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1 Introduction

We consider the problem of accurately and efficiently evaluating the Schur function sκ(x1,
x2, . . . ,xn) and series thereof for nonnegative arguments xi ≥ 0, i = 1,2, . . . ,n. The Schur
functions are symmetric homogeneous polynomials

Our goal is to derive efficient algorithms for computing the hypergeometric function of
an n×n semidefinite matrix argument X and parameter α > 0:

pF (α)
q (a1, . . . ,ap;b1, . . . ,bq;X) =

∞

∑
k=0

∑
κ`k

1
k!
·
(a1)

(α)
κ · · ·(ap)

(α)
κ

(b1)
(α)
κ · · ·(bq)

(α)
κ

·C(α)
κ (X), (1)

where the summation is over all partitions κ = (κ1,κ2, . . .) of k = 0,1,2, . . .;

(c)(α)
κ ≡ ∏

(i, j)∈κ

(c− (i−1)/α + j−1) (2)

is the generalized Pochhammer symbol, and C(α)
κ (X) is the Jack function. The latter is a

generalization of the Schur function and is normalized so that ∑κ`k C(α)
κ (X) = (tr(X))k [19,

25,31]. The argument X in (1) is a matrix for historical reasons only; C(α)
κ and pF (α)

q are
scalar-valued symmetric functions in the eigenvalues xi ≥ 0, i = 1,2, . . . ,n, of X .

The practical importance of computing the hypergeometric function of a matrix argu-
ment stems from far reaching applications of multivariate statistics, where it provides a
closed-form expression for the distributions of the eigenvalues of the classical random ma-
trix ensembles—Wishart, Jacobi, and Laguerre [27]. These distributions, in turn, are needed
in critical statistical tests in applications ranging from genomics [29] to wireless communi-
cations [10,20,30], finance [16], target classification [18], etc.

Despite its enormous practical importance, only limited progress has been made in the
computation of this function since the 1960s. The problems with its computation come from
two sources: (1) it converges extremely slowly, and (2) the straightforward evaluation of a
single Jack function is exponential [6]. The frustrations of many researchers with the lack
of efficient algorithms are long standing and well documented [2,13,15,17,26–28].

The recent progress in computing the hypergeometric function of a matrix argument
has focused on exploiting the combinatorial properties of the Jack function leading to new
algorithms which are exponentially faster than the previous best ones (see Section 2 for an
overview).

Interestingly, the computational potential of the combinatorial properties of the Jack
function had been missed for quite some time. It is thus our hope to draw the attention of
the combinatorics community to this problem and its far reaching practical applications.

Although the hypergeometric function of a matrix argument is defined for any α > 0
and there are corresponding theoretical interpretations [7], most applications focus on α = 1
and α = 2 only. This is largely because these values correspond to the distributions of the
eigenvalues of complex and real random matrices, respectively.

In this paper we focus on α = 1. In this case the Jack function C(1)
κ (X) is a normalization

of the Schur function sκ(x1, . . . ,xn) (see (3) in Section 2 for the exact relationship).
One way to compute the hypergeometric function of a matrix argument in practice is to

truncate the series (1) for k ≤ N for some sufficiently large N. Since sκ(x1,x2, . . . ,xn) = 0
if κn+1 > 0, our goal is thus to compute, as quickly and accurately as possible, all Schur
functions corresponding to partitions κ in not more than n parts and size not exceeding N.

Denote the set of those Schur functions by SN,n:

SN,n ≡ {sκ(x1, . . . ,xn)|κ = (κ1, . . . ,κn), |κ| ≡ κ1 + · · ·+κn ≤ N}.
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The analysis in [6] suggests that computing even a single Schur function accurately and
efficiently is far from trivial. We elaborate on this briefly.

There are several determinantal expressions for the Schur function (the classical defi-
nition as quotient of generalized Vandermonde determinants, the Jacobi–Trudi identity, its
dual version, the Giambelli and Lascoux–Pragacz determinants). Each one would seemingly
provide a very efficient way to compute the Schur function. The problem with this approach
is that the matrices involved quickly become ill conditioned as the sizes of the matrix argu-
ment (n) and the partition (|κ|) grow. This implies that conventional (Gaussian-elimination-
based) algorithms will quickly lose accuracy to roundoff errors. The loss of accuracy is
due to a phenomenon known as subtractive cancellation—loss of significant digits due to
subtraction of intermediate (and thus approximate) quantities of similar magnitude.

