segmentation performance by using symmetry, from the 

Caltech-101 database [42], (a) original image, (b) symmetry axis, (c) symmetry-integrated 

region growing, (d) region growing without symmetry, (e) segmentation improvement 

(from (d) to (c)). Note that the symmetry axes are incorrectly detected. 
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2.4.8. Discussion of the Results  

Based on the experimental results on hundreds of images shown here and in [52], 

we note the following points: 

1. Quality of segmentation: The symmetry constraint generates more symmetrical regions, 

which decreases the number of small segments. Due to the robustness against noise 

property of the global symmetry and symmetry affinity, noisy regions are aggregated into 

surrounding regions if they show symmetry property. 

2. Different levels of symmetry: The higher the symmetry presents in an image, the higher 

is the improvement for symmetry-integrated image segmentation. 

3. Symmetry axis: The proposed method highly depends on the symmetry axis detection. 

But under condition of incorrect symmetry detection (see Fig. 2.11) and no symmetry 

detected (see images (1) and (2) in Fig. 2.7), the performance of the proposed method is 

not worse than that of the method without symmetry (see Section 2.4.7).  

4. Symmetry refinement: It is possible to use the segmented regions that are symmetric 

with their reflected regions to provide a feedback to the symmetry detection algorithm for 

the computation of a refined axis of symmetry. This, in turn, will provide a better image 

segmentation.  

2.5. Conclusions 

In this paper, a new symmetry integrated scheme is proposed for region based image 

segmentation to improve its performance. We accomplish this goal by incorporating 

symmetry into the region growing segmentation, in terms of the symmetry affinity matrix. 

We carry out experiments on a wide variety of images and provide thorough analysis. 
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Both qualitative and quantitative experimental results indicate that with the symmetry 

constraints enforced by symmetry affinity, both the symmetry and segmentation 

performance are improved compared to several popular current segmentation methods. 

This is the first paper in the computer vision and pattern recognition field that 

demonstrates the improvement of pixel-level image segmentation by incorporating the 

high-level symmetry cue and performing thorough qualitative and quantitative analyses 

on large datasets. The non-optimized code takes ~54 sec. to run (for a 640480 color 

image) on a PC with Intel Core 2 Quad CPU 2.40GHz and 3GB of RAM. The region 

growing segmentation takes 87% of the total running time. The future work will focus on 

increasing the computational efficiency of the method. 
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Chapter 3 

 

Automated Symmetry-Integrated Brain 

Abnormality Detection in MRI Sequences 

 

3.1. Introduction 

Magnetic resonance imaging (MRI) is a medical imaging technique most commonly 

used in radiology to visualize the structure and function of a body. It provides detailed 

images [85] of a body in any plane with a higher discrimination than other radiology 

imaging methods such as computed tomography (CT), single photon emission computed 

tomography (SPECT), etc. The goal of this paper is to find automatically find the selected 

subsets of pixels/voxels within a dataset, that are characterized as abnormal (injured or 

diseased) regions/volumes in the brain MR images. We call these regions as the 
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regions-of-interest (ROIs). 

The research on automated methods for the evaluation of magnetic resonance (MR) 

images has its origin in the manual ROI labeling which is typical of radiological 

treatments. Specifically, mining of brain ROIs that appear in an MRI sequence has been 

an important task in image processing, image analysis and pattern recognition fields 

[62-70, 75]. This can assist health care professionals with automated computer techniques 

for diagnosis and appropriate treatment. Traditionally, the boundary of a ROI in a MR 

image is manually traced. The computer-aided diagnosis on brain MRI reduces the 

manual workload. An efficient ROI detection algorithm is important for diagnosis, 

planning, and treatment. However, there is a fuzziness in pattern recognition. It is caused 

by the partial volume effect, in which a single voxel represents more than one type of 

tissue, mainly caused by the process of transforming a continuous observation of the real 

world into an image with a finite resolution and limitations of MRI techniques leading to 

the loss of high definition details of a tissue. Due to these effects, there exist specific 

kinds of vagueness such as blurred boundaries, variabilities caused by movement of the 

patient’s head, and inter-image illumination and positions of brain, which cause the 

propagation of detection errors. ROIs of certain diseases, for example, incipient tumors 

and subtle lesions in themselves have low contrast compared to the neighboring tissues. 

They are difficult to recognize even by experts. These problems still exist even after 

registration, normalization and use of prior brain tissue models. As a result, it is very 

challenging for the automated ROI detection methods to outline ROIs as close to the 

manual annotations obtained by experts. 
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Recently, with a rapid progress of image processing and analysis techniques, a 

variety of computer-aided applications including both automated and semi-automated 

image segmentation and detection methods are being considered for clinical use that can 

significantly reduce the time needed to make such methods practical. Previous studies 

[62-67], based on both 2D analysis (only on data of single 2D MRI slice) and 3D image 

analysis (on data from all the MRI slices in a sequence that contains 3D information of 

the brain), detect brain ROIs reasonably well by using training sets and prior models of 

tissues as well as using efficient preprocessing techniques, like registration [67, 71, 75]. 

Numerous features such as image intensity, texture, shape, 3D volume, etc, are used in 

model matching schemes. However, locating a specific ROI by these methods requires a 

variety of training and specific prior knowledge of statistical distributions of tissues.  

In this paper, reflection symmetry is integrated with image analysis as a new kind of 

high-level feature. This integration allows a fully automated brain ROI detection method, 

without prior models, and is applicable to a wider range of MRI data with different 

patient ages and ROI characteristics. Symmetry is an intrinsic property of an object which 

causes it to remain invariant to certain classes of transformations. Familiar 2D symmetry 

categories are [51]: (1) reflection symmetry, (2) rotational symmetry, (3) translational 

symmetry, where the objects remain invariant with reflection (by an axis), rotation (with 

certain angle centered at a point), and translation (with specific distance or direction), 

respectively, and (4) glide-reflection symmetry, a combination of reflection by a line and 

a translation along that line. The 3D reflection symmetry of a 3D brain object refers to a 

2D plane with which a brain is symmetric by a mirrored reflection. For a 2D brain MRI 
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slice, the 2D reflection symmetry refers to an axis along which the brain is highly 

symmetric. This paper detects 2D reflection symmetry for brain MRI slices only. 

However, the 3D information from multiple 2D MRI slices is used to aid in the 

automated ROI detection. This is realized by a comparison among the neighboring slices 

to filter out noisy non-ROIs. Additionally, the proposed method aims to detect almost all 

kinds of abnormal regions, including the tumors, lesions and the injury regions. 

The remainder of this chapter is organized as follows. Section 3.2 gives an overview 

of the related work and the contributions of this paper. Section 3.3 provides the technical 

details of the approach. Section 3.4 gives experimental results with both qualitative and 

quantitative analysis. Finally, Section 3.5 provides the conclusions of the paper. 

3.2. Related Works and Contributions 

3.2.1.  Related Works 

There exist many challenges associated with precise automated detection of brain 

ROIs. From the pathology point of view, the brain ROIs are generally different in size 

and shape, and may appear at any location with different image intensities. Some ROIs 

also deform other normal and healthy tissue structures. Due to imaging procedures, three 

problems commonly exist in the quality of MRI slices. They are described in Table 3.1. 

Table 3.1. Three Problems Related to the Automated ROI Detection Methods 

Problem# Problem Definitions 

(1) 
Blurred boundaries between different tissues and structures caused by the loss of 

resolution and contrast during the collection and digitization of a MR image. 

(2) 
Movement artifacts caused by patient’s head movement, during prolonged scanning, 

result in recording errors, and the brain is not aligned among MRI slices. 

(3) 
Variations in different MRI slices due to the changes in the imaging environment. It 

represents an additional challenge for image pre-processing. 
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Problem (1) is usually solved by incorporating the prior models [62-67] to enhance 

the discrimination among brain tissues. When boundaries of different tissues (including 

the ROI) are too blurred to be extracted by low-level image features (like gray scale and 

image gradient), high-level tissue models are needed to obtain a satisfactory tissue 

classification/extraction. Problems (2) and (3) are mostly solved by image registration 

[67, 75] which performs the alignment among MRI slices, for both positions and 

illuminations. However, the registration needs complex algorithms and also prior models. 

Generally, the above solutions are not automated and always require large amounts of 

pre-processing and user interaction.   

State-of-the-art ROI extraction techniques use mainly two kinds of methods: tissue 

classification/segmentation and abnormality extraction. The tissue classification [62, 63] 

approach starts with brain segmentation based on a prior tissue model and extracts ROIs 

from classified clusters. Unfortunately, in order to obtain satisfactory classification results, 

large amounts of training data or complex prior models are required. The domain of 

training phase which is only used for a specific category of ROI only, strictly restricts the 

range of applications. The abnormality extraction approach [64, 65] generally builds a 

stochastic model for normal brain tissues, and simultaneously detects abnormalities that 

do not fit the model. However, it is challenging to build a complete prior model in order 

to cover enough tissue information. Another abnormality extraction method is called 

digital subtraction [66, 79], which tracks structure or volume changes of brain imaged at 

different time intervals. The accuracy of subtraction relies highly on registration among 

different MRI sequences [67, 71, 75]. As a result, most of the current ROI extraction 
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methods depend heavily on the quality of preprocessing and prior knowledge, and most 

importantly, they are not fully automated.  

Table 3.2. State-of-the-art ROI Detection Methods for MRI: Summary, Their Advantages 

(+) and Limitations (-). 

Authors Principle of Techniques Comments 

Birgani et al., 

[62]  

Brain MRI segmentation and 

ROI classification by fuzzy 

c-means (FCM).  

+  Unsupervised classification, and no prior model is needed. 

-Need to set the no. of classes for FCM, need the distribution of 

ROI. 

Bhanu et al.,  

[78], Bianchi 

[86]  

Recursive region splitting and 

merging. 

+ Automatic segmentation and ROI detection can be 

automated. 

-  Results include many non-ROIs. 

Kabir et al., 

[63] 

Lesion detection MAP 

segmentation and digital atlas. 

+ Segmentation separates different brain models 

simultaneously. 

- Need multiple prior models. 

Leemput et 

al., [64] 

Lesion detection using a 

stochastic model for normal brain 

images. 

+ Brain tissues are segmented effectively. 

-The prior model is needed. 

Cuadra et al., 

[65] 

Brain lesion detection by lesion 

growth.  

+ The lesion boundary is outlined. 

- Need the prior model for the lesion; registration is also 

needed. 

Ratan et al., 

[81] 

Tumor detection on 

multi-parameter analysis and 

watershed segmentation. 

+ Watershed segmentation can segment MRI. 

-  The tumor detection mislocates non-tumor as tumor regions.  

Anbeek et al., 

[82] 

Lesion detection using KNN 

classification and probabilistic 

segmentation. 

+ The KNN classifier, with a training model, can separate 

lesions. 

- Need to train the KNN classification model.  

Hojjatoleslami 

et al., [83] 

Segmentation of large brain 

lesions by region growing. 

+ Region growing from inside the lesion outlines to lesion 

boundary. 

- Need to locate the seed inside the lesion manually. 

Corso et al., 

[84] 

Tumor segmentation by weighted 

aggregation and Bayesian 

classifier. 

+ Can hierarchically recognize different models within a single 

tumor region. 

- Need the prior classification model. 

Chen et al., 

[92] 

MRI brain image segmentation 

by graph cut approach. 

+ The graph cut can outline tissue boundary properly. 

-The ROI segments have to be located by the user. 

Rathi et al., 

[93] 

Segmentation of brain MRI by 

HSOM and wavelet features. 

+ Segmentation by hierarchical self organizing map (HSOM). 

- The vector quantization lowers the image resolution; need 

prior model. 

    As a result, state-of-the-art ROI detection methods (summarized in Table 3.2) 

generally fail to solve problems (1)-(3) automatically, as they use only low-level features 

such as image intensities, edges and gradients, or otherwise employ predefined tissue 

models. The incorporation of reflection symmetry, which exhibits the difference between 

ROIs and normal brain tissues as a high-level feature, can avoid the registration and prior 
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models to obtain a good ROI detection accuracy and to make detection fully automated. 

Research on asymmetry of the brain can be traced back to [89], and it has been 

investigated previously [75, 68-69, 70, 88] in ROI detection. Its advantages and 

limitations compared to the proposed method are listed in Table 3.3. The first six methods 

listed in Table 3.3 also deal with problems (1)-(3) using symmetry, but they either require 

registration and prior model, or they do not use symmetry as effectively as our method. 

Table 3.3. State-of-the-art Symmetry-based ROI Detection Methods for MRI: Summary, 

Their Advantages (+) and Limitations (-). 

Authors Principle of Techniques Comments 

Saha et al., 

[75]  

Brain MRI segmentation using 

a fuzzy point symmetry based 

genetic clustering technique. 

+ Clustering by point symmetry based distance rather than Euclidean 

distance; no a priori info. 

- Time consuming; copes with internal symmetry within a region. 

Bergo  

et al., [68]  

MRI segmentation based on the 

texture symmetry. 

+ Free from a template; good generality. 

-  Not robust to changes in parameters; uses only local symmetry.  

Ray et al., 

[69]  

Locate brain abnormality by 

bounding box around it using 

the symmetry analysis.  

+ No registration; no training image; real-time implementation. 

- Need the reference (template) image; boundary for abnormal 

regions is not well outlined. 

Khotanlou 

et al., [70] 

ROI detection using 

segmentation, asymmetric 

region extraction and fuzzy 

classification. 

+ ROIs are included in the asymmetric regions. 

-The asymmetric regions include too many noisy non-ROI regions 

due to ineffective image segmentation method. 

Thirion et 

al., [89] 

Asymmetry measure of brain 

structures, by 3D vector field 

operators. 

+ The asymmetry measure is automatic. 

- The ROI is not precisely located; only abnormal dissymmetry is 

analyzed. 

Li et al., 

[91] 

Tumor segmentation using 

symmetry of human brain and 

level set method. 

+ Non-tumor tissues are filtered by volumetric symmetry analysis. 

- The initial level set boundary of tumor has to be set one by one. 

This paper 

Detect brain ROIs by symmetry 

integration in several steps for 

segmentation, region extraction 

and classification. 

+ Integrates symmetry in all steps; no prior model; no training data; 

good generality; effective segmentation algorithm; uses global 

symmetry rather than local or internal symmetry. 

- Very low contrast ROIs are missed. 

 

3.2.2. Contributions 

The proposed method not only overcomes  problems (1)-(3) (described in Section 

3.2.1) to a great extent by integrating reflection symmetry instead of registration and 

prior models, but it also overcomes the limitations of the other symmetry-based ROI 
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detection methods as shown in Table 3.3 by using symmetry more effectively.  

We formulate the idea of using symmetry based on the observation that for most 

abnormality detection methods, though different in principle, there is a common criterion 

that abnormal ROIs are detected by their properties that deviate from the expected normal 

and healthy tissue properties. Specific to our case, since most of the ROIs are asymmetric 

with their mirror regions against the axis of reflection symmetry for a MRI slice while the 

other healthy brain structures are highly symmetric, we are able to detect ROIs by 

integrating symmetry into the image analysis. According to this characteristic, ROIs are 

within the asymmetric regions. Therefore, asymmetry is regarded as a distinct property of 

ROIs that deviates from other normal symmetric tissues. Furthermore, multidimensional 

(3D) region-based symmetry analysis tends to be more robust to noise and other 

interferences. By an integration of symmetry, we overcome the limitations of the other 

symmetry-based approaches and this paper makes the contributions shown in Table 3.4. 

Computation 

of Symmetry 

and its 

Affinity

Magnetic 

Resonance (MR) 

Image Sequences 

Potential ROIs of 

2D Regions & 3D Volume

Statistics-based 

Extraction of 
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Segmentation 

of 2D images
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Fig 3.1. System diagram for symmetry integrated region-of-interest (ROI) detection in 

MRI sequences. 

 

 

 

 



57 
 

Table 3.4. Contributions of the Proposed Method 

Contributions Comments 

Problem (1): the blurred boundary and 

random location of ROIs (see Table 

3.1), is solved by using the symmetry 

automatically, without prior models. 

Asymmetric regions can be extracted automatically by symmetry-based image 

segmentation followed by asymmetric region extraction. In this process, 

symmetric tissues are discarded by a symmetry measure, and no prior model is 

needed to classify those tissues (see Sections 3.3.2, 3.3.3 and 3.3.4). 

Problem (2) and (3) (see Table 3.1) are 

solved by symmetry automatically, 

without registration. 

The symmetry affinity computed by edge information of gradient vector flow 

(see Sections 3.3.1) is invariant to the illumination variability among MR 

slices. So registration is not required. 

Compared to the other symmetry-based 

work in Table 3.3, limitation of local 

symmetry is overcome by global 

symmetry extraction. 

Global symmetry information is relatively more robust to local noise and 

asymmetric distortions, and it is relatively much more invariant in rotation, 

translation, and scale compared to local symmetry (see Section 3.3.1). 

Limitation of noisy regions is overcome 

by symmetry-based image 

segmentation [73]. 

Symmetry-based segmentation can segment the brain tissue much better such 

that there are less noisy regions (see Section 3.3.2), as compared to other 

segmentation methods in Table 3.3. 

