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ABSTRACT OF THE DISSERTATION

Construction of Predictive Dynamical Systems from Observed Data Through Data Driven
Forecasting

by
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The evolution of particles in space, flows on an ocean surface, or orbits of the

planets can all be thought of as their own dynamical systems who’s forecasts and models

are crucial to many scientific disciplines. These dynamical system models depict the

physics of what is going on by mathematically describing how each state variable of the

system evolves in time. It is our role as computational physicists to find solutions to these

complex and often analytically unsolvable dynamical system models to aid in the study of

interesting and important physics.

In this dissertation we will go through the development and deployment of a melding
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of methods in applied mathematics and machine learning to construct approximate forms

to dynamical systems equations for forecasting from data alone in a method known as

Data Driven Forecasting (DDF). A theoretical background for the method is first discussed

along with a sampling of the different variations of DDF. The utilization of Radial Basis

Functions (RBF) to interpolate the behavior of dynamical systems plays a major role

approximating the flow of the model dynamics. A breakdown of what dynamical properties

like chaos, fractal dimension, Lyapunov exponent, and Jacobian are preserved and under

what conditions in reconstructing the model from data.

As DDF builds models from observed data alone, it will contend with the challenge

of construction model approximations when fewer than the total dimensions are observed.

Through the use of Taken’s Embedding Theorem and time delay embedding techniques,

the attractor can be reconstructed and forecasting made possible.

This dissertation concludes with a thorough exploration of the method on a Neuro

Dynamical system and Fluid Dynamical system where reduced dimensional observations

are made and time delay embedding techniques must be used. The results shown in these

sections are indicative of the potential for this method to both be expanded upon and

applied for modern scientific pursuits.
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Chapter 1

Introduction

1.1 Dynamical Systems

The field of Dynamical Systems is the method of analyzing systems as they evolve

over time in the form of differential equations or iterated maps; the systems these mathe-

matical objects describe could be swinging pendulums, evolution of stars, orbiting planets,

oceanic flows, or even the fractal Mandelbrot set. These models range in their complexity,

some are simplifications of the true system because the true system is too hard to under-

stand, some models are best guesses of an unknown perfect model of a complex system. For

our purposes, we describe our systems mathematically with systems of ordinary differential

equations that model the time evolution of our state variables in state space. These models

are described as D dimensional models with parameters p, state variables x, and take the

following form
dxi(t)

dt
= fi(x(t), p) i = 1, ..., D (1.1)

The f function in our equation above is what a lot of our research revolves around. It can

be built from first principles like the Naiver Stokes equations, or it can be inferred from

observational data. The usefulness of the model depends on the model’s ability to predict

the future behavior of the system.
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1.1.1 The History of Dynamical Systems

Many of the properties of dynamical systems have their origin with Newton when he

invented differential equations to explain planetary motion, but the beginning of modern

dynamical system’s theory starts with the work Poincarè published in 1880 when he

established the foundation for qualitative analysis of nonlinear differential equations. In

this initial framework he invented Poincaré maps (for the study of periodic motion), defined

stable and unstable manifolds, introduced perturbation methods, and invented the Poincaré

Recurrence Theorem. His ideas were influential because they brought forth qualitative

solutions to problems that were very troublesome to solve quantitatively. [4][5][6]

Before the discovery of chaos in 1963, dynamical systems were mostly applied

to non-linear oscillators that were very useful to physicists and engineers. Non-linear

oscillators were vital in the development of such technologies such as radio, radar, phase-

locked loops, and lasers. One example of a non-linear oscillator would be the Colpitts

oscillator invented by Edwin Colpitts in 1918 shown in Figure (1).

An analysis of the simple circuit along with some approximations will lead one to

the following system of differential equations modelling the voltage across both capacitors

and the current through the inductor:

dVC1(t)
dt

= 1
C1

[IL − IS(e−VC2/Vth − 1)]

dVC2(t)
dt

= 1
C2

[IL − (VC2 + v)/RE]

dVIL
(t)

dt
= 1

L
[v − RLIL − VC2 − VC1 ]

(1.2)

IS is the reverse saturation current, v is the constant voltage supplied at the top

of the circuit, and Vth = kB ∗ T/e ≈ 0.026V olts is the thermal voltage. There are several

forms of the Colpitts Oscillator, each exhibiting complex dynamical behavior; therefore, it

is useful to look at the Colpitts Oscillator in a dimensionless form that is unrelated to any
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Figure 1.1. Colpitts Oscillator Circuit Design [7]. It was invented in 1918 by Edwin
Colpitts and its dynamics are described in equation(1.2) and (1.3). Under certain conditions,
the system can exhibit properties of chaos.

specific circuit diagram but still maintains the interesting dynamics. This generic Colpitts

Oscillator system of equations takes the following form[7]:

dx1(t)
dt

= αx2

dx2(t)
dt

= −γ(x1 + x3) − qx2

dx3(t)
dt

= η(x2 + 1 − e−x1)

(1.3)

These equations have no known analytical solution and therefore must be solved

numerically. More interestingly, when the equations are solved with a careful choice of

parameters, the dynamical system exhibits chaotic behavior, a concept we’ll discuss in
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more detail in a later section. The chaotic behavior of the Colpitts Oscillator is shown in

Figure(1.2).

As it turns out, most of the dynamical systems that we are interested in, like the

Colpitts Oscillator, have no known analytical solution. The dynamical systems we are

interested in can be very complex and don’t lend themselves to finding easy solutions. To

overcome this problem and gain a better understanding of the models we want to study,

we must solve the dynamical equations numerically.

1.1.2 Solving Dynamical Systems

When analytical solutions to systems of differential equations are not known, our

only option to solve these equations numerically by advancing the state parameters forward

in time. We are interested to see how the state of our system evolves, and we want to

be able to predict the future behavior of our systems; accurately predicting the behavior

of a system is helpful because it shows our model is correct which can verify theoretical

assumptions about system behavior, it can also be practical to forecast systems like weather

to make climate predictions. There are two primary cases that we differentiate, cases

of Ordinary Differential Equations (ODE’s), and cases of Partial Differential Equations

(PDE’s).

Systems of Ordinary Differential Equations are the more common system we deal

with and are easier to solve. One of the earliest methods of solving ODE’s was the Euler

Method, invented by Leonhard Euler in 1770[8]. It is a first order method that updates

the position of the state variables by moving along the tangent line, the first derivative,

a distance h before recalculating the tangent line and moving another distance h. If we

know an initial value and the form of the derivative that can be calculated at all points,

we can write out the Euler Method as:

x(t0 + h) = x(t0) + h ∗ dx

dt
|t=t0 (1.4)
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Figure 1.2. Colpitts Oscillator with parameter values α = 5, γ = 0.0797, q = 0.6898,
and η = 6.2723. It’s more plainly visible in the 3D graph that the system is chaotic in
nature; notice how despite going through many cycles in its phase space, the system is not
periodic (for the given parameter values).

5



It is first order because the global error scales with the step size h, which means we

would need to take very small steps to integrate accurately; this is a computationally slow

process, so it is better to use a higher order method. In 1901 the commonly used method

of integrating ODE’s was developed, called the Runge-Kutta Methods. The idea of the

Runge-Kutta methods is that we want to make use of the information within the interval

of h, the next improvement to Euler’s method, the trapezoidal rule, does exactly that

and is second order. But the most commonly used form is the fourth order Runge-Kutta

method:

k1 = hf(tn, xn) (1.5)

k2 = hf(tn + 1
2h, xn + 1

2k1) (1.6)

k3 = hf(tn + 1
2h, xn + 1

2k2) (1.7)

k2 = hf(tn + h, xn + k3) (1.8)

xn+1 = xn + 1
6k1 + 1

3k2 + 1
3k3 + 1

6k4 + O(h5) (1.9)

tn+1 = tn + h (1.10)

With the use of the fourth order method, we are now accurate to order O(h4) with

a truncation error of O(h5), but this still may not be enough. Higher order is important,

but we can do more to make sure our integration is accurate, and that can be done

using an adaptive step size. A good ODE integrator should exert some adaptive control

over its own step size to accommodate regions of large truncation error (the contribution

to the step we don’t account for from higher order h terms). In regions where large

truncation error is detected, usually by comparing the difference in fourth and fifth order

Runge-Kutta, the step size is forced to decrease until the truncation error reaches a small

enough value to proceed, and increase the step size where truncation error is small to

decrease the computational time. Smooth regions often have low truncation error because
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there isn’t much change in the landscape. But, regions of rapid change and non smoothness

increase the truncation error, and introduce a lot of inaccuracies to the integration if

smaller step sizes aren’t taken. The python library, scipy, has a tool called ODEINT which

incorporates 4th Order Runge Kutta with adaptive step sizes and is our primary tool for

quickly integrating ODE’s. [9]

Solving systems of partial differential equations requires a different approach.

Among the methods of solving PDE’s there are finite differencing, Monte Carlo, Spectral,

and Variational Methods. In our work, we’ve only used the finite differencing method,

so we’ll describe its properties and uses here. The idea of finite differencing is to view

our state space as a finite incremental grid. The value of each state variable in different

locations in space will rely on their variations in nearby points to approximate their spatial

derivative. This will also require the information on how to handle boundaries for points

located on boundaries with no neighbor on one or more sides of them. For a set of points on

a grid with locations x0, ..., xDx and y0, ..., yDy we can break up partial spatial derivatives

of a state variable v (where v could be any state variable in space, like fluid speed in an

ocean) in the following way:
∂vi,j

∂x
≈ vi+1,j − vi,j

∆x
(1.11)

∂2vi,j

∂2x
≈ (vi+1,j − vi,j) − (vi,j − vi−1,j)

(∆x)2 (1.12)

These are a multitude of ways of breaking up the finite difference, the top equation is

known as the forward Euler differencing as we are comparing our value at the (i,j) point to

the (i+1,j) point in front of it, and the bottom equation is for 2nd derivatives. These are

both first order methods and higher order methods exist, but that goes beyond the scope

of this dissertation. One final point of significant importance in the domain of PDE’s is

the stability of the finite difference method. There is no guarantee that any well done

finite difference scheme of PDE’s will generate a stable result, for this we have to perform
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the Von Neumann Stability Analysis or other test to confirm that the finite differencing

scheme we choose will be stable. [9]

Figure 1.3. This example grid shows how one should perceive finite differencing methods
and how at each point, say A, we must consider the points around it to calculate its spatial
derivatives. Additionally, should a point, like B, be on the boundary, boundary conditions
must be taken into consideration here. Higher order finite differencing methods will go
beyond this to include points not just 1 space away but two or more; some higher order
methods may even include the diagonal components in their schemes.

1.1.3 Chaos in Dynamical Systems

There is one critical concern that can come when studying dynamical systems, and

that is the topic of chaos and what dynamical systems exhibit chaos [10]. The invention of

computers gave rise to the ability to solve Dynamical Systems numerically so rapidly that

it quickly led to the discovery of chaos by Edward Lorenz in 1963 [11]. Edward Lorenz

derived a simplified model of convection rolls in the atmosphere that at a glance appears
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simple and unassuming (while too analytically intractable to solve):

dx(t)
dt

= σ(y − x)

dy(t)
dt

= rx − y − xz

dz(t)
dt

= xy − bz

(1.13)

For a wide range of parameters, but not all parameters, Lorenz discovered that the

numerical solution gave very erratic answers. The system wouldn’t settle to fixed points

(points where the system will converge to and stabilize), limit cycles (infinitely repeating

loops in space systems stabilize to), or blow up to infinity, but rather, it would oscillate

irregularly, never exactly returning to the same place, but staying within a bounded region

of space. For fixed points and limit cycles, we say that there exists an attractor for which

the trajectories in local space around it all converge to and stays in for all time. For

chaotic systems, though, we define the strange attractor that systems like the Lorenz

system operate under (with the correct choice of parameters) as an attractor that exhibits

sensitive dependence on initial conditions. We can see in Figure(1.5) how taking two

nearby points in the Lorenz system causes them to rapidly diverge over time.

We’re interested in being able to build Data Driven Forecasting models that can

reconstruct dynamical systems. It’s important that we study the ability of our tools to

handle chaotic dynamical systems when they come up in our research. To understand

chaotic systems better and to know if the dynamical system we are studying is actually

chaotic, we look to the Lyapunov Exponent.

1.1.4 Lyapunov Exponent

An important quality of the dynamical systems we study are the stability metrics

of them and their response to perturbations along their state space. We’ve addressed the

topic of chaotic systems and how they are highly unstable and even slight perturbations
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Figure 1.4. This 3D graph of the Lorenz63 system shows how the path of the system
remains confined to some volume in space, but never intersects with itself, never repeating
its path. There are a few properties of chaotic systems that dictate the behavior shown
here. Nearby points diverge away exponentially quickly, the state vector never returns
to the same point as the system will move through its state space infinitely while at the
same time being confined to some set volume in continuous space.

result in wildly different outcomes, we would like to describe a way we can identify and

quantify the stability (or lack thereof) of a dynamical system. To do this we begin with

observing a dynamical system transition from x(n) to x(n+1) = F (x(n)) and how it

responds to perturbation ∆(n) (it is important to note that F in this context is not our

system of differential equations, but the update rule for such a system). The linearized

dynamics reveal the nature of the system’s stability:

x(n + 1) + ∆(n + 1) = F (x(n) + ∆(n)) ≈ F (x(n)) + T (x(n)) · ∆(n) (1.14)
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Figure 1.5. These graphs depict how two nearby trajectories with initial conditions
[1,0.2,19](red) and [1.00000001,0.2,19](blue) can start so close together but rapidly diverge
apart given some time. This graph aims to depict one of the key features of chaotic systems
that we’ve previously mentioned, and that is that nearby points diverge away from each
other exponentially quickly at a rate determined by the largest positive lyapunov exponent
(See the section on Lyapunov exponents for more discussion on this topic).

For sufficiently small perturbations:

∆(n + 1) = T (x(n)) · ∆(n) (1.15)

T is the Jacobian matrix of our system defined as:

T (y)ab = ∂Fa(y)
∂xb

(1.16)

Where y is an arbitrary vector. Now let’s consider what happens to the separation distance

∆ after multiple iterations, N, of the update rule, F :

∆(n + N) = T (x(n + N − 1)) · T (x(n + N − 2)) · · · T (x(n)) · ∆(n) (1.17)

∆(n + N) = TN(x(n)) · ∆(n) (1.18)

11



Where TN is the composition of N Jacobians. Now the way to interpret the meaning of this

term, TN · ∆(n) is in the eigenbasis of the dynamical systems state space, then depending

on the eigenvalues of the TN , our separation distance will either decrease (indicating

stability) or increase (indicating instability and chaos). More specifically, the eigenvalues

of TN behave as eNλ where if lambda is greater than 0 indicates instability and chaos.

The Russian mathematician Oseledec invented a theorem known as the multiplica-

tive ergodic theorem to calculate the lyapunov exponents [12]. This theorem states that if

we form the Oseledec matrix:

OSL(y, N) = ([TN(y)]T · TN(y)) (1.19)

then as N goes toward infinity, the log of the eigenvalues of the Oseledec matrix divided

by twice the total time, 2N, become the global lyapunov exponents, λ1 ≤ λ2 ≤ ... ≤ λD. It

is important to note that the reason for requiring that N go to infinity is that the Oseledec

matrix, which is composed of Jacobians, will vary with changing location in state space,

y, but by allowing a large N many iterations, the Oseledec matrix will fully explore the

state space and give a consistent, y independent, result for the lyapunov exponents.

The lyapunov exponents, λ1 ≤ λ2 ≤ ... ≤ λD, can be thought of as an expansion

and shrinkage of the various dimensions of the state space along the eigenvectors which

are spatially dependent (otherwise our result would diverge off to infinity in the direction

of greatest λ). Should any of the λ be positive, that is proof of the existence of chaos. For

continuous time dynamical systems, one of the lyapunov exponents must be zero, and

that the sum of lyapunov exponents must be less than or equal to zero, ∑D
i λi ≤ 0. In

Hamiltonian systems the spectrum of lyapunov exponents is symmetric about zero, and

thusly their sum is zero, indicating their state space volume is conserved.

The lyapunov exponents characterize and describe the nature of our dynamical

systems. While we use the Oseledec matrix to calculate lyapunov exponents in this
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dissertation, the practical use of it is more complicated than indicated here and is left for

an extended discussion in the appendix. [13]

1.1.5 Fractal Dimension

In our study of dynamical systems we seek out invariants of the motion to better

understand the dynamics we study and to characterize their behavior, one such invariant

of the motion are the global lyapunov exponents we just discussed, another is the fractal

dimension. Dynamical systems follow trajectories according to their dynamical equations

that converge to the attractor (the set of states upon which the system converges to over

time); for chaotic dynamical systems, they converge to what is known as the strange

attractor, one that the trajectories of the system converge to but follows the rules of chaotic

systems. These rules are that close points diverge away from each other exponentially

fast (in the short term), the strange attractor is aperiodic never returning to the same

spot, but the trajectories are contained to a set volume in phase space. The shape and

geometry of this attractor in phase space is significant, as it can be characterized by the

dynamical system’s fractal dimension.

To inspire the idea of the fractal dimension, we take the example of some density

function f(x) that measures the fractional number of points in a sphere of radius r in

comparison with the total number of recorded data points for small r. In D dimensions,

the volume of this sphere would scale as rD, extending this to our function, f(x), we can

measure how the density of our data scales with volume (up to a limiting point as we work

with a finite amount of data). We can then describe our function f(x) as:

f(x) ≈ rd(X) (1.20)

where X is the data set in question and d would be the fractal dimension describing how

the quantity of data scales with radius r (for small r, much smaller than the size of the
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attractor, but not so small that it disregards the finite data and captures no data points

in its sphere). Note that the fractal dimension could be a non integer value.

What makes the fractal dimension significant to the study of a dynamical system

is that it defines the effective degrees of freedom expressed in the attractor, as opposed to

the nominal degrees of freedom from the original system’s dimension. It quantifies the

complexity of the attractor. While we use it as one more way to characterize the attractors

we study (as we will show later, it will be used to characterize our results in comparison to

the original attractor DDF has to learn), it is not known what set of invariants constitutes

a complete set to fully define an attractor. In the appendix, we’ll describe one of the

methods we prefer to use to calculate the fractal dimension (of which there are many).[13,

14]

1.2 Methods of Studying Dynamical Systems

In the study of Dynamical Systems, there have been a multitude of machine learning

tools that try to work with models and data sets to extract knowledge of the system

through modelling or to predict the future behavior of the system. There are two well

known methods of approaching this problem of piecing knowledge of dynamical systems.

The first is Data Assimilation methods that try to find a suitable selection of model

dependent parameters that will allow the known model to be forecasted accurately from

known initial conditions. The second method are data driven methods that use observed

data to construct approximate models to forecast dynamical systems, these methods

include Reservoir Computing and our own invention Data Driven Forecasting.

1.2.1 Data Assimilation

Dynamical models of a system can be described by a set of first order ordinary

differential equations whose time derived state variables are equal to functions of the

current state and of parameters, p. These p parameters are not necessarily constant
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and defined physical properties; for example, in the context of neuroscience, a neuron’s

parameters are specific to the neuron that is measured. The neurons are different from

organism to organism because of their different genetic make up and upbringing. The

neurons are different from different parts of the brain, even within the same part of the

brain there are differences from neighboring neurons. When studying fluid dynamics of

oceans there are unknown parameters of quantities such as viscous and drag forces that

vary depending on the local region being studied; different temperatures, salines, and

pollution levels can all have an effect on that parameter which, if unaccounted for, would

derail the forecast.
dxi(t)

dt
= fi(x,p) i = 1, ..., D (1.21)

The goal of data assimilation [15][16] is to take a known set of differential equations, initial

conditions, and recorded noisy data sets to estimate the unknown parameters p. One

example of a data assimilation method is the Precision Annealing Hamiltonian Monte

Carlo technique (PAHMC)[16]. PAHMC is a Bayesian method that receives F observed

dimensions from a D dimensional system where F ≤ D and tries to answer the question,

what is the most likely set of unobserved data and parameters p for the given observed

dimensions. Through a process of mathematical operations, the solution to this Bayesian

problem is through the minimization of a term known as the Action:

A(x,p) =
F∑

k=0

L∑
l=1

Rm/(2F + 2)[xl(tk) − yl(tk)]2

+
F −1∑
m=0

D∑
a=1

Rf/(2F )[xa(tm+1) − fa(x(tm),p)]2
(1.22)

This is the action we must minimize where y is the observed data, x is the estimated data,

F is the full length of the observed data set, tk is the kth time in the data set. Minimizing

the action is a very difficult task, as the action is incredibly nonlinear and high dimensional.