According to [6], the loss of accuracy in evaluating the determinantal expressions for
the Schur function can be arbitrarily large in all but the dual Jacobi–Trudi identity. In the
latter the amount of subtractive cancellation can be bounded independent of the values of
the input arguments xi. By using extended precision one can compensate for that loss of
accuracy leading to an algorithm that is guaranteed to be accurate and costs O((n|κ|+
κ3

1 )(|κ|κ1|1+ρ)).1

Subtraction is the only arithmetic operation that could lead to loss of accuracy; multipli-
cation, division, and addition of same-sign quantities always preserves the relative accuracy.

In this paper we present two new algorithms for computing the Schur function. Both
algorithms are subtraction-free, meaning that both are guaranteed to compute the value of
the Schur function to high relative accuracy in floating point arithmetic. Both are also very
efficient—the cost per Schur function, when computing all Schur functions in the set SN,n,
is O(n2).

This represents a major improvement over the previous best result in [6] in the sense that
no extended precision arithmetic is required to achieve accuracy and the cost of computing
a single Schur function is reduced from O((n|κ|+κ3

1 )(|κ|κ1)1+ρ)) to O(n2).
While both our new algorithms have the same complexity and accuracy characteristics,

each is significant in its own right for the following reasons:

– The first algorithm implements the classical definition of the Schur function as a sum of
monomials over all semistandard Young tableaux. Since the coefficients in this expres-
sion are positive (integers), such an approach is subtraction-free, thus guaranteed to be
accurate. The full expression of the Schur function as a sum of monomials contains ex-
ponentially many terms (O(n|κ|) [6]) thus the similarly exponential cost of the previous
algorithms based on it [6].
We use dynamic programming and exploit various redundancies to reduce the cost to
O(n2) per Schur function as long as all Schur functions in the set SN,n are computed.
This algorithm is not efficient for computing individual Schur functions since most func-
tions in SN,n would need to be computed anyway. However, (unlike the second algo-
rithm) the ideas may generalize beyond α = 1; we elaborate on this in Section 5.

– The second algorithm represents an accurate evaluation of the expression of the Schur
function as a quotient of (generalized, totally nonnegative) Vandermonde determinants.
Since virtually all linear algebra with totally nonnegative matrices can be performed
efficiently and in a subtraction-free fashion [22,23], this leads to an accurate algorithm
for the evaluation of individual Schur functions extremely efficiently at the cost of only
O(n2κ1) each. The cost reduces further to O(n2) each if all of SN,n is computed.

1 Here ρ is tiny and accounts for certain logarithmic functions.
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This paper is organized as follows. We present background information and survey ex-
isting algorithms for this problem in Section 2. Our new algorithms are presented in Sections
3 and 4. We draw conclusions and outline open problems in Section 5.

We made software implementations of both our new algorithms available online [21].

2 Preliminaries

Algorithms for computing the hypergeometric function of a matrix argument for specific
values of p,q, and α can be found in [1,3,4,14,15].

In this section we survey the approach of Koev and Edelman [24] which works for any
α > 0. We also introduce a few improvements and set the stage for our new algorithms in
the case α = 1.

We first recall a few definitions that are relevant. Given a partition κ and a point (i, j)
in the Young diagram of κ (i.e., i ≤ κ ′j and j ≤ κi), the upper and lower hook lengths at
(i, j) ∈ κ are defined, respectively, as:

h∗κ(i, j) ≡ κ
′
j− i+α(κi− j +1);

hκ
∗ (i, j) ≡ κ

′
j− i+1+α(κi− j).

The products of the upper and lower hook lengths are denoted, respectively, as:

H∗κ ≡ ∏
(i, j)∈κ

h∗κ(i, j) and Hκ
∗ ≡ ∏

(i, j)∈κ

hκ
∗ (i, j).

We introduce the “Schur” normalization of the Jack function

S(α)
κ (X) =

Hκ
∗

α |κ||κ|!
C(α)

κ (X). (3)

This normalization is such that S(1)
κ (X) = sκ(x1, . . . ,xn) [31, Proposition 1.2].