Symmetry is used in different forms in 

multiple steps. 

Extensive use of the symmetry information makes the method fully automated 

(see Fig. 3.1). 

3D symmetry information from 2D 

MRI slices is proposed. 

3D symmetry information from 2D MRI slices is used in both the asymmetric 

region extraction (see Sections 3.3.2, 3.3.3 and 3.3.4) and the final 

classification of the asymmetric regions into the ROI (see Section 3.3.4). 

 

3.3. The Technical Approach 

The flowchart of the overall approach is shown in Fig. 3.1. In our approach, 

symmetry is used in multiple steps in different forms, to filter out normal regions, and 

detect the abnormalities. In step 1, a symmetry affinity matrix is obtained, which is used 

as a measurement of symmetry level in later steps. In step 2, reflection symmetry is 

integrated into a segmentation algorithm such that most of the symmetric parts in an 

image are segmented appropriately. This prevents misclassification of symmetric parts 

into asymmetric regions in a later step. Subsequently, in step 2, statistical characteristics 

(kurtosis and skewness) of the symmetry affinity matrix (step 1) are computed and they 

are used to extract asymmetric segments from segmented regions. In step 3, symmetry 

affinity matrices for different MRI slices are segmented in 3D using an improvement of a 

gradient relaxation method [74] by the incorporation of 3D information from 2D MRI 
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slices. In step 4, first the results from steps 2 and 3 are fused to obtain refined asymmetric 

regions, and then an unsupervised classifier is used to extract ROIs from the asymmetric 

regions. 

3.3.1. Symmetry Extraction 

Normal human brains possess a high degree of reflection symmetry in 3D (also 

called bilateral symmetry) although they are not perfectly symmetrical. The procedure of 

symmetry extraction (see step 1 in Fig. 3.1) consists of two major components: (a) 

computation of symmetry axis, and (b) computation of symmetry affinity matrix.  

 (1) (2) (3) 

Brain 

Image 

   

(a) 

Symmetry 

Axis 
   

(b) 

Symmetry 

Affinity 

Matrix    

Fig 3.2. Sample results of symmetry extraction for injured brains of (1) human, (2) 

animal, and (3) human. 

 
 Computation of Symmetry Axis: The symmetry axis of the brain is defined as the 

plane that best separates the two hemispheres of the symmetric brain structure. We use 

the global symmetric constellations of features [84] to detect a reflective symmetry axis 

presented in MR brain images (slices) in 2D. Pairs of local reflective symmetric points 

are first selected from the available SIFT feature points [84], and they are further 

transformed into the linear Hough space to vote for a dominant symmetry axis, as shown 

in Fig. 3.2(a).  The orientation and scale invariance property of SIFT points enables the 
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successful detection of the symmetric pairs with rigid distortions. As a result, the global 

symmetry axis of brain under the conditions of head movement and variability of 

imaging environment, can be extracted without registration.  

 Computation of Symmetry Affinity Matrix: Once the global symmetry axis is 

detected, it is utilized to compute a symmetry affinity matrix. This matrix computes the 

relation between the original image and its symmetrically reflected image, and it plays 

an essential role to enforce the high-leval symmetry integration into low-level image 

segmentation. The value of each element in an affinity matrix represents a pixel’s 

symmetry level when compared to its symmetric counterpart reflected along the axis of 

symmetry. A pixel that is perfectly symmetric is valued 0 and the totally asymmetric pair 

of pixels is valued 1. Each pixel has a continuous symmetry affinity value between 0 and 

1, as shown in Fig. 3.2(b). Symmetry affinity is measured by using both the Curvature of 

Gradient Vector Flow (CGVF) [10, 14] and the gray scale difference. Let us denote the 

Gradient Vector Flow (GVF), V, of a pixel ( , )x yp p  as: 

[ ( , ), ( , )]x y x yV u p p v p p                                             (3.1) 

where u and v are two dimensional gradient vector flow values of a pixel. The value of V 

is computed by minimizing an energy function as stated in [90], and the resulting GVF 

matrix represents the image contour. Then, the CGVF is calculated as: 

2 2

3

1
( ) [( ) ]

| |
x y x yCurv V v u uv u v v u

V
                        (3.2) 

and
 

/xu u x  , /yu u y  , /xv v x  , /yv v y 
 
are the first derivatives of 
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pixel’s GVF values along the x and y directions, respectively. For a pixel ( , )
i ix yp p , its 

symmetry affinity by curvature is given by: 
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,

( , )
_ ( , )
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x yj j
i i

i i

j qx x y y j kj j q jj k

p m p m
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x y
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C curv p p min

Curv p p

 

   

 
 
 
 

 
          

(3.3)  

where ( , )
j jx yp p  is the symmetric counterpart of ( , )

i ix yp p  reflected by the axis. It is 

realized by searching in a local window of pixels with size 2m+1 centered at the pixel 

( , )
j jx yp p , and finding the minimum curvature distance as the symmetry affinity. The 

window size is set to 5*5 (m=2) in experiments. If these two points located at mirroring 

sides of an axis are within a symmetric field, the symmetry affinity of the pixel will be 

smaller. The final symmetry affinity value is defined by,  

( , ) _ ( , ) _ ( , )
i i i i i ix y x y x yC p p C curv p p C gray p p 

                      
(3.4) 

where the first term _ ( , )
i ix yC curv p p  on the right side is given by Equation (3.3) and 

the second term _ ( , )
i ix yC gray p p  is the gray scale difference between pixel ( , )

i ix yp p
 

and
 

its reflected symmetry pixel ( , )
j jx yp p . The final symmetry affinity value of 

equation (3.4) is normalized between 0 and 1 for all pixels in a symmetry affinity matrix. 

A sample symmetry affinity matrix of brain MRI is shown in Fig. 3.2(b), where brighter 

parts indicate asymmetric pixels, which include potential ROIs. The edge information in 

CGVF is more reliable than the gray scale value in computation of symmetry affinity. 
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3.3.2. 2D Segmentation and Extraction of Asymmetric Segments 

Image segmentation is performed and the segmented regions are used to extract 

asymmetric segments. The procedure (see step 2 in Fig. 3.1) consists of two parts: (a) 

symmetry integrated region growing image segmentation to obtain image segments, and 

(b) statistic-based extraction of asymmetric segments. 

 (1) (2) (3) 

Brain Image 

   

(a) Symmetry 

Integrated 

Region 

Growing 
   

(b) 

Asymmetric 

Segments 

   

Fig 3.3. Sample results of 2D/3D segmentation, for injured brains of (1) human, (2) 

animal, (3) human. In (b), pixels within the red boundaries are asymmetric segments. 
 

 Symmetry-integrated Region Growing for Image Segmentation: In this paper, a 

symmetry-integrated region growing segmentation [73] is used to segment brain into 

different tissues. Region growing aggregates neighboring pixels having similar 

characteristics to form uniform region segments iteratively. Let us denote ( , )i jp r  as 

the homogeneity aggregation criterion, where ip
 
is the pixel under consideration and 

jr  is the region to which ip  is to be grown into. The criterion for pixel ip  growing 

to region jr
 
is,  

( , )i j ap r                                                                    (3.5) 
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where a  is a predefined aggregation criterion threshold (see Section 3.4.1 for setting 

the value of this threshold). After the pixel aggregation, neighboring regions with 

homogeneity criterion less than a predefined region merging criterion threshold m , are 

merged into one region segment (see Section 3.4.1 for setting the value of this threshold). 

Traditional region growing for segmentation accepts image intensity as a homogeneity 

criterion for pixel aggregation, 

( , ) ( , ) || ( ) ( ) ||i j gray i j gray i gray jp r p r F p F r                          (3.6) 

which is the Euclidean distance of gray scale features between pixel 
ip  and its 

neighboring region jr . Since the brain is a highly symmetric structure, a symmetry 

constraint derived from the symmetry affinity of an image is integrated in the region 

growing process to assure that most symmetric parts are segmented appropriately. Our 

symmetry criterion is given by:
 

 

( (1 )(1 )) 1 | |
2( , )

2

i j i j
p r p r

symmetry i j

actan C C C C
p r






    
 

 
                  (3.7) 

where 
ipC  and 

jrC  in equation (3.7) are symmetry affinity values of pixel ip  and 

neighboring region jr
 
(mean value), respectively, obtained by Equation (3.4). In 

equation (3.7), the first term controls the symmetry level, which means that if both 

patterns ip
 
and jr  indicate low symmetry affinities (highly symmetric), they are more 

likely to be aggregated by decreasing the constraint ( , )symmetry i jp r . The second term 
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favors similar symmetry affinities. As a result, the symmetric pairs of tissues are 

segmented more properly guided by this criterion. In our work, this symmetry criterion is 

combined with gray scale intensity and texture to build an integrated criterion for region 

growing as given below, 

( , ) ( , ) [ ( , ) ( , )]i j symmetry i j gray i j texture i jp r p r p r p r                            (3.8) 

where ( , )symmetry i jp r  is given by Equation (3.7), and ( , )gray i jp r  uses the intensity 

difference of pixel ip  and the mean value of its neighboring region jr
 
as the 

gray-level criterion (see Equation (3.6)). Since gray scale feature is sensitive to the noise 

and variations of intensity among MRI slices, a texture feature ( , )texture i jp r  is also 

applied by using a set of Gabor filters. Frequency and orientation representations of 

Gabor filters are similar to those of the human visual system, and they have been found to 

be particularly appropriate for texture representation and discrimination [88].    

We call equation (3.8) as the symmetry integrated image segmentation. After the 

segmentation, regions with high symmetry level will be segmented more symmetrically. 

Example segmentation results are shown in Fig. 3.3(a). More segmentation results are 

given in Figs. 3.10 and 3.11.  

This approach segments proper boundaries of all regions (symmetric or asymmetric). 

Note that Gupta et al. [14] used a different symmetry integration (edge-weight) approach 

to enhance the symmetry level in a graph-cut image segmentation. This symmetry 

integration has very limited segmentation improvements, compared to our method [73]. 

The segmented regions obtained in this section are further processed to extract the 
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asymmetric segments in the following step. 

 Statistics-based Extraction of Asymmetric Segments: The region-growing 

algorithm with symmetry constraints for image segmentation separates different brain 

tissues by ensuring that naturally symmetric parts are segmented properly, i.e., symmetry 

is preserved. As the next step, the extraction of asymmetric segments, separates the 

segmented regions into symmetric and asymmetric segments. The purpose of 

asymmetric segment extraction is to cover all the ROIs while at the same time allow the 

number of other asymmetric regions belonging to the normal brain tissues to be as small 

as possible. The kurtosis and skewness measures of symmetry affinity matrix, 

corresponding to the regions, are used in the detection of asymmetric segments which 

may correspond to ROIs. For a region consisting of n pixels, its kurtosis and skewness 

are given by: 

Kurtosis: 
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Skewness: 
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                                    (3.10) 

where ix  is a sample of n values (for a segmented region) in a distribution, and its value 

is equal to symmetry affinity value of pixel ip . x  is the mean value of the samples in a 

distribution, and it is equal to the mean symmetry affinity value of a region.  

Kurtosis is a measure of the level of "peakiness" of the probability distribution 
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function of a random variable. A larger kurtosis means that the distribution indicates a 

higher and narrower peak, as shown in Fig. 3.4(a). Kurtosis is used to detect an 

abnormality based on the fact that it measures the deviation of an abnormal distribution 

from the normal background [76]. We compute kurtosis of symmetry affinity values of 

the regions obtained using the symmetry-integrated region growing to detect asymmetric 

segments. This is based on the observation that the asymmetric segments in the symmetry 

affinity matrix yield candidate ROIs, where symmetry affinity values of pixels are very 

high (brighter pixels in Fig. 3.2(b)) and smoothly distributed. For each segment the 

kurtosis of its symmetry affinity distribution is computed using Eq. (3.9), resulting in a 

single kurtosis value for each region.  Large kurtosis of a region means more deviation 

in its symmetry affinity distribution, which may lead to asymmetry. 

            

                     (a)                                  (b) 

Fig 3.4. (a) Kurtosis: pdf for the Pearson distribution with kurtosis of infinity; 100; and 

10; (b) Skewness: negative (left-tailed) and positive (right-tailed) distributions of 

skewness. 

 

   Skewness is another cue for the detection of asymmetric segments. The negative 

skewness of symmetry affinity value of a region means that its distribution is left-tailed to 

the mean value, and most of the values are far away than the mean value, as shown in the 
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top plot of Fig. 3.4(b). We consider the mean skewness value of every region as zero. In 

this situation, the more negative skewness means that the region’s symmetry affinity 

distribution favors more asymmetry, and more of the symmetry affinity values of the 

region are larger than zero. The asymmetric segment extraction is summarized as follows: 

(1) Discard symmetric regions whose mean symmetry affinity is quite low; note that a 

highly symmetric region will have a low symmetry affinity value.  

(2) For each of the remaining regions, compute its kurtosis minus skewness combination 

4 3g g g   from Eq. (3.9) and (3.10), and build a region histogram for the combination 

g of all the candidate regions.  For a segmented region in an image, if 4 3( ) ksg g   , 

where ks  is a predefined threshold, then this region is extracted as an asymmetric 

segment. 

Since a larger kurtosis 4g  and more a negative skewness 3g  both indicate a more 

asymmetric region, larger ( 4 3g g ) of a region indicates that its pixels are distributed 

with higher symmetry affinity values. The value of the threshold ks  is set in Section 

3.4.1. The extracted asymmetry segments are shown in Fig. 3.3 (b).  

3.3.3. 3D Relaxation-based Segmentation of Symmetry Affinity Matrix 

The segmentation of symmetry affinity matrix (obtained in section 3.3.1) is realized 

by extending a 2D relaxation method for image segmentation [74] to 3D. For this paper, 

the algorithm (see step 3 in Fig. 3.1) iteratively separates the histogram of symmetry 

affinity matrix into two groups of pixels, corresponding to symmetric ( 1 ) and 



67 
 

asymmetric ( 2 ) parts of a MR image. For an image composed of N pixels, which fall 

into two classes 1  
and 2 , this algorithm is realized by a criterion function that 

maximizes consistency and reduces ambiguity of pixels in an image, as shown below, 

1

1

( ,......, )
N

N i i

i

C prob prob prob q


                                      (3.11) 

where iprob  is the probability that the ith pixel belongs to class  and 2 , and the 

compatibility of ith pixel iq
 
with its neighbors is given by its mean neighborhood 

probability. The consistency C in Eq. (3.11) is measured by the inner product of iprob  

and iq , and the ambiguity is measured by entropy of iprob . The original symmetry 

affinity of each pixel valued between 0 and 1 is assigned as pixel probability iprob . iq

is obtained by the weighted sum of symmetry affinities of its 8-neighboring pixels from 

all slices at the same 2D location. This mean 3D neighborhood probability iq  is given 

by: 

1
( ) ( ),  1,  2

8 i
i k j j kj V

q w prob k
m

 


                                   (3.12)     

where m is the number of slice in the MRI sequence, and 8m is the total number of pixels 

in the 3D neighborhood iV
 
of the ith pixel. ( )j kprob   is equal to the symmetry 

affinity value of jth pixel in iV ,  where k  represents kth class. 1  is the asymmetry 

class, and 
2  is the symmetry class. These are the two classes in this paper. jw  is the 

weight of the jth pixel, where a lower weight is assigned to pixels that are farther in the 

1
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other MRI slices. The values of 
jw  satisfy the following two constraints: 1jw   and 

1 0.5j jw w  . The first constraint ensures the normalization of the probability jprob . 

The second constraint means that the weight of slice j 1, which is one slice farther from 

the current slice j under consideration, is half the value of slice j. The following iterative 

process [74] separates the distribution of symmetry affinity histogram into symmetric and 

asymmetric classes (groups), by updating the symmetry affinity iprob  of ith pixel: 

( 1) ( ) ( )( ) ( ) [ ( ) 1],  1,  2n n n

i k i k i i kprob prob q k       
                   

(3.13) 

where i  in iteration n is updated as: 
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where 1  
and 2  in Eq. (3.14) are the control parameters such that  1 2 1    

( 1 2 0.5    in this paper for all datasets). The initial value 
(0)

iprob  is equal to the 

symmetry affinity value of the pixel. Normally, two iterations are enough to group 

symmetric and asymmetric pixels in the histogram of a symmetry affinity matrix, where 

the mean value of the symmetry affinity matrix is used to partition its histogram. The 
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segmented symmetry affinity pixels are used to extract the asymmetric groups of pixels, 

which have higher mean symmetry affinity value than symmetric groups. The sample 

results are shown in Fig. 3.5. 

 

 (1) (2) (3) 

Brain Image 

   

Asymmetric 

Groups 

   

Fig 3.5. Sample results for the extraction of asymmetric groups by 3D relaxation 

segmentation, for injured brains of (1) human, (2) animal, (3) human. Pixels within the 

red boundaries are asymmetric groups. 