To minimize the action the precision annealing method is performed, this is done by first
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setting Rf equal to zero, this sets the 2nd term in the action, the model error to zero,

the minimization is then only performed on the first term of the action, the measurement

error, which has a trivial solution xl(tk) = yl(tk) (all unobserved dimensions of x are set

to randomness in a predetermined window). Then the precision annealing process starts,

by gently turning on the model error, the global minimum that we were once at has now

shifted, the Hamiltonian Monte Carlo method of sampling the local space is performed to

find where the global minimum has shifted to. Repeat this process enough times to follow

the global minimum as the model error becomes appreciable; however, this does rely on

the hope that the global minimum you follow stays the global minimum.

If this process is performed successfully, we will have a good estimation of a model’s

parameters, which gives us knowledge of the system’s intricacies as well as a method of

predicting its future behavior. The draw back to this method is that it can be an extremely

difficult problem to solve as it deals with very high nonlinearity, high dimensions, takes a

very long computation times (on the order of hours, sometimes days), and relies on the

model to be accurate. This leads us to the next tools of focus, reservoir computing, which

is a data driven model that assumes no knowledge of a model.

1.2.2 Reservoir Computers

A reservoir computer [17][18][19][20] is a type of simplified recurrent neural network

architecture that takes input data, scales it up to a large dimension, mixes it in a recursive

"reservoir", and finally outputs it back into the lower, original, dimension. There’s a large

body of work that has gone into reservoir computers and their effectiveness in studying

nonlinear dynamical systems and chaotic dynamical systems.

The mathematical form of the reservoir can be depicted in the following way. The

RC takes in input Winu(t) which mixes with the recurrent reservoir, the reservoir has

its own state, r(t), and that state will evolve in time with the input vector u(t) in time

and is the output of the reservoir. This output is then matrix multiplied (thus scaling
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Figure 1.6. This is a graphical interpretation of what a reservoir computer is doing, how
it manipulates input data into getting an output which can then be sent back to the input
to generate an arbitrarily long forecast. As shown above, the reservoir computer takes
an input from our data set and puts it through a scaling process; typically this process
will do something like create a much larger matrix of 0’s and 1’s and perform a matrix
multiplication to propagate the 1’s and 0’s. From here another matrix multiplication is
performed with the adjacent matrix to mix and match all the components of the scaled up
input, this operation increases the nonlinearity and complexity of the input data before
being outputted out of the reservoir. The final matrix multiplication is performed to scale
the reservoir data to the predicted output; this final matrix is what is trained linearly
with Ridge Regression, as the reservoir itself is too complex to train easily.

it back down to the original dimension of u(t) by the Wout matrix; this Wout matrix is

the only matrix that is trained as Win and the recurrence of the reservoir is randomly

generated. The benefit of this is that training a recurrent network would be a terribly

difficult process, but by only having to train Wout it allows us to use the very simple

and easy Ridge Regression to fit Wout to the training data. The differential form of the

reservoir looks the following way:

dr(t)
dt

= γ[−r(t) + tanh(Ar(t)) + Winu(t) + σbI] (1.23)

This is the hyperbolic tangent form of the reservoir that is commonly used, but other

options exist. The A matrix is the adjacency matrix and is responsible for the recurrence

in the network. γ and σ are hyperparameters of the model. When the RC receives an
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input data, it uses the above equation to update the state of the reservoir by 1 step in

time. Then the forecast of the RC is Woutr(t + 1) = u(t + 1).

1.2.3 Data Driven Forecasting

Like Reservoir Computing, Data Driven Forecasting (DDF) is a function approx-

imation tool that reconstructs an approximation to the dynamical system to forecast

with, however DDF is a more physically inspired machine learning model that utilizes

interpolation tools with a standard update rule to model dynamical systems. To contrast

Reservoir Computing’s black box behavior in its reservoir, DDF tries to take advantage of

the characteristics of the dynamical system (if they are known). A common and powerful

choice is to incorporate forcing terms into the interpolation and update rule, as will be

shown in both Neurodynamics and Fluid Dynamics problems we solve later. Without fur-

ther delay we will now dive into the bulk of this dissertation which will be our exploration

into what DDF is, how it works, why it’s a useful and powerful tool in nonlinear dynamics,

and the various applications we’ve had success with.
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Chapter 2

Data Driven Forecasting (DDF)

In the study of dynamical systems it is not always the case that we know the exact

form of the dynamical equations or the parameters within them, we argue that there are

many cases where a model built from data alone serves better than to use an imperfect

model or imperfect parameter estimation (or both). But rather than favor the black box

behavior of reservoir computers, we argue that a data driven model (DDF) that utilizes

the known form of dynamical equations and allowing an interpolation model to capture

the rest of the unknown behavior to be a more insightful model than RC and free of model

errors than data assimilation. In this section, we’ll go through the inspiration for how

DDF was created and the mechanics of how it works.

2.1 What DDF is and how it works

As DDF is a data driven model reconstructor, it naturally starts by obtaining some,

possibly noisy, data from either an observation in a laboratory or simulated data generated

on a computer. With this data, we seek to piece together the dynamical equations in an

approximate form to predict the future behavior of the system. Just as we did in the

introduction, we will describe our system of differential equations, but we must convert it

from its continuous form to a discrete one as our data can only exist in discrete form. The
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process goes as follows for a time step of length h:

dxi(t)
dt

= fi(x(t), p) i = 1, ..., D (2.1)

xi(n + 1) = xi(n) + h ∗ fi(x(n), p) (2.2)

Using the Euler method, we’ve provided a very intuitive form for us to view our differential

function fi as. Our goal is to reconstruct this illusive form fi, the time derivative vector

space, using the data. To do this, we must choose a functional representation of f; in this

section, we will describe the Taylor Series Representation (TSR) of DDF. We will expand

fi(x(t), p) into its TSR:

fi(x(t), p) = Ki + xAMiA + xAxBJiAB + O(x3) (2.3)

Note that all repeat indices are summed over for all observed dimensions. This specifically

is the Maclaurin Series of the Taylor expansion for the ith dimension. Our goal will be

to take the constants in the K, M, J, etc. matrices and to fit them to the data to create

our reconstructed state space. Note that we will have to make a choice as to how many

orders of the Taylor Series we must keep, usually this would be 2nd or 3rd order and this

choice is heavily influenced by the data set; the choice is made clear when working with

dynamics that are linear and the Taylor Series expansion is finite because we would simply

match the Taylor order to that of the known dynamics, otherwise, some testing must

be done if the Taylor Series is infinite for a system under study. This touches on a very

important detail that we will come back to multiple times throughout this dissertation and

that is that the choice of interpolation should match the characteristics of the dynamical

equations of the system in study, this has shown to produce the best results time and time

again. Now let’s plug our TSR into the discrete update rule to show how we can create a
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cost function to fit our TSR to the data:

xi(n + 1) = xi(n) + h[Ki + xAMiA + xAxBJiAB + O(x3)] (2.4)

Minimize
N∑

n=0
[(xi(n + 1) − xi(n)) − [Ki + xA(n)MiA

+ xA(n)xB(n)JiAB + O(x3)]]2
(2.5)

Where N+1 is the number of data points in the training window and h has been absorbed

into the training coefficients. This minimization is for the ith dimension, the minimization

will need to be done D times for a D dimensional system (assuming all D dimensions are

observed, we will discuss how to handle observations of a limited number of dimensions

from the whole system in the section on Takken’s Embedding Theorem and how to

reconstruct the state space). Now to perform this minimization we will use Tikhonov-

Miller Regularization, also known as Ridge Regression, but first let’s manipulate the form

of the minimization to something that looks more appropriate. For the case of Taylor

Order 2 (it is trivial to scale this up, but it is conducive to show this simpler case) the

minimization goes as follows, first define a couple new terms:

yi(n) = xi(n + 1) − xi(n) (2.6)

Yi = [yi(1), yi(2), ..., yi(N)] (2.7)

X(n) = [1, x1(n), x2(n), .., xD(n), x1(n)x1(n),x1(n)x2(n),

..., xD(n)xD(n)]T
(2.8)

X̂ = [X(1),X(2), ...,X(N)] (2.9)

Pi = [Ki, Mi1, Mi2, ..., MiD, Ji11, Ji12, ..., JiDD]T (2.10)

Minimize
N∑

n=1
[y(n) − Pi ∗ X(n)]2 (2.11)
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Now that the form of the minimization is of the traditional linear form, [y-mx], we perform

the Ridge Regression step:

Pi = YiX̂
T (X̂X̂T )−1 (2.12)

It is computationally convenient to note that the X̂ matrix is the same for all dimensions

and only needs to be constructed once. Ridge Regression is a powerful tool for solving the

minimization, but there are two problems with it. The first is that solving this requires

X̂X̂T to be an invertible matrix, which it isn’t always is. It also runs into the problem

of over fitting, where the fit follows the behavior of the training data set "too well" and

doesn’t generalize well. The solution to both these problems is actually very easy to

implement and only requires us to make a small change to the cost function to include a

regularization term:

Minimize
N∑

n=1
[y(n) − Pi ∗ X(n)]2 + β||Pi||2 (2.13)

This extra term on the right-hand side is the regularization term and includes a hyperpa-

rameter β that we can vary to get the best fitting. Intuitively the idea of this regularization

term is to prevent the fitted parameters from becoming too large, if the fitting tries to

overemphasize one term in the set of fitting parameters, then it may result in over fitting.

However, by the inclusion of this regularization term, we attach a cost (scaled by β) to

the magnitude of Pi to dissuade the Ridge Regression algorithm from opting for large

values of Pi. As β is increased, it will further punish the minimization for choosing larger

fitting parameters. It is also very fortunate that this minimization has an exact solution,

so we don’t have to perform a painful minimization search in a highly nonlinear space.

This solution to the regularized Ridge Regression is:

Pi = YiX̂
T (X̂X̂T + βI)−1 (2.14)
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With the training complete the fitting parameters can be plugged into the update rule

that can now, given an initial condition, run indefinitely to forecast the behavior of the

system with the output of DDF becoming the input for the next DDF update.

2.2 Taylor Series Results DDF

We now want to show the strengths and weaknesses of formulating the interpolation

representation in DDF as a Taylor Expansion. For polynomial models, its strength shines,

but for non-polynomial models, it struggles greatly to capture the non-polynomial behavior.

2.2.1 Lorenz 1963 Example

The Lorenz 1963 system is our classic example of a chaotic system, that also

happens to be a polynomial system. For a Taylor Series Representation of first and second

order polynomials, and a careful choice of beta, our regularization parameter, we are

able to correctly forecast the behavior of the Lorenz system for 24 Lyapunov Times in

Figure(2.1); the Lyapunov Time is a metric for scaling the arbitrary time of a chaotic

dynamical system by its largest lyapunov exponent to show a forecast resiliency to the

divergent nature of the chaotic system.

2.2.2 Colpitts Oscillator Example

We wish to test the Taylor Series DDF against a non-polynomial model to showcase

its difficulties and why we will ultimately choose a different interpolator. The Colpitts

Oscillator is a non-polynomial system, one whose Taylor Series expansion is infinite,

something we couldn’t hope to capture with our finite TSR method. Additionally, attempts

to include very high polynomial orders resulted in severe instabilities, as small numerical

error to higher power blows up very fast. Figure(2.2) shows the best result extensive grid

sweeping could provide.
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Figure 2.1. With careful grid sweeping we’re able to find a small regime where the
forecast performed best, from there we used Differential Evolution (see the appendix for
more discussion on this method) to pinpoint the exact best beta for forecasting accurately
for as many lyapunov times as we could. To be clear, this beta value is over-fitted to
this data set, but this example shows the potential for the Taylor Method of DDF. DDF
Trained for 10,000 data points, h = 0.002, and β = 9.25874871890625.

Figure 2.2. This poor result comes from trying to fit the polynomial TSR DDF method
on non-polynomial systems with infinitely long TSRs. Training lasted 10,000 data points,
and h = 0.02, beta = 10−15/2. As we will discuss in a future section, a more robust and
flexible method must be used to handle greater nonlinearities that will show up in more
complex and interesting data sets. The radial basis function is what we will discuss as our
solution to this problem.

2.2.3 Parameter Fitting of Polynomial Models

The success of the TSR method on polynomial systems merits a quick discussion on

the accuracy of the fitting of the coefficients. Choosing the order of the TSR to match the
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finite order of a polynomial system, in the case of the Lorenz 1963 system, has shown to

provide an accurate fitting to the actual Taylor Series (or more specifically, the Maclaurin

Series) coefficients for sufficiently long training. Figure(2.3) shows the fitted coefficients

for the x equation of the Lorenz 1963 system as a function of training time.

Figure 2.3. This is a graph of the DDF coefficients of the X equation for the Lorenz
1963 system. With sufficient training, the coefficients converge on the true value for
the polynomial equation. There have also been tests with the Lorenz 1996 system (a
polynomial system) and have shown to converge to correct coefficients as well; while
this isn’t a rigorous proof of DDF’s ability to correctly obtain coefficients for polynomial
systems, it does give intuition as to what TSR DDF is doing and is not simply a black
box with seemingly random coefficients that just happen to work. The foundation of DDF
is rooted in trying to formulate a method that isn’t purely a machine learning method,
but one that recreates the physical equations.

2.3 Radial Basis Functions

Alternatively, instead of using the TSR, which is less effective outside of polynomial

dynamical systems, we can use Radial Basis Functions (RBF) to interpolate the time

derivative state space.

2.3.1 Radial Basis Function as Tools for Interpolation

In our search for a powerful interpolator that could handle nonlinear systems, we

came across the body of work for Radial Basis Function Expansions and their uses in
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field of function interpolation [21][22][23]. Interpolation is the method of estimating the

values of nearby points based off of the known values in local space; this is in contrast

to extrapolation which is the method of estimating values of far away points outside the

local space our known points occupy and is a much harder problem that DDF doesn’t deal

with. This is why it is important when analyzing a data set that the set of data be flush

with data points in all relevant areas in space. Radial Basis Functions are no different,

they operate by placing objects in space called "centers" and they estimate the value of

our current location in space by comparing it with the distance of our current point to

all the centers. In practice, these centers will be chosen to be in locations based on the

training data set and the radial distance from the center to a location in question will

go into the Radial Basis Function, of which there are a large selection. This is the basic

concept for the RBF that was invented by Broomhead and Lowe in 1988.

The mathematical form of the RBF expansion is depicted by a summation over

weighted RBF’s whose functions are user defined and each RBF is defined by a location in

space, c(q) (where q acts as a label for each individual center and will be summed over for

all RBF’s), that will be compared with the state’s current location in space, x:

f(x) =
Nc∑
q=1

ωqϕ(||x − c(q)||) (2.15)

The ωq is the training coefficient that will be fitted to the data similarly to the TSR

method, the ϕ is the RBF, and Nc is the number of centers. Now with this representation

for the unknown function we can create a new update rule as we did before with the TSR:

xi(n + 1) = xi(n) + h
Nc∑
q=1

ωiqϕ(||x − c(q)||)(n) (2.16)

We’ll take this form for our new representation in trying to model the flow of the data.

The unknown function fi(x, n) is represented by an RBF Expansion. We’ll create a similar
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cost function to minimize as we did in the TSR; fortunately, the RBF representation

operates in a linear function space and lends itself to being solved by Ridge Regression.

If we weren’t able to use that, we would have to rely on simulated annealing techniques,

which can be quite challenging for the type of large cost functions we are dealing with

in DDF. For a D dimensional system with N training data, the cost function we seek to

minimize takes the following form (note that there will be D of these minimizations to

perform, 1 for each dimension):

Minimize
N∑

n=1
[(xi(n + 1) − xi(n)) −

Nc∑
q=1

[ωiqϕ(||x − c(q)||)]]2 (2.17)

Where h has been absorbed into the training coefficients. Just like before, we will

rewrite this equation into something simpler that more easily fits into the Ridge Regression

formula.

y(n) = xi(n + 1) − xi(n) (2.18)

Yi = [yi(1), yi(2), ..., yi(N)] (2.19)

Ω = [ω1, ω2, ω3, ...ωNc ] (2.20)

Φ(n) = [ϕ(||x(n) − c(1)||), ..., ϕ(||x(n) − c(Nc)||)]T (2.21)

Φ(n) = [Φ(1), Φ(2), ..., Φ(N)] (2.22)

Minimize
N∑

n=1
[y(n) − Ω ∗ Φ(n)]2 (2.23)

Now we perform Ridge Regression:

Ω = Y ΦT (ΦΦT )−1 (2.24)

Where Y is a 1 by N dimensional matrix of the y(n) values and Φ is an Nc by N
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dimensional matrix of the ϕ(||x(n) − c(q)||) values. We can also include an additional term

to regulate the size of the fitted ω values to prevent over fitting using the same method

described in the TSR section:

Ω = Y ΦT (ΦΦT + β ∗ I)−1 (2.25)

Now we have our method of training for RBF’s, we need to choose our Radial Basis

Function and how we will choose centers for it from the data.

2.3.2 Choosing a Function

The RBF’s job in DDF is to capture the behavior of the vector space that isn’t

already modelled in the DDF update rule (we’ll see later how to incorporate extra terms

into the DDF update rule outside pure RBF’s). In doing this, we need to choose a function

that the RBF will use to capture the behavior of our dynamical system. There are many

choices of radial basis function, and much research has gone into finding better radial basis

functions; here are some examples of common radial basis functions[23]:

ϕ(r) = e
−r2

R , Gaussian

ϕ(r) = (σ2 + r2)α, 0 < α < 1, MultiQuadric

ϕ(r) = 1
(σ2 + r2)α

, α > 0, Inverse MultiQuadric

ϕ(r) = r, Linear

ϕ(r) = r2ln(r), Thin-Plate Spline

ϕ(r) = 1
1 + e

r
σ2 −θ

, logistic function

(2.26)

The r in these equations is equal to the radius term, ||x(n) − c(q)||, used previously.

Among these RBF options, we have performed tests with the Gaussian and MultiQuadric

forms [24][25]. As we will show in our results section, there will be data sets that different
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Radial Basis Functions are better suited for. It is useful to have a handful of options for

Radial Basis Functions to keep ready when testing challenging data sets. In the sections

on Neurodynamics and Fluid Dynamics in this dissertation, only Gaussian RBF’s were

used, as they were found to be a very good general use RBF that apply well to a wide

range of problems. The Gaussian RBF prioritizes the influence of nearby centers and

diminishes the input from centers that are far away, which is an attractive feature about

it. We’ve used this knowledge to intuit how to place our centers and this is to saturate all

regions of space, particularly regions of large second derivatives, to properly capture the

behavior of the system.