The hypergeometric function of a matrix argument in terms of S(α)
κ (X) is:

pF (α)
q (a1, . . . ,ap;b1, . . . ,bq;X) =

∞

∑
k=0

∑
κ`k

(a1)
(α)
κ · · ·(ap)

(α)
κ

(b1)
(α)
κ · · ·(bq)

(α)
κ

· αk

Hκ
∗
·S(α)

κ (X). (4)

Denote the coefficient in front of S(α)
κ (X) in (4) by:

Qκ ≡
(a1)

(α)
κ · · ·(ap)

(α)
κ

(b1)
(α)
κ · · ·(bq)

(α)
κ

· α
|κ|

Hκ
∗

.

Let the partition κ = (κ1,κ2, . . . ,κh) have h = κ ′1 nonzero parts. When κi > κi+1, we
define the partition:

κ(i) ≡ (κ1,κ2, . . . ,κi−1,κi−1,κi+1, . . . ,κh). (5)

The main idea in the evaluation of (4) is to update the κ term in (4) from terms earlier in
the series. In particular, we update Qκ from Qκ(h) and S(α)

κ (x1, . . . ,xn) from Sµ(x1, . . . ,xn−1),
µ ≤ κ .
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In order to make the Qκ update as simple as possible, we first express Hκ
∗ in a way that

does not involve the conjugate partition, κ ′:

Hκ
∗ =

h

∏
r=1

κr

∏
c=1

(
κ
′
c− r +1+α(κr− c)

)
=

h

∏
r=1

r

∏
j=1

κ j

∏
c=κ j+1+1

( j− r +1+α(κr− c))

= α
|κ|

h

∏
j=1

j

∏
r=1

(
j− r +1

α
+κr−κ j

)
κ j−κ j+1

,

where (c)t = c(c + 1) · · ·(c + t − 1) is the rising factorial, the univariate version of the
Pochhammer symbol defined in (2).

Defining κ̃i ≡ ακi− i we obtain:

H
κ(h)
∗

Hκ
∗

=
1

ακh−α +1

h−1

∏
j=1

κ̃ j− κ̃h

κ̃ j− κ̃h +1
. (6)

Using (6), Qκ can be updated from Qκ(h) as

Qκ = Qκ(h) ·
∏

p
j=1(a j + κ̄h)

∏
q
j=1(b j + κ̄h)

· α

ακh−α +1
·

h−1

∏
j=1

κ̃ j− κ̃h

κ̃ j− κ̃h +1
, (7)

where κ̄h ≡ κh−1− h−1
α

.

The Jack function S(α)
κ (X) can be dynamically updated using the formula of Stanley [31,

Proposition 4.2] (see also [24, (3.8)] and (3)):

S(α)
κ (x1, . . . ,xn) = ∑

µ

S(α)
µ (x1, . . . ,xn−1)x

|κ/µ|
n σκµ , (8)

where the summation is over all partitions µ ≤ κ such that the skew shape κ/µ is a hori-
zontal strip (i.e., κ1 ≥ µ1 ≥ κ2 ≥ µ2 ≥ ·· · [32, p. 339]). The coefficients σκµ are defined
as

σκµ = ∏
(i, j)∈κ

hκ
∗ (i, j)

h∗κ(i, j) ∏
(i, j)∈µ

h∗µ(i, j)

hµ
∗ (i, j)

, (9)

where both products are over all (i, j)∈ κ such that κ ′j = µ ′j +1. For α = 1, clearly, σκµ = 1
for all κ and µ .

Once again, instead of computing the coefficients σκµ in (8) from scratch, it is much
more efficient to start with σκκ = 1 and update the next coefficient in the sum (8) from the
previous ones. To this end, let µ be a partition such that κ ′j = µ ′j for j = 1,2, . . . ,µk−1, and
κ/µ be a horizontal strip. Then we update σκµ(k) from σκµ using:

σκµ(k)

σκµ

=
k

∏
r=1

h∗κ(r,µk)
hκ
∗ (r,µk)

k−1

∏
r=1

hµ
∗ (r,µk)

h∗µ(r,µk)
=

k

∏
r=1

1+ κ̃r− µ̃k

α + κ̃r− µ̃k

k−1

∏
r=1

µ̃r− µ̃k +α−1
µ̃r− µ̃k

, (10)

which is obtained directly from (9).
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We use (8) to compute S(α)
κ (x1, . . . ,xi) for i = h+1, . . . ,n. For i = h, the result of Stanley