3.3.4. Asymmetric Region Extraction and ROI Detection 

In this section, both asymmetric segments (obtained in Section 3.3.2) and asymmetric 

groups (obtained in Section 3.3.3) are used to extract asymmetric regions. Finally, the 

asymmetric regions are classified into the desired regions-of-interest (ROIs). This 

procedure (see step 4 in Fig. 3.1) consists of two major components: (a) computing the 

intersection of asymmetric segments and groups, and (b) unsupervised ROI detection. 

 Computing the Intersection of Asymmetric Segments and Groups: The potential 

asymmetric regions are obtained by computing the intersection of the results from 

asymmetric segments (see Section 3.3.2) and asymmetric groups (see Section 3.3.3). The 

asymmetric segments which have over 50% (kept constant for all the results) overlap 

with asymmetric groups, are chosen as the final asymmetric regions. The overlap rate of 

50% is computed by the pre-assumption that the opportunity of overlap and non-overlap 



70 
 

between the two results are equal. This overlap process is able to further eliminate any 

noisy non-ROI regions and to refine the final asymmetric regions, while at the same time 

preserving all ROIs. Sample results in Fig. 3.6(a) show that all the asymmetric ROIs are 

obtained, while the number of other normal asymmetric regions is minimized. Since 

symmetry is used as a continuous feature, some normal brain segments that are lightly 

asymmetric can be filtered out. Other normal brain parts that are lightly asymmetric, can 

be merged into a larger symmetric brain parts by the image segmentation. 

 Unsupervised ROIs Detection: Asymmetric regions obtained above are the potential 

candidates for extracting the final ROIs. An unsupervised Expectation Maximization (EM) 

classifier with a Gaussian Mixture Model (GMM) [77] is used to classify candidate 

asymmetric regions (see Fig. 3.6(a)) into two classes: ROIs vs. non-ROIs. The final 

classification is performed by using a 2-D feature vector, composed of a potential region’s 

mean gray scale intensity in all the slices and its mean 3D volume. Since the ROIs are 

compact in specific 3D positions, they provide correlated 2D positions in 2D slices. The 

3D volume is obtained by binarization of the final asymmetric regions from all the slices 

(see Fig. 3.6(a)), where the pixels belonging to asymmetric regions are labeled as 1, and the 

pixel belonging to symmetric regions are marked as 0. The binary images of all the slices in 

an MRI sequence are added to obtain a 3D volume, as shown in Fig. 3.7, where brighter 

pixels indicate a larger volume value. It is clear that the MRI slices in the same sequence 

share the same volume. The value of volume indicates how frequently the asymmetric 

regions appear in slices at the same 2D position. In other words, if an ROI exists in 3D MRI, 

its volume added up from 2D slices in the same projected 2D location will have a high 
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volume. The mean value of 3D volume of each asymmetric region in Fig. 3.6(a) is 

computed and used as a region feature for classification, where the other feature is a 

region’s mean gray scale value across all the slices. The classification by EM+GMM [87] 

using these two features is unsupervised and fully automated. Generally there are multiple 

asymmetric regions among all the slices in a sequence. The classified group of asymmetric 

regions with larger mean 3D volume is identified as the ROI class (see Fig. 3.6(b) as an 

example). Since the gray scale value will misclassify normal regions into ROIs (if they 

have similar gray scale values), the use of asymmetry as 3D volume will discard these 

normal asymmetric regions, and it is more effective compared to 2D asymmetry 

information used before. Meanwhile, the combination of 2D slices and 3D information 

enables the detection of the high asymmetric fields, where the ROIs are most likely to be 

located in the same 2D position over all the slices. The following two post-processing steps 

are performed to obtain the final ROIs: (1) Small regions with areas below a threshold (20 

pixels in all the experiments) are removed as non ROIs; (2) Holes within ROIs are filled.   

As an example, the final classified ROIs are shown in Fig. 3.6(b). 
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Fig 3.6. Results for (1) human injury, (2) animal injury, (3) human injury. 
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Fig 3.7. The generation of 3D asymmetry volume of a MRI sequence. 

3.4. Experiments 

In this section, we present experiments on three MRI datasets and perform both 

quantitative and qualitative analysis to demonstrate the effectiveness of the proposed 

symmetry-based ROI detection method.  

3.4.1. Datasets and Parameters 

 Datasets: The proposed method was tested on two brain MRI datasets from humans 

and animals provided by Loma Linda University Medical Center. The databases used are:  

(a) The MRI brain sequences of human with injury. It is composed of two MRI 

sequences taken from two different patients with brain injuries as ROIs. The two patients 

in this dataset are labeled #A and #B, and the two sequences contain 10 and 9 MRI slices, 

respectively. Both sequences are MR images with ADC Map. The resolution is 192128 

for each image. 

(b) The MRI brain sequences of animal (rat) with injury. This dataset is composed of 6 

MRI sequences taken on 6 different dates (1 day pre, 1
st
 day, 7

th
 day, two weeks, three 
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weeks and four weeks), of the same rat brain with injury. The injury is injected manually. 

Each of the 6 sequences contains 16 MRI slices. A total of 96 MR images are used. The 

sequences taken on different dates clearly show the evolution of injury level with time. 

This paper provides the visual results of two sequences taken on the 1
st
 day and after one 

week, labeled as #C and #D, respectively. The data are T-2 weighted MR images. The 

resolution is 128192 for each image. 

For both datasets described in (a) and (b), the medical experts from Loma Linda 

University Medical Center provided the ground-truth ROIs for evaluation purposes. Note 

that we do not work with T2 and ADC images directly, but with the images converted 

into TIFF image format. Thus, our algorithms do not make use of specific T2 and ADC 

values for ROI detection. The masks for the brain part of images (surrounded by the 

black background) are extracted by the hierarchical region splitting (HRS) method [86]. 

 Parameters: The parameter space for the method is composed of three thresholds:  

(1) The pixel aggregation criterion threshold a  and the region merging criterion 

threshold m  for the region growing image segmentation (see Section 3.3.2). The value 

for pixel aggregation threshold a  is 42 10 _std image  where std_image is the 

standard deviation of an image, making it a global threshold. The region merging 

threshold 
m  (see Section 3.3.2) is 1.2 _std image . 

(2) The kurtosis/skewness threshold (
ks , see Section 3.3.2) for the extraction of 

asymmetric segments: (3.4 _ _ ) ( _ _ )ks std sym affin mean sym affin   , where 

std_sym_affin and mean_sym_affin are standard deviation and mean value of symmetry 
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affinity (see Equation (3.3)) of a MR image, respectively. The threshold is also 

determined by performing experiments and kept constant for all the datasets. 

 

Fig 3.8. The illustration of true positive (TP), false positive (FP) and false negative (FN), 

and the associated true positive rate (TPR) and precision (PRS). The ROI detected by the 

approach, described in this paper, is shown in bold and the ROI given as the ground-truth 

is shown as non-bold.  

 

3.4.2. Performance Metrics 

The experimental results are evaluated using both qualitative and quantitative 

metrics. The qualitative metric includes visual ROI detection results and their comparison 

to the ground-truth ROI. The three quantitative measures used in the experiments are: 

(1) The true positive rate (TPR) and (2) the precision (PRS). As indicated in Fig. 3.8, the 

TPR and PRS express the overlap between the ROI detected by the proposed method and 

the ground-truth ROI. Based on the ground-truth ROI, both TPR and PRS are true metrics 

when used to compare the performance among different methods. 

(2) The receiver operating characteristic (ROC), which is the plot of true positive rate 

(TPR) versus the false positive rate (FPR) of the detected ROIs, with respect to the 

ground-truth ROIs. Each MRI sequence in the experimental results has a ROC plot. It is 

composed of several points, each of which is a TPR-FPR point of ROI of the volumetric 

results (overall TPR and FPR of ROIs in MRI sequence), with different parameter 
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settings. In this paper, the threshold ks  (see Section 3.3.2) for asymmetric segments 

extraction criterion 4 3g g g   (from Equations (3.9) and (3.10)) is used. By tuning the 

threshold, different ROIs are obtained corresponding to various points on a ROC curve. 

3.4.3. The ROI detection results 

A challenging case appears when the ROIs do not exist in the MR slice (e.g., D2 in 

Fig. 3.11). In this case, no ROIs are detected by our approach, as expected, and the TPR 

and PRS are both 0 (see D2 in Table 3.8). 

3.4.4. Discussion of the results 

 Qualitative Analysis: Fig. 3.9 shows examples of the symmetry integrated 

segmentation and the final asymmetric regions and ROIs that are detected for the two 

datasets. More detailed example results by the proposed method for the two MR 

sequences are displayed in Figs. 3.10-3.11. As indicated from subplot (b) in Figs. 

3.10-3.11, the image segmentation process is able to segment different brain tissues, 

especially for the ROIs, whose boundaries are outlined properly. As a result, a 

successfully segmented potential ROI will help to improve the later ROI detection 

performance. As suggested in Figs. 3.10-3.11, from subplot (c) to (d), most of the 

symmetric regions are separated from the final asymmetric regions. The final asymmetric 

brain parts (Figs. 3.10-3.11 (d)) are almost equal to the final ROIs (Figs. 3.10-3.11 (e)). 

There are some small regions and several asymmetric regions on the symmetric reflected 

side of a ROI, e.g., subplot (c) of MRI slices C5, C7, C11, D5 and D9 in Figs. 3.10 and 

3.11, where the asymmetric regions include some non-ROI regions in the other 
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hemisphere of brain ROI. However, these asymmetric parts are eliminated by using the 

EM+GMM classifier (see comparison between asymmetric regions in (d) and the final 

ROI regions in (e) in Fig. 3.10-3.11), and it is evident that in most of the MRI slices, the 

asymmetric parts in subplot (d) are the same as the final ROI in subplot (e). This 

indicates the power of using symmetry in ROI detection.  

The final ROIs in Fig. 3.10-3.11 are close to the ground-truth ROI, except in several 

cases where the boundaries of the ROI do not correspond to the ground-truth. This is seen 

in slice C5 in Fig. 3.10, where the ROI boundary is not as continuous as that of the 

ground-truth. Also for the slice C8 in Fig. 3.10, the detected ROI has a small hole within 

its region. Although their boundaries are slightly in error with respect to the ground-truth 

ROI, the error rate is still acceptable. Note that the low true positive and precision rates 

occur when the area of ROIs are too small, e. g., as in slices C2 and C3 shown in Table 

3.7. In this case, the ROC plot uses slices from C4 to C12 as the source data. 

 Quantitative Analysis: The quantitative results of all the datasets are shown in 

Tables 3.5-3.8. The proposed method achieved satisfactory true positive rate and 

precision in all the datasets. In Table 3.6, the overall true positive rate is far below the 

precision, due to the fact that in dataset #B, the false positive (ROI pixels detected by the 

proposed method that are non-overlapping with the ground-truth ROI pixels) is larger 

than the false negative rate (ground-truth ROI pixels that are not detected by the proposed 

method). This is seen in slice B7 in Fig. 3.11. On the other hand, for the Dataset #D, the 

true positive rate is larger than the precision, as shown in Table 3.8. Tables 3.5-3.8 show 

that most of slices have high precisions and true positive rates. The overall precision of 
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the sequence is between 76%-91%, and the overall true positive rate is between 

82%-96%. Additionally, the ROC plots in Tables 3.5-3.8 show the performance. Table 3.9 

shows the ROI detection results on the second datasets on all time points (including 

sequences #C and #D), indicating the evolution of the severity of injury at times. The 

proposed method reaches satisfactory detection accuracy at all the time points. 

MRI# (a) Brain Part (b) Segmentation 
(c) Asymmetric 

Parts 

(d) 

ROI (This paper) 

(e) ROI 

(Ground-truth) 

B 

     

C 

     

Fig. 3.9. Example results of the proposed method in different steps. 

Table 3.5. Quantitative Analysis of MRI Dataset #A. 

MRI# 
Area of 

Brain 

Area of 

ROI 
% ROI 

True Positive 

Rate 
Precision 

A1 4421 0 0 0 0 

A2 5583 72 1.29% 80.56% 87.88% 

A3 6707 190 2.83% 70.53% 92.41% 

A4 7839 488 6.23% 98.16% 85.23% 

A5 8667 700 8.08% 96.71% 94.29% 

A6 9472 611 6.45% 91.65% 95.73% 

A7 10166 546 5.37% 91.58% 92.25% 

A8 10013 466 4.65% 90.34% 85.92% 

A9 9089 341 3.75% 73.02% 94.68% 

A10 8153 65 0.80% 98.46% 68.82% 

Overall 80110 3845 4.34% 90.31% 90.70% 

ROC Plot for Volumetric Analysis 
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Table 3.6. Quantitative Analysis of MRI Dataset #B 

MRI# Area of Brain 
Area of 

ROI 
% ROI 

True Positive 

Rate 
Precision 

B1 11957 53 0.44% 94.34% 67.57% 

B2 10750 675 6.28% 94.96% 79.93% 

B3 11258 2805 24.92% 88.84% 96.81% 

B4 10952 3193 29.15% 87.63% 91.83% 

B5 12057 2682 22.24% 84.11% 81.33% 

B6 11638 2756 23.68% 85.85% 96.10% 

B7 9767 2191 22.43% 76.22% 95.59% 

B8 11402 2685 23.55% 77.99% 97.30% 

B9 7832 201 2.57% 84.08% 55.05% 

Overall 97613 17241 17.66% 84.31% 91.20% 

ROC Plot for Volumetric Analysis 
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Fig 3.10. ROI of MRI dataset #C: a patient on the first day. 
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Table 3.7. Quantitative Analysis of MRI Dataset #C 

MRI# Area of Brain Area of ROI % ROI True Positive Rate Precision 

C1 823 12 1.46% 0 60.00% 

C2 831 17 2.05% 11.76% 7.41% 

C3 938 78 8.32% 6.41% 12.82% 

C4 1159 54 4.66% 77.78% 67.74% 

C5 1495 339 22.68% 85.25% 82.10% 

C6 1735 434 25.01% 84.33% 83.18% 

C7 1684 509 30.23% 92.73% 91.65% 

C8 1848 611 33.06% 83.47% 94.44% 

C9 1766 566 32.05% 93.11% 89.78% 

C10 1828 393 21.50% 81.68% 62.45% 

C11 1380 518 37.54% 84.75% 89.96% 

C12 243 32 13.17% 62.50% 62.50% 

C13 824 160 19.42% 64.38% 81.10% 

C14 690 122 17.68% 40.16% 71.01% 

C15 411 0 0 0 0 

C16 243 0 0 0 0 

Overall 17898 3845 21.48% 82.11% 82.43% 

ROC Plot for Volumetric Analysis 
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Fig 3.11. ROI of MRI dataset #D: a patient on the 7
th

 day. 
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Table 3.8. Quantitative Analysis of MRI Dataset #D. 

MRI# 
Area of 

Brain 

Area of 

ROI 
% ROI 

True Positive 

Rate 
Precision 

D1 881 0 0 0 0 

D2 993 0 0 0 0 

D3 952 33 3.47% 30.30% 83.33% 

D4 1053 75 7.12% 33.33% 96.15% 

D5 1515 240 15.84% 82.08% 86.03% 

D6 1582 397 25.09% 97.23% 92.79% 

D7 1838 509 27.69% 91.94% 86.35% 

D8 1629 279 17.13% 93.19% 80.25% 

D9 1819 420 23.09% 87.14% 88.83% 

D10 1666 428 25.69% 96.50% 87.69% 

D11 1416 238 16.81% 93.28% 73.03% 

D12 1152 91 7.90% 100% 48.15% 

D13 833 0 0 0 0 

D14 459 6 1.31% 0 0 

D15 0 0 0 0 0 

D16 0 0 0 0 0 

Overall 17788 2716 15.27% 89.76% 83.35% 

ROC Plot for Volumetric Analysis 

 

Table 3.9. Quantitative Analysis of Animal Sequences for all the Time Points. 

Time Points Area of Brain 
Area of 

ROI 
% ROI 

True 

Positive 

Rate 

Precisio

n 

1 day pre 19997 5409 27.05% 80.58% 84.01% 

1 day 17898 3845 21.48% 82.11% 82.43% 

7 day 17788 2716 15.27% 89.76% 83.35% 

2 weeks 20658 3035 14.69% 90.05% 88.90% 

3 weeks 19928 3656 18.35% 88.01% 93.93% 

4 weeks 20434 4300 21.04% 85.37% 97.54% 

 

 

 

 

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.09 0.19 0.29 0.39 0.49

False positive rate 

Tr
u

e 
p

o
si

ti
ve

 r
at

e
 



81 
 

 

 

Original 

Image 

ROI - 

Hierarchical 

[85] 

ROI - 

Watershed 

[80] 

ROI - KNN 

[81] 

ROI - Region 

Growing [82] 

ROI – this 

paper 

ROI – 

ground-truth 

A5 

       

C7 

  
 

    

Fig 3.12. Comparison of ROI detection results. 

 Effect of the blurred boundary: Slices in almost all datasets have the problems of 

very blurred ROI boundaries. Due to the use of gradient vector flow in image 

segmentation, many of the ROI detection results successfully detected, e. g., the slices 

A5, B2, C6-C9 and D5 shown in Figs. 3.10-3.11.  