2.4 Choosing a Center Scheme

An important question when using the RBF’s is how many centers do we need and

where do we put them. This answer largely be determined by the size and shape of the

training data set. A simple but effective solution would be to take every data point in the

data set and make that location in state space a center; this would work, but it would

also make the DDF program run horribly slow and would be unnecessarily large. In our

experience, the number of centers actually doesn’t need to be very large, something on

the order of 100’s will suffice for a lot of jobs. There is also a tendency to get diminishing

returns on using more and more centers beyond this limit. We want to get the most use

out of these centers as we can, and to do this we will use a K-means clustering algorithm

to select our center location.[23][26]

To understand why we use the K-means clustering algorithm, let’s first describe

what it’s doing. The K-means clustering algorithm takes a given data set and creates K

clusters that then assigns each data point in our data set to one of the K clusters (the

clusters need not be the same size). Each cluster is given a cost value that is the sum of

the distances from each data point, x, within that cluster to a defined center, c. The goal
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is to minimize a cost function that is created by averaging the cost of each cluster:

Minimize E(c1, ..., cK) = 1
N

K∑
k=1

∑
xnϵCk

||x − ck||2 (2.27)

To minimize this cost function, we will shift around all the centers within each cluster

and data points will move around to the most appropriate cluster to minimize this cost

function. The ideal center has been proven to be the average of each data point’s location

within the cluster, so the only challenge is choosing the best grouping of data points.

Intuitively, we can imagine how this will result in data being both smoothly distributed

across regions of dense centers, but also giving emphasis to sparse areas in space where

more attention might be needed as there is lacking data there. This is the ideal spread of

centers in RBF’s, so we choose the centers in the K-means clustering algorithm to be the

centers in the RBF (which unfortunately share the same name). There are a multitude

of solutions to this minimization, since we use the sci-kit learn library for their K-means

algorithm, we use the Generalized Lloyd algorithm. Using the sci-kit learn library, we’re

able to make Figure(2.4) to exemplify how the centers would come out for a training data

set from the Lorenz 1963 system.

Another prominent method in the RBF community is to use the 2nd derivative as

an indicator for where to densely and sparsely put one’s centers [27]. While we don’t use

this method, it has gained traction within the RBF community and is worth mentioning.

2.4.1 RBF Plus Polynomial

Now we begin our discussion on one of the simplest adaptations we can make to the

RBF representation of DDF for a dynamical system that has additive polynomial terms in

its dynamical equations[21]. This is a useful tool in our toolkit and is well worth going

over as it shows up commonly in forcing terms as they are often additive in the dynamical

equations (in our cases linear too); it will also act as a showcase for how to seamlessly
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Figure 2.4. The Lorenz 1963 System with the centers we calculated from the K-means
algorithm from sci-kit learn. Take note of how there is a smooth distribution of centers,
with a tendency for centers to bunch up a bit more in regions where the lines are densely
packed in. We decided on using the K-means algorithm as a way to easily and cleverly
choose centers in comparison with an older and more brute force method of putting a
center every nth data point in the time series data. The algorithm itself is quick to run
and can be found in sci-kit learns python library.

make additions to the DDF interpolation of the dynamical equation’s vector space to

match as many known characteristics as we can. There is a powerful rule of thumb we’ve

learned in studying DDF, the closer we can match our interpolation to the known features

in the dynamical models, the more effective the forecast will be. The intuitive argument

for why this is the case is that the more complexity there is in a dynamical equation that

we can strip away, the less there will be for the RBF’s to have to interpolate; there will be

limits to this as highly nonlinear models won’t lend themselves to much adaptation, and
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we’ll have to fall back on RBF’s to interpolate their behavior. For simpler cases, however,

we can take advantage of this rule of thumb, and one of the most common ones we’ve

come across is the additive polynomial. We let pj, j = 1,2,...,m̂ be a basis of polynomials

and use this to define our new vector space interpolator:

fi(x) =
Nc∑
q=1

ωiqϕ(||x − c(q)||) +
m̂∑

j=1
αijpj(x) (2.28)

This new form for the vector space still maintains the linear function space needed

to perform Ridge Regression. The function is still a sum of unknown parameters times

some function of time, and they can be grouped together similarly to what was done prior

in the training sections of this dissertation. In typical DDF fashion, we don’t assume

any knowledge of the parameters that would exist in front of the polynomial term and

rely on the fit to the data to tell us what that coefficient, in this case αij, should be. We

try to match the polynomial order to the polynomial order that exists in the dynamical

equations, which is commonly first order.

This method isn’t limited to polynomial, they’re just common additives in the

dynamical equations we’ve come across, but this method would work for any additive

feature of a fitting coefficient times a function of time and/or state space variables.

2.5 Radial Basis Function DDF Results

The RBF approach to DDF is a more general approach to modelling dynamical

systems that is applicable for nonlinear models, unlike the TSR method. What we will see

is that while the RBF method doesn’t achieve the same level of predictive power as the

TSR method does in polynomial systems, it will still perform well, and it will perform

well in non-polynomial chaotic systems. The strength of DDF comes from the flexibility

of choice in its interpolation scheme to best tackle a difficult data set.
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2.5.1 The Lorenz 1963 System

The Lorenz 1963 model as described in equation(1.13) was very effectively modelled

by the TSR method, achieving an accurate forecast for up to 24 lyapunov times, the more

general RBF method performs slightly worse in exchange for a more general interpolation

scheme. Using the standard Gaussian RBF, we generate the forecast shown in Figure(2.5).

Figure 2.5. Now using the RBF method of DDF we perform a new forecast of the Lorenz
1963 system. With careful grid sweeping we’re able to find a small regime where the
forecast performed best, from there we used Differential Evolution to pinpoint the exact
best beta for forecasting accurately for as many lyapunov times as we could. This method
stays accurate for about 16 lyapunov times. DDF Trained for 10,000 data points, h =
0.002, β = 0.011350091952587656, and R = 0.010720697084284608

2.5.2 The Colpitts Oscillator

The Colpitts Oscillator is a unique problem in our testing because the performance

of it is greatly improved by switching from Gaussian RBFs to MultiQuadric RBFs, this is

something we have only come across with this dynamical model. We speculate that the

reason for this is due to the explosive nature of the exponential in the Colpitts Equations.

The Multiquadric RBF as shown in equation(2.26) has two hyperparameters that we sweep

across instead of the usual 1. The Multiquadric is special in that each center’s influence

doesn’t drop off with distance from the center as the Gaussian RBF does, rather the
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farther one travels from the center, the more influence it has! Generally, we prefer the

Gaussian, we take the approach that centers should have influence over their local space

and that centers far away shouldn’t as their far distance from the points of interest should

dull their effectiveness to the nuance of far away local space. The Colpitts Oscillator and

MultiQuadric combination defies this approach for reasons that we could only speculate

having to do with the exponential behavior of Colpitts. Nonetheless, the Multiquadric

results are superior from the Colpitts Oscillator and are shown in Figure(2.6).

Figure 2.6. The Taylor Method struggled with the nonlinear behavior and exponential
terms in the Colpitts Oscillator, as shown in Figure(2.2). The RBF method, specifically
the Multiquadric RBF, handles this system much better, achieving a near 7 Lyapunov
Times of accurate prediction, which we think is a good result for the nonlinear and
exponential Colpitts Oscillator. We again used grid sweeping followed by differential
evolution to find the best parameters. For this result we used β = 0.018772874248566572,
r

1
2 = 0.013545674322853224, and α = 0.7

2.6 Other Interpolators

For the remainder of this paper we will only concern ourselves with the Radial

Basis Function Representation of the dynamical vector space, but an important point

needs to be made that the future work of DDF should not be limited to only the Radial

Basis Function. DDF is not an RBF method, rather it is a method of reconstructing the

dynamical model (in an approximate form) from data and utilizes interpolators to do this
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(it just happens that we have found great success with the RBF, so we’ve focused a lot of

our work on it). At it’s very core, DDF cares about creating a mapping based on a data

set that can take an input, x, and forecast the next step based off a time series data set

of (x,y) data in the form [(x(1),x(2) − x(1)), ..., (x(N),x(N + 1) − x(N))]; Figure(2.7)

captures the essence of this idea graphically. We stand by the RBF formulation in this

paper and its nice properties, but by the construction of DDF, any interpolator can more

or less solve this problem of mapping x to y.

Figure 2.7. This graph of the Lorenz 1963 system illustrates the basic idea of what DDF
is trying to capture. DDF is trying to capture the update rule for how the trajectory in
state space should look for the entire volume on which the attractor of the dynamical
system is confined to (although these updates are from ODEINT, not DDF). As part of
the illustration, arrows that represent updates of larger magnitude are represented by
large arrow, whereas areas of smaller updates are represented by smaller arrows. The size
of these steps will be directly influenced by the time step, h, as smaller time steps will
result in smaller spatial steps in state space.
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Chapter 3

Takken’s Embedding Theorem and
Reconstructing the State Space

It is often the case that experimental observation of a system does not provide

us with knowledge of all the states in the system, this is a problem because we are now

lacking the information needed to model this system. Without the full array of data of

each state, we couldn’t even advance the dynamical equations (if they were known) forward

in time with numerical methods like Runge-Kutta. The geometry of the state space and

the attractor would be incomplete, but the structure of the multivariate dynamics can be

unfolded using Takken’s Embedding theorem.

3.1 Takken’s Embedding Theorem

The problem of reconstructing the state space of limited observation (such that the

observed dimensions, y(n), are fewer than the total dimension of a system, x(n)), was

solved by the embedding theorem attributed to Takens and Mañé[10, 28–30]. Takken’s

Embedding Theorem tells us that if we are able to observe a single scalar quantity h(•) of

some vector function of the dynamical variables g(x(n)), then we can unfold the geometric

structure from this set of scalar measurements h(g(x(n)). This new vector space is made

out of components consisting of h(•) applied to higher powers of g(x(n)). This vector
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would appear as:

s(n) = [h(x(n)), h(gT1(x(n))), ..., h(gTDN −1(x(n)))] (3.1)

This s(n) vector would be our new operating space, and we will perform all our operations

not with the observed D0 dimensions, but D0 ∗ DN dimensions. According to Takken’s

Embedding Theorem, we get to choose our function g, so we’ll choose it to transform the

state to a state at a previous time. Each power of gT will transform the state vector back

an additional time, τ , such that the time delays will all be an integer τ apart. We apply

the h(•) function to the time delayed state of the full system and outputting only the

observed dimensions, our data set. Now our new state vector, s(n) takes this new form:

s(n) = [y(n),y(n − τ), ...,y(n − (DE − 1)τ ] (3.2)

We will make use of as many observations in this formulation as we can, and we will have

time delayed duplicates of the D0 observed dimensions.

The proper interpretation to take is that the time delays inform the dynamical

system of what is happening outside of the observed variables and how the unobserved

variables affect the observed variables. This information is critical to developing a complete

view of the model dynamics.

The reconstruction of the original state space is made easy by the simple time delay

transformations, we’ll go through the theory of what constitutes the best choice for the

number of time delays and the length of those time delays next, and after that we’ll show

how this looks in practice in a DDF setting.[13, 14]
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3.1.1 Choosing the length of Time Delays

With the formulation set up for us to start using time delays to unfold our state

space, we need to make a choice of how long the time delays will be, but the embedding

theorem allows all time delays as valid reconstructors (except for those that match the

precise period of a periodic signal). In theory, we can choose any time delay as long as we

have an infinite amount of infinitely accurate data, unfortunately, this isn’t usually, or

ever, the case. Without any guidance from the embedding theorems on what choice of

time delay to make, we’ll make use of the rules described by Abarbanel in 1996 [13][31].

Firstly, the time delay, τ should be some integer multiple of the time step, h, of

the recorded data so that the delayed time is also an observed time.

Secondly, we to choose times that are not so close together such that the original

point in time and the delayed point in time have exactly no independence from one another.

The usual example for this would be in the case of studying the weather, if we are sampling

the temperature of the atmosphere with time delays on the order of milliseconds, there

isn’t much appreciable difference in the weather until minutes have gone by, and we have

over sampled the system.

The third and final rule is that we don’t want to time delay too long, especially

in chaotic systems. This is because after a significant amount of time has passed in the

system the relationship between y(n) and y(n − τ) is completely random and independent

of each other, this offers us no insight into how the system evolves with time. Our goal

now is to choose a criterion that allows us to choose a time delay that follows these rules,

where the time delay is large enough such that an appreciable amount of change has

happened in the system, but not too much that the state of the system is independent of

its time delayed state. Our choice for this criteria comes in the form of the average mutual

information:

IAB =
∑
ai,bi

PAB(ai, bi)log2[
PAB(ai, bi)

PA(ai)PB(bi)
] (3.3)
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We can rewrite this in terms of our data point y(n) and its first time delay y(n − τ)

IAB =
∑

y(n),y(n−τ)
P (y(n),y(n − τ))log2[

P (y(n),y(n − τ))
P (y(n))P (y(n − τ)) ] (3.4)

Using a special criterion invented by Fraser in 1985 we will take advantage of the average

mutual information to satisfy our three rules that we want to follow. The average mutual

information between time delayed data sets tends towards zero as the time delay grows

larger, which is in line with our third rule that they must become independent with

increasing time. We want to find the sweet spot of not too close, but not so far away that

average mutual information goes to zero to follow our second rule, so according to Fraser,

we choose the first minimum of the average mutual information.

The challenge now is in calculating the average mutual information to find the first

minimum. We’ll make use of our observed data and put it into histograms; there will be

some deviation in the result based on how binning is done, but assuming it is done in

a standard way, we can calculate the average mutual information by summing over the

bins and using their ratios of present data points/total data points to calculate P. Using

this process the average mutual information will be calculated for many τ ’s, starting with

τ = h and incrementally increasing it by factors of h.

3.1.2 Choosing the Number of Time Delays

With the knowledge of what our time delay length will be, we must then ask

ourselves how many time delays dimensions do we want. For a D dimensional system with

D0 observed dimensions (D0 ≤ D), we will have a total of DE ∗ D0 dimensions where DE

is the number of sets of delayed dimensions plus the original leading set. In choosing the

value of, DE what we are really asking is how many dimensions are necessary to unfold

the observed orbits from self overlaps arising from the projection of the attractor to a

lower dimensional space. We call the lowest dimension that exists such that no more
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Figure 3.1. We took 25,000 data points from the x dimension of the Lorenz 1963 data
set and put it in a histogram with a bin size of 0.1 with a total of 400 bins. This is
an approximate form for the discrete probability distribution for the x dimension of the
Lorenz 1963 model. This approximate probability distribution, in the form of a histogram,
will be used to solve the discrete form of the average mutual information described in
equation(3.4) which would be used to find the best time delay length parameter τ .

Figure 3.2. With the probability distribution we made above in Figure(3.1) and another
similar one we made for the time delayed Lorenz 1963 data of the x dimension, we calculate
the average mutual information from equation(3.4) for many different time delays, τ , to
find our optimal time delay to be at τ = 87*(h) where h in this case is 0.002.

of the overlapping points remain the embedding dimension. Note that the embedding

dimension need not be the same as the original dimension of the system, fortunately the

theorem states that if our total dimensions, D0 ∗ DE, is greater than twice the fractal

dimension of the original system, DA, that would be sufficient to unfold all the overlapping
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points.[32][13]

Now, while this condition of only needing more than twice the original dimension

is a convenient theorem to fall back on, we may not want to rely on it entirely. The first

obvious problem is that we may want to use fewer dimensions to reduce the computational

overhead of our experiments. Additionally, we may not know the original system’s fractal

dimension if we only have the capability to observe some subset of the dimensions. For

these problems, there exists a test that has been designed to test the overlapping of the

system by looking at the number of the false nearest neighbors. False nearest neighbors

arise when far away points in state space are projected onto each other through the process

of observing reduced dimensions, so by creating time delay duplicates, we can tell when

we have sufficiently unfolded the space when the number of false nearest neighbors drops

to zero. The test we conduct is to take each point in our data set, y(n), as well as it’s

first time delay according to the average mutual information, and to calculate its nearest

neighbor, sNN (n). If the insertion of an additional time delay dimension takes the nearest

neighbor out of the local space of the data point in question, then that nearest neighbor

was a false nearest neighbor as opposed to a true neighbor that exists next to our s(n)

though dynamical origins. Once we increase the dimension to the point where no more

false nearest neighbors exist, we have identified the embedding dimension, and we are

done.

There is one last criteria that we need to address and that is identifying how far is

far enough to be considered a false nearest neighbor, in practice it will be a subjective task,

but we can define some terms to make it easier. We now define the Euclidean distance for

the DE dimension and the DE+1 dimension for nearest neighbors at time n:

RDE
(n)2 =

DE∗D0∑
d

[sd(n) − sNN
d (n)]2 (3.5)
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RDE+1(n)2 =
(DE+1)∗D0∑

d

[sd(n) − sNN
d (n)]2 (3.6)

RnDE
= RDE+1(n)

RDE
(n) (3.7)

RnDE
is our rating for the false nearest neighbor at the nth data point in time and for the

DE number of time delay dimension sets. We need to choose a cut-off point for which

any distance greater is labelled a false nearest neighbor; this value will vary from data set

to data set, but a standard initial choice for labelling a point a false nearest neighbor is

RnDE
> 15.

We’ll go through an example of this process for the Lorenz 1963 system. We will

start by calculating the nearest neighbors for DE = 1, no time delays, and comparing

their distances before and after adding an additional time delay dimension, DE = 2. After

recording the number of false nearest neighbors detected, we’ll recalculate new nearest

neighbors for the next data set with DE = 2 and recursively repeating this process until

DE is large enough that no false nearest neighbors appear.

3.2 Applying Time Delays to DDF

Let’s bring this discussion back into focus of DDF and the problem we are trying

to solve; we have a data set, y(n), that has D0 dimensions in a system with D total

dimensions, such that D0 < D, and we want to forecast its future behavior. To do this, we

need to use the time delay embedding tools to reconstruct the attractor and state space

statistics. Without reconstructing the state space, we’ll never be able to properly forecast

the model dynamics, as the dynamics are geometrically folded up as a result of observing

fewer than the total number of dimensions. Fortunately the process of unfolding them

with time delays is a relatively painless one, we start by finding the first minimum of the

average mutual information to determine our time delay length, and after that, we find

the embedding dimension, the smallest dimension free of false nearest neighbors. With
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Figure 3.3. This test is conducted using an observation of only the x dimension of
the Lorenz 1963 system, which looks at the percentage of false nearest neighbors. The
percentage of nearest neighbors being false nearest neighbors drops to zero when DE = 4
for a system that is originally 3 dimensions. This is a slightly subjective result, as we
chose the cutoff R to be 25. Additionally, the percentage of false nearest neighbors was so
low for DE = 3 that it could be argued that we were too conservative with our choice of
threshold for R. Regardless of some subjectivity for thresholds, we have gained an insight
into what number of dimensions we’ll need (say DE equal to 3 or 4) to unfold the geometry
of our data set to reconstruct the state space.

these tools, we can start modelling the dynamical system with DDF.

We will no longer be training and outputting the y(n) data, but rather the time

delay data with DE sets of y(n) time delay sets, with the length of the time delay being τ .

s(n) = [y(n),y(n − τ), ...,y(n − (DE − 1)τ)] (3.8)

s(n) = [y1(n), ..., yD(n), y1(n − τ), ..., yD(n − τ),..., y1(n − (DE − 1)τ),

..., yD(n − (DE − 1)τ)]
(3.9)

The way we treat this data with DDF is slightly different from before, we’ll take

our newly created s(n) data and will train DDF on all DE ∗ D0 dimensions of it. However,

we will not forecast the behavior of all of its dimensions, rather, we will only forecast the

leading D0 dimensions. All the time delay dimensions will follow the rule defined in the

equations above, they must be the value of the leading term delayed by some integer

43



multiple of τ in the past. So as we are updating the leading terms with DDF, we will

update all the delayed terms with what DDF predicted for the leading term some time in

the past. Our DDF update will appear the following way:

yi(n + 1) = yi(n) +
Nc∑
q=1

ωiqϕ(||s(n) − c(q)||) i = 1, 2, .., DE (3.10)

There is a choice that will go on a case by case basis in terms of which values in the

interpolation (RBF’s, polynomials, etc.) of the update rule are inputted with the full time

delay vector s(n) and which term is inputted with only the leading term y. In practice,

the RBF always receives the time delay term, s(n), but the polynomial terms have had

empirical success only receiving the leading term, y(n) (when used in conjunction with the

time delayed RBF’s). Additionally, external forces are considered not part of the dynamics,

as they are external, and thusly, are not time delayed; this case will be obvious in the

Neurodynamics section when the topic of external stimulus to the neurons is discussed.