[31, Propositions 5.1 and 5.5] allows for a very efficient update:

S(α)
κ (x1, . . . ,xh) = (x1 · · ·xh)κh ·S(α)

κ−κhI(x1, . . . ,xh) ·
κh

∏
j=1

h

∏
i=1

h− i+1+α(κi− j)
h− i+α(κi− j +1)

, (11)

where κ−κhI ≡ (κ1−κh,κ2−κh, . . . ,κh−1−κh).
The new results in this section comprise of the updates (7) and (10), which are more

efficient than the analogous ones in [24, Lemmas 3.1 and 3.2]. These new updates do not
require the conjugate partition to be computed and maintained by the algorithm and cost
2(p+q)+4h and 9k, down from 2(p+q)+11κh +9h−11 and 12k+6µk−7, respectively.

Additionally, the use of (11) reduces the cost of an evaluation of a truncation of (1) by a
factor of about N/2.

3 The first algorithm

In this section we present the first of our two new algorithms for computing all Schur func-
tions of the set SN,n. This algorithm is based on the classical definition of the Schur function
[32, Section 7.10]:

sκ(x1, . . . ,xk) = ∑
T∈Aκ

XT ,

where the summation is over the set Aκ of all semistandard κ-tableaux T filled with the
numbers 1,2, . . . ,k. Also, XT = xc1

1 · · ·x
ck
k , and (c1, . . . ,ck) is the content of T . Extending the

notation, let:
sm

κ (x1, . . . ,xk) = ∑
T∈Aκ,m

XT ,

where the summation is over the set Aκ,m, which equals Aκ with the additional restriction
that k does not appear in the first m rows.

Note that sκ(x1, . . . ,xk) = s0
κ(x1, . . . ,xk) and sκ(x1, . . . ,xk−1) = sk

κ(x1, . . . ,xk).

Lemma 1 The following identity holds for all sm−1
κ (x1, . . . ,xk):

sm−1
κ (x1, . . . ,xk) =

{
sm

κ (x1, . . . ,xk), if κm = κm+1;
sm−1

κ(m)
(x1, . . . ,xk) · xk + sm

κ (x1, . . . ,xk), otherwise,

where the partition κ(m) is defined as in (5).

Proof In the first case (κm = κm+1), no k is allowed in the mth row of T because of the
strictly increasing property of each column of T . Therefore, the restriction that no k appear
in the first m−1 rows of T is equivalent to the restriction that no k appear in the first m rows
of T , and Aκ,m−1 = Aκ,m.

In the second case, there are two possibilities for the κ-tableau T ∈ Aκ,m−1. If the entry
in position (m,κm) is not equal to k, then none of the entries in the mth row can equal k
due to the nondecreasing nature of each row. Thus, the tableaux fitting this description are
exactly the set Aκ,m.

If the entry in position (m,κm) is equal to k, then removal of that square of the tableau
clearly results in an element of Aκ(m),m−1. Further, for every tableau in Aκ(m),m−1, the addition
of a square containing k to the mth row results in a valid semistandard tableau in Aκ,m−1.
The tableau retains its semistandardness because every element in the mth row (and in the
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entire table as well) can be no larger than k, and every element in the κmth column above the
new square can be no larger than k−1 due to the restriction that every tableau in Aκ(m),m−1
cannot have k in the first m−1 columns.

We have thus constructed a bijection f mapping Aκ(m),m−1 to the set (call it B) of
tableaux in Aκ,m−1 where the entry in position (m,κm) equals k. Clearly, for each T ∈
Aκ(m),m−1,X f (T ) = XT · xk, so ∑T∈B XT = ∑T∈Aκ(m) ,m−1

XT · xk.

Combining these two possibilities for T ∈ Aκ,m−1, we obtain

sm−1
κ (x1, . . . ,xk) = ∑

T∈Aκ,m−1

XT

= ∑
T∈Aκ,m

XT + ∑
T∈Aκ(m) ,m−1

XT · xk

= sm
κ (x1, . . . ,xk)+ sm−1

κ(m)
(x1, . . . ,xk) · xk,

concluding our proof. ut
Our algorithm, based on Lemma 1, is very simple.