 Effect of the global parameters: Note that all the MR slices are run under global 

parameters (see Section 3.4.1). The global parameter has the advantages of high 

generality, low data dependent and it is automatic, but it may suffers from low detection 

accuracy, like slices C10, C12, C14, D3 and D4 as shown in Tables 3.7 and 3.8, or like 

slices of A3 and A9 in Table 3.5 where the true positive rate is much lower than the 

precision. However, most of the MR slices reach high accuracies under global 

parameters. On the other hand, the number of slices with low accuracies is small enough 

so that they do not largely affect the accuracy of the entire MR sequence, and most of 

them belong to the slices at the beginning or the end of the sequences, in which both the 

brain and injury areas are very small. 
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 Effect of variation of gray-scale distribution within ROI:  In some of the slices, 

the gray-scale distribution within ROI is not unique, which makes the ROI detection 

more challenging. In our method, the use of gradient vector flow and the symmetry cues 

(besides the gray-scale feature), copes with the multiple distributions effectively. Refer to 

MR slices of C7-C9 and D9-D10 in Figs. 3.10 and 3.11 as examples. 

3.4.5. Comparison with other Methods 

The proposed method is compared with four other ROI detection methods [86, 

81-83] on the same datasets, introduced as follows, 

 Comparison with the hierarchical region splitting (HRS) method [86]: It is an 

automated ROI detection method which segments the MRI image hierarchically. The 

hierarchy was implemented using the Otsu’s algorithm [78, 80]. Table 3.9 and 3.10 show 

that the proposed method outperforms the method of [86] by a large amount due to the 

following two reasons. Firstly, the global segmentation by Otsu’s algorithm is not that 

effective since it uses the gray level histogram only, and no additional features like 

symmetry or texture are considered. ROIs are always segmented into two clusters in this 

situation. Secondly, after each segmentation iteration, small regions are removed, and 

many small ROI regions are also mistakenly eliminated without using symmetry and 

even gray scale to discriminate them. 

 Comparison with the Watershed segmentation method [81]: The limitation of this 

ROI detection method comes from the over-segmentation and unsmoothed region 

boundary produced by watershed segmentation. The final ROI detection generates large 

number of false positive errors. The user needs to select the ROI manually from the 



83 
 

segmented regions, that is not automatic. 

 Comparison with the K-nearest neighbor (KNN) method [82]: It uses the K-Nearest 

Neighbor (KNN) (K=9) classification and probabilistic segmentation to detect ROIs. 

Although a robust KNN model can be trained by prior tissue knowledge, this method is 

not automated and it is time consuming, and its performance is lower than our method. 

 Comparison with the region growing method [83]: It outlines ROIs using 

region-growing segmentation, which is the same segmentation method that has been used 

in the proposed approach, but without the incorporation of symmetry. Its performance is 

lower than the proposed method due to the fact that it does not use enough region features 

to segment ROIs. Additionally, the user needs to know the location of ROIs in advance 

and assign a seed within the ROI for region-growing.  This makes the method extremely 

user-dependent and not automatic. 

 Discussion of the comparison: The quantitative results in Table 3.10 shows the 

advantages of using the proposed method, which outperforms all the other methods in 

terms of the true positive rate and the precision. The compared methods are also 

summarized and analyzed in Table 3.2.  

Fig. 3.12 shows example ROI detection results by different detection methods. It is 

clear that the results of the proposed method are closest to the ground-truth ROI 

boundaries. Additionally, Table 3.11 performs the comparison on the second datasets on 

all the time points. Note that although other methods accept prior knowledge for ROI 

detection, their accuracies are not as high as the proposed method. The reason lies on the 

limitation of prior knowledge, which cannot cover all the distinct properties of ROI 
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regions, and it is also highly data dependent. Fig. 3.13 shows the comparison of %ROI 

(ratio of detected ROI area with the entire brain) by the different methods. The ratio is 

measured by the number of pixels. It is clear that the proposed method is closest to the 

ground-truth %ROI, in all time points. On the other side, the other methods have much 

higher variations from the ground-truth %ROI. 

Table 3.10. Comparison With Other Methods 

True positive rate 

Dataset# #A #B #C #D 

This paper 90.31% 84.31% 82.11% 84.31% 

Hierarchical [86] 72.85% 81.38% 61.00% 58.53% 

Watershed [81]  82.38% 77.54%    68.45% 63.47% 

KNN [82]  76.70% 81.27% 73.59% 79.01% 

Region Growing [28]  87.20% 81.36% 78.47% 80.12% 

Precision 

Dataset# #A #B #C #D 

This paper 90.70% 91.20% 82.43% 91.20% 

Hierarchical [86] 83.54% 88.76% 57.30% 55.97% 

Watershed [81]  76.32% 71.65% 43.40% 63.88% 

KNN [82]  77.24% 78.03% 75.11% 80.35% 

Region Growing [28]  83.60% 76.19% 78.81% 84.10% 

Table 3.11. Comparison of Animal Sequences for all the Time Points. 

  1 day pre 1 day 7 days 2 weeks 3 weeks 4 weeks 

True 

Positive 

Rate 

This Paper 80.58% 82.11% 84.31% 90.05% 88.01% 86.37% 

Hierarchical [86] 70.62% 68.17% 82.90% 69.34% 84.40% 55.56% 

Watershed [81] 66.72% 68.45% 63.47% 74.08% 72.35% 77.64% 

KNN [82] 74.18% 73.59% 79.01% 82.11% 69.07% 81.30% 

Region Growing [28] 80.22% 78.47% 80.12% 87.96% 81.55% 80.20% 

Precision 

This Paper 84.01% 82.43% 91.20% 88.90% 93.93% 97.54% 

Hierarchical [86] 64.00% 79.17% 88.64% 81.90% 83.14% 73.06% 

Watershed [81] 58.90% 43.40% 63.88% 84.17% 88.34% 86.14% 

KNN [82] 77.32% 75.11% 80.35% 81.77% 65.45% 72.90% 

Region Growing [28] 81.60% 78.81% 84.10% 74.79% 63.00% 71.08% 
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Fig 3.13. Comparison of ROI detection results: %ROI in volumetric measures. 

3.5. Conclusions 

This paper provides an automated symmetry-based ROI detection method for brain 

MR images. A symmetry-integrated image segmentation is used to ensure that the 

symmetry property of tissues is preserved in the segmentation results. Kurtosis and 

skewness are used on a symmetry affinity matrix to extract potential asymmetric 

segments. Asymmetry grouping using a 3D Relaxation algorithm is combined with 

kurtosis and skewness results to further refine the asymmetric regions. It allows the 

effective usage of 3D information contained in 2D slices of MRI sequences. Brain ROIs 

are finally extracted from asymmetric regions using an unsupervised classifier based on 

the Gaussian mixture model. Additionally, 3D asymmetry volume from 2D slices is 

proposed as a new feature for classification. Both qualitative and quantitative results on 
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three MRI datasets show that the computed ROIs closely approximate the ground-truth. 

By numerical comparison, the proposed method outperforms other existing ROI detection 

approaches [81-83, 86]. 
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Chapter 4 

 

Image Retrieval with Feature Selection and 

Relevance Feedback 

 

4.1. Introduction 

Content-based image retrieval (CBIR) [95] has been a significant topic of research 

in the last decade. In the CBIR context, an image is represented by a set of low-level 

visual features, which are generally not effective and efficient in representing the image 

contents, and they also have no direct correlation with high-level semantic information. 
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The gap between high-level information and low-level features is the fundamental 

difficulty that hinders the improvement of the image retrieval accuracy. Recently, a 

variety of solutions have been suggested that aim to bridge this semantic gap. Two of the 

most commonly used methods are online feature selection and user relevance feedback.  

    The feature selection [96] basically narrows the semantic gap by selecting the 

feature subset that best represents the query and discards redundant features. Image 

retrieval uses the selected feature subset to search the database such that the retrieved 

images are closer (resemble) to a given query.  

    The relevance feedback [97] narrows the semantic gap by making use of user 

provided judgments which are the labels (relevant or non-relevant) on the retrieved 

images for a query. The retrieval performance improves as the user provides more and 

more feedback information to the CBIR system. Query vector modification (QVM) [98] 

and feature relevance learning [99] are the two widely used methods to integrate user 

feedback information into the CBIR system.  

    Currently, the feature selection and relevance feedback are rarely used together to 

further narrow the semantic gap. The work in [102] applies feature selection as a form of 

feature weighting into the query vector modification (QVM) method for relevance 

feedback. However, it ignores the important classification or mutual information 

evaluation for feature selection. As a result, the work in [102] does not fully capture the 

key characteristics required for feature selection. In this paper, a measure of inconsistency 

from relevance feedback is integrated into feature selection, and combined with the 

Bayesian classifier to improve CBIR performance.  
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    The feature selection procedure is composed of two steps: searching the 

combination of feature subsets within a feature space using specified search strategy, and 

evaluating the performance of the selected subset by a criterion. Existing evaluation 

criteria are classification performance, mutual information and entropy. In this paper, a 

new term called the measure of inconsistency from relevance feedback, is combined with 

the Bayesian classifier to build the overall criterion for feature selection. The combined 

criterion is able to select the optimal feature subset which leads to improve the image 

retrieval accuracy and better satisfies the user semantic requirements.  

    This paper makes the following contributions: 

(1) A new term called the measure of inconsistency, from relevance feedback, is 

combined into feature selection as a new criterion to further improve the image retrieval. 

(2) The semantic gap is further narrowed by combining the online feature selection and 

the user relevance feedback. 

    The outline of the chapter is as follows. Section 4.2 describes the technical approach 

of the new CBIR system in detail. Section 4.3 provides experimental results and analysis. 

Finally, conclusions are given in Section 4.4. 

4.2. Technical Approach 

The proposed CBIR system that integrates both online feature selection and the user 

relevance feedback is shown in Fig. 4.1. For a given query, the original features (color, 

texture and shape) are extracted from the query image, and the K-nearest neighbor 

(K-NN) algorithm with Euclidean metric searches the image database, and retrieves N 

top ranked images having features most closed to the query. The session with this query 
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is terminated when the user is satisfied with the retrievals, otherwise, the user provides 

relevance feedback by labeling the retrievals as relevant (positive feedback) and 

non-relevant (negative feedback). A measure of inconsistency is computed based on the 

user feedback and it is given as the input to the feature selection to select the feature 

subsets which will guide the K-NN search to obtain higher retrieval accuracy in the next 

CBIR iteration. 

Feature 

Selection
K-NN Search

Image and 

Feature DB

Query

Retrieval

Relevance 

Feedback

Yes

Final Retrieval

No

Measure of 

Inconsistency

Feature 

subset

 Satisfy with 

results?

 
Fig. 4.1. The overall CBIR system diagram. 

 

 

4.2.1. Measure of Inconsistency from Relevance Feedback 

For each CBIR iteration, let 1{ ,...., }Nx x  denotes the N retrieved images. The 

property ( )if x of the retrieved image ix is expressed by its visual feature vector and its 

relevance feedback label: 1( ) { ( ),..., ( ), }i i M i if x f x f x l , where {1,..., }i N  denotes the 

ith retrieved image, and M is the dimension of feature, either be full dimension or 

dimension of the selected subset. The {0,1}il   represents the feedback label of the 

retrieved image i, it can be either 1 for positive feedback or 0 for negative feedback. The 
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retrieved images   are grouped into two clusters, as relevant (positive) and 

non-relevant (negative), according to user’s feedback labels. The mean feature value is 

then computed for each of the two clusters, as given below. 

Mean positive feature vector: 1

1
( 1)

1
{ ( ),..., ( )}

P

k

N

P k M k

kP
l

Mf f x f x
N 



                 (4.1) 

Mean negative feature vector: 1

1
( 0)

1
{ ( ),..., ( )}

N

k

N

N k M k

kN
l

Mf f x f x
N 



              (4.2) 

where 
PN  and NN  is the number of positive and negative feedback images, 

respectively, satisfying P NN N N  . The measure of inconsistency RF  is computed 

by the two mean vectors as shown below, 

2 2

2 2

( ) / 2
|| || || ||

P N
RF

P P

Mf Mf
arccos

Mf Mf
 





                          (4.3) 

which is the angle between the mean positive and negative feature vectors, and it is 

normalized into {0,1}. P NMf Mf  is the dot product of the mean relevance and 

non-relevance vectors, and 
2

2|| ||  is 2
nd

 order norm operator. The larger the measure of 

inconsistency the better it is since we need the two mean positive and negative feature 

vectors to be as separated as possible. The inconsistency measure is further used as an 

evaluation criterion to guide the feature selection. 

4.2.2. Feature Selection Combined with User Feedback 

The feature selection block in Fig 4.1 starts with the original image features and 
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outputs the optimal feature subset. The realization of the feature selection block is 

indicated in Fig 4.2. The block (1) in Fig 4.2 refers to the feature space search strategy, 

namely the sequential forward selection [100], in which (a) features are sequentially 

selected from original features to build the feature subset, and (b) the feature dimension 

that is selected to the subset is uniquely decided by the feature performance evaluation 

criterion. The evaluation criterion, called the wrapper evaluation, is the most important 

element in feature selection system. In this paper, the new evaluation criterion is the 

combination of Bayesian classifier and the measure of inconsistency. The feature 

dimension having the highest classification results and measure of inconsistency, is 

selected and added into the current subset to build the new subset [101]. The wrapper 

evaluation criterion in this paper is shown below,   

wrapper Bayesian RFC C                                                (4.4) 

where BayesianC  is the classification result of the Bayesian classifier, and 
RF  is measure 

of inconsistency introduced in Section 4.2.1. The weights are set to 0.5   . 

Traditionally wrapper BayesianC C . The equation (4.4) is the improvement of the tradition 

wrapper evaluation criterion by integrating the user feedback evaluation RF . As a result, 

the best feature subset will be selected by criterion in equation (4.4), and the selected 

subset will have both highest classification and feedback inconsistency. Since user 

feedback is integrated into feature selection, user will provide a higher percentage of 

positive feedback in the next feedback iteration, based on images that are retrieved using 

the best feature subset selected by equation (4.4). Measure of inconsistency of a 
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candidate feature subset, with dimension M, is computed by equation (4.1)-(4.3). It is 

worth to note that the positive and negative feedback images are accumulated from all 

iterations to compute the measure of inconsistency.       

     The Bayesian classifier is extensively used in the wrapper evaluation criterion. The 

classifier estimates the label of an image by processing its feature vector, using the  

maximum a posteriori (MAP) probabilistic approach. From the comparison of the 

Bayesian classification results with the actual image class labels, an estimate of the 

correct classification rate (CCR) [101] is obtained as the feature subset evaluation 

BayesianC . After the search of block (1) in Fig 4.2, all feature dimensions are ranked 

according to the results of the evaluation criterion of equation (4.4). The feature ranking 

as well as the related performance evaluation are put into block (2) in Fig 4.2 to select the 

subset with the highest evaluation, as the final selected subset. 

     As shown in Fig 4.1, the feature selection provides more effective feature subset, 

which is input into the K-NN search for the next retrieval iteration. With the improved 

feature subset selected by the measure of inconsistency, the K-NN search ranks the 

images in a database that better represents the user feedback with higher accuracy. 

 

(1) Sequential floating 

forward search for 

candidate feature subsets 

(2) Select the best 

subset of feature
Original 

features

Feature 

subsets
Wrapper 

evaluationMeasure of 

Inconsistency
 

  

Fig 4.2. The feature selection diagram with user feedback. 
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4.3. Experiments 

4.3.1. Datasets 
 

In experiments, we run the CBIR system on two image databases, the first of which 

is the butterfly image database (http://janzen.sas.upenn.edu/) containing 29 highly similar 

classes with a total of 7600 images. The example images are shown in Fig 4.3(a). The 

second database has 210 natural images collected from Google Images, with 5 classes 

related to semantic concepts as snowy mountains, trees, falls, bridges and sand beaches 

that are quite similar, and example images are shown in Fig 4.3(b). As in Fig 4.3, the two 

databases are labeled DB#1 and DB#2, respectively. 

We use features covering wide range of image properties. Totally 27 feature 

dimensions are extracted from the entire image, composed of following 4 sets of feature 

properties: (1) mean and standard deviation of the RGB components of color space, 

totally 6 dimensions. (2) The HSV components of color space, with the same distribution 

as RGB, so it also has 6 dimensions. (3) 8-dimension texture feature derived from the 

mean and standard deviation of the filtered image by Gabor filters at 4 orientations in 

steps of 45 degrees. (4) The 7-dimension shape feature derived from first 7 central 

geometric moments of the image. Totally 27 dimensions of features are extracted to build 

the image and feature database as shown in Fig 4.1. And they are also used as the original 

feature sets for feature subset selection. In the experiments, totally 20 images are 

retrieved at each iteration. 