3.3 Time Delay DDF Examples

To give a nice illustration of what the time delays look like, we include Figure(3.4);

it takes only the x dimension from the Lorenz 1963 system and shows the leading term

followed by three of the same dimensions with their own respective time delays. The time

delays in this figure are a little larger to better illustrate the concept as the τ is chosen to

be 100 time steps, but the more effective τ is closer to about 87 time steps (for a time

step length of 0.002 arbitrary Lorenz 1963 time units).

Our next figure, Figure(3.5), shows what happens when one tries to perform DDF on

a single observed dimension. Here we see that the best one can hope for in a 1 dimensional

system is a convergence to a single value (due to the decaying nature of the Gaussian

RBFs, blowing up to infinity isn’t an option); for systems of many dimensions, observing

multiple dimensions, but not all, will still result in a poor forecast as the state space needs
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to be reconstructed and reduced dimensional observation will project the properties of the

state space to fewer dimensions.

The final figure, Figure(3.6), shows that with time delay embedding, we can only

observe the x dimension of the Lorenz 1963 system, and with careful choice of time delay

and time delay dimension, we can reconstruct the state space of the Lorenz 1963 system

so well it can forecast for 13 lyapunov times.

Figure 3.4. This graph is an illustration of what time delay embedding would look
like, albeit for a one dimensional observation. If we were to use this observation of the
x dimension for DDF, the data set would be broken up into four dimension, all copying
the same data from the same X dimension observation, but with a time delay τ according
to this graph. In this case, τ is set to 100 and the time delay dimension is set to 4, but
this is just for show (τ equal to 100 looked a lot nicer than a smaller better performing
τ). In practice, the best performing combination was found to be 13 τ with 11 time delay
dimensions (as shown in Figure(3.6)).

3.4 Why use Time Delay Embedding?

Finally, we want to end on the discussion of why should we bother with time delays

at all, and address the question of what would happen if we just trained DDF of the

limited data, y(n), alone without time delays. By using time delays, we reconstruct the

state space and thus the attractor that we need to forecast forward in time properly. But

if we ignore the time delay embedding, and allow the state space geometry to remain
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Figure 3.5. This figure shows the necessity for the time delay embedding technique when
forecasting reduced dimensional observations. This one dimensional update rule results in
convergence to a single value, which is both uninteresting and useless. Even if one had
multiple observations from a larger system, if they do not have observations of the entire
system, TDE must be used to reconstruct the state space, or they will suffer the penalty
of forecasting with an incomplete state space/attractor, and their forecast will most likely
be incorrect.

projected and folded up, then the model dynamics will be at best extremely difficult to

piece together with DDF alone, and at worst, completely impossible to reconstruct without

Time Delay Embedding.

To give an example of why this would be impossible, imagine the case of the Lorenz

1963 system, it is a three-dimensional and chaotic system (when the correct parameters

are chosen); let’s say we only observe one dimension of this three-dimensional chaotic

system, and if we were to train DDF on this one dimension alone, we would never replicate

the model behavior. This is because DDF constructs an approximate dynamical system to

the differential equation:

dxi(t)
dt

= fi(x(t)) i = 1, 2, .., D (3.11)

Well let’s say this DDF constructed dynamical system is 1 dimensional, D=1, based

off of the single observation, then there are only two possible outcomes, convergence to a
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Figure 3.6. Here we can see that using time delay embedding, we have reconstructed
the state space, or in other words, we have reconstructed the statistical properties of the
state space and the attractor to appropriately update the forecast of the x dimension in
time. While we reconstruct the information about the system to forecast well, we still
don’t have any information about the unobserved dimensions, and this will not change.
TDE will not tell us anything about the unobserved dimensions, only aid us in forecasting
the observed ones. This forecast stayed accurate for 13 lyapunov times with the use of
Gaussian RBFs and TDE, only losing about 3 lyapunov times from the Gaussian RBF
use with the complete data set and no TDE. The hyperparameters for this forecast are
β = 6.680359280320344e-08, R = 0.005041444147767352, Time Delay Dimension = 11,
τ = 13 (Differential Evolution was used to pinpoint the best forecast). Note that this
tau value is much smaller than what was predicted using the average mutual information,
and the dimension size is much larger than the 3 or 4 that the false nearest neighbors
recommended. These results showed up simply because differential evolution found them
to work well and found that a trade-off of shorter time delays and greater dimensions
provided strong predictive power. The best combination of time delay length and number
of dimensions will always involve some guess work, but the false nearest neighbor and
average mutual information methods will always act as your starting point in this search.

fixed point and divergence to infinity (technically there are unstable fixed points that are

stable as a single point in space, but any noise in a physical system would deny the system

any long term convergence to one). Well, clearly this completely negates DDF’s ability to

replicate the chaotic behavior of the full three-dimensional system. Empirical tests also

support this idea, as DDF consistently converges to fixed points when trained on 1D sets

of data. View Figure(3.7) to see the limitations in which 1D systems operate.[5]

Through time Delay Embedding we are able to reconstruct the state space and
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Figure 3.7. 1 Dimensional system showing a stable fixed point (filled circle), an unstable
fixed point (hollow circle), and a divergence to +∞ for value sufficiently large and positive
enough. This is significant because if we try to take data from an observation of a single
dimension, any attempt to construct a 1D dynamical system is doomed to fail as the
outcome will always be convergence to a fixed point or divergence to +/-∞. 2D systems
can exhibit limit cycles in addition to fixed points and infinite divergence, and 3D systems
and larger can exhibit chaos. It’s also important to note that even if we observe 3 or more
dimensions, but not all the dimensions of a system, we will fail to reconstruct the model
dynamics without time delay embedding techniques, and this example is just to show an
obvious and extreme case of why TDE is so important.

even in higher dimensions with a large (greater than two dimensions such that chaotic

behavior is possible) but less than complete observation of a physical system, Time Delay

Embedding consistently shows to be a boon to the predictive power of DDF.
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Chapter 4

The Dynamical Theory of DDF

We have discussed previously in the introduction the different tools that mathe-

maticians have used to characterize dynamical systems, what we seek to do now is to use

these same tools and compare the characteristics of dynamical systems to the ones the

DDF approximates in replicating those systems. The fractal dimensions, the lyapunov

exponents, and the Jacobian of the dynamical system (which is used to calculate the

lyapunov exponents) are all fundamental descriptors of a dynamical system; while it is not

known what a complete set of characterizations for a dynamical system may be, we do have

these characterizations that can at least be used to assess the similarities and differences

that exist between systems. In the case of a DDF set of learned equations from observed

data, we seek to calculate the fractal dimension, Jacobian, and lyapunov exponents of

the DDF equations to learn how well DDF has learned the dynamical system. While the

ultimate goal of Data Driven Forecasting is to forecast, we do so by reconstructing an

approximate form of the dynamics and by comparing the properties of the DDF dynamics

to the true dynamics, we can gain some trust in the predictions DDF makes and better

understand what DDF is doing under the hood.
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4.1 Fractal Dimension Preservation

The first test we will conduct will be to verify the preservation of the fractal

dimension of the forecasted data set generated by DDF. The attractor that arises from

the DDF fit to observed data will have its own fractal dimension (its own shape and

geometry in the phase space it was trained in), the data set that DDF generates through

forecasting is evident of this. The DDF update rule follows this attractor, or strange

attractor for chaotic systems, and should the fit of DDF to observed data be successful,

the DDF attractor should behave very closely to the original as verified by the accuracy of

the forecast and the consistency of the fractal dimension.

It is easy to see how important the fractal dimension is to the forecast as the fractal

dimension is a measure of shape and volume in phase space; if the fractal dimension is not

consistent, the DDF attractor will either lead the forecast out of the constrained volume

of the original dynamics (too large of a fractal dimension) or not fully explore the phase

space of the original data (too small of a fractal dimension). Of course, it is possible to

preserve the fractal dimension but get the geometry wrong as the fractal dimension is

simply a number that a wrong forecast could get lucky and match; we can, however, be

more confident in our DDF attractors accuracy with the calculation of the correct fractal

dimension if the forecast is accurate as well.

Now that we’ve established the importance of preserving the fractal dimension with

DDF, we show two cases of DDF preserving the fractal dimension. For DDF forecasts

that are sufficiently accurate, it will preserve the fractal dimension so long as long term

instabilities don’t take over; anecdotally we have found that instabilities are more likely to

occur in the case when the forecast is either poor or too short. We have also found that

the fractal dimension of the DDF attractor is more accurate when the forecast is more

accurate. This intuitively makes sense as capturing the correct dynamics is a requirement

for good forecasting which also necessitates operating in the correct volume of phase space,
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hence the matching fractal dimension. Figure(4.1) depicts the fractal dimension result for

the Lorenz 1963 system for both the case of DDF learning the full system and learning a

single dimension and using time delay embedding.

Figure 4.1. Using the method of Fractal Dimension calculation outlined in the appendix
(Using the Correlation function), we calculate the fractal dimension of the Lorenz 1963
system from the slope in the graph to be 2.01 ± 0.03, the DDF data to be 2.06 ± 0.02,
and the TDE DDF data to be 1.96 ± 0.02. The values are all in agreement, as the
uncertainty in each measurement overlaps. The reported value of Lorenz 1963’s fractal
dimension is estimated to be 2.05 ± 0.01 [33], the reason for the discrepancy between this
value and the one we report is likely do to numerical error on our part; the quantity of
data and size of time step we use likely introduced some error, but the result suffices to
show that consistency between fractal dimensions between the original system and DDF’s
reconstruction of that system. It is also worth noting that the TDE DDF data set is the
same as in Figure(3.6) implying that even though it had 11 time delay dimensions, it still
reconstructs the correct fractal dimension of the original system within its error bounds
from a single observed dimension (the x dimension of Lorenz 1963).

4.2 Jacobian Reconstruction and Lyapunov Expo-
nent Consistency

Before we can get into a discussion on the lyapunov exponents, we must discuss the

Jacobian of the DDF system, as that is needed to perform the calculations of the lyapunov

exponents. The Jacobian is a direct feature of the model equations, one that can easily be

calculated from simple partial derivatives; the Jacobian of the DDF is a simple task to

51



calculate as well, the sum of radial basis functions allow for easy calculations.

We’ve seen in Figure(2.3) how the TSR DDF method can learn the Taylor series

values for polynomial system and thus the Jacobian, but we are more interested in the

non-polynomial models and the RBF representation. We want to know if the RBF method

using Gaussian RBFs can accurately capture the Jacobian of the original model equations.

From tests that we have conducted, we have found that they do not.

A Method has been invented to use RBFs to calculate Jacobians and the derivatives

[34], but the way DDF is implemented does not allow for the calculation of the Jacobian

of the dynamics that updates the data, at least not with the current usage of DDF. This

means that the lyapunov exponents that could be calculated will also not match those

of the original dynamics. While this shortcoming of reconstructing the model dynamics

(which is what DDF attempts to do) may seem disappointing, it lays the groundwork for

future updates to DDF to expand on itself, and it doesn’t take away from the forecasting

power already displayed by DDF.

Finally, there is one last point of interest to go into, and that is the calculation

of the lyapunov exponents of the trained DDF system. We’ve already discussed how

DDF can’t capture the lyapunov exponents of the system that it trains on due to its

difficulty calculating the Jacobian, but there is still insight the lyapunov exponents can

offer us on the trained DDF system. Figure(4.2) shows our result for calculating the

lyapunov exponents of the DDF system trained on Lorenz 1963 (λ1 = 0.89, λ2 = 0.003,

and λ3 = −6.8; for reference, the true lyapunov exponents of the Lorenz 1963 system are

λ1T = 0.9, λ2T = 0, and λ3T = −14.7 for the chosen parameters of the system); in this

figure we see that the leading lyapunov exponent is both positive and similar to the true

value of the Lorenz 1963 system. The closeness in leading LE is likely due to the fact

that it is the dominant LE on the behavior of the dynamics and DDF picked up on that,

and as one might expect the other LE is quite different (not counting the zero LE, as

that is expected of a continuous time dynamical system). We should point out that as a
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result of the DDF having a positive lyapunov exponent, it satisfies the criteria for being a

chaotic system and in fact does exhibit chaotic properties like extreme sensitivity to initial

conditions.

Figure 4.2. This graph shows the convergence of the lyapunov exponents to their
estimated value as the number of time steps increases using the method of LE calculation
listed in the appendix. The values converge to about λ1 = 0.89, λ2 = 0.003, and λ3 = −6.8.
For reference, the true lyapunov exponents of the Lorenz 1963 system are λ1T = 0.9,
λ2T = 0, and λ3T = −14.7 for the chosen parameters of the system. As all time series
dynamical systems, the trained DDF system has one lyapunov exponent that is at zero.
The maximal LE value λ1 is remarkably close to the maximal LE of the original Lorenz
system, which makes sense as this is the dominating lyapunov exponent of the system and
the two dynamics behave very closely as we trained DDF to do. Another important thing
to note is the existence of the positive lyapunov exponent implying that the trained DDF
dynamics are chaotic, replicating a very significant behavior that existed in the original
Lorenz dynamics; this DDF system, three separate sums of Gaussian RBFs (because it’s
training on a three-dimensional system) is capable of learning and exhibiting chaos (In
testing we have also verified the extreme sensitivity to initial conditions to exist).

4.3 Concluding Remarks

Ultimately what makes DDF useful is not what was discussed in this section, DDF’s

utility comes from its ability to take observed data and to forecast future behavior of

that system under the same or different conditions. We include this section to flesh out

the lengths to which DDF reconstructs model dynamics, where it succeeds and where it

falls short. We’ve learned that DDF can match fractal dimension for sufficiently accurate
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fitting, we’ve learned that it can’t reconstruct Jacobians, but it can learn chaos and have

positive lyapunov exponents. These lessons are important because DDFs forecasting power

comes from its reconstruction of the model dynamics, as evident here, a near perfect

reconstruction is not necessary as DDF has been shown already to forecast with great

accuracy despite the shortcomings discussed already. With the groundwork laid out here

in this section, future work may go into adapting the DDF method to learn more about

the model dynamics that it currently does and to study the inner workings of DDF more

deeply, either to continue improving the forecasting power of DDF or to develop a tool

that can give us estimates of model characteristics from observed data alone.
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Chapter 5

DDF in Neurodynamics

DDF constructions have been shown to be capable of replicating both theoretically

and experimentally generated data of the neuron membrane voltage. The theoretical data

comes from the Hodgkin Huxley Neuron (more specifically, its numerical integration to

generate time series data sets), and the experimental data comes from a laboratory doing

current clamp experiments. As the experiments are only able to record the voltage, we

use our time delay embedding techniques to generate an appropriate space in which the

full dynamics can be realized; all the knowledge of the ion channels, gating variables,

and their many parameters are not available to us in these tests. The current applied to

the neuron is known to us ahead of time as the experimenter chooses the current ahead

of time before applying it to the neuron, we will treat this current as a known driving

force. Finally, after analyzing both Hodgkin Huxley neurons and experimentally measured

neurons, we’ll construct networks of neurons and show the capacity for DDF to create

what we call "DDF Neurons" which can be duplicated in a network and connected to each

other through ligand gated synaptic connections.[2]

5.1 Hodgkin Huxley Neurons

The Hodgkin Huxley model was the first quantitative model of active membrane

properties developed in 1952[35]. It was originally used to calculate the action potentials of

55



the squid giant axon. Hodgkin and Huxley used voltage clamp experiments that produced

the experimental data that guided them in their mathematical constructions of the sodium,

potassium, and leak currents descriptions and the relationship ions had to the membrane

potential. The Hodgkin Huxley model, also known as the NaKL model, is an effective

model that has been shown to produce action potentials similar to what has been found

experimentally and acts as a useful practice step before tackling the challenging task of

using real noisy data.[36]

5.1.1 Hodgkin Huxley Structure for Driven DDF

Before jumping into the equations of Hodgkin Huxley, we must first address the

structure of the equations and how we’ll handle the stimulating current Istim(t). We’ll

break down the form of the Hodgkin Huxley equations in a way that will be easy to view

in a DDF context:

C
dV (t)

dt
= Fintrinsic(V (t),A(t)) + Istim(t) (5.1)

dA(t)
dt

= FA(V (t),A(t)) (5.2)

Fintrinsic(V (t)) represents the intrinsic behavior of the Hodgkin Huxley neuron, all of its

ion channels, gating variables, and parameters exist in this function which sum up the

electrophysiological behavior of biophysical neuron. The ions in this equation are the

Sodium (Na), Potassium (K), and Leak (L) currents (The leak current isn’t actually an

ion channel, it acts as a fudge factor to account for error in the ion channels). The gating

variables, which will later be denoted as m, h, and n, are labelled A(t) and range from 0

to 1 indicating an either closed or open state.

The Hodgkin Huxley formalism, as well as the true dynamics of real bio physical

neurons, includes the external stimulus as an additive forcing term, Istim, which we use to

our benefit in the DDF protocol as DDF is particularly capable of handling additions of

terms (referencing our prior discussion of the linear functionality of training weights in
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the RBF’s). The solutions, or discretization, of the Hodgkin Huxley equations take the

following form as we manipulate them into a DDF formulation:

V (n + 1) = V (n) +
∫ tn+1

tn

dt′ Fintrinsic(V (t′),A(t′))
C

+
∫ tn+1

tn

dt′ Istim(t′)
C

(5.3)

V (n + 1) = V (n) + fV (V (n),A(n)) + h

2C
[Istim(n + 1) + Istim(n)] (5.4)

A(n + 1) = A(n) +
∫ tn+1

tn

dt′FA(V (t′),A(t′)) (5.5)

A(n + 1) = A(n) + fA(V (n),A(n)) (5.6)

Here fV and fA are both the interpolated functions used by DDF, in our case we use

Gaussian RBF’s. The integrals of the Hodgkin Huxley equation are too intractable to solve,

but we can think of DDF approximating what these integrals would be. The stimulus

integral is approximated using the 2nd order midpoint rule[37].

5.1.2 The Hodgkin Huxley Neuron Example

Now we want to analyze the DDF representation of the Hodgkin Huxley (HH)

model for two cases. The first case will be an unrealistic test that utilizes all four of the

dimensions, voltage and the m, h, and n gating variables; this test is unrealistic because

in an experimental setting the researcher will only ever be able to measure the voltage

in current clamp experiments. This first case is still performed as a confidence building

exercise to establish DDF’s capability to handle biophysical systems. The second case will

be tackling the more realistic problem of only observing the voltage. This means our DDF

tool will only train and forecast on the voltage alone; we’ll also need to utilize time delay

embedding methods in order to unfold the state space that is now projected down to the

one voltage dimension.

The first step in this process is to generate our data set for training and forecasting

comparisons using the HH equations. The HH model is four dimensional, containing voltage
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and the gating variable m, h, and n, as well as three ion channels, Sodium, Potassium,

and a leak channel (the leak channel is a fudge factor channel that accounts for errors in

this simple model).