Algorithm 1 The following algorithm computes all Schur functions in SN,n.

for all κ ∈SN,n initialize sκ = xκ1
1 if κ ∈SN,1 and sκ = 0 otherwise

for k = 2 to n (Loop 1)
for m = k down to 1 (Loop 2)
for all κ ∈SN,k such that κm > κm+1, in reverse lexicographic order

sκ = sκ + sκ(m) · xk
endfor

endfor

endfor

After the first line Algorithm 1, the variables sκ contain sκ(x1). During each itera-
tion of Loop 1, the values stored in sκ for κ ∈ SN,k are updated from sκ(x1, . . . ,xk−1) =
sk

κ(x1, . . . ,xk) to sκ(x1, . . . ,xk) = s0
κ(x1, . . . ,xk). During each iteration of Loop 2, the values

in sκ for κ ∈SN,k are updated from sm
κ (x1, . . . ,xk) to sm−1

κ (x1, . . . ,xk).
The last line of the algorithm implements Lemma 1. Since the partitions are processed

in reverse lexicographic order, sκ(m) will have already been updated for each κ when this
line is executed. Thus, at the time sκ is updated, sκ(m) contains sm−1

κ(m)
(x1, . . . ,xk), and sκ is

updated from sm
κ (x1, . . . ,xk) to sm−1

κ (x1, . . . ,xk). Our algorithm updates the Schur functions
“in place” using a single memory location for each partition.

In order to complete the algorithm in time O(n2) per Schur function, we must be able
to lookup the memory location of sκ(m) in constant time for each κ ∈SN,n and 1 ≤ m ≤ n.
In our implementation, we keep all of the Schur variables {sκ}κ∈SN,n in an array and use a
lookup table of size |SN,n| · n to find the appropriate array index for each sκ(m) . Since this
lookup table is invariant over all possible inputs x1, . . . ,xn, we simply precompute it (or load
it from disk) and keep it in persistent memory for future calls to our algorithm.

It is also possible to compute the indexes of each sκ(m) on the fly rather than having them
stored in a lookup table. This modification reduces the memory requirement from O(|SN,n| ·
n) to O(|SN,n|), but increases the time complexity by a factor of n to O(n3) per Schur
function. In practice, the constant hidden by the big-O notation (for time complexity) is
greatly increased when computing indices on the fly; therefore, since n� N we have found
the lookup table approach to be much more efficient. Further discussion of implementation
issues and MATLAB code for both methods are available online [21].
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4 The second algorithm

Our second algorithm is based on the expression of the Schur function as a quotient of totally
nonnegative generalized Vandermonde determinants:

sκ(x1, . . . ,xn) =
detG

detVn,n
, (12)

where
G≡

(
x

j−1+κn− j+1
i

)n
i, j=1 and Vn,n ≡

(
x j−1

i

)n
i, j=1

are n×n generalized and ordinary Vandermonde matrices, respectively.
Since sκ(x1,x2, . . . ,xn) is a symmetric polynomial, we can assume that the xi’s are sorted

in increasing order: 0 ≤ x1 ≤ x2 ≤ ·· · ≤ xn. This choice of ordering makes G and Vn,m
totally nonnegative [9, p. 76] thus the methods of [23, Section 6] can be used to evaluate
(12) with guaranteed accuracy in O(n2κ1) time. The matrices G and Vn,m are notoriously
ill conditioned [11] meaning that conventional Gaussian-elimination-based algorithms will
quickly lose all accuracy to roundoff [6].

The contribution of this section is to show how to eliminate the removable singularity at
xi = x j, i 6= j, and to arrange the computations in such a way that the cost per Schur function
is only O(n2) when evaluating all of SN,n.

It is convenient to see G as a submatrix of the rectangular Vandermonde matrix

Vn,m ≡
(
x j−1

i

)n,m
i, j=1,

m = n−1+κ1, consisting of columns 1+κn,2+κn−1, . . . ,n−1+κ1.
Consider the LDU decomposition Vn,n−1+κ1 = LDU , where L is a unit lower triangular

n×n matrix, D is a diagonal n×n matrix, and U is a unit upper triangular n× (n−1+κ1)
matrix.