 



95 
 

4.3.2. CBIR Combined with Feature Selection and Relevance Feedback 

Fig 4.3 (a) and (b) provides example images. The two image databases indicate large 

overlapped properties which hinder the retrieval accuracy. For instance, in Fig 4.3(a), the 

images in class #13 and #25 are visually similar. In Fig 4.3(b), objects of ‘snowy 

mountain’ and ‘falls’ share the similar dominant properties. Both class #9 in Fig 4.3(a) 

and ‘bridge’ in Fig 4.3(b) show intra-class variations. The two databases are challenging 

cases that have overlapped properties among different classes, as well as high variations 

within class. By using our method, feature selection will search feature subset that best 

discriminate among classes and discard overlapped feature properties.   

 Comparison of feedback precisions: The feedback precision is defined as the 

percentage of positive feedback in each feedback iteration. In Fig 4.3(c) and (d), the 

proposed method is compared to the query vector modification (QVM) scheme, in terms 

of feedback precision. QVM [98, 102] is one of the most widely used relevance feedback 

techniques. It modifies the query feature so that it will move closer to the relevant feature 

points and move away from non-relevant points. The final precision at each feedback 

iteration is computed by averaging precisions from different query sessions. Our method 

outperforms QVM in every feedback iteration as in Fig 4.3(c) and (d). Precisions after the 

7
th

 iteration are stabilized (almost unchanged).  

 Comparison of retrieval precisions: The retrieval precision is defined as the 

percentage of the true retrieval in final retrieval results. For systems including the 

relevance feedback, this precision is the final (optimal) retrieval precision after the last 

feedback iteration. In Table 4.1, the proposed method is compared to three different 
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methods in terms of the retrieval precision. In order to ensure the comparability, all 

methods use K-NN search for retrieval and use the same feature data introduced in 

section 4.3.1. Additionally, for all the methods, the same queries are tested with the same 

number of repetitions, and the average precision is computed. RF_ONLY method (QVM) 

in Table 4.1 is the same method used in Fig 4.3(c) and (d).  

(

(a) 
D 
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2
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      (c) Feedback precisions of image database#1 

     

 
      No. of relevance feedback iterations 

           

(d) Feedback precisions of image database#2 

      

              No. of relevance feedback iterations                                           

Fig 4.3. Example images in databases, and performance comparison of the proposed 

method. 

In Table 4.1, the RF_ONLY method applies QVM at each feedback iteration, but 

uses the original features without feature selection. The FS_ONLY method uses the 

feature selection [101], which is the same selection scheme as used in our system, to 

select the best feature subset and input this subset into K-NN search for the retrieval, but 

no relevance feedback is performed. The RT_ONLY method only runs the K-NN search 
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for the retrieval by original feature data, without feature selection and relevance feedback. 

It is obvious that our method reaches higher precision, than those using only one of the 

relevance feedback and feature selection schemes. 

Table 4.1. Comparison of retrieval precisions. 

 DB#1 DB#2 
Feature 

Selection 

Relevance 

Feedback 

RF_FS: 

This paper 
80.7% 71.2% SEY SEY 

RF_ONLY:  

QVM [8] 
78.6% 69.0% × SEY 

FS_ONLY:  

[7] 
76.1% 68.3% SEY × 

RT_ONLY:  

traditional 

retrieval 

74.9% 66.5% × × 

     

4.4. Conclusions 

In this paper, we presented a new approach that combines relevance feedback and 

feature selection to improve the performance of a CBIR system. The approach uses a new 

criterion called the measure of inconsistency to guide the feature selection, in order to 

improve the image retrieval by integrating the user relevance feedback information. We 

performed experiments on different sizes of image databases to indicate the benefits of 

the proposed method. We showed the improvements in both feedback and retrieval 

precisions over the other current methods. 
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Chapter 5 

 

Local Kernel Integrated Feature Selection for 

Image Classification 

 

5.1. Introduction 

Image classification [103-105] is commonly used for many practical applications 

such as object recognition [103], medical imaging [104] and image retrieval [105]. In 

image classification, an image is represented by a set of low-level global visual features, 

e.g. color, texture and shape, and the discriminative ability among the classes largely 

depends on the image features used. Two challenging problems commonly exist for 

image classification approaches. 
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Problem (1): There exists a significant redundancy among a large number of low-level 

features which prohibits the achievement of ideal classification.  

Problem (2): The global features are inadequate to represent the important and 

discriminative local object information present in an image. 

    The objective of feature selection is to address the problem (1) by identifying the 

feature subset that is most predictive, and it is critical to minimize the feature redundancy 

and the classification error. Feature selection has been explored in many image 

processing, computer vision and pattern recognition tasks [106-109]. A survey of 

state-of-the-art feature selection methods is provided in [110].  

    The essence of problem (2) in image classification is usually characterized by the 

loss of important local image contents like regions and objects. Most objects of interest in 

an image cannot be effectively presented by using only the global image feature from the 

entire image, since they are either a small part of many objects in an image, or they are 

overlapped or distorted. Most of the current work extracts global features from the entire 

image. The popular solutions of problem (2) are to make use of the local image contents 

by partitioning an image into regions, and classifying these image regions instead of 

classifying an entire image [111], or computing the region-based image distance 

[112-113]. The local features help to improve the classification by means of highlighting 

important local objects (regions) and eliminating the effect of noisy background or 

unimportant regions.  

     In this paper, the local feature selection is realized by a novel approach, that 

integrates a local kernel into the Bayesian classifier, to guide the feature selection. The 
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proposed method contains the advantages of both feature selection and local features, and 

at the same time achieves improvement in classification accuracy. Furthermore, a 

multiple kernel learning is used to select an optimal classifier for the image classification.  

    The outline of this chapter is as follows. Section 5.2 gives an overview of related 

work and provides the contributions of this chapter. Section 5.3 describes the technical 

approach in detail. Section 5.4 provides experimental results and discussions. Finally, 

conclusions are given in Section 5.5. 

5.2. Related Work and Contributions 

5.2.1. Related Work 

The aim of feature selection is to solve the problem (1) by decreasing the 

information redundancy in the raw feature data and improving the feature discrimination 

capability. The feature selection is usually described as a search problem in the feature 

space as follows [110]:   

(1) Feature space search, requires a general strategy with which the feature space is 

explored. It is in relation to the portion of feature space that is explored with respect to 

their total size of the feature space.  It also includes the mechanism by which possible 

feature subsets are proposed. For a feature space of dimension n, there are a total 

1

1

!
!

n

m

n
m





  of combinations of feature subsets, with different dimensions and contents.  An 

efficient feature space search aims to search for optimal feature subsets in a minimized 

search space. The most commonly used search strategies are namely the exhaustive 

search, the sequential forward search (SFS) and the sequential forward floating search 



101 
 

algorithm (SFFS) [101]. Among the above, the SFFS search strategy, which is used in 

this paper, has been verified to provide the selected subset closer to the global optimal, 

with a much smaller search space. 

(2) Evaluation measure is a function by which the candidate searched feature subsets are 

evaluated, allowing to compare different candidates, guiding the search process and 

selecting the optimal feature subset. Current evaluation functions accepted are classifiers, 

e.g. the Bayesian classifier [101] and SVM [108], which select an optimal feature subset 

which has the highest classification accuracy based on the dataset used. Other criterion 

functions include mutual information [107], etc. Since the objective of the proposed 

method is the classification of image, this paper uses the classifiers for evaluation 

function, within which the Bayesian classifier is chosen, for the reason of its requirement 

of small amount of training data and the independence assumption among the classes.  

     The other approach for improving classification is the use of local features, instead 

of global features from the entire image. The local feature methods are commonly 

divided into two categories: point-based features, of which the most frequently used is the 

SIFT operator [30], and the region-based features [111-113], which are normally 

extracted from the segmented regions. The point-based features can be made scale and 

rotation invariant, and they are helpful in object matching and tracking, and the 

region-based features, which are used in this paper, are more suitable for image 

classification since they contain color, shape, texture and other properties of objects. 

Within the region-based approaches, the work of [111] basically classify segmented 

regions and for each image it builds a region histogram, based on which the images in a 
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database are categorized. However, more effective applications of local feature are 

focused on region-based image distance metric [112-113], within which the earth mover 

distance (EMD) [112] and the integrated region matching (IRM) [113] are commonly 

used. The overall similarity distance between images incorporates properties of all the 

regions in images by a region matching scheme.   

     The combination of feature selection and local feature information, called the local 

feature selection, has not been thoroughly investigated. Current work [116-118] are listed 

in Table 5.1. In this paper, local feature selection is realized by a novel way of integration, 

in which a local kernel is integrated into the Beyesian classifier. 

5.2.2. Contributions 

     The paper makes the following contributions: 

1) It provides a new way to combine the feature selection and local feature information, 

by integrating local kernel into the distance metric of a Bayesian classifier, to guide the 

local feature selection. Thus, both problem (1) and (2) (see in Section 5.1) are solved. 

2) A multiple kernel learning scheme is used to select the optimal inducer from multiple 

Bayesian classifiers. 

3) Detailed experiments with three segmentation and three feature selection approaches 

show the improvement of image classification achieved by the proposed approach. 

5.3. Technical Approach 

In the system diagram of our approach as shown in Fig. 5.1, the region features are 

extracted from the segmented regions, and they are further used to compute the region- 

based image similarity distance. This distance is used as a local kernel to be integrated 
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into the Bayesian classifier to guide the feature selection and image classification. A local 

kernel learning is used to select the optimal classifier. The system outputs the optimal 

image classification result, generated by its selected feature subset. The proposed local 

kernel metric obtains higher classification accuracy compared to other methods. 

Images

Classification 

Results

Local Feature Selection

Feature Space 

Search

    Evaluation Measure 

-  Local Kernel for Feature  

    Selection (Eq. (5))

-   Multiple Kernel Learning 

    for Classifier Selection (Eq. (8))

Segmentation 

and Feature 

Extraction 

Region 

Features

Focus

Selected 

Feature Subsets

 
Fig 5.1. The overall system diagram for this paper.   

 

Table 5.1. Summary of the related local feature selection methods. 

Papers Summary Pros Cons 

Mohamad 

et al. [116] 

Feature selection to 

detect local face regions 

in images. 

Robust to face 

distortions and 

background regions. 

Only facial features are used (low 

generality); gray scale images only; 

cannot detect the face boundary (only a 

bounding box). 

Sun et al. 

[117] 

Feature selection using 

the combined feature 

axis for region-based 

retrieval. 

More relevant retrievals 

are achieved using 

feature selection based 

on local image regions. 

Only consider relevant and irrelevant 

images, does not obtain multiple classes; 

the dimension of features is lower; only 

uses color features. 

Jiang et al. 

[118] 

Image feature 

representation by local 

regions for retrieval. 

More efficient image 

representation than the 

global feature. 

Cannot represent objects with 

distortions and noisy backgrounds; low 

dimension of features. 

This paper 
Image classification by 

local kernel. 

Efficient similarity 

metric; high generality; 

plenty features. 

The computational efficiency can be 

further improved. 

5.3.1. Image Segmentation and Feature Extraction 

 Image Segmentation: As the first step of local feature representation, the images are 

segmented into regions. A good segmentation method may be able to provide regions 

close to the semantic objects in an image, and it is crucial for the classification 

performance. This paper uses 3 different segmentation approaches for the proposed 

method, and compares their performance in experiments.  The first method used is the 
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region growing algorithm [34], a region-based image segmentation which examines the 

neighboring pixels of the ‘seed point’ and determines if the pixel should be added to the 

seed point by region homogeneity criteria. As more pixels agglomerated into the seed, a 

homogenous segmented region is generated. The second method used is the watershed 

segmentation [36], a segmentation method using the watershed transform to obtain the 

watershed lines of the image. Then the pixels draining from the line to a common 

minimum form a watershed basin, which represents a segment. The above two are both 

region-based segmentation approaches. The third one is called the normalized cut [39], a 

contour-based segmentation approach, realized by forming the region by minimizing the 

weights of edges. The above three methods are run for providing local regions for the 

proposed method, and their performances are shown in Fig. 5.3 and Table 5.2. 

 Region Feature Extraction: We use features covering a wide range of image region 

properties. Totally 219 feature dimensions are extracted from segmented regions. The 

feature is composed of following properties. 

1) The RGB components of color space, with local region’s mean and standard deviation 

for each component, so it has a total of 6 dimensions. 

2) The HSV components of color space, with the same kinds of features as RGB, so it 

also has 6 dimensions. 

3)  The 8-dimension texture feature derived from the mean and standard deviation of the 

filtered image/region by Gabor filters at 4 orientations in steps of 45 degrees. 

4)  The 7-dimension shape feature derived from the first 7 central geometric moments of 

the image/region. 



105 
 

5)  The 192 dimensional quantized color histogram for RGB components, with 64 

dimensions for each component. 

A 219 dimensional feature vector is assigned to each region as the raw feature data.  

5.3.2. Local Feature Selection 

   The local feature selection block in Fig. 5.1 selects the best feature subset, whose 

corresponding classification result is the output as the image classification accuracy. The 

realization of the feature selection block is composed of feature space search strategy, and 

the evaluation measure. 

 The Feature Space Search: This paper uses the sequential forward floating search 

(SFFS) [101] as the search strategy. SFFS is an iterative process starting with an empty 

feature subset ( 'X  ). At each iteration, one feature is chosen among the remaining 

m-dimensional feature space { }, 1,...,iX x i m 
 
and it is added into the subset. To 

determine which feature to add, it tests the performance of every addition of feature from 

the remaining features, by an evaluation measure eva(  ), and select the one obtaining the 

highest performance for the new subset. The above process, called the forward search, is 

shown as follows [9]. 

' ' { | max( ( ' )), 1,..., }i i

i

X X x X eva X x i m

X X x

    

 
                            (5.1) 

A feature is incrementally added to the subset by the above process. At each iteration, a 

backward search is also performed by deleting a feature, after which the remaining subset 

reaches the highest improvement of performance evaluation, compared to the subset 

before deletion. The backward search is realized by the process below. 
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' ' { | max( ( ' ) ( ')), 1,... }i i

i

X X x X eva X x eva X i m
X X x

     
 

                     (5.2) 

In each iteration, equations (5.1) and (5.2) are run sequentially. Normally, the process 

terminates when no additional features could result in an improvement in accuracy or the 

feature subset already reaches a predefined size. 

 Integrating Local Kernel with Bayesian Classifier: The evaluation measure of 

feature subset can be different criteria, as introduced in Section 5.2.1. This paper uses the 

Bayesian classifier as the evaluation. The Bayesian classifier estimates the class label of a 

feature vector (extracted from region features in this paper) by finding the highest 

probability among the trained Gaussian model of each class. From the comparison of the 

Bayesian classification results with the actual image class labels, an estimate of the 

correct classification rate (CCR) is obtained as the feature subset evaluation. This 

procedure is repeated several times to get the repeated mean s-fold cross- validation 

correct classification rate (MCCR) [101], which is output as the final evaluation measure. 

The parameter s in s-fold means that the dataset is divided into s equal sets, and the 

Bayesian classifier uses 1 set as the testing data and the remaining s-1 sets as the training 

data. The classification is repeated s times for each of s subsets as the testing data, and the 

average CCR constitutes the MCCR. In each iteration, one feature is added to the subset 

by which the new subset has the highest MCCR. Value of s is set to 10 in this paper.  

    In this paper, a local kernel is integrated into the Bayesian classifier as the 

evaluation measure, to enforce the local features to guide the feature selection procedure. 

The local kernel is realized by the integrated region matching (IRM) [113], a 

region-based similarity measure between two images, attempting to overcome the 
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deficiencies of global image distance by representing images at the object level. Assume 

that images I 1  and I 2  are represented by two region sets 1 1 2I { , ,....., }mr r r  and 

' ' '

2 1 2I { , ,....., }nr r r . The IRM distance between two images is the summation of all the 

weighted region distance, 

 

1 2 , ,

,

( , )IRM i j i j

i j

dist I I s d                                               (5.3) 

where ,i jd  is the distance between regions ir  and 
'

jr  of two images, which is the 

Euclidean distance used in this paper, and ,i js  is the distance weights between them. 

The larger weights indicate the importance of the two regions in measuring the similarity. 

Mathematically, the distance weights are proportional to both the region importance 

values ip  and 
'

jp , for which a larger region has a higher region importance value. The 

equations are, 

,

1

'

,

1

      , 1,....,

      , 1,....,

n

i j i

j
m

i j j

i

s p i m

s p j n





 

 




                                               (5.4) 

The above equations mean that the sum of the distance weights of a region is equal to its 

importance value, and the distance of a region can be measured to multiple regions of the 

other image. As a result, important regions contribute significantly in computing the 

distance. Examples of important regions with their values (p) are shown in Fig. 5.3.  

     The region-based distance metric is integrated into the Bayesian classifier as a local 

kernel, to guide the feature selection. In this aspect, the distance metric (see Equation 
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(5.3)) is integrated into the Gaussian kernel of the Bayesian classifier, by using the 

following equation,  

1

/2 1/2

1 1
( ) exp _ ( , ) _ ( , )

(2 ) | | 2

T

IRM IRMk
f x V dist x V dist x 



 
      

  
            (5.5) 

where the IRM distance is used instead of the global image distance in Gaussian kernel. 