The equations for the HH model are:

C
dV (t)

dt
= gNam(t)3h(t)(ENa − V (t)) + gKn(t)4(EK − V (t))

+ gL(EL − V (t)) + Istim(t)
(5.7)

da(t)
dt

= ηa(V (t) − a(t)
τa(V (t))

ηa(V (t)) = 1
2 + 1

2(tanh
(

V (t) − Va

∆Va

)
)

τa(V (t)) = τa0 + τa1(1 − tanh2(V (t) − Va

∆Va

))

(5.8)

Where a should be interpreted as m, h, and n respectively. The parameter values are taken

from [38]. The parameter values are listed below:

Then our observation of the four variables, y(t) = [V (t), m(t), h(t), n(t)], would be

input into this explicit form for the DDF update rule. For voltage, the update rule is:

V (n + 1) = V (n) +
Nc∑
q=1

ωvqe
−R∗||y(n)−c(q)||2 + ωc

2 [Istim(n + 1) + Istim(n)] (5.9)

Note that we’re using Gaussian RBFs, Nc centers, and we’ve replaced the h/C in front of

the stimulus term and replaced it with the ωc, our fitting constant in front of the stimulus.

The addition of the stimulus and its fitting parameter into the Ridge Regression is an

easy extrapolation of the method to include one more dimension of parameters and inputs.

Now we’ll define our DDF update rule for the gating variables:

a(n + 1) = a(n) +
Nc∑
q=1

ωaqe
−R∗||y(n)−c(q)||2 (5.10)
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Table 5.1. Our chosen parameter values for each of our Hodgkin Huxley neurons. The
values are taken from [38]

Parameter Input Value
C 1.0

gNa 120.0
ENa 50.0
gK 20.0
EK -77.0
gL 0.3
EL -54.4
Vm -40.0

∆Vm 15
τm0 0.1
τm1 0.4
Vh -60.0

∆Vh -15.0
τh0 1.0
τh1 7.0
Vn -55.0

∆Vn 30.0
τn0 1.0
τn1 5.0

Where a is to be interpreted as m, h, and n respectively. The task for DDF is to fit the

RBF’s to the behavior of the HH system that is associated with a user specified external

stimulus.

Before we are ready to generate the HH data and perform DDF on it, we must have

a discussion of what constitutes an appropriate choice of stimulus for biophysical neurons.

There are two common issues that arise that derail our ability to perform DDF on neurons.

The first issue comes from the fact that cell membranes act as low pass filters and when

external stimuli are chosen to oscillate at high enough frequencies, aspects of Istim(t) are

filtered out by the low pass filter and training is likely to be insufficiently well-informed.

The test we have found to be useful in verifying whether a stimulus frequency is too high

is to look at the Fourier power spectrum of the external stimulus. The Fourier power
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spectrum must lie in a range that small enough that the frequency doesn’t pass some

threshold limit, which will vary depending on the type of neuron in question.

The second common issue that is best avoided, that is favored by many biologists in

the field, is the use of step currents; there are two reasons we as practitioners of DDF prefer

to avoid step currents. The first reason is that our methods rely on smooth transitions

to properly interpolate our data, DDF specifically is a method reliant on capturing the

vector space update rules from one position to the next and will not respond well to violent

discontinuous jumps. The second reason why using step currents makes for a poor DDF

neuron, is that while DDF can learn the behavior of a constant external stimulus, it does

very little to explore the state space as the voltage will oscillate repetitively in a cyclical

manner; it also poorly trains the DDF to handle much else other than a constant current

which isn’t very interesting.

Additionally, we must remark on the importance of the amplitude of the stimulating

current to be sufficient to induce an action potential, or spiking behavior, in the neuron

but not too stimulating that the neuron doesn’t spend any meaningful amount of time

in the sub threshold regime; this guarantees that the full dynamic range of the neuron is

well represented which is very important for our DDF method. DDF is an interpolation

method, and as such, must be exposed to the full range of neuron behavior in training

to capture the proper behavior for forecasting. These rules apply to both applications

of DDF to HH models and experimental data. V(t) data collected with Istim(t) chosen

employing these guidelines were regularly successful in using Data Assimilation techniques

to estimate the properties of rich HH models from laboratory data [38–40].

What we have found to be a reliable external stimulus has been the chaotic wave

forms from the Lorenz 1963 system, we specifically feed into the neuron the x dimension

of the Lorenz system and discard the y and z dimensions. The x dimension of the system

is scaled both in amplitude and in frequency to bring out an appropriate behavior in the

neuron, exploring both the action potential and sub threshold behavior. Now in Figure(5.1)
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and Figure(5.2) we can see both our choice of stimulus, how the HH neuron responds to

this stimulus, and our DDF prediction based on this stimulus. DDF is presented with the

full Istim time series for both the training and predicting times. It is also trained on all

four dimensions, but we only show its performance with the voltage (it is pretty standard

for DDF to perform equally well, or poorly, in all dimensions).

Figure 5.1. This is the x dimension of the Lorenz 1963 dimension, and it has been scaled
appropriately to be used as the stimulus for the HH neuron. Using a simple tool like
ODEINT we can generate any choice of stimulus to later be input into the HH neurons;
later we’ll see that it’s these same types of Lorenz 1963 x dimension signals that get
inputted into real neurons during experiments in the Margoliash lab through the use of
wave function generators.

With this success we have created what we call a "DDF Neuron", or in this case a

"DDF HH Neuron", that replicates the biophysical behavior of spiking and sub threshold

behavior. This will be a key idea when it comes to building networks of neurons, that

the neurons in a constructed network can be made up of DDF Neuron duplicates; this is

very simple to do in practice, we simply take our trained DDF model with all its fitted

parameters and create duplicates of it to receive different inputs and output its predicted

voltage to different locations according to some network grid. Before we can do this, we

must now address the issue of recording voltage only
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Figure 5.2. This is an effective application of DDF in constructing an HH neuron that
replicates both the action potential and sub threshold behavior. The HH data was obtained
by using ODEINT on the HH equations. The DDF process included the use of 5000
centers, R = 1e-2, beta = 1e-5, and it trained on 125ms of data (or 25,000 data points)
and forecasted for 175 ms. The Neuron in this graph is stimulated by the current shown
in Figure(5.1)

5.1.3 Observing V(t) Only

What is actually measured in current clamp laboratory experiments is V(t) alone.

The neuron dynamics reside in a higher-dimensional space than the one-dimensional V(t)

that is measured. What we observe is the operation of the full dynamics projected down

to the single dimension V(t). To proceed, we must effectively "unproject" the dynamics

back to a "proxy space" comprising the voltage and its time delays, which is equivalent to

the original state space V(t) and the gating variables for the ion channels.

We accomplish this in the way described in the Takken’s Embedding Theorem

section, we will create a vector of time delays, s(n) from the observed dimensions, y(n).

The new time delayed embedded system will include (DE −1) sets of time delayed data plus

the first original set of data that isn’t time delayed, resulting in D0 ∗ DE total dimensions

of the system. Since we only observe the voltage, D0 = 1, and DE becomes the total

dimension of our time delay embedded system.
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s(n) = [y(n),y(n − τ), ...,y(n − τ(DE − 1))] (5.11)

s(n) = [V (n), V (n − τ), V (n − 2τ), ..., V (n − (DE − 1)τ)] (5.12)

The physics behind the time delay construction is that as the observed system

moves from time n to n-τ , the dynamics of the system incorporates information about the

activity of all other variables beyond the voltage alone. As described in section 4, we will

use average mutual information to choose our time delay and the false nearest neighbors

test to choose our embedding dimension, DE.

We need to change the format of how we perform DDF slightly to accommodate

these new time delays. We will use our new data set, s(n), with DE dimensions of time

delays of V(n) and time delays that are τ long (where τ is an integer multiple of the

sampling rate, h) to construct this new formulation. We will choose our centers based off

the new s(n) data set, so our centers will be DE dimensional, but unlike traditional DDF,

we will only forecast one dimension, the leading dimension. All non-leading dimensions,

in this case DE − 1 of them, will repeat the forecasted values of the lead term with their

respective time delay applied. Note that the external stimulus, which is still using the

trapezoidal rule, will not be time delayed as it is not a function of state variables, but is

external to the system. The DDF update rule which only applies to one dimension for the

case of current clamp experiments takes this form:

V (n + 1) = V (n) +
Nc∑
q=1

ωvqe
−R∗||s(n)−c(q)||2 + ωc

2 [Istim(n + 1) + Istim(n)] (5.13)

5.1.4 HH Results When Only V(t) is Observed

Still using data from the HH model defined in equations(5.7,5.8), we generate a

data set and discard all the dimensions of the data set except for the voltage. We now
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train a Gaussian RBF with 125 ms of data for V(t) alone to fit the training parameters of

the RBF to the data. Then, with this training complete, we forecast on 500ms of voltage

data.

As in the earlier (unrealistic) example when all the state variables from the HH

neuron model were available, the DDF neuron is able to predict the time course of the

observable membrane voltage with significant accuracy while only being provided the

voltage. Note that one cannot forecast the gating variables of the HH model when their data

sets are not provided, as we have no information on them. Their statistical contributions

are captured in the Time Delay Embedding reconstruction, but that only enables us to

forecast the unprojected voltage and no other state variable.

Figure 5.3. Data generated from the Lorenz 1963 system was used as the external
stimulus for the voltage only HH DDF experiment. This data that was used in as the
stimulus is specifically the x dimension of the Lorenz 1963 system, and the y and z
dimensions were discarded.

5.1.5 Comparing Forecasting Times

To assess the effectiveness of using trained DDF to forecast V(t) data, for example,

for the efficiency of computational demands on a DDF neuron in a circuit where it replaces

an HH model, we compared the computation time for solving our HH model to the

forecasting time of a DDF trained on the V(t) from the HH model.
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Figure 5.4. Data generated by solving the HH model and by forecasting with the HH
trained DDF Neuron. We observe only the membrane voltage, V(t), and train on 125 ms
of voltage data. The forecasting window could be arbitrarily long, but was chosen to be
500 ms. This is a numerical calculation, but it corresponds to a realistic current clamp
experiment where, given a driving current Istim(t), only V(t) is observed. h = 5 · 10−3 ms,
β = 100, R = 10−3, τ = 8h, Nc = 5000.

We generated HH data by solving equations(5.7,5.8) using a standard fourth order

Runge-Kutta method [9] with a time step of h = 0.02 ms. The times taken by the

generation of the HH data in a forecast window of 2000 ms (105 time steps) were 8.9 s for

either CPU time or wall clock time.

We then forecast in the same window using the same Istim(t) as for the HH model

but using a trained DDF, trained on V(t) from the HH model and forecasting on only

V(t).

The choice of the number of centers Nc in the training and forecasting for the DDF

is important to the forecasting time of the DDF. The number of centers used in the results

shown in the paper were largely excessive (in the neighborhood of 5000), and were chosen

this way to exemplify marginally, if not negligibly, more accurate results; in practice we

could have as much success with 500 or even 100 centers. If we choose Nc = 500, then the

CPU time for forecasting the 2000 ms with h = 0.02 ms is 3 s, while the wall clock time

is 2.4 s. If we decreased the number of centers to Nc = 100, then the CPU time during

forecasting is reduced to 2 s while the wall clock time drops to 1.5 s.
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The training time for the DDF with Nc = 500, on V(t) from the HH model is 1.1 s

for CPU time and 0.63 for wall clock time. This decreases to 135 ms CPU time and 142

ms wall clock time for Nc = 100.

We should mention that for these tests DE = 4 as time delay embedding had

to be used for the voltage only tests. The number of time delay dimensions used will

have a noticeable effect on the computation time, as the increasing number of dimensions

increases the number of computations required for training and forecasting.

These times will vary as the complexity of HH model neuron increases from the

minimalist NaKL models to a model for observed laboratory observations. One expects

V(t) trained and forecasting on DDF to become relatively more efficient than our results

on the simple HH model. The training times for a DDF on V(t) data alone are quite fast.

In the scenarios where we substitute DDF V(t) neurons for HH neurons in a circuit, the

computational efficiency is what will be of central importance.

We will end on one final note that the numbers provided in this section are not an

apples to apples comparison, as the programs involved are not professionally optimized;

they were built in a laboratory setting with the intention of conducting comparisons and

experiments with. Additionally, these tests were performed on a MacBook Air with an

M1 Chip and 8 GB of memory, which will also play a role in affecting the outcome of

these results. The key takeaway from this section is to exemplify a current standard for

the processing speed of DDF and how competitive its speed is in a somewhat subjective

manner.

5.2 Real Neurons

Now that we have had success applying DDF to the simple case of the HH model,

we seek to push forward with applying DDF to the ultimate goal of using real neuron data

from a once living animal. In our effort to study and access real neuron data, we have
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collaborated with biologists (as we are a purely theoretical group with no surgical skill) to

obtain this data. We worked with biology groups interested in studying the Avian Song

system. In the collaboration between our groups, we have provided them with guidance

on choosing effective currents, and they have measured the effects of these stimuli on the

isolated membrane voltage of HVC neurons from the zebra finch song system.

5.2.1 Real Neuron Data Collection

Current clamp data were collected by C.D. Meliza at the University of Chicago

laboratory of Daniel Margoliash from presenting various stimulating currents, Istim(t),

to isolated HVC neurons in a zebra finch in vitro preparation. The data were organized

into epochs of length about 2 to 6 seconds, observed over several hours. We’ll perform

two primary tests with these epochs, the first is that we’ll take data from a single epoch,

specifically epoch 25, train a DDF Neuron based on this data, and forecast the later

behavior of this epoch (directly after training has ended). This test will show that we

can capture the behavior of the epoch 25 neuron and have a real "DDF Neuron" that can

be thought of as an approximate duplicate of a real neuron, but now we can input any

stimulus we want into. This leads to our second test, which is to input the stimulus from

epoch 26 into our "DDF Neuron" trained on epoch 25 stimulus and voltage data; this will

showcase the adaptability of our DDF neuron to have flexibility to stimuli other than what

it was trained on (Note that both stimuli are derived from a combination of the Lorenz

system and step currents).

It is important to specify the epoch that we train the neuron with because the

several hours of testing on the neuron is, to put bluntly, killing the neuron. This dying

process of the neuron can be thought to have an altering effect on the intrinsic parameters

of the neuron model itself. For example, imagine the neuron following the behavior of

the HH neuron, but instead now the parameters are slowly varying functions of time

because as the neuron dies, its behavior changes, which can be modelled as the parameters

67



changing in time. It is for this reason that when we conduct our second test to train and

test on two separate epochs, we specifically choose the epochs to be immediately next to

each other so that their intrinsic parameters are as similar as possible to keep the model

consistent.

Now we will introduce the first set of data provided to us by the Margoliash lab.

This is the full data set from epoch 25 including its stimulus and voltage response.

Figure 5.5. Stimulating current Istim(t) for the current clamp experiment at the Mar-
goliash Lab at the University of Chicago. It’s a mix of DC signals and Lorenz 1963 x
dimension signals. The x dimension of Lorenz 1963 is a nonlinear and chaotic signal that
is useful for exploring many different parts of the Neuronal state space, this exploration
will give DDF a more flushed out resolution of the neuron’s behavior enabling DDF to
properly respond to a wider array of future input stimuli upon training on this voltage
stimuli pair.

5.2.2 DDF Training and Forecasting on The Same Epoch

Now, using the same methods that were performed in the DDF application to the

HH model, we will apply them to the real data from epoch 25 described in the section

above. The Gaussian RBF’s will now learn the behavior of a real live (although slowly

dying) neuron from the zebra finch bird. Note that we again perform time delay embedding

techniques on this data set, as the current clamp experiments only measure voltage.

Here we have in Figure (5.8) the successful creation of a DDF neuron that has
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Figure 5.6. Membrane voltage response collected by C.D. Meliza (who is now employed
at University of Virginia) at the Margoliash lab. The data were collected in multiple
epochs from the same HVC neuron in zebra finch. Between epochs Istim = 0. Many epochs
of varying length were recorded. These data are, 3500 ms long.

Figure 5.7. The recorded stimulus during the forecasting window in the epoch 25 DDF
test. This is the stimulus that is being applied to the neuron during the same window of
time as the voltage and DDF voltage recordings/prediction going on in Figure(5.8).

learned both the action potential and sub threshold behavior of the HVC neuron. The

intrinsic dynamical properties of this real neuron have been approximated by the sum

of radial basis functions (in the form of Gaussians for this case). The choice of R and β

were found through a hyperparameter selection that is described in the appendix of this

dissertation. Note how, as one would expect, the time delay went from 8h to 2h as the

sampling rate was slower for the real neuron data. With this case done, the next question
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Figure 5.8. The DDF Neuron was trained for 1000 ms prior to the start of the forecasting
window shown here. Only V(t) was observed and subsequently forecasted on. The forecast
was for 1000 ms. h = 0.02 ms, τ = 2h, Nc = 5000, DE = 4, R = 10−3, β = 10−3.

to ask DDF is how flexible is it to changes in stimulus; we’ll see how it performs in the

next section when we take this DDF Neuron trained on epoch 25 data and forecast it with

epoch 26 stimulus and compare it to the epoch 26 voltage.

5.2.3 Training a DDF Neuron on One Epoch and Forecasting
it on Another Epoch

Our goal now is to show the flexibility of the DDF Neuron and its capacity to

correctly react to stimuli that aren’t the same as what it was trained upon. This is an

important question to ask, since the final goal of this body of work in Neurodynamics

is not to just model a single neuron, but to model whole networks of them. For a DDF

Neuron to work in a network of neurons, it must be able to have some amount of flexibility

in the stimulus, so it can work as a functioning network.

Here in Figures (5.9,5.10) we can see the epoch 26 data collected in the Margoliash

Lab.

With the data collected by C.D. Meliza we can perform our test. The DDF Neuron

is fitted to epoch 25 first, now using the same fitted parameters ω and centers, c(q), we

take this DDF Neuron and feed into it the stimulating current, Istim(t), that was used in
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Figure 5.9. Stimulating current for a current clamp experiment at the Margoliash Lab
at the University of Chicago. This stimulating current, Istim(t) was used during epoch 26.

Figure 5.10. This is the membrane voltage response recorded at the Margoliash lab at
the University of Chicago during epoch 26. C.D. Meliza was the scientist that collected
this data.

epoch 26 shown in Figure(5.11). We now perform the forecast (no training is needed, as

that was already performed during the epoch 25 test) and display the results in Figure

(5.12).

We can see how successful the DDF Neuron is in adapting to a stimulus from

another epoch. Granted, the stimulating current is still a waveform from the x dimension

of the Lorenz 1963 system, we can still make the claim that the DDF Neuron has some

amount of flexibility to its stimulating input and is capable of handling real noisy data
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Figure 5.11. This is the stimulating current that was inputted into the DDF Neuron
trained on epoch 25. This stimulating current, however, is from epoch 26 and is specifically
displayed during the forecasting window.

Figure 5.12. This is the analysis of epoch 26 and the DDF neuron’s (trained on 1000 ms
of epoch 25 voltage data) forecast of the voltage. The performance is worst for regions of
Istim(t) consisting of square pulses; which is consistent with the observations of [41]. h =
0.02 ms, τ = 2h, Nc = 5000, DE = 4, R = 10−3, β = 10−3.

which is the greatest accomplishment of the Neurodynamics section in our view; this

success paves the way for its use in networks of neurons. This will conclude our work

with real biological data though as we wish to now transition to testing and developing a

formulation for how to build DDF Neuron Networks and to do this, we’ll need to compare

with synthetic data generated from the HH model as well as delving into a discussion on

synaptic connections that hold HH neurons together.
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5.3 Networks of Neurons

One important goal of using neuron models trained by data alone (DDF Neurons),

is to provide a reduced model based on biophysical observations to employ in building

networks models. We demonstrate this in two ways, first in the most basic network

comprised of just two neurons connected by gap junctions, and secondly, another two

neuron network connected by a more realistic ligand gated synaptic connection. Note that

it is only the presynaptic and postsynaptic voltages that convey information from any

neuron in this circuit to others in the circuit. Both a pair of HH neurons and DDF neurons

are used in this circuit, either connected by a gap junction or ligand gated synapse.