The critical observation here is that the value of detG is unaffected by L, namely

detG = detD ·detŪ ,

where Ū is the (n×n) submatrix of U consisting of its columns 1+κn,2+κn−1, . . . ,n−1+
κ1.

However, detD = detVn,n, thus

sκ(x1,x2, . . . ,xn) = detŪ . (13)

The explicit form of U is known [8, Section 2.2], [33, eq. (2.3)], allowing us to write
(13) also as:

sκ(x1, . . . ,xn) = det
(

hi− j+κn− j+1(x1, . . . ,xi)
)n

i, j=1
,

where hk, k = 1,2, . . . , are the complete symmetric polynomials and, by default, hk ≡ 0 for
k < 0.

In order to apply the algorithms of [23] to evaluate (13), we need the bidiagonal decom-
position of U , which has a particularly easy form:

BD(U) =



1 x1 x1 . . . x1 x1 x1 . . .
0 1 x2 . . . x2 x2 x2 . . .
0 0 1 . . . x3 x3 x3 . . .

. . .
0 0 0 1 xn xn . . .


. (14)
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For example, for n = 3, m = 4 [22, Section 3]:

U =

 1 0 0 0
0 1 0 0
0 0 1 0




1 x1
1 x2

1 x3
1




1 x1
1 x2

1 0
1




1 x1
1 0

1 0
1

 .

Therefore computing the Schur function consists of using Algorithm 5.6 from [23] κ1
times to remove the appropriate κ1 columns in U and obtain the bidiagonal decomposition
of Ū . The determinant of Ū , i.e., the Schur function, is easily computable by multiplying
out the diagonal of the diagonal factor in the bidiagonal decomposition of Ū .

The total cost is O(n2κ1).
In this process of computing sκ(x1, . . . ,xn) a total of κ1 (intermediate) Schur functions

are computed, therefore all functions in the SN,n can be computed at the cost of O(n2) each.

5 Open problems

It is natural to ask if the ideas of this paper can extend beyond α = 1 and in particular to
α = 2, the other value of α of major practical importance [27].

None of the determinantal expressions for the Schur function are believed to have ana-
logues for α 6= 1, thus we are skeptical of the potential of the ideas in Section 4 to generalize.

The results of Section 3, however, may extend beyond α = 1.
Consider the (column) vector s(n) consisting of all Schur functions in SN,n ordered in

reverse lexicographic order. Let s(n−1) be the same set, but on n− 1 variables x1, . . . ,xn−1.
Then

s(n) = Ms(n−1)

where M is an |SN,n|× |SN,n−1| matrix whose entries are indexed by partitions and Mµν =
x|µ|−|ν | if µ/ν is a horizontal strip and 0 otherwise. The contribution of Section 4 was to
recognize that M consists of blocks of the form

A =


1
x 1
x2 x 1
x3 x2 x 1

 .

Since A−1 is bidiagonal:

A−1 =


1
−x 1
−x 1
−x 1

 ,

given a vector (call it z), the matrix-vector product y = Az can be formed in linear (instead
of quadratic) time by solving instead the bidiagonal linear system A−1y = z for y.

This was our original approach in designing Algorithm 1. Ultimately we found the much
more elegant proof which we presented instead.
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The question is whether this approach can be generalized to other values of α . Unfortu-
nately the matrix A in general has the form:

A(α) =


1
x 1

1
2! x2(α +1) x 1

1
3! x3(1+α)(1+2α) 1

2! x2(α +1) x 1

 ,

where the general expression for the entries A(α) is a(α)
i j = xi− j

(i− j)! ∏
i− j−1
k=0 (kα +1), i > j.

The matrix (A(α))−1 is not bidiagonal for α 6= 1 thus the approach of Section 3 cannot be
carried over directly. One could consider exploiting the Toeplitz structure of A(α) to form a
matrix-vector product with it in O(k logk) instead of k2 time (assuming A(α) is k× k) [12, p.
193]. Current computing technology, however, limits N to about 200 and since k ≤ N, this
approach does not appear feasible in practice at this time.

Acknowledgements We thank James Demmel for posing the problem of computing the Schur function
accurately and efficiently [5, Section 9.1(2)] as well as Iain Johnstone and Richard Stanley for many fruitful
discussions during the development of this material.
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