The term _ ( , )IRMV dis x   is an IRM distance vector for k dimensional feature space, 

1 1_ ( , ) { ( , ),....., ( , )}IRM IRM IRM k kV dist x dist x dist x                     (5.6) 

where ,i ix  , i=1,…..,k, are components of k-dimensional region vectors of testing 

image x and the cluster  of the trained Gaussian model, respectively. The IRM distance 

is computed for each feature dimension of the data, and for a specific dimension i, the 

distance ( , )IRM i idist x   is computed by Equation (5.3). The testing image x is 

composed of segmented region feature vectors to compute IRM distance.  

      Now the remaining problem is how to assign region vectors to the training cluster 

 ?  In this paper, as shown Fig. 5.2, only the regions (black dots) within the ellipsoid, 

centered at the mean feature point of the training cluster, are picked as the regions for   

to compute the IRM distance. This method makes the IRM distance computationally fast 

and efficient. The effective radius R of the ellipsoid is computed by the distribution of the 

training region clusters. Let us assume that the regions in a cluster of the training data (as 

in Fig. 5.2) follow a Gaussian distribution and we take   as a significance level. For the 

given significance level, 100(1-  )% of the regions in the cluster will fall inside the 

ellipsoid and follow a 2 ( )   distribution with p degrees of freedom. The radius of the 
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ellipsoid of a training cluster can be calculated as [17], 

,

1
( _ ) ( )p n p

n
R cluster i F

n p
 


  


                                     (5.7) 

where   is the region filtering parameter, set to 0.2 in this paper, and p is the dimension 

of the feature data, and F is the feature space. However, all the region features in the 

training clusters are used to compute the k by k covariance matrix . Integration of the 

region-based distance into the Gaussian kernel of the Bayesian classifier, allows the 

combination of feature selection and local feature to improve the image classification. 

The final image classification result is the local kernel integrated Bayesian classification 

accuracy obtained by the optimal selected feature subset. 

 
 
 
              
 
 
 

 

 

Fig. 5.2 Sampling of regions for each cluster, dot points: training sample of regions. 

 

5.3.3. Multiple Kernel Learning for Classifier Selection 

A multiple kernel learning is performed to learn the parameters of multiple Bayesian 

classifiers, each of which is individually trained in Section 5.3.2. For a testing image x, 

we employed a so-called kernel function y(x) (see Equation (5.8)), which intuitively 

selects an optimal classifier for a specific testing data.  

1,....,

( )  [ ( ( ) )]c c c c
c C

y x argmax f x a b


                                      (5.8) 
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where C is the number of candidate Bayesian classifiers, and c , ca  and cb  are 

parameters with specific values learned for each classifier. The parameters satisfy the 

constraints, 

        ,         ,                

( )cf x  is the individual probability computed by the Bayesian classifier as shown in 

Equation (5.5). The weighted linear function of the posterior probability enables to put 

different weights on classifiers with different performance during the training session. 

The kernel function aims to select an optimal weighted linear posterior probability from 

one of the multiple classifiers. The three parameters are learned during training session, 

using the multi-objective optimization by NSGA-II [31] with the three constraints. In this 

respect, totally 3C parameters are learned with C multi-objectives. 

5.4.  Experiments 

In experiments, we show the performance of our approach (local kernel integrated 

feature selection) with various image segmentation and feature selection approaches 

applied into diagram of Fig. 5.1. The three segmentation approaches used are:  

(1) region growing [34],  (2) watershed [36], (3) normalized cut [39]. And the three 

feature selection methods used are: 

(1) sequential forward floating search (SFFS) evaluated by s-fold cross-validation 

Bayesian classifier [101],  

(2) feature selection evaluated by max-dependency, max-relevance and min-redundancy 

(mRMR) [107], 

1

1
C

c

c





1

1
C

c

c

a



1

1
C

c

c

b



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(3) feature selection evaluated by entropy [114].  

5.4.1. Datasets 

    The proposed method is applied to the following two image databases,  

(1) Caltech-101 database [42]: It is composed of images of objects belonging to 101 

categories, for 40 to 800 images per category. The size of each image is roughly 300 by 

200 pixels. We use all the images from the database for the categories shown in Fig 5.3.  

(2) Butterfly database (http://janzen.sas.upenn.edu/): It contains 30 classes with a total of 

7600 images of butterflies. Some of images are shown in Fig. 5.3.  

Database Butterfly Caltech-101 

Class  1 3 14 faces cougar_face dalmatian 

(a) 

Original Image 

      

(b) 

Region 

Growing 
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p values 0.03 
 

0.01 

 
0.03 0.01 0.03 0.01  

0.01 
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(c) 
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[36] 
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(d) 

Normalized 
Cut 

[39] 
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entation 
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with high 

p values 
 

0.035 
 

0.02 
 

0.03 
 

0.03 
 

0.02 
 

0.01 
 

0.01 

 
0.001 

 
0.042 

 
0.047 

 
0.069 

 
0.02 

 

Fig 5.3. Segmentations and important regions (with P values) for the two databases, (a) 

sample images with class names, (b) region growing segmentation, (c) watershed 

segmentation, (d) normalized cut segmentation. 
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5.4.2. Algorithms Compared and Parameters 

   The parameters are related to three segmentation methods used, as shown below, 

(1) Region growing: thresholds for pixel aggregation and region merging [34], set to 0.03 

and 35, respectively. 

(2) Watershed [36]: threshold for region merging, set to 35. 

(3) Normalized cut [39]: number of segments, set to 24.  

Note that the above parameters are fixed for all images, and they are obtained by 

performing experiments.  Another group of parameters are learned in Section 5.3.3. 

5.4.3. Results of the Proposed Approach 

    We integrate local kernel in Bayesian classifier to three segmentation and three 

feature selection approaches. Results for three segmentation approaches and their 

significant regions for local kernel integration are shown in Fig. 5.3. The quantitative 

results for the different segmentation and feature selection methods with local kernel 

integration, are shown in Table 5.2. Fig. 5.3 shows segmentation results and aome regions 

that are important, i.e., they contribute significantly in computing the region-based image 

distance for local kernel. Important regions include the human and dog faces (in 

Caltech-101 database) that are the most discriminative regions to classify the categories 

of ‘dalmatian’ from others. Large coherent patterns on the wings of the butterfly database 

are also obtained as significant regions. The final image classification results in Table 5.2 

are obtained at the peak accuracy from the feature selection procedure. 
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(a) 

 
(b) 

  
(c) 

Fig. 5.4. Local kernel method compared with local feature selection method, for 

Caltech-101 database, with feature selection methods, (a) SFFS-Bayesian, (b) mRMR, (c) 

entropy. 

 

5.4.4. Local Kernel for Feature Selection: Compare with Local Feature 

Selection 

     In this section, the proposed method using local kernel for feature selection, is 

compared to another local feature selection method [118] (introduced in Table 5.1). The 

method of [118] uses region-based image representation (global image feature 

represented by accumulation of weighted local region features, where the weights are 

obtained by the area of the regions) for feature selection. The region-based image 

representation in [118] is integrated into the ‘evaluation measure’ block in Fig. 5.1, 

instead of the local kernel, to run the feature selection. Fig. 5.4 shows the comparison 
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between the two methods in different feature selection iterations. The two approaches are 

run under three feature selection systems. For example, in Fig. 5.4 (a), our method by 

local kernel (peak accuracy of 86.5% at 8
th

 feature), outperforms that of [118] (peak 

accuracy of 84.4% at 10
th

 feature). The local kernel method has the higher performance 

under all the three feature selection systems. 

5.4.5. Local Kernel for Feature Selection: Compare with Global Feature 

Selection 

   The benefits of the proposed method against the other three global feature selection 

methods are shown in Fig. 5.5 for the two datasets, where the classification results are 

displayed for incremental feature selection iterations. The three global feature selection 

methods compared are: 

(1) SFFS-Bayesian [101]: It is the most recently published feature selection method using 

the sequential forward floating search (SFFS) evaluated by Bayesian classifier. 

(2) mRMR [107]: It is an improvement of the current mutual information evaluated 

feature selection methods, by using the max-dependency, max-relevance and 

min-redundancy as the combinatorial evaluation criteria.  

(3) Entropy [34]: Feature selection using entropy as the evaluation measure. 

All of the above methods use global features for classification. Note that the proposed 

method uses region growing as the segmentation scheme, and integrates the local kernel 

into feature selection by SFFS-Bayesian [101]. Fig. 5.5 only shows the first 14 iterations 

from total 219, since the classification accuracies of all four methods start to decrease 

after 14 iterations. The peak accuracy is regarded as the final image classification results, 

with corresponding optimal feature subset. It can be seen in Fig. 5.5 that our method 
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outperforms other global feature selection methods in most feature selection iterations, 

and reaches the highest peak classification accuracy. For example in Fig. 5.5(a), our 

method reaches the peak accuracy of 86.5% in the 8
th

 dimension of selected subset, 

whereas the global SFFS-Bayesian only obtains 84.7% accuracy on 11
th

 dimension, a 

larger subset compared to our method. The same cross validation Bayesian classifier is 

used in all the four methods to obtain the classification results. 

 
                                               (a) 

 
(b) 

Fig 5.5. Comparison of classification results with feature selection iterations, (a) 

Caltech-101 database, (b) Butterfly database. 

Note that the only difference between our method and the global SFFS-Bayesian 

method comes from the fact that our method uses the local feature, instead of the global 

feature used by SFFS-Bayesian. As a result, the classification improvement by our 

method only comes from the use of local feature. The reason of the classification 

improvement of our method comes from the region-based distance metric for local kernel, 

by which the important regions (see Fig. 5.3) have more distance weights and p values, 
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thus, contributing more to image distance measure. The important regions always 

represent distinct objects, which are useful to discriminate different image classes. For 

example, as the human face region shown in the ‘faces’ category in Fig. 5.3, it is assigned 

with larger weights and p values (0.009 at region growing) in image distance measure. 

 

(a) 

 

 (b) 

Fig 5.6. Statistics of selected features for the results shown in Table 5.2, for (a) 

Caltech-101 database, (b) Butterfly database. 

5.4.6. Results of the Proposed Method with Various Segmentation and 

Feature Selection Methods 

     Table 5.2 shows a more detailed comparison of the final image classification results, 

among all combinations of the related methods, with the corresponding dimension and 

contents of selected feature subset. All the methods using local kernel use the Bayesian 

classifier for classification, but with different segmentation and feature selection 

procedures. The methods using local kernel, outperform those of the same feature 
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selection methods using global features. The region growing and watershed 

segmentations provide the highest performance, and both largely outperform the 

normalized cut segmentation. Note that the most selected features with top classification 

performance, are from the color features (first 12 features), like the 3rd feature (the blue 

component of region color) selected first by most of the methods in Caltech-101 database. 

Fig. 5.6 shows a statistical result for the selected features in Table 5.2. 

Table 5.2. Comparison of the final classification results, with corresponding feature 

subset dimensions and contents. 

Approaches Caltech-101 

Feature 

form 

Feature 

selection 
Segmentation 

Classification 

results 

Selected feature 

dimension 
Contents of feature subset 

Local  

feature 

with 

multiple 

kernels 

SFFS- 

Bayesian 

 

Region growing 86.7% 8 3, 1, 6, 2, 176, 122, 19, 33 

Watershed 86.4% 8 3, 12, 1, 17, 9, 2, 86, 144 

Normalized cut 84.9% 8 1, 26, 3, 8, 45, 209, 132, 2 

mRMR 

Region growing 73.6% 8 3, 1, 4, 36, 18, 2, 69, 5 

Watershed 73.1% 9 1, 83, 19, 5, 3, 161, 40, 25, 6 

Normalized cut 72.2% 7 3, 1, 4, 36, 18, 2, 9 

Entropy 

Region growing 70.9% 11 94, 3, 8, 103, 4, 1, 9, 2, 16, 5, 26 

Watershed 71.3% 11 3, 1, 6, 9, 2, 35, 55, 10, 184, 4, 17  

Normalized cut 70.3% 11 3, 17, 10, 43, 87, 4, 8, 1, 56, 7, 6 

Global 

feature 

with 

multiple 

kernels 

SFFS- 

Bayesian 
NA 85.4% 11 3, 7, 6, 2, 58, 143, 161, 74, 28, 13, 203 

mRMR NA 72.5% 9 3, 19, 1, 4, 8, 11, 9, 127, 24 

Entropy NA 70.3% 11 3, 211, 4, 16, 21, 9, 7, 6, 156, 78, 5 

                 

Approaches Butterfly 

Feature 

form 

Feature 

selection 
Segmentation 

Classification 

results 

Selected feature 

dimension 
Contents of feature subset 

Local  

feature 

with 

multiple 

kernels 

SFFS- 

Bayesian 

 

Region growing 89.5% 8 2, 1, 7, 192, 3, 16, 14, 5 

Watershed 89.5% 8 2, 1, 7, 192, 3, 16, 14, 5 

Normalized cut 89.6% 10 6, 2, 3, 1, 4, 39, 20, 128, 11, 57 

mRMR 

Region growing 88.5% 11 19, 2, 5, 13, 10, 27, 4, 208, 3, 6, 37 

Watershed 60.4% 8 4, 8, 5, 3, 14, 18, 9, 1 

Normalized cut 58.6% 9 5, 4, 2, 17, 6, 9, 1, 74, 21 

Entropy 

Region growing 58.8% 9 6, 5, 74, 35, 7, 1, 2, 84, 9 

Watershed 55.2% 8 5, 7, 43, 13, 9, 2, 26, 4  

Normalized cut 54.6% 8 2, 7, 6, 9, 24, 1, 71, 213  

Global 

feature 

with 

multiple 

kernels 

SFFS- 

Bayesian 
NA 54.8% 6 9, 7, 1, 3, 2, 5 

mRMR NA 88.4% 12 5, 9, 3, 21, 27, 13, 54, 1, 4, 127, 2 

Entropy NA 58.0% 8 5, 8, 1, 3, 22, 34, 6, 4 
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5.4.7. Statistical Validation of the Results 

The proposed method is evaluated with a 10-fold statistical validation on the two 

image databases. The results are shown in Table 5.2. For the proposed method, the mean 

accuracy of the classification results are 86.7% and 89.5%, respectively, with the standard 

deviation of 2.30% and 1.84%. All the other methods in Table 5.2 have standard deviation 

of 2.37%~5.90%, whose range is higher beyond those of the proposed method, except in 

only one case whose standard deviation is 2.02%, but its classification accuracy is only 

71.3% (see the Local feature with Entropy and Watershed, on Catech-101 in Table 5.2). 

5.4.8. Discussion of the Results 

Based on the above experimental analysis, the proposed method makes the 

following contributions: 

(1) The proposed method has higher classification accuracy than any of the other methods 

(see Table 5.2), 

(2) The proposed method obtains lower standard deviation in statistical validation than 

any other methods, except in only one case (see Section 5.4.7), 

The proposed method achieves the performance with the lowest number of feature 

subsets, except for only one case in each of the two dataset (see Table 5.2). But these two 

exceptional cases have much lower classification accuracy. 

5.5. Conclusions 

    In this chapter, we presented a new approach for the local feature selection with 

multiple kernel learning. The proposed approach combines feature selection and local 
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feature information by integration of region-based image similarity metric into the 

Gaussian kernel of a Bayesian classifier, to guide the feature selection for an improved 

classification. We performed experiments on different standard image databases to 

indicate the benefits of the proposed method. We showed the improvement in image 

classification performance over the latest methods. Our future work will focus on 

integrating the proposed approach with image retrieval. 
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Chapter 6 

 

Incremental Ensemble Learning for Classification 

 

6.1. Introduction 

Recently, with the rapid development of cheaper and better sensors, the volume of 

digital images has dramatically increased, and it is expected to grow exponentially. As a 

consequence, automated image classification has become one of the topics of significant 

interest in computer vision and pattern recognition. In this respect, the development of 

image classifier has been intensely researched [119-122]. Most of the current work pays 

significant attention to classifier learning, classification combination, image data mining, 

and image feature extraction, etc., all of which aim to develop a robust learning system to 

improve the image classification accuracy.  
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The performance of image classification is commonly hindered by the problems 

associated with feature redundancy, curse of dimensionality, insufficient training data, 

and high misclassification variance. All of these items belong to the long standing pattern 

recognition and data mining problems. The ensemble classification [123-126, 132, 142] is 

a feasible solution of the problems related to the design of a classifier. It has been shown 

to be very successful in creating more accurate classification results from a set of 

classifiers. Ensemble from multiple classifiers, referred individually as base classifiers, 

can offer complementary information about the data to be classified, and improve the 

effectiveness of the overall classification system. An ensemble classifier often has a better 

performance than any of the single learned classifiers in the ensemble. In the literature, 

the improvement by using ensemble mainly comes from the voting methods such as 

bagging and boosting [123], realized by selecting the majority of class labels from the 

classifiers in an ensemble. This leads to eliminate the effect of noisy misclassifications 

and decrease the classification variance of a single classifier. Furthermore, negative effect 

of insufficient training data is alleviated by an ensemble of multiple training sets. 

 The feature selection [96, 101, 133, 143] is the technique of selecting a subset of 

features which leads to a more effective classification than using the entire set of features. 