5.3.1 The Gap Junction Connection

The gap junction is a simple, straightforward method of connecting two neurons

together in a network by relating their voltages to each other directly without any complex

opening and closing gating variable at play. We assign a label number 1 to the first neuron

in our circuit, this neuron receives an external stimulus as well as the stimulus from the

gap junction. We assign the label number 2 to the second neuron in our two neuron circuit

that doesn’t receive an external stimulus, but is connected to the first neuron by a gap

junction.

Gap Junctions are synaptic connects that are found in nature that are defined

by channels that are permeable to ions and other small molecules that allow rapid but

attenuated exchange of membrane voltage between neurons and are usually bidirectional.

Sufficiently strong gap junctions can enable the action potential in one neuron to trigger

an action potential in the paired neuron, which is something we’ll tune our gap junction

parameters to enable. While it is not the most complex synapse, it can lead to complex

effects. [36][42]
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Figure 5.13. A two neuron circuit comprised of either two HH neurons or two DDF
Neurons trained on HH voltage data. There are gap junction connections between the
two neurons in the circuit. The circuit is driven by the stimulating current Istim(t)
presented to neuron one. The computational task using DDF Neurons is simplified as only
membrane voltage plays a role and no integration of HH differential equations is required
in establishing the behavior of the neural circuit.

The voltage equations for the two neuron HH model becomes:

dV1(t)
dt

= FV (V1(t),A1(t)) + g12

C
(V2(t) − V1(t)) + Istim(t)

C
(5.14)

dV2(t)
dt

= FV (V2(t),A2(t)) + g21

C
(V1(t) − V2(t)) (5.15)

The FV functions are the base HH dynamics covered earlier and have been condensed down

to this form. To generate data from these equations, we can use our trusty ODEINT tool

from scipy to produce our training and test data; however, we are interested in deriving a

discrete form of these equations in which we can model our DDF update rule after. To

derive a useful discrete form of the equations, we start by integrating over the interval [t,

74



t+h], and arriving at:

V1(t + h) = V1(t) + fV 1(S1(t)) + h

2C
[Istim(t + h) + Istim(t)]

+ g12h

C
(V2(t + h) + V2(t) − V1(t + h) − V1(t))

(5.16)

V2(t + h) = V2(t) + fV 2(S2(t)) + g21h

C
(V1(t + h) + V1(t) − V2(t + h) − V2(t)) (5.17)

and then

g12+V1(t + h) = fV 1(S1(t)) + g12−V1(t) + h

2C
[Istim(t) + Istim(t + h)]

+ g12h

2C
[V2(t) + V2(t + h)]

(5.18)

g21+V2(t + h) = fV 2(S2(t)) + g21−

C
V2(t) + g21h

2C
[V1(t) + V1(t + h)] (5.19)

g12± = 1 ± g12h

2C
(5.20)

g21± = 1 ± g21h

2C
(5.21)

By defining the two-dimensional vector v(t) = [V1(t), V2(t)], we may put the above

equations into a more digestible matrix form:

MLv(t + h) = MRv(t) + J(t) (5.22)

in which

ML =

 g12+ −g12h
2

−g21h
2 g21+

 (5.23)

MR =

g12−
g12h

2

g21h
2 g21−

 (5.24)
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and J(t) = [fV 1(S1(t)) + h
2C

[Istim(t) + Istim(t + h)], fV 2(S2(t))]. Then the desired

discrete map for gap junction coupling in a two neuron map is then:

v(t) = M−1
L (MRv(t) + J(t)) (5.25)

Now to rewrite this in the context of DDF, equation (5.25) is our DDF update rule,

but J(t) changes from using the discrete form of the HH dynamics to the RBF expansion

approximation. In addition to using RBF’s the h
2C

term is dropped in exchange for a fitting

coefficient ωC . The parameters h, gsyn12, and gsyn21 that are used in the generation of

the HH data set are also made known to the DDF update rule and are chosen specifically

to make sure action potentials are induced in neuron 2. One keynote that is very important

is that when a DDF Neuron is trained (in this case on a HH neuron), the trained RBF’s

will be the same in both Neuron 1 and Neuron 2; the fV 1(S1(t)) and fV 2(S2(t)) will be

the same function, but with different inputs (fV 1 = fV 2 in the DDF RBF representation).

5.3.2 A Two Neuron Network of the Gap Junction

We are now ready to use the discrete dynamical mapping derived in the previous

section. To move forward with creating a two neuron network of DDF Neurons we’ll need

to first choose a stimulating current, Istim(t), which will like previous examples be taken

from the x dimension of the Lorenz 1963 system. Then we’ll use this external stimulus to

generate a HH data set from a single lone neuron. This neuron will be duplicated and put

into our two neuron network. We’ll carefully choose our synaptic gap junction parameters

to ensure the synaptic stimulus is sufficient to trigger action potentials in neuron 2. Finally,

we’ll compare the DDF Neuron 1 and 2 voltage to the HH Neuron 1 and 2 voltage to show

how well DDF Neurons can operate in a simple network.

Our first step in building this two neuron network is to train a DDF Neuron on a

single HH data set of voltage only data, which is done so in Figure(5.15).
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Figure 5.14. Stimulus for the training window of 500 ms. This stimulus was used as
our external forcing for the DDF neuron and HH neuron during forecasting, which came
directly after the training.

Figure 5.15. A HH model neuron and DDF Neuron were driven by the same 500 ms
of stimulus, Istim(t). This DDF Neuron was trained specifically for the use of the two
neuron network, its properties will be duplicated and placed into DDF Neuron 1 and DDF
Neuron 2 in the next test. Also note that this is again a voltage only observation, so Time
Delay Embedding was used on the voltage measurement to create a DDF Neuron that
predicts voltage only. The DDF parameters are h = 0.02ms, DE = 3, β = 10, R = 0.1, τ
= 3h, Nc = 5000

Now we have our DDF Neuron, so our next goal is to generate a set of data for

the two neuron circuit. Using ODEINT we generate the data for both neurons according

to equations(5.14,5.15,5.8) and then according to the discrete dynamical update rule we

create a forecast with DDF according to equation(5.25).
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Figure 5.16. This is a comparison of the Neuron 1 behavior for the HH model in the gap
junction and the DDF Neuron in the same gap junction. Both Neurons receive the same
Istim(t) from Figure (5.14). The behavior of this neuron 1 is similar to the voltage response
as the HH neuron in Figure(5.15) as the dominant stimulus is the external stimulus, but
the behavior is slightly different.

Figure 5.17. This is a comparison of the Neuron 2 behavior for the HH model in the gap
junction and the DDF Neuron in the same gap junction. Both Neurons only receive an
external forcing from the gap junction.

5.3.3 Ligand Gated Synaptic Connections

After the success of using the simpler Gap Junction (see Figure(5.16) and Fig-

ure(5.17)) and showing how DDF Neurons can be implemented in a network (albeit a

very small one), we seek to expand the complexity of our network. We want to enrich

our network by replacing the gap junction with a ligand gated synapse. We constructed
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a network segment in which Neuron 1, with membrane voltage V1(t), is driven by a

stimulating current, Istim(t), and this neuron drives a second neuron, with membrane

voltage V2(t), via an excited ligand gated synapse. This network segment is shown in

Figure (5.18). But first, we shall describe the nature of this ligand gated synaptic channel.

The synaptic current from the presynaptic neuron with voltage V1(t) that drives

the postsynaptic neuron voltage, V2(t), is described by

Isynaptic = gsynA(t, V1(t))[Erev − V2(t)] (5.26)

dA(t, V1(t)
dt

= A0(V1(t)) − A(t, V1(t))
τA(A1 − A0(V1(t)))

(5.27)

where A(t, V1(t)) is a synaptic gating variable (different from the gating variable we

associate with the ion channels of a single neuron). It is opened when neurotransmitters

bind onto a receptor on the postsynaptic cell, resulting in A(t, V1(t)) ≈ 1. It is closed

when that neurotransmitter is released from the post synaptic receptor, resulting in

A(t, V1(t)) ≈ 0. This behavior can be clearly seen in Figure(5.21) as it depicts the synaptic

gating variable as a response to both the HH neuron 1 and DDF Neuron 1 voltages.

We represent the driver of this transition in the neighborhood of at a voltage V0

from closed to opening by

A0(V ) = 1
2[1 + tanh V − V0

dV0
] (5.28)

This function moves from very near zero when V << V0 to very near 1 when

V >> V0, as desired, and it does so over an interval of voltage dV0.

For the excitatory synaptic connection, we select gsyn = 0.5, Esyn = 50mV , τA =

0.1 ms, A1 = 9/8, V0 = -50mV and dV0 = 10 mV.
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5.3.4 A Two Neuron Network of the Ligand Gated Synaptic
Connection

Our two neuron network will be defined by the following equations and Figure(5.18)

Figure 5.18. A network segment which has a presynaptic neuron with membrane voltage
V1(t) driven by a stimulating current Istim(t) connected to a post synaptic neuron with
membrane voltage V2(t) by a ligand gated connection.

These are the HH equations for this model:

dV1(t)
dt

= FV (V1(t),A1(t)) + Istim(t)
C

(5.29)

dV2(t)
dt

= FV (V2(t),A2(t)) + gsyn

C
A(t, V1(t))[Erev − V2(t)] (5.30)

Since Neuron 1 only receives the usual external stimulus, we can treat it as an

independent neuron upon which we can train our DDF Neuron on (There’s no reason why

we couldn’t use the DDF Neuron trained in the previous section other than it was easier

and quicker to train a new one than it was to dig up the previous DDF Neuron). Then

with this trained DDF Neuron, we’ll duplicate it and put it in the Neuron 2 position. Here

is how we will set up our discrete DDF update rule for the system.
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V1(n + 1) = V1(n) + fV (V1(n)) + ωC

2 [Istim(n + 1) + Istim(n)] (5.31)

V2(n + 1) = V2(n)fV (V1(n)) + ωCgsynA(n, V1(n))[Erev − V2(n)] (5.32)

Again, we only observe the voltage for these experiments (the m, h, and n variables

are discarded after the data set is generated through numerical integration) and time

delay embedding is used. Note how the fitted parameter ωC has been reused in Neuron

2; the reasoning behind this is that DDF Neuron 1 learned how to regulate its input

stimulus according to this fitted parameter, which is effectively its capacitance (hence the

C subscript). We argue that it makes the most sense to treat this fitted parameter as

Neuron 2’s reaction to all external stimulus be it from another neuron or injected current

from a current source as it was learned from Neuron 1’s fitting to external stimulus.

The manner in which we will perform our update rule will go as follows, at time

n. First, take the stimulus, Istim(t), and voltage, V1(t), at time t=n and input it into the

DDF update rule for Neuron 1, generating V1(n + 1). Next, we must calculate the update

to the synaptic gating variable A(t, V1(t)); given A(t, V1(t) at time t=n+1 and V1(t) at

times n and n+1, we integrate equation(5.27) using ODEINT to find A(t, V1(t)) at time

t=n+1. Finally, we plug the calculated value of A(n + 1, V1(n + 1)) into equation (5.26)

to calculate the synaptic current going into Neuron 2 to calculate the update rule to V2(t)

and forecast its voltage. This recursive process can be repeated indefinitely. In Figures

(5.21) and (5.22) we see the 500 ms window result of this process.

This network segment result indicates that, indeed, we may replace the more

complex HH neuron voltage activity with the reduced dimension, biophysically trained,

V(t) DDF Neuron in synaptic connections occurring in a network of neurons.
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Figure 5.19. This is the stimulus input into Neuron 1 during the 500 ms forecasting
window.

Figure 5.20. This is the HH and DDF Neuron 1 voltage response to the external stimulus.
Our DDF Neuron was trained and validated with this data set; specifically, this DDF
neuron was trained on the 500 ms of data that came prior to the forecasting window. This
voltage activity will drive the synaptic current, which activates the action potential in
neuron 2. Note that in keeping the two neuron circuit as accurate as possible, two separate
gating variables are produced from each Neuron 1 voltage to stimulate their respective
Neuron 2’s. The parameters of this model are h = 0.02 ms, DE = 4, τ = 2h, β = 10, R =
10−2, and Nc = 500.

5.4 Data Collection of Neuronal Systems

We want to have a discussion now on the different ways data is collected in

neuroscience and how this will relate back to DDF. The entirety of this section has been data
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Figure 5.21. This is the gating variable A(t, V1(t)). Note how it scales from 0 to 1
with the consistency of the action potential from the above graph depicting each plot’s
respective V1(t).

Figure 5.22. Here we see the driving effect from Neuron 1’s presynaptic connection
through a ligand gating synapse stimulating a voltage response in Neuron 2 for both the
DDF and HH Neuron.

obtained from in vitro current clamp experiments, which is a technique that exists under

the umbrella of electrophysiological approaches to studying the brain. Electrophysiological

recordings are generally the only recordings available to us that offer enough information

to properly reconstruct the model dynamics of a neuron, but they are very limited in the

number of neurons that they can study, typically just a single neuron at a time. There

exists many other methods of studying the brain that explore larger sections of the brain if

83



not the whole brain, but currently lack the detail needed to construct biophysical neuron

models from data. Methods other than current clamp experiments include whole brain

imaging (like MRI, cerebral angiography, computerized tomography, and diffusion MR

imaging), extracellular recording, intracellular recording, and florescent techniques (like

the calcium fluorescent technique)[43, 44].

We’ve taken an interest specifically in the calcium fluorescent technique described

in [44]. Through the use of injections of a fluorescent binding agent that binds to calcium,

neuroscientists can monitor large clusters of calcium ions across an individual neuron’s

cell membranes, providing us with an indirect observation of the action potential of the

neuron. This is the type of technique that is desperately needed to advance our study of

neurons from single neurons models to large neuronal networks. But as other papers have

commented, [45], the accuracy of the method is limited despite offering a strong spatial

resolution. Methods for inferring the spiking behavior and synaptic connections have been

invented, [46] to try and circumvent these issues.

With the lack of concrete neuronal network data and rigorous successful study of

inferring network connections, the step to working in large networks of neurons is a difficult

one. This simply means that the study of new techniques is pivotal, both experimentally

and numerically, from observed data. DDF has shown to be capable of replicating real

neuron behavior even when exposed to signals it didn’t train on. Future work in this field

could involve the combined use of calcium fluorescent data, inferred network connections,

and DDF neurons to generate depictions of network voltage responses.

5.5 Concluding Remarks on Neurodynamics

This section is a melding of ideas from nonlinear dynamics and applied mathematics

to the goal of construction biophysically based models of observables in neurobiology.

These data driven models encode the full information in experimental observations on the
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complex system, the neuron, which is observed in current clamp experiments, i.e. one with

a given Istim(t) with membrane voltage V(t) observed, and permit forecasting the voltage

response of the observed neuron to the other stimuli.

The method Data Driven Forecasting (DDF) and the model construction produces

discrete time nonlinear mappings V (t) → V (t + h) that may be used in neural networks

with synaptic or gap junction connections, as the dynamical function of each is determined

by the voltages of the presynaptic and postsynaptic cells. We have shown this in simple

networks for gap junction neuronal connections and for a network where a presynaptic

neuron, stimulated by Istim(t), drives a postsynaptic neuron via an excitatory synapse.

The DDF based network permits a computationally efficient network model where

the trained DDF discrete time map, trained on biophysical data, replaces complex Hodgkin

Huxley models typically used in contemporary research. The computational advantage is

achieved in two ways. The first way by circumventing the need for a differential equation,

and thusly, having to solve a differential equation. The second is that the models are

substantially reduced in complexity, as the only observable V(t) is forecast. Timing

comparisons we performed on the HH model neuron solved by fourth order Runge-Kutta

ODE solver compared to the forecasting efficiency of DDF forecasting V(t) alone showed

that DDF had an improvement factor of about 3.7 (keep in mind this was done with code

not professionally optimized and with a MacBook Air M1 chip with 8 GB of memory).

One must recognize that while much is gained by using DDF Neuron constructions,

something is set aside, and that is the knowledge of the biophysics in detailed HH models

of individual neurons including the operation of gating variables for the ion channels

selected for the model, parameters determining the dynamics and strength of those ion

channels, and other yet unobserved biophysics at play in the neurons.

Chapter 5 has been adapted from Randall Clark, Lawson Fuller, Jason A Platt, and

Henry DI Abarbanel. "Reduced-Dimension, Biophysical Neuron Models Constructed From

Observed Data". Neural Computation, 34(7):1545–1587, 2022. The dissertation author
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was the primary investigator and author of this paper.
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Chapter 6

DDF in Fluid Dynamics

Using data alone, without knowledge of underling physical models, nonlinear discrete

time regional forecasting dynamical rules are constructed employing well tested methods

from applied mathematics and nonlinear dynamics. Observations of environmental variables

such as wind velocity, temperature, pressure, etc. allow the development of forecasting

rules that predict the future of these variables only. A regional set of observations with

appropriate sensors allows one to forgo standard considerations of spatial resolution and

uncertainties in the properties of detailed physical models. Present global or regional

models require specification of details of physical processes globally or regionally, and the

ensuing, often heavy, computational requirements provide information of the time variation

of many quantities not of interest locally. In this section, we formulate the construction of

DDF models of geophysical processes and demonstrate how this works with the familiar

example of a ’global’ model of shallow water flow on a β plane. A sub-region, where

observations are made, of the global flow is selected. A discrete time dynamical forecasting

system is constructed from these observations. DDF forecasting accurately predicts the

future of observed variables. [3]
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6.1 Modern Uses of Machine Learning in Geo
Physics

Currently, there is a large amount of interest in applying machine learning techniques

to geophysical problems. Efforts are being made to replace modern numerical weather

forecasting with data trained networks [47][48][49][50]. However, while there is success

being found in this field, there is a hesitancy in the climate and weather forecasting

community to openly accept these methods as they are viewed as black boxes that have no

relation to the physics that they model other than the data that is provided to them [51].

It is for reasons like this that there have been efforts in the machine learning community

to publish papers with a large focus on the efficacy and trustworthiness of their machine

learning tools [52][53]. Members of the machine learning community in weather forecasting

have gone an additional step further by implementing hybrid models that are machine

learning devices that include physical constraints in some form [54][55][56]. There have been

findings showing that these weather forecasting tools that account for physical constraints

(typically in their loss functions) show improvement over machine learning tools that utilize

no knowledge of the underlying physics [57]. What this all amounts to is that there is

both an interest and benefit to the hybridization of physics and machine learning models,

and we argue that the DDF model we put forward embodies the hybridization of physics

and machine learning in an atypical way and is performed to reap the forecasting benefits

while maintaining a high degree of transparency in what it’s doing.

DDF in Fluid Dynamics, as will be shown in explicit detail later, incorporates both

the physics of the underlying model and machine learning tools to create an update rule

for forecasting. Unlike many hybridization machine learning models, it doesn’t enforce a

physics constraint in its training function, it’s training proceeds as standard regularized

ridge regression. The update rule for DDF is a sum of radial basis functions and physically

inspired terms which include, but are not limited to, forcing terms and polynomial variables
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in the original model. We are not creating a pure forecasting tool, rather, we are creating

an approximate form of the differential equations of the system to reconstruct the dynamics;

it is this perspective that enables us to use tools like time delay embedding that aid us in

reconstructing the state space of a reduced dimensional observation. The physics inspired

terms in the update rule are naturally thought to capture the behavior of the model they

represent while the sum of radial basis functions account for the parts of the model that

are unaccounted for (in our example this would be the non forcing and non-polynomial

terms) and would capture the "left over" dynamics. It is in this sense that we can construct

a forecasting tool purely from data and physical inspiration without assuming too much of

the entire model.