Guided by an evaluation criterion like the minimum classification error or the minimum 

mutual information, the reduced dimension subset has a better classification performance 

than the original entire feature set. The feature selection also solves the problems of curse 

of dimensionality and feature redundancy.  

 Thus, ensemble classification and feature selection are two robust tools to alleviate 
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the problems associated with classification performance. The combination of ensemble 

classification and feature selection [124-125, 126] has been a new research area. It is 

expected to obtain a higher performance. In this paper, multiple feature selection schemes 

train different classification models, which are ensembled to obtain improved 

classification accuracy. 

  The combination of ensemble classification and feature selection solves problems 

associated with image classification. However, an important aspect is often ignored by 

most of the previous work, where more attention is paid on building an efficient and 

robust classification model rather than handling the image data itself in an intelligent 

manner. The reason is that the performance of a classifier not only depends on the learned 

classification model, but also it is highly data dependent. As a result, the assignment and 

handling of image data, especially the training data, should be put on a high priority in 

the learning of an image classifier. In this paper, a discriminative assignment of the 

training data helps to train more effective classifiers. It is realized by putting the newly 

added training data into the nearest cluster of the training dataset. A parallel feature 

selection scheme is used to derive parallel feature subsets. These features are feedback in 

a closed loop to incrementally assign the training data. Finally, the optimal feature 

subsets, along with the incrementally assigned training data, are used to learn multiple 

classifiers to perform the ensemble classification.  

    The outline of the paper is as follows. Section 6.2 gives an overview of related 

work and provides the contributions of this paper. Section 6.3 describes the technical 

approach in detail. Section 6.4 provides the experimental results, discussions and 
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comparisons. Finally, conclusions are given in Section 6.5. 

6.2. Related Work and Contributions 

6.2.1. Related Work 

   Ensemble of learned models or classifiers [123-125, 132, 142] has been one of the 

main directions in machine learning and data mining. Ensemble allows us to achieve a 

higher final classification accuracy by means of combining classification labels from 

different single classifiers to obtain a final classification decision. Two essential questions 

exist in an ensemble approach:  

(1) How to generate the base classifiers of an ensemble?  

(2) How to integrate individual classifications of the base classifiers into one final 

classification decision? 

 With regard to question (1), this paper accepts the Bayesian classifier as the base 

classifier of an ensemble. The Bayesian classifier [125] is recognized as the optimal 

nonlinear probabilistic classifier with stable classification performance property, and the 

misclassification variance among single Bayesian classifiers is much lower than SVM 

[129] and EM [130] classifiers. The performance of a single Bayesian classifier can be 

improved by bias reduction ensemble techniques like bagging and boosting. Not that the 

feature selection performance in this paper is improved by taking advantage of the 

Bayesian performance for an optimal and robust feature subset evaluation criterion.  

   With regard to question (2), the bagging and boosting [123] are two of the most 

effective integration techniques for ensemble, by means of voting for a final decision 

from the majority of classification labels from ensemble classifiers. In this paper, an 
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advanced boosting technique called Arc-x4 [123], which is an improvement of Adaboost 

[123] algorithm, is used as the ensemble technique. 

   The combination of ensemble classification and feature selection, called the 

ensemble feature selection [124-126], is a relatively new area. Santana et al. [124] 

provide a comparative analysis of feature selection with different ensemble methods. In 

this paper, an ensemble of multiple Bayesian classifiers is used, and feature selection is 

integrated to select optimal feature sub-dimension set to learn each classifier models. 

    As stated previously, the performance of a classifier is highly data dependent. Very 

limited work has been done for designing the distribution of training data. Masud et al. 

[127] train a classifier on limited labeled training data. Cervantes [128] compute reduced 

training data to learn a support vector machine (SVM) classifier. How to learn a classifier 

under condition of limited or reduced training data, dominates this research area. In this 

paper, the multiple classifiers in the ensemble are able to use different training datasets 

that are incrementally distributed by the proposed approach. Thus, both existing and 

newly added training data are distributed incrementally to build multiple training sets 

used to learn the ensemble classifiers. 

     The incremental learning based on methods resulting in learned models that 

improves performance over time or iterative loops, have attracted attention in pattern 

recognition and machine learning [139-140]. Basically, the incremental scheme is based 

on an iteratively improved learning model, e.g., the classifier or the recognition machine, 

derived by the improvement from later steps of the system. In this paper, a new 

incremental learning scheme is realized by the following two steps, 
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(1) The multiple sets of training data are discriminatively assigned for a more effective 

training session, and they are used for the parallel feature selection in (2); 

(2) The feature subsets obtained from the parallel feature selection, are feedback to the 

training data assignment in (1), to incrementally assign a more compact training data.  

The above loop incrementally and iteratively learn a more discriminate training dataset, 

along with more effective feature subsets, both of which are used to obtain an improved 

classification accuracy. 

6.2.2. Contributions 

     In the proposed method, the ensemble feature selection is performed using the 

incrementally distributed training data, to build a robust learning system of image 

classifiers. As a result, the paper makes the following contributions: 

(1) A new method called the incremental ensemble feature selection is proposed, which 

performs ensemble classification learned on the incrementally distributed training data; 

(2) Both existing and newly added training data can be discriminatively assigned to the 

current training sets, and this characteristic improves the performance of the classifiers; 

(3) The multiple training sets are incrementally assigned, in an iterative loop, by the 

feature sets from the parallel feature selection. 

(4) The proposed method outperforms other feature selection and ensemble learning 

methods, when run on publically available datasets. Also the hypothesis test indicates the 

statistical significance of the method. 

6.3. Technical Approach 

      The overall system diagram of the proposed method is shown in Fig. 6.1. The 
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image database, composed of multiple image classes, is divided into the training and 

testing data. Then the training data are discriminatively assigned to build multiple 

training subsets which are further used in parallel feature selection to train multiple 

classifiers. During the training, each of the classifiers is also trained by one of the parallel 

feature selection schemes, and different feature subsets are selected for different 

classifiers. The feature subsets are feedback into the assignment of training sets, to 

incrementally assign more effective training data. After the training session, multiple 

classifiers are trained with different feature subsets. During the testing, the testing image 

data are classified by different classifiers, trained by incrementally assigned training sets, 

using multiple optimal feature subsets selected from the parallel feature selection scheme. 

The final classification result is derived from the ensemble of the classification decisions 

from multiple classifiers. In the following we describe the details of the approach. 
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Fig 6.1. The overall system diagram. 
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Table 6.1. Symbols and their meaning used in this section. 

Symbols Meanings 

Tr The entire training set. 

Tri, Tr_i Distributed training set for individual classifier. 

x Individual training data. 

  Individual testing data. 

y Class labels. 

I  Individual classification inducer. 

C Classification model trained by inducer. 

( )yC  Center of the ith training set. 

( , )Dist  Euclidean distance of two data. 

eva Feature subsets evaluation results for feature 

selection. 

acc Feature subsets accuracy. 

div Classification diversity 

N Number of multiple training sets/classifiers. 

 

6.3.1. Image Feature Extraction 

     Before the learning of a classifier, a feature vector is extracted from each image. 

We use features covering a wide range of image properties. In total, 219 features are 

extracted from an image to build an image feature database. The feature data is composed 

of the following properties. 

1) The RGB components of color space, with image’s mean and standard deviation for 

each component, so it has a total of six dimensions. 

2) The HSV components of color space, with the same kinds of features as RGB, so it 

also has six dimensions. 

3)  The 8-dimensional texture features from the mean and standard deviation of the 

filtered image by Gabor filters at 4 orientations ( 0 ,45 ,90 ,135o o o o ) in steps of 45 degrees. 

4) The seven-dimensional shape feature derived from the first 7 central geometric 

moments of an image (Y component of an RGB image). 

5)  The 192 dimensional quantized color histogram for RGB components, with 64 
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dimensions for each component. 

     After the feature extraction, a 219 dimensional feature vector is assigned to each 

image as the original raw feature data. It is used for the parallel feature selection to select 

different feature subsets to build multiple classifier models.  

6.3.2. Discriminative Assignment of Training Data 

  In order to realize the ensemble of classifiers, the entire training data is divided into 

multiple sets to learn different classification models. Traditionally, the training data is 

divided equally and randomly into multiple subsets, but this method in inefficient 

ignoring the inner distribution of training data. In this paper, a discriminative assignment 

of training data is obtained to build multiple training sets with more effective distribution.  

Firstly the entire training data is divided (half by half) into two initial sets Tr1 and 

Tr2. For the first initial set Tr1, it is further divided into N subsets {Tr1_1,…,Tr1_N} to 

provide the training subsets to learn N multiple classifiers. Then for each data Tr2_d in 

the other training set Tr2, we first obtain the class label of Tr2_d as y. Subsequently, we 

find the subset Tr1_s, whose cluster center of class y is closest to the data Tr2_d. The data 

Tr2_d is added to the subset Tr1_s. Each data in Tr2 is iteratively added into one of the 

subsets of Tr1 using this incremental method. The key idea of this method is that the 

training data can be incrementally added into the subset with minimum distance to the 

cluster center, so the cluster distribution of training data is more compact. Note that the 

newly added training data can be regarded as new data of Tr2_d, and it can be added by 

the above method to the subset with the closest cluster distance. The above method also 

enforces a more effective training of the classification model. After the incremental 
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distribution, the N training data sets are input into parallel feature selection to learn N 

classifiers, as shown in Fig. 6.1. The pseudo code of the algorithm is given in Fig. 6.2. 

 

Input: Entire training set Tr,  integer N  (number of multiple training subsets) 

1.             ;                         (divide entire training data into two  initial sets, 

half by half, randomly) 

 

2.                  ;  (divide training set Tr1 into N multiple subsets, as initial training  sets to 

learn multiple classifiers) 

 

7. For: each of the data Tr2_d in Tr2{ 

8.        L(Tr2_d)=y;             (y: class label of data Tr2_d) 

9.       
{ 1 , . . . }

1 _ a r g m i n ( 2 _ , ( 1 _ ) ) )y
i N

Tr s Dist Tr d C Tr i


 ; 

       (find the subset Tr1_s, whose cluster center of class y, is closest to the data Tr2_d) 

10.         1_ 1_ 2_Tr s Tr s r d   ;  (add data Tr2_d  into subset Tr1_s) 

11.          Remove Tr2_d from Tr2;     

12. } While   Tr2 is not empty; 

Output: Incrementally distributed training sets :  

              { 1_1Tr ,…., 1_Tr N  }.  

Fig 6.2. The discriminative training data assignment algorithm. 
 

 

 
          (a)                           (b) 

Fig. 6.3. Comparison of training data assignment, (a) random assignment, (b) 

discriminative assignment. 

 
 

Fig. 6.3 shows comparison between the discriminative and random assignment of 

training data, where the discriminative assignment generates the classification model with 

more compact and discriminative boundary. It means that there is less overlap (over 

different classes) of the training data in the feature space. This reduces the classification 

errors. The problem of over-training may occur in some of the individual training sets 

(decrease the performance of single training data during testing). However, we find that 

1 2Tr Tr Tr

{1,..., }

1 1_
i N

Tr Tr i



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most of the discriminatively assigned training sets reach higher classification 

performance, compared to those of randomly assigned sets. 
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subset N

Bayesian Classifier N

and

selected subset N

Training 
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Bayesian Classifier 1

and

selected subset 1

Feature 
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Selection

For 
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Fig. 6.4. The diagram for parallel feature selection and classifier learning. 

6.3.3. Parallel Feature Selection and Classifier Learning 
 

    The parallel feature selection block in Fig. 6.1, as shown in detail in Fig. 6.4, starts 

from different training sets. Each feature selection aims to build an optimal selected 

feature subset with its trained classifier. The search strategy of feature selection used in 

this paper is called the sequential forward floating search (SFFS) [101]. In this algorithm, 

each feature selection scheme starts from an initial feature subset, and sequentially adds 

features from a total of 219 features introduced in Section 6.3.1, to generate a selected 

subset. At each iteration, which feature is added into the current subset, is decided by the 

feature evaluation strategy. The candidate feature with the highest evaluation score, is 

added to form a new subset. It stops when the adding of a new feature no longer improves 

the feature subset performance. The optimal feature subset with its learned Bayesian 

classifier are the output of each parallel feature selection scheme. As shown in Figs. 6.1 

and 6.4, different distributed training sets generate a total of N different selected feature 

subsets, which lead to N different learned Bayesian classifiers that are output from the 



131 
 

parallel selection. Note that each of the N parallel feature selection schemes has a 

different initial feature subset to start. Thus, N different feature subsets are generated.  

     In this paper, Bayesian classifiers with cross-validation are used as the evaluation 

strategy to guide the feature subset selection. In terms of s-fold cross-validation classifier 

[101], for each feature evaluation, the training set of each of the parallel feature selection 

schemes is equally divided by s, where 1 set is used as testing data, and the remaining s-1 

sets are used as training data. There are total of s such classification iterations for a single 

goodness evaluation of a feature, and the final evaluation score is obtained from the 

above s independent evaluation results. In this paper, each one of the s evaluations is 

expressed below [126], 

i i ieva acc div                                                  (6.1) 

where {1,..., }i s belongs to one of the s-fold evaluation. The term iacc  is the 

Bayesian classification result on the ith validation set, and 
idiv  is the classification 

diversity of the ith validation set, expressed as the standard deviation between ith 

classification accuracy and the mean accuracy of all s validation sets as, shown below: 

2[( ) ]i idiv E acc u                                                (6.2) 

where, 

{1,..., }

1
k

k s

u acc
s 

                                                     (6.3) 

is the mean classification accuracy of all s cross-validation classifiers. The parameter   
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in equation (6.1) is the coefficient of the degree of the influence of diversity, set to 0.25 in 

this paper. The use of extra diversity term div  in evaluation is based on the assumption 

that an effective ensemble should emphasize more on higher-accuracy classifiers that 

disagree on other predictions. 

 In this paper, the cross-validation evaluation combines s classifications by means 

of average accuracy, to generate the final evaluation score: 

{1,..., }

1
final p

p s

eva eva
s 

                                                (6.4)  

The feature subset that has the highest evaluation by equation (6.4) is selected as the 

optimal feature subset. At the same time, parallel Bayesian classifiers are learned by 

using the optimal selected feature subset. As a result, each feature selection scheme (see 

Fig. 6.4) outputs two results: an optimal feature subset, and a Bayesian classifier learned 

by this feature subset. During testing in Fig. 6.1, the testing data is classified using the 

above different classification models, respectively, with the corresponding feature subsets. 

The final classification decision is obtained from classifications of multiple classifiers 

using the ensemble based classification.  The advantage of parallel feature selection is 

that, the feature selection from more training sets will obtain better classification 

accuracy than single classification scheme only from one training set. 

6.3.4. The Incremental Learning 

Using the discriminatively assigned training sets (see section 6.3.2), the parallel 

feature selection provides multiple feature subsets (see Section 6.3.3). The incremental 

learning is realized by a feedback loop, from the parallel feature selection, to the 
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discriminative training data assignment (see Fig. 6.1).  

 

Input: The individual training set Tr_i; Classification inducer I; Integer T (number of combined 

classifiers in the ensemble) 

 

1.  For i = 2 to T { 

2. Tr_i:   training data for the individual ensemble, with instance weight for a training data x set to 

(1+
4( )e x ),  where ( )e x   

is the number of  misclassifications made on x by inducer 
1I  to 

1iI 
. 

3. ( ')i iC I S    where 
iC  is the classifier model trained  by training data S’, made by classifier 

iI .  } 

4. 
: ( )

( ) arg max 1
i

ensemble
y Y i C y

C



 

    (assign testing data   to the most classified label y from all 

classifier models in the ensemble) 

 

Output: ensemble classification label 
ensembleC  

Fig 6.5. The ensemble classification algorithm: Arc-x4. 

 

The multiple feature subsets are feedback into the discriminative training 

assignment, to incrementally assign more effective training sets. In this aspect, the 

distance measure (see step 6 in Fig. 6.2) in each of the assignment blocks, uses the 

feature subset, provided by each of the parallel feature selection schemes. The selected 

feature set assign more discriminative training sets, which will help to improve the 

performance of the later steps of feature selection and classifier learning. The 

incrementally assigned training sets, are further used for the feature selection and 

classifier learning. At each iteration, the feature selection starts from the entire feature set. 

In this incremental loop, the feature selection and training data assignment 

mutually improves the performance of each other. The loop terminates when the 

performance of the parallel feature selection (the average performance of parallel feature 

selection schemes) no longer improves from the previous iteration. In this situation, the 
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performance of feature selection is measured by the Bayesian evaluation (see Equation 

(6.4)), directly on the selected feature subsets. After the termination of the loop, the 

training session outputs the optimal selected feature subsets, along with the multiple 

classification models, trained by the incrementally distributed training sets. Both of them 

are used to classify a testing data using the ensemble classification as discussed next.  