Our work with the regional DDF model is not the first of its kind. Regional models

of different types have been researched before [58–61] and there exists a historical interest

in them. There also have been other dynamical reconstructors in the past [62–67] that

perform a similar task of reconstructing the dynamics of their respective system. In the

context of the SWE, we seek to compare the models already applied to the SWE [68, 69]

and the results we show later with DDF; while it is not an apples to apples comparison as

the specific SWE data sets differ, the results show DDF’s resiliency to noise, its accuracy

over time, and adaptability to study under reduced dimensional observations.

6.2 The Geophysical Problem

In geophysical models for global and regional weather or climate forecasting,

solutions of the Navier-Stokes equations, expressing conservation of mass and momentum,

are accompanied by a thermodynamic equation describing energy conservation. An

equation of state relating the thermodynamic variables to each other is required, as are

further parameterizations to represent unresolved Physics below the model grid scale.

Cloud moisture dynamics is a critical example of the latter.
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Numerical solutions to these partial differential equations (PDEs) using, for example,

a finite difference method [9][70] lead to formulations with a very large number of ordinary

differential equations (ODEs) at a global set of spatial grid points. In global models, the

number of these degrees of freedom (ODEs) may range from 108 to 1010 while for regional

models this may still be large, say 106 to 107. Even then, the resolution of the largest

operational General Circulation Models (GCMs) today is about 9 km in the horizontal

[71]. Models with scales down to 1.4 km are being developed and tested [72], and the

computational challenges grow as these are being realized.

If one’s interest is in forecasting the weather or climate only in a selected region,

another point of view may be employed. Instead of studying the entire global system,

with DDF we can build the relevant dynamics using only observations of the state

variables (pressure, velocity, temperature,...) one wishes to forecast within a desired region.

Knowledge of the forcing of the system at the location of the observations is required, but

this is already estimated in the formulation of the global models [73][74].

Working from data alone avoids uncertainties in initial conditions for the ODEs,

uncertain physical features of the models and their boundary conditions, and the like. It

also circumvents the growing computational complexity as the spatial resolution of big

models is increased.

Not surprisingly, one loses something in a formulation that bypasses knowledge

of the fundamental physical dynamical equations of the problem. At the same time,

the computations for forecasting observables only is enormously simplified compared to

calculating the full set of physical properties in a region or globally. In this section, we will

combine the mathematical tools of DDF with the essential physics of geophysical models

to construct regional models through observations of geophysical variables.
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6.3 Geophysics Background

Our goal now is to more rigorously define the models of which we are interested in,

our DDF experiments will focus on generated data from PDE solvers, and we must now

discuss the PDEs in question. We will begin our discussion with the most fundamental

equations of Computational Fluid Dynamics (CFD), the Navier Stokes equations. Upon

describing these equations and their significance, we will aim to solve a simpler problem,

one that makes the PDE integration more tractable in the form of the Shallow Water

Equations (SWEs).

While we are interested in constructing approximate models that don’t need or rely

on models and only require data, we can learn a lot from the physical models and use this

knowledge to better help us construct our DDF approximate model. In addition to using

the physical intuition gleaned from models in the application of DDF, we seek to perform

twin experiments with this data (i.e. tests that aim to use computer simulated data of

fluids rather than direct measurements of observed data) which means we’ll require the

models and PDE solvers to enact our experiment.

6.3.1 Navier-Stokes Equations

The Navier-Stokes (NS) Equations are a collection of seemingly complicated equa-

tions but are derived from basic physics principles and calculus; they were originally found

independently by M. Navier and G. Stokes independently in the first half of the nineteenth

century. These fundamental equations are arrived at by the continuity equation (also

known as mass conservation), momentum conservation (which relies on Newton’s Second

Law), and energy conservation. All of CFD is based on these governing principles, even

the simplified Shallow Water model we’ll discuss later is just a reduced version of the NS

model.
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6.3.2 The Continuity Equation

The continuity equation, also known as the mass conservation equation, shows up

repeatedly in physics in different forms but holds the same fundamental principle that

we cannot destroy or create matter. If there is more or less matter in a system after a

set period of time, the flux of in and out of matter must reflect that. There are multiple

ways to derive the continuity equation, but let’s take the view of an infinitesimally small

fluid with fixed mass m. This fixed element of fixed mass will have an arbitrary shape

and volume that can change with the flow through the larger body of fluid. We can then

define the relationship between the mass and volume as:

δm = ρδV (6.1)

Where ρ is the density, which is a function of space and time. Since mass is conserved in

this infinitesimal fluid element we can make the mathematical statement:

D(δm)
Dt

= 0 (6.2)

Where D/Dt is the substantial derivative

D

Dt
= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(6.3)

Note that u, v, and w are the velocity of the infinitesimal fluid in the x, y, and z direction,

respectively.

Now let’s combine equations (6.1) and (6.3) to get:

D(ρδV )
Dt

= Dρ

Dt
δV + ρ

D(δV )
Dt

= 0 (6.4)
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Dρ

Dt
+ ρ[ 1

δV

D(δV )
Dt

] = 0 (6.5)

As shown by Anderson in [75] this term on the right side, the substantial derivative of

the volume, can be simplified by recognizing that the substantial derivative (or total time

derivative) is equal to the flux of the velocity across the surface of the infinitesimal fluid.

D(δV )
Dt

=
∫∫

S
V · dS (6.6)

Then by applying the divergence theorem:

D(δV )
Dt

=
∫∫∫

δV
(∇ · V )dV = δV (∇ · V ) (6.7)

The last step is achieved by recognizing that for an infinitesimal volume of fluid, the

divergence of the velocity is essentially the same value throughout and therefore our

continuity equation is:
Dρ

Dt
+ ρ(∇ · V ) = 0 (6.8)

6.3.3 The Momentum Equation

The momentum equations are derived from Newton’s Second Law. By expressing

all the forces applied to an infinitesimal fluid element in Cartesian coordinates (a cube

shaped infinitesimal fluid element), we can construct the momentum conservation equation.

We start by recognizing all the types of forces that can be acted upon our fluid element;

these are body forces (gravity, electric, and magnetic forces) and surface forces, τ , (pressure

applied by external sources and the shear and normal stresses from the influence and

friction of outside fluid).

Let’s consider the sum of surface forces along the x direction. There are four shear

forces from friction from the two y and two z faces, there is the pressure force on both x
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faces, and two normal forces along the x faces resulting in:

Net Surface Force = [p − (p + ∂p

∂x
dx)]dydz + [(τxx + ∂τxx

∂x
dx) − τxx]dydz

+ [(τyx + ∂τyx

∂y
dy) − τyx]dxdz + [(τzx + ∂τzx]

∂z
dz) − τzx]dxdy

(6.9)

The total force along the x direction then is:

Fx = [−∂p

∂x
+ ∂τxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z
]dxdydz + ρfxdxdydz (6.10)

where fx is the sum of body forces acting on the fluid element in the x direction. This

formula can be cleaned up by utilizing the simple formula m = ρdxdydz. The momentum

equation in x, y, and z are the following:

ρ
Du

Dt
= −∂p

∂x
+ ∂τxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z
+ ρfx (6.11)

ρ
Dv

Dt
= −∂p

∂y
+ ∂τxy

∂x
+ ∂τyy

∂y
+ ∂τzy

∂z
+ ρfy (6.12)

ρ
Dw

Dt
= − ∂p

∂w
+ ∂τxz

∂x
+ ∂τyz

∂y
+ ∂τzz

∂z
+ ρfx (6.13)

This set of equations and the continuity equation derived in the previous section are

known as the non-conservative form of the NS equations. These equations are known as

the non-conservative form because they are derived from a moving fluid element, whereas

the conservative form of the PDEs are derived from a fluid element fixed in space. Through

manipulation one from can be achieved from the other, for the sake of succinctness we

chose to only show one as they are very similar. Both sets can be found in [75].

6.3.4 The Energy Equation

The third and final equation in the NS equations is the energy conservation equation.

Since the energy equation doesn’t play a role in the Shallow Water Equations, we choose
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not to go into as much detail in its derivation, as this body of work does not make use of

it. For the sake of completeness we list the non-conservative form of the energy equation

here:

ρ
D

Dt
(e + V 2

2 ) = ρq̇ + ∂

∂x
(k∂T

∂x
) + ∂

∂y
(k∂T

∂y
) + ∂

∂z
(k∂T

∂z
) − ∂up

∂x
− ∂vp

∂y
− ∂wp

∂z

+ ∂uτxx

∂x
+ ∂uτyx

∂y
+ ∂uτzx

∂z
+ ∂vτxy

∂x
+ ∂vτyy

∂y
+ ∂vτzy

∂z
+ ∂wτzx

∂x

+ ∂wτzy

∂y
+ ∂wτzz

∂z
+ ρf · V

(6.14)

e is the internal energy due to random molecular motion, T is temperature, q is heat

transfer, and k is thermal conductivity.

Future work with geophysical models will necessitate the inclusion of the energy

equation (or some simplification of it) to grasp the full nature of the geophysical medium

we seek to study. For the purposes of this initial step into solving geophysical problems,

the SWEs are a necessary first step to both test the capability of DDF and to set up the

groundwork for future work in a geophysical context.

6.3.5 The Shallow Water Equations

The Navier Stokes equations we just discussed are fundamental to all of fluid

dynamics, but are too difficult and complex to work with for our introductory problem, so

we turn to Shallow Water Equations for an inviscid flow. The Shallow Water Equations

(SWE) are a set of equations modelled after the NS equations, but make a couple of helpful

assumptions and approximations to reduce the complexity and difficulty of the problem in

both the generation of a data set and applying DDF to it. Applying DDF to the SWE

will be the first important step in developing the utilization of DDF for regional weather

forecasting.

We make three key approximations in using the shallow water model. The first is

that we treat water as though it has constant density throughout, something that is not
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Figure 6.1. This image depicts our Shallow Water and how we describe fluid flow in the
x, y, and z directions with velocities u, v, and w, respectively. As this is a Shallow water,
L is much greater than D. It is also common in the literature to describe a non-constant
floor, hb, but for our purposes we usually set this to zero and work with a flat ocean floor.

true at all depths or even horizontally depending on impurities in the water. The second

is that we are modelling an inviscid flow, meaning we are not accounting for viscosity in

our equations to make them more tractable. The third approximation is, as the name

describes, that the water we are modelling is shallow, it’s width is far greater than its

depth. For an average fluid depth, D, and length of the water, L, we assume for the SWE

model:

δ = D

L
<< 1 (6.15)

With these tools in mind we now look to the continuity equation, or mass conser-

vation equation, from NS and assert our assumptions of constant density:

Dρ

Dt
+ ρ(∇ · V ) = 0 (6.16)

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (6.17)
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Since the density is constant, the substantial derivative is zero everywhere and drops

out, which then allows us to cancel out the density and expand out the divergence of the

velocities. Now this form may be sufficient for some purposes, but not ours, we wish to

mold this mass conservation equality a bit more. For starters, we will want to describe

a term as a function of time. With the foresight of knowing that the two momentum

equations as derived later on will give us time derivative equations of the u and v velocities,

we seek to use this equation to model the height of the fluid as a function of time (this

quantity h is the height of the fluid, not to be confused with the location in space z).

Additionally, we will want the equation to fit a specific form for later when we go to

integrate through finite differencing means; we’ll be using Robert Sadourny’s integration

scheme [76], so we want to derive our SWE to match the model he uses (the functionality

of SWE will still be the same, but it will look different).

Before we can manipulate the mass conservation equation further, we must address

the relationship between the z coordinate, which we wish to integrate over for both sides

of the mass conservation equation, and horizontal velocities u and v. Pedlosky argues in

[77] that through an analysis of the pressure gradients that u and v are independent of z.

He starts by deriving a formula for the pressure. Using the shallow water approximation

he comes to the following formula for the pressure:

p = ρg(h − z) + p0 (6.18)

Where z is the distance from the ocean floor (naturally this equation only applies for

z ≤ h) and p0 is the pressure at the surface of the water which we take to be zero.

∂p

∂x
= ρg

∂h

∂x
(6.19)

∂p

∂y
= ρg

∂h

∂y
(6.20)

97



With the horizontal pressure gradient calculated, we can see that there is no z dependence

in it. Therefore, the accelerations will be independent of z (again, z is not the height of the

fluid, rather a coordinate along the vertical z axis) and the velocities will be independent

of z too so long as they are independent in their initiation. We can then integrate our

mass conservation equation to get:

w = −z(∂u

∂x
+ ∂v

∂y
) (6.21)

We mentioned previously that we want to mold the equation to match the form

that Sadourny used in his paper, so we can easily integrate the model using his integration

scheme; therefore we will do a little bit of manipulation now (also note that Sadourny

chooses to make pressure, not fluid height, his third state variable, with u and v being the

other two).

w = ∂z

∂t
= 1

ρg

∂p

∂t
(6.22)

∂p

∂t
= −ρgz(∂u

∂x
+ ∂v

∂y
) = −p(∂u

∂x
+ ∂v

∂y
) (6.23)

Next we turn to the momentum equations, recall that we are solving the problem

for an inviscid flow, meaning that the dissipative transport of viscosity and mass diffusion

are neglected. For the momentum equation, this means we drop the stress tensor. Later

on, we will discuss ways to bring back viscosity and friction through additional terms in

the momentum equations, as well as how to account for the Coriolis force on a beta plane.

The momentum equation is now (in the x direction):

ρ
Du

dt
= −∂p

∂x
+ ρfx (6.24)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+ fx (6.25)
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∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ fx (6.26)

Where we used the result from before that the u and v velocities are independent of

z, so the derivative drops out of the equation. From here, we will perform some final

manipulations before coming to our desired output:

∂u

∂t
= −u

∂u

∂x
− v

∂u

∂y
− 1

ρ

∂p

∂x
+ fx (6.27)

∂u

∂t
= v(∂v

∂x
+ ∂u

∂y
) − ∂

∂x
(P/ρ + 1

2(u2 + v2)) + fx (6.28)

∂u

∂t
= vpη − ∂

∂x
(H) + fx (6.29)

η = 1
p

(∂v

∂x
+ ∂u

∂y
) H = p/ρ + 1

2(u2 + v2) (6.30)

Using the same process, the momentum equation in the y direction is found to be:

∂v

∂t
= upη − ∂

∂y
(H) + fy (6.31)

With equations (6.23), (6.29), and (6.31) we have our three fundamental equations

of the SWE model using conservation of momentum and mass principles. Our next

objective that is covered in the next section is to integrate them, or numerically solve

them.

6.3.6 Solving the Shallow Water Equations

In our effort to show DDF as an applicable model to fluid dynamical systems, we

must provide it with the data it needs to learn and forecast the behavior of a fluid system.

To obtain this data, we’ll need to carefully choose an integration scheme for the time

evolving initial value PDE. Our principal concerns with choosing a proper integration

scheme is the stability of the algorithm we choose as well as the ability for this algorithm
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to conserve physical quantities like vorticity and energy (for conservative systems; we’ll

later discuss forcing terms and frictional terms that we’ll add into the equations that will

make the system non-conservative).

As described in Numerical Recipes [9], many reasonable looking algorithms can

fail is due to being unstable. It is for this reason that many tests, like the Von Neumann

stability analysis, are used to provide insight into whether an integration scheme will fail

or not and under what circumstances it will fail (typically some relationship between the

length of the time step and the distance between points on the grid). Recall that we

are going to be solving a finite difference scheme on a square grid, as in figure(1.3). The

partial derivatives with respect to space of the state variables at each location will be

calculated, and must be done so in a formulation that is stable.

It is to our benefit that the meteorological community has already gone to great

lengths of inventing many different solutions to the SWEs, we simply must choose one

that fits our needs, and this would the formulation invented by Robert Sadourny in 1974

[76]. His is a finite differencing method, while these methods are known to be simple and

computationally light, they can poorly represent the properties of the original equations

unlike the more complex and computationally intensive spectral method for solving PDE’s.

Sadourny defends the finite difference method and argues that not all properties of original

equations are equally important, and chooses to construct finite differencing schemes that

focus on preserving the more important properties. He makes a comparison between

conserving energy and conserving enstrophy and through a series of tests and references

to literature, argues that the conservation of enstrophy is a very important property to

achieve exact conservation with as it plays a central role in the model’s ability to correctly

exchange energy between modes and allow for the proper internal mixing process. Going

forward, we will use and describe this integration scheme in all of our future experiments

(note that enstrophy won’t be conserved when we add forcing terms to our model).
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The absolute potential enstrophy is defined as:

Z =
∫

S

1
2η2pdS (6.32)

where η is the same as it was previously defined in equation(6.30), p is the pressure, and S

is the surface. The simple expression for the absolute potential enstrophy in discrete form

is:

Z = 1
2
∑

(η2 < p >x) (6.33)

Where the pressure, p, is averaged across the x direction. This integration scheme uses

averages across the x and y direction to achieve exact conservation of enstrophy. Some

useful relations are listed below:

δxq(x, y) = 1
2d

[q(x + d, y)] − q(x − d, y)] (6.34)

δyq(x, y) = 1
2d

[q(x, y + d)] − q(x, y − d)] (6.35)

< q >x (x, y) = 1
2[q(x + d, y)] + q(x − d, y)] (6.36)

< q >y (x, y) = 1
2[q(x, y + d)] + q(x, y − d)] (6.37)

Where d is the distance between nodes on our square grid. Now using these terms we

define what Sadourny calls a simple enstrophy conserving model [76]:

∂u

∂t
=< η >y< pv >xy −δxH (6.38)

∂v

∂t
=< η >x< pu >xy −δyH (6.39)

∂p

∂t
= −δx(pu) − δy(pv) (6.40)

With this formulation of the SWE PDEs, we can safely use a standard Runge-Kutta
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method (typically the ODEINT program from the scipy library) to integrate these equations

forward in time while assuming periodic boundary conditions. With these equations at our

disposal, we can depart from the discussion of integrating PDE’s and move towards one

about how we will add terms to the SWE PDE. Specifically, we are interested in adding

the Coriolis force for a rotating ocean, dissipative forces like viscous and frictional forces,

and forcing terms like wind forcing; since our goal is to use this simpler model for testing

DDF, we want to add these terms to showcase the resiliency of DDF to complex wave

motions not seen in a conservative (and repetitious) SWE system without these forces.

The viscosity of a fluid comes from an analysis of the Reynold Stress Tensor, or

shear forces, on the fluid’s momentum equations. Through a crude and simple assumption

that the stresses of the Reynold tensor depend linearly on the spatial derivatives of the

large scale flow velocity (namely u and v for the SWE). This discussion goes much deeper

in [77]. The viscous term in the SWE will take the following form then (Where A is an

effective kinematic viscosity):

Fviscous = A( ∂2

∂x2 + ∂2

∂y2 )(u + v) (6.41)

The drag force is the frictional force acting in the opposite direction of the motion

of the fluid, unlike the viscous force, which acts on a fluid from all directions due to shear

forces. The drag force can be simplified down to a fluid that is sufficiently slow as a force

linear in velocity with a fluid dependent parameter ϵ, the Rayleigh friction coefficient:

Fdrag = −ϵ(u + v) (6.42)

Now we seek to implement the Coriolis force for our square and flat surface (as

opposed to the spherical earth), but Rossby in (1939) characterized the dynamics in a

simple manner for a sheet of fluid, called the β plane, on a sphere. His results state that
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the only effect of the sphericity is the variation of the Coriolis parameter with latitude.