6.3.5. The Ensemble Classification 

The ensemble of multiple learned classifiers (from section 6.3.4) to obtain the final 

classification of a testing data, is realized by dynamic voting of N results to obtain an 

accurate classification result. The Arc-x4 algorithm [123], as an improvement of the 

ARCing (Adaptively Resample and Combine) method, is used as the ensemble voting 

method in this paper. The pseudo code of the algorithm is shown in Fig. 6.5. In the 

ensemble classification, the number T in Fig. 6.5 equals to the number of learned 

classifiers by parallel feature selection. The instance   is the feature vector of a testing 

image. A final classification label ensembleC  of testing data is built by the label y, which is 

predicted by most of the cross-validated classifiers. This is recognized as the voting 

process. Like Adaboost [123], the Arc-x4 algorithm sequentially trains classifiers for a 

number of datasets T, but the training instances x are weighted using a simple scheme: the 

weight of an instance is proportional to the number of mistakes previous classifiers made 

to the fourth power, plus one. The Arc-x4 algorithm is applied directly as the ensemble 

method for integrating the results from cross-validated classifiers. By using the Arc-4x 

algorithm, the ensemble generates a classification decision which has a higher accuracy 

than any of the individual classifiers. 
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(a) Caltech-101 

Airplanes Face_easy Motorbikes 

         

(b) Event 

Badminton Snowboarding Sailing Polo 

        

   Fig 6.6. Example images of the two image databases. 

 

6.4. Experimental Results 

6.4.1. Datasets and Parameters 

     This paper uses two image datasets for experiments. The first one is called 

Caltech-101 [134], with images of objects belonging to 101 categories, and about 40 to 

800 images per category, with 9185 images in total. Most categories have about 50 

images. The size of each image is roughly 300 x 200 pixels. The use of Caltech-101 for 

image classification is also reported in [136-137]. In this paper, three categories are used, 

which have more than 450 images, as shown in Fig 6.6(a). The second image database is 

the event dataset [135] from Stanford University, containing 8 sports event categories 

with a database of 1586 images. Some of example images are shown in Fig 6.6(b).  In 

both datasets, the training and testing data are divided into two equal subsets. 

6.4.2. Incremental Assignment of Training Data 

The following experiments show the advantages of using incremental learning 

method to assign the training data, via the feedback loop discribed in Section 6.3.4.  

Fig. 6.7 shows the comparison among the classification by the following methods, 
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(1) The incremental and discriminative training data assignments (the proposed method 

in Section 6.3).  

(2) The discriminative assignment only (use Section 6.3.2 only, no incremental loop of 

Section 6.3.4). The discriminative assignment is applied, for a more compact training 

data (see Fig. 6.3), but it does not use the incremental loop, and only runs the feature 

selection one time, before the ensemble classification. 

(3) The random training data distribution (no incremental and discriminative 

distribution). It assigns the training data into multiple training sets randomly.  

The other parts of the three methods, including the parallel feature selection and the 

ensemble classification, remain the same as shown in Fig. 6.1, so the improvement of the 

proposed method in Fig. 6.7 comes from the incremental learning only. The x-axis of Fig 

6.7 is the number of ensemble classifiers used. Two conclusions can be derived from Fig. 

6.7, (a) The discriminative assignment of training data improves the classification 

accuracy by obtaining a more compact training data distribution; (b) As compared to the 

discriminative assignment only, the incremental assignment of training data provides 

higher classification results under most of the values of the number of ensemble 

classifiers; (c) The classification results improve with the number of classifiers that are 

ensembled. The results is stabilized after a certain ensemble number. These observations 

show the benefits of using the proposed ensemble. For the proposed method in Fig. 6.7, 

the classification result by using only a single classifier is 93.06% (even with feature 

selection), compared to the peak value of 94.11% under 20 ensemble of classifiers. Note 

that the classification results are stable with 20 ensemble classifiers. 
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Fig 6.7. Comparison of classification results obtained from different number of ensemble 

classifiers learned from parallel feature selection, for the Caltech-101 database. 

6.4.3. Incremental Ensemble Feature Selection and Classification 

 In this section we compare the final classification results on the testing data, using 

different methods. Tables 6.2 and 6.3 show the final classification accuracies of different 

methods for the two databases.   

 Method #1: It is the proposed method, with both incremental and discriminative 

training data assignment, and with feature selection and ensemble classification. It 

has the optimal classification result of 94.11% for the Caltech-101 database (Table 

6.2) under 20 ensemble classifiers (see Fig. 6.7), and 84.3% for the event database 

(Table 6.3) under 23 ensemble classifiers, respectively. These are the highest 

accuracy among all the methods. The other methods that are compared include: 

 Method #2: It is the same as the proposed method, but with no incremental 

assignment of training data (discriminative assignment only, as displayed in Fig. 6.7). 

The classification result is 93.57% for the ensemble of 18 classifiers. The 

improvement of the proposed method compared to this method only comes from the 
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incremental assignment. Similarly, result of 83.86% is obtained for the event 

database, lower than that of the proposed method. 

 Method #3: It is with no incremental and discriminative assignment of training data 

(only use random assignment, as displayed in Fig. 6.7). 

 Method #4: The method performs no feature selection (uses the entire features for all 

procedures), and with the random assignment of training data. Note that the 

improvement in this method, compared to that of method #6, comes only from the 

ensemble classification. 

 Method #5: The method uses no ensemble classification (picks up the best accuracy 

among the results from all the classifiers), and with the random assignment of 

training data. Note that the improvement in this method, compared to that of method 

(6), comes only from the feature selection. 

 Method #6: Only trains a single classifier, using the entire training set and the entire 

set of features. It reaches the lowest performance among all the methods compared. 

 Method #7: It is the same as the proposed method, but with no ensemble 

classification (picks up the best accuracy among the results of all the classifiers). 

Note that the improvement of the proposed method, compared to this method, comes 

only from the ensemble classification. 

 Method #8: It is the same as the proposed method, but with no feature selection 

(using the entire set of features for all the procedures). The improvement of the 

proposed method, compared to this method, comes only from the feature selection. 

The methods compared in Tables 6.2 and 6.3 follow the same system diagram in Fig. 6.1, 
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only with/without realizations of specific procedures above. All the parameters, including 

the number of individual classifiers, and the number of initial features, are kept the same 

for all the methods. Note that the proposed method is better than all the other methods.  

Table 6.2. Comparison of different methods for Caltech-101 database [134]. 

Method# 

Final 

accuracy of 

testing data 

Use 

incremental 

training 

assignment? 

Use 

discriminative 

training 

assignment? 

Use feature 

selection? 

(if no: use the entire 

feature vector) 

Use the Ensemble? 

(if no: pick up the 

best accuracy) 

1 94.11% YES YES YES YES 

2 93.57% NO YES YES YES 

3 92.76% NO NO YES YES 

4 84.87% NO NO NO YES 

5 92.53% NO NO YES NO 

6 83.54% NO NO NO NO 

7 93.48% YES YES YES NO 

8 86.76% YES YES NO YES 

 

Table 6.3. Comparison of different methods for event database [135]. 

Method# 

Final 

accuracy of 

testing data 

incremental 

training 

assignment? 

discriminative 

training 

assignment? 

feature selection? 

(if no: use the entire 

feature vector) 

Use the Ensemble? 

(if no: pick up the best 

accuracy) 

1 84.37% YES YES YES YES 

2 83.86% NO YES YES YES 

3 83.69% NO NO YES YES 

4 79.43% NO NO NO YES 

5 81.12% NO NO YES NO 

6 78.32% NO NO NO NO 

7 83.80% YES YES YES NO 

8 81.68% YES YES NO YES 

 

6.4.4. Comparison with other Classifier Systems 

In the following the proposed method will be compared with other classification 

methods with totally different system realizations. 

6.4.4.1. Comparison with Non-Ensemble Classification Methods 

  In Table 6.4, the proposed method is compared to the other classification systems 

different from the system in Fig 6.1. All the methods use the same databases. Others 

methods compared are: 
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(1) The support vector machine (SVM) [129] classifier; 

(2) The expectation maximum (EM) [130] classifier by Gaussian Mixture Model 

(GMM); 

(3)  The naive Bayesian classifier [131]. 

Each classifier is used by the following two schemes: 

(a) With feature selection: The optimal feature subset is selected by [101] to classify the 

images; 

(b) No feature selection: The images are classified using the entire feature set without 

feature selection. 

     All of the methods apply feature selection and classification in a single session, 

without incremental assignment and ensemble. It is evident from Table 6.4 that, the 

proposed method outperforms all the other methods by a large amount, due to the 

incremental ensemble feature selection. 

Table 6.4. Comparison of the different non-ensemble classification methods. 

Image DB Methods Classification 

Caltech-101 

This chapter 94.11% 

SVM [129] (with feature selection) 71.43% 

SVM [129] (no feature selection) 65.56% 

EM+GMM [130] (with feature selection) 74.80% 

EM+GMM [130] (no feature selection) 60.09% 

Naive Bayes [131] (with feature selection) 82.96% 

Naive Bayes [131] (no feature selection) 67.54% 

Event 

This chapter 84.37% 

SVM [129] (with feature selection) 69.76% 

SVM [129] (no feature selection) 61.33% 

EM+GMM [130] (with feature selection) 70.90% 

EM+GMM [130] (no feature selection) 58.02% 

Naive Bayes [131] (with feature selection) 78.81% 

Naive Bayes [131] (no feature selection) 69.25% 

6.4.4.2. Comparison with other Ensemble-based Classification Methods   

Table 6.5 shows the comparison among different ensemble methods. The difference 
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among the listed methods is the ensemble method used, and all the other parts are the 

same as shown in Fig. 6.1. It is evident that the proposed method outperforms other 

current ensemble approaches by using the Arc-X4 ensemble technique. 

Table 6.5. Comparison of different ensemble methods. 

Image DB Ensemble Methods Classification 

Caltech-101 

This paper 94.11% 

Adaboost [138] 94.02% 

Bagging [138] 93.87% 

Event 

This paper 84.37% 

Adaboost [138] 84.14% 

Bagging [138] 83.82% 

 

6.4.5. Incremental Learning with Additional Training Data  

     Section 6.3.2 introduced the algorithm for incremental assignment of training data. 

After training the parallel models, when additional training data are added, the same 

algorithm of Fig. 6.2 is executed to distribute the new data to the nearest cluster, and with 

additional incremental loops (section 6.3.4) to build a more effective training data. This 

procedure makes the proposed method an incremental learning system, where new 

training data can be added incrementally. Fig. 6.8 shows the performance of final 

classification accuracy of the Caltech-101 database, when additional training data is 

added from 4592 to 5100 to 5600 to 6100. The x-axis is the size of training images 

(added incrementally), and the y-axis is the classification results. The plot starts at the 

accuracy of 94.11% (see Table 6.2). It is the accuracy achieved by the original training set, 

which is composed of 4592 images, half of the total number of images in the database. It 

is clear that as more training data are added, the incremental distribution further improves 

the clusters of training sets, leading to a higher classification accuracy incrementally. 
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Fig. 6.8. Incremental learning with additional training data. 

 

6.4.6. The Statistical Validation 
 

The hypothesis test [141] is conducted on the results on two datasets to evaluate the 

statistical significance of the proposed method. Let the classification results of the 

multiple classifiers (before the ensemble) be the measurement samples of a random 

variable x. The number of individual classifiers is set to N=32 (by the experimental 

experiences) that has 31 degrees of freedom. To this end we define the test statistic, 

ˆx
q

N






                                                           (6.5)

        

 

 

where x  is the mean value of samples from multiple individual classifiers, and ̂  is 

the hypothesis value for the test, and   is the standard deviation of the samples, with 

degrees of freedom N=31. Recalling the central limit theorem [141], the probability 

density function of q under the assumption that the values of multiple classification 

results do not differ significantly (they are statistically significant), is approximately 

(0,1)N . Let the confidence interval for a significance level   be the interval in which 

the random hypothesis ̂ (or q) lies with probability 1-  .  Table 6.6 shows the 

hypothesis test results on the two datasets, on the proposed method. 
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Table 6.6. The hypothesis test of the proposed method. 

Dataset Mean x  
Standard 

deviation   

Hypothesis 

value ̂  

Significance 

level   

Confidence 

interval of ̂  

Caltech-101 
0.8633 

(86.33%) 

0.0437 

(4.37%) 
0.8700 0.05 (5%) [0.8479, 0.8787] 

Event 
0.8127% 

(81.27%) 

0.0281 

(2.81%) 
0.8200 0.05 (5%) [0.8029, 0.8225] 

 

Based on the criterion of the hypothesis test, in both datasets, the hypothesis value lies 

within the confidence intervals. As a result, the assumption that the values of multiple 

classification results do not differ significantly, is satisfied. So the classification results of 

the multiple classifiers of the proposed method are statistically significant. The final 

ensemble classification result is not derived only from the randomly high accuracies 

occasionally derived by the individual classifiers, and the performance of the individual 

classifiers with feature selection schemes is robust with stable accuracies. 

6.4.7. Discussions of Results 

(1) As shown in Figs. 6.7 and 6.8, and Tables 6.2 and 6.3, the incremental distribution of 

training data, both for original and newly added, is able to incrementally learn a robust 

classification system, with improved classification accuracy. 

(2) The improvements of accuracy also comes from the parallel feature selection to build 

different optimal subsets, and the ensemble classification to make optimal decision from 

multiple classifiers. Tables 6.2 and 6.3 show the numerical improvements for each of the 

above two procedures. 

(3) An incremental feedback loop is added from feature selection to the assignment of 

training data (see Fig. 6.1) to further refine the training data from information of feature 

selection, and this loop can be run incrementally.  
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6.5. Conclusions 

    This paper provided a new incremental learning of image classifiers, called the 

incremental ensemble feature selection. The training data is incrementally assigned into 

multiple training sets to learn different classifiers, which are finally combined to obtain 

the ensemble classification results. Experimental results on the data from the two 

challenging image datasets show that the classification accuracy of the proposed method 

outperforms other current classification schemes. In the future we will evaluate the 

approach on very large image databases.
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Chapter 7 

 

Conclusions and Future Work 

 

In this dissertation, I proposed a high level symmetry feature and feature selection 

schemes, applied in numerous computer vision and pattern recognition tasks. The 

symmetry is clearly an important piece of perception puzzle on computer vision. The 

intense use of symmetry provides guidance on fields of image segmentation and ROI 

detection in MR images, for an automated and improved performance. Once the 

symmetry level of the image is defined, the symmetry integration on segmentation, 

statistical region filtering and region classification are completely enforced for a more 

effective manner. It always improves the performance of the tasks, on the images with 
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different symmetry levels (from highly symmetric to totally asymmetric). Meanwhile, the 

feature selection is used along with local kernel, ensemble learning and user relevance 

feedback, to provide these methods with more compact and effective feature sets. By 

understanding and analyzing the feature contents, the selected features with reduced 

dimensions, help to train the learning models that fundamentally improves the specific 

computer vision tasks.  

In each chapter, thorough experiments are performed with a concrete comparison 

with state-of-the-art methods. Both visual and numerical comparisons are provided, along 

with statistical validation procedure to testify the robustness and statistical significance of 

the methods. The proposed methods outperform other methods, that indicate solid 

contributions of this dissertation. The use of symmetry and feature selection open a new 

window on computer vision tasks. In future work, I will integrate them into other tasks 

such as image enhancement, face recognition and video tracking. 
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Appendix 

 

The Appendix consists of 5 figures. Figs. A1 and A2 show the pictorial results for images 

‘Vase’, ‘Bear’, ‘Woman_2’, ‘Butterfly’ and ‘Fresco’. The quantitative results for these 

images are shown in Table 2.8. Fig. A3 shows the image segmentation results by the 

proposed method, on the image from the Caltech-101 database. Fig. A4 and Fig. A5 show 

images that are used to obtain the results in Table 2.10. 
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Fig. A1: Comparison of results on UCB database [43]: ‘Vase’, ‘Bear’ and ‘Woman_2’, (a) 

original image, (b) ground-truth segmentation provided by UCB database [43], (c) 

symmetry-integrated region growing, (d) region growing - no symmetry, (e) normalized 

cut - symmetry, (f) normalized cut without symmetry, (g) watershed segmentation, (h) 

meanshift segmentation, (i) performance curves, (j) ROC curves. 
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Fig. A2: Comparison of results on UCB database [43]: ‘Butterfly’  and ‘Fresco’. 

original image, (b) ground-truth segmentation provided by UCB database [43], (c) 

symmetry-integrated region growing, (d) region growing without symmetry, (e) 

normalized cut - symmetry, (f) normalized cut without symmetry, (g) watershed 

segmentation, (h) meanshift segmentation, (i) performance curves, (j) ROC curves. 
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Fig. A3:  Examples of symmetry-integrated segmentation results using images from the 

Caltech-101 database [42]. 
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Fig. A4.  A list of 93 images selected from the Caltech-101 image database 

The number shown below an image corresponds to the image numbers in a category 

in the Caltech-101 database. We provide these numbers so that our results can be 

replicated. These 93 images are used for the statistical validation of the proposed 

method, in Section 2.4.7 and Table 2.10. 
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Fig A4 Continued. 
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Fig A4 Continued. 
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Fig A4 Continued. 

 

     

     

   
  

Fig. A5: A list of 15 images selected from the UCB image database. These 15 images 

are used for the statistical validation of the proposed method, in Section 2.4.7 and 

Table 2.10. 

 

 

 