We now list out these results:

f ≈ f0 + β0y (6.43)

f0 = 2Ω sin(θ0) (6.44)

β0 = 2Ω
r0

cos(θ0) (6.45)

Where θ0 is the angle above (or below) the equator. The Coriolis Force we use is then:

FCoriolis = (f0 + β0y)(vû + uv̂) (6.46)

Now we move on to the final addition to our SWE, and that is the external forcing

term. This term can contain a number of different sources, but for the sake of our tests we

restrict ourselves to wind forcing. We choose to define our wind force as an x directional

wind that varies along the y direction:

Fwind = F0 cos(2πY/L)û (6.47)

Now we are able to put together the full set of equations that we will use for

generating SWE data for the remainder of this section. Combining the prior equations

derived for exact conservation of enstrophy with the added forces, we come to the following

equations:

∂u

∂t
=< η >y< pv >xy −δxH + A∇2u − ϵu + (f0 + β0y)v + F0 cos(2πY/L) (6.48)

∂v

∂t
=< η >x< pu >xy −δyH + A∇2v − ϵv + (f0 + β0y)u (6.49)

∂p

∂t
= −δx(pu) − δy(pv) (6.50)
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For a depiction of how this shallow water evolves over time, see figures (6.2) and

(6.3).

Figure 6.2. This is the initial condition for a 20 by 20 SWE grid described in equa-
tions(6.48,6.49,6.50). The initial condition is taken to be a Gaussian in the height, and
the velocities are initialized to be a constant times the slope of height in the respective
direction. The SWE parameters are chosen to be f0 = 10−5, β = 1013, A = 500, ϵ =
8 ∗ 10−7, F0 = 10−5

Figure 6.3. This is the same SWE from above, Figure(6.2), but has been evolved 500
hours ahead in time to show the influence of the forces on the water and how the initial
condition has been transient as a result of the forces.
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6.3.7 Regional Weather Forecasting

We now make some final remarks on the construction of regional data for our

shallow water. Recall, our goal is not to study a General Circulation Model (GCM) for

an entire globe, but rather to study a regional model without access to the knowledge of

what is going on outside our region. In practice this would mean studying a section of

ocean, or a port of economic importance, or even a section of coastline for environmental

study; this enables us to use a high density of measuring devices giving us a high spatial

resolution not seen in global models.

In the context of the SWE, we perform the data generation for the whole water

on say some 10 by 10 grid with measurements of velocity in the horizontal direction and

pressure, giving us three state variables at each grid point. Instead of supplying all 300

state variable data sets to DDF for forecast, we instead provide only a subset of the

grid points to DDF and discard the rest. This will be our mock trial for conducting

regional weather forecasting and as we don’t have the full set of observations, we will need

to perform time delay embedding to reconstruct the state space of the whole ocean to

properly forecast the few parts of the ocean we do observe.

6.4 Shallow Water Flow on a β Plane in a DDF
Context

We reiterate the main goal of the Fluid Dynamics section is to address how we

can use data from regional measurements alone, without knowledge of the underlying

dynamical equations or knowledge of the states of the global system outside the subgrid,

to allow us to forecast the regional state variables [u(t), v(t), p(t)]. In applying the DDF

method developed here, one only needs measurements of the state variables we wish to

forecast at spatial locations in a sub-region. There is no ’grid’ where we must place the

sensors for the desired observation. While we do not require information outside the
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subgrid, we do require knowledge of the forcing, which is already known in the global

formulation of the problem [73][74].

In this section, we’ll take our existing formulation of DDF and mold it to one that

matches the regional weather forecasting model. We’ll adapt our function representation

to match the dynamics of the SWE including polynomial terms and forcing terms, we’ll

discuss time delay embedding in a SWE context, and we’ll discuss how the inclusion of

forcing terms changes the cost function. This will all culminate together to show DDF’s

forecasting power in the next section when we go through a few examples of regional

weather forecasting with DDF.

6.4.1 Dynamics on the Subgrid; The Regional Model

We initiate our considerations of using DDF in SWE by establishing the global

SWE model in a compact form. There are DG = 3(nx ∗ny) ODEs for the states X(i, j, t) =

[u(i, j, t), v(i, j, t), p(i, j, t)]:

dX(i, j, t)
dt

= Fi,j(X(i, j, t), θ) + [F (i, j, t), 0] (6.51)

Where F is the sum of all body forces acting on the fluid motion, and θ are the

fixed parameters of the global system. Fi,j(X(i, j, t), θ) is the vector field of DG (global)

nonlinear differential equations for the shallow water flow.

Next, select a subgrid, our region where we make measurements. The locations in the

observation region are denoted by R = R0+[R10+Iδx, R20+Jδy; I = 0, 1, 2, ..., Nx−1, J =

0, 1, 2, ..., Ny − 1]; Nx ≤ nx, Ny ≤ ny. It is in this region that we collect observations at a

subset of the full complement of state variables X(I, J, t).

The observations are O(R, t) = O(I, J, t) = [u(I, J, t), v(I, J, t), p(I, J, t)] which

satisfy:
dO(R, t)

dt
= FR(X(r, t), θ) + [F (R, t), 0] (6.52)
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dO(I, J, t)
dt

= FI,J(X(i, j, t), θ) + [F (I, J, t), 0] (6.53)

The number of regional variables is DR = 3(Nx ∗ Ny) ≤ DG. FR(X(r, t)) is

the global vector field restricted to the region R. It is a function of the states of the

global dynamics X(i, j, t). Take careful note that the observed states still depend on the

unobserved states in their differential equation term FI,J ; this dependency is resolved

through the use of time delay embedding in the DDF framework.

Using data from observations on the O(R, t), without knowledge of the vector

field FI,J(X(i, j, t), θ), we want to construct a discrete time dynamical rule which takes

O(R, t) forward in time; O(R, t) → O(R, t + h). This discrete time dynamical map is

our forecasting system for the region.

Observations are made at NO times, tn = t0 + nh; n = 0, 1, ..., NO − 1 giving us

O(R, n) at all those times. These observations form a trajectory in DR ≤ DG dimensional

space.

Now we integrate the regional dynamical equation over the interval [tn, tn + h] =

[tn, tn + 1]. This gives us the flow of the DR dimensional dynamical system, which we find

to be:

O(R, n + 1) = O(R, n) +
∫ tn+1

tn

dt′(FR(X(r, t′) + [F (R, t′), 0])) (6.54)

As we do not know the vector field FR(X(r, t)), we must represent this integral

over it using our DDF function representation tools. The integral over the external forces

in the fluid in the subregion, [F (R, t′), 0], can be approximated as the values of the external

forcing are known to us. The forcing of the fluid is an aspect of the flow that is not intrinsic

to the fluid properties themselves, and it is important to observe that this external forcing

is additive. Essentially, these are just Newton’s equations of motion.

Utilizing both pieces of information, we rewrite our update rule, first by using the

trapezoidal rule to solve the integral over the known forcing, and secondly, by representing
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the integral over the unknown intrinsic fluid properties function as a fitted DDF function:

O(R, n + 1) = O(R, n) + fI,J(O(R, n), ω) + h

2 [[F (I, J, n), 0] + [F (I, J, n + 1), 0]] (6.55)

The trapezoidal rule was used to approximate the integral over the known forces which

should be quite adequate as the measurements are only known at intervals of size h. The

ω represents all the fitted coefficients in the DDF function representation.

Now we must think of a way to appropriately model our function representation

fI,J(O(R, n), ω). We select a method of representing this function using radial basis

functions as described earlier in this dissertation. In using this method, we make the

distinct choice to model the function representation as a sum of Gaussian radial basis

function plus the first order polynomials of the observed state variables.

fI,J(O(R, n), ω) =
Nc∑
q=1

ωIJqϕ(||O(R, n) − c(q)||) +
m̂∑

l=1
ω′

IJlpl(O(R, n)) (6.56)

fI,J(O(R, n), ω) =
Nc∑
q=1

ωIJqe
(−R||O(R,n)−c(q)||2) +

m̂∑
l=1

ω′
IJlpl(O(R, n)) (6.57)

The ω′
IJl and ωIJq values are fitted during the training to learn the intrinsic behavior

of the water. R is a hyperparameter that is chosen by the user of DDF to get the best

performance out of DDF. The centers, c are chosen from the training data set using a

K-means clustering algorithm to choose the Nc centers. The polynomial order only goes to

one, so there will only be DR terms in the polynomial summation. The reason we choose

the polynomial order to be one and the reason we include a polynomial term at all is to

match the behavior in the actual SWE. Since there exist single order polynomial terms in

the SWE, we choose to include them in our function representation (albeit we include all

state variables, not just the select few in the equations); this choice has rewarded us as

testing has shown a noticeable increase to the predictive power of DDF (note that always
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including polynomial terms won’t always improve predictive power, it depends on the

original equations that define the behavior of the dynamical system).

Now before we can plug our function representation into equation(6.55) and happily

go about forecasting the weather, we must address the very important fact that we are

studying a reduced dimensional observation, and as such, are working with incomplete

dynamics. Before we can go any further with developing DDF for fluid dynamics, we must

adapt our current method to utilize time delay embedding techniques to reconstruct the

state space of our regional model.

6.4.2 Utilizing Time Delay Embedding

Addressing the question of developing a dynamical map for the regional subset

O(R, n) of our dynamical variables, we see that the observations are a projection from

dimension DG → DR < DG. To proceed we require a space of state variables equivalent

to the full state space, X(r, t), so we must "unproject" O(R, t) to a space equivalent to

X(r, t).

As discussed in previous sections, there exists a dynamical method for accomplishing

this in the nonlinear dynamics literature. It rests on the fact that as the observed quantities

move from some time t − τ to time t, they depend on all the state variables X(r, t). Using

time delays of the observed regional variables provides us the desired information on the

unobserved state variables.

This suggests creating a D dimensional time delay embedding space with DO

observed dimensions and DE sets of time delays to create the D = DO ∗ DE dimensional

vector space:

TD(R, t) = [O(R, t),O(R, t − τ), ...,O(R, t − (DE − 1)τ)] (6.58)

This vector of time delays depends only on observed quantities in the region labeled
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by R and their time delays. It is through those time delays that TD inherits information

about the dynamics outside R.

Using this time delay vector in the observed dynamics gives us:

O(R, n + 1) = O(R, n) + fI,J(TD(R, n), ω) + h

2 [[F (R, n), 0] + [F (R, n + 1), 0]] (6.59)

It is useful to rewrite this in component form, where we will also unpack the function

representation f . The O(R, t) are DR dimensional, such that O(R, t) = [Oα(t); α =

1, 2, ..., DR]. The dynamical map then becomes:

Oα(R, n + 1) = Oα(R, n) + fα(TD(R, n), ω) + h

2 [[F (R, n), 0] + [F (R, n + 1), 0]]α (6.60)

fα(TD(R, n), ω) =
Nc∑
q=1

ωαqe
(−R||TD(R,n)−c(q)||2) +

m̂∑
l=1

ω′
αlpl(O(R, n)) (6.61)

DDF will create DR of these discrete time update rules; this update rule in

equation(6.59) is the actual update rule that is used in obtaining all the results of the Fluid

Dynamics section. Note that while we use the time delay embedding vector of DE ∗ DR

dimensions in the radial basis functions, we do not use it for the polynomials; this was an

arbitrary choice of the user to not include extra polynomial terms and this choice will stay

constant throughout the entirety of the fluid dynamics section of this dissertation. Also

note that the centers, c will also need to be DE ∗ DR as opposed to their previous DR

dimension to accommodate all the time delay vectors in TD. The centers will be chosen

again using a K-means clustering algorithm, but not on the original observed data, but

the time delayed observed data.

In the next section, we’ll have a brief discussion on training the ω values to fit to a

data set.
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6.4.3 Changes to the Cost Function

The use of Ridge Regression to minimize our cost function has already been

discussed at length earlier in this dissertation, we do however want to make some quick

remarks about slight changes to the cost function to accommodate a forcing term that

doesn’t have an associated fitting parameter in front of it (unlike in the Nuerodynamics

section which does include a fitting parameter to its external forcing i.e. stimulus). In the

typical fashion of using the update rule to inspire the cost function, we now write out our

cost function in component form. The cost function for the α dimension of the observed

dimensions:

Cα(ω) =
N∑

n=1
[(Oα(R, n + 1) − Oα(R, n)) − fα(TD(R, n), ω)

− h

2 [[F (R, n), 0] + [F (R, n + 1), 0]]α]2
(6.62)

See here that we now have this additional term on the right, our forcing function,

and that this term doesn’t quite fit in with the function representation as it doesn’t have

any fitted parameter out in front of it. The way we handle this term is just to simply add

it into the other terms without coefficients, the observed "flow" from state Oα at time n to

n plus 1.

Cα(ω) =
N∑

n=1
[(Oα(R, n + 1) − Oα(R, n) − h

2 [[F (R, n), 0] + [F (R, n + 1), 0]]α)

− fα(TD(R, n), ω)]2
(6.63)

Y (n) = (Oα(R, n + 1) − Oα(R, n) − h

2 [[F (R, n), 0] + [F (R, n + 1), 0]]α) (6.64)

Cα(ω) =
N∑

n=1
[Y (n) − fα(TD(R, n), ω)]2 (6.65)

Now we have our equation in a familiar form as we have dealt with that out of
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place forcing term. The rest of the minimization proceeds normally as outlined in the

DDF section.

6.5 Results from the Example of the SWE on a β

Plane

Now that we have addressed all the necessary changes DDF must make to accom-

modate the format of Regional Weather Forecasting, all the pieces are in place to begin

performing predictions with DDF.

6.5.1 Clustered Sensor Region; 3x3 Corner

The shallow water equations were solved using Sadourny’s method [76] with periodic

boundary conditions on a global grid consisting of nx = 10 and ny = 10. We solved 300

PDE’s to generate the time series data for the state variables, X(r, t), on this grid. A

regional subgrid with Nx = Ny = 3 was selected and on this subgrid we "measured"

[u(R, t), v(R, t), p(R, t)] to form the DR = 27 dimensional observation vectors, O(R, t).

The regional sensor locations are shown in Figure(6.4). We generated N = 15,000 time

steps of data with h = 0.1 hours. Nc = 1000 centers were selected from these data. These

were used in a Polynomial plus Gaussian RBF representation. 1000 hours of this data was

used to train the RBF representation of the discrete time flow vector field, then, 500 hours

of forecasts were made for the 9 regional state variables.
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Figure 6.4. Shallow Water Equations on a nx = 10 by ny = 10 grid, DG = 3(nxny)). Red
dots are grid points of the overall global dynamical system. Blue dots are the location of
regional sensors, R, where fluid pressure, p(R, t), and fluid velocity, v(R, t), are recorded.
There are (Nx = 3) ∗ (Ny = 3) = 9 sensors total and DR = 3(NxNy) = 27 measured time
series. We have observed 27 regional time series out of the 300 global time series.

Figure 6.5. SWE on a 10 by 10 grid. The sensor region consists of the 9 blue dots in
Figure(6.4), in a 3 by 3 corner region. We display the data and DDF forecast for the
x-velocity, u(1,1,t). The time delay parameters are DE = 20, τ = 20h, h = 0.1 hour and
the DDF parameters are β = 10−9, R = 10−6, NC = 1000, and train time = 1000 hours.
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Figure 6.6. SWE on a 10 by 10 grid. The sensor region consists of the 9 blue dots in
Figure(6.4), in a 3 by 3 corner region. We display the data and DDF forecast for the
y-velocity, v(1,1,t). The time delay parameters are DE = 20, τ = 20h, h = 0.1 hour and
the DDF parameters are β = 10−9, R = 10−6, NC = 1000, and train time = 1000 hours.

Figure 6.7. SWE on a 10 by 10 grid. The sensor region consists of the 9 blue dots in
Figure(6.4), in a 3 by 3 corner region. We display the data and DDF forecast for the z
height, z(1,1,t) (converted from the pressure equation p = ρgz; also note that the base
height is set to H0 = 50 meters). The time delay parameters are DE = 20, τ = 20h, h =
0.1 hour and the DDF parameters are β = 10−9, R = 10−6, NC = 1000, and train time =
1000 hours.
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6.5.2 Off Center; 2x2 Region

This next test is to show off a different perspective of an even smaller region (2 by

2 as opposed to 3 by 3) and this time the data is just off center as opposed to in a corner.

Displaying the predictability of all 12 dimensions is quite difficult to do in a compact and

neat form, so we opt to show off one of the sensor locations forecasts for u, v, and z (the

height).

Figure 6.8. Shallow Water Equations on a nx = 10 by ny = 10 grid, DG = 2(nxny)). Red
dots are grid points of the overall global dynamical system. Blue dots are the location of
regional sensors, R, where fluid pressure, p(R, t), and fluid velocity, v(R, t), are recorded.
There are (Nx = 2) ∗ (Ny = 2) = 4 sensors total and DR = 3(NxNy) = 12 measured time
series. We have observed 12 regional time series out of the 300 global time series. Regional
grid is 2 by 2 and is located off center within the global grid.

115



Figure 6.9. SWE on a 10 by 10 grid. The sensor region consists of the 4 blue dots in
Figure(6.8), in a 2 by 2 off center region. We display the data and DDF forecast for the
x-velocity, u(5,7,t). The time delay parameters are DE = 20, τ = 18h, h = 0.1 hour and
the DDF parameters are β = 10−7, R = 10−5, NC = 1000, and train time = 1000 hours.

Figure 6.10. SWE on a 10 by 10 grid. The sensor region consists of the 4 blue dots in
Figure(6.8), in a 2 by 2 off center region. We display the data and DDF forecast for the
y-velocity, v(5,7,t). The time delay parameters are DE = 20, τ = 18h, h = 0.1 hour and
the DDF parameters are β = 10−7, R = 10−5, NC = 1000, and train time = 1000 hours.
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Figure 6.11. SWE on a 10 by 10 grid. The sensor region consists of the 4 blue dots in
Figure(6.8), in a 2 by 2 off center region. We display the data and DDF forecast for the
z-height, z(5,7,t). The time delay parameters are DE = 20, τ = 18h, h = 0.1 hour and the
DDF parameters are β = 10−7, R = 10−5, NC = 1000, and train time = 1000 hours.
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6.5.3 Region With Sparse, Distributed Sensors

In the next set of outcomes for DDF regional forecasting, we now select our sensors

to be dispersed over the ’global’ region. Figure(6.12) shows ten sensors dispersed along

the 100 grid locations of the global dynamical regime. The sensor locations were selected

at random among the 100 possible sites available on the ’global’ grid. The main purpose

of this example is to demonstrate that the sensor sites where measurements are made, in

the SWE example, need not all be contiguous.

The success of DDF forecasting using sensors in a broadly dispersed sensor region

R suggests one could use the strategy to forecast in a quite broad geographical sub-region

of a global dynamical system. We show the results for three different sensor points to

display the forecasting strength at a variety of the sparse location, and that DDF doesn’t

become overtrained on any one dimension in particular in this sparse set up.

Figure 6.12. Sparse Regional Sensor Locations. Shallow Water Equations on a nx = 10
by ny = 10 grid, DG = 3(nxny)). Red dots are grid points of the overall global dynamical
system. Blue dots are the location of regional sensors, R, where fluid pressure, p(R, t),
and fluid velocity, v(R, t), are recorded. We have observed 30 regional time series out
of the 300 global time series. The sensor region, indicated by blue dots, consists of 10
locations selected at random among 100 possible sensor locations.

118



Figure 6.13. SWE on a 10 by 10 grid. The sensor region consists of 10 locations, blue
dots in Figure(6.12), selected at random. We display the data and DDF forecast for the
x-velocity, u(8,1,t). The time delay parameters are DE = 10, τ = 20h, h = 0.1 hour and
the DDF parameters are β = 10−9, R = 10−6, NC = 1000, and train time = 1000 hours.

Figure 6.14. SWE on a 10 by 10 grid. The sensor region consists of 10 locations, blue
dots in Figure(6.12), selected at random. We display the data and DDF forecast for the
y-velocity, v(5,5,t). The time delay parameters are DE = 10, τ = 20h, h = 0.1 hour and
the DDF parameters are β = 10−9, R = 10−6, NC = 1000, and train time = 1000 hours.
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Figure 6.15. SWE on a 10 by 10 grid. The sensor region consists of 10 locations, blue
dots in Figure(6.12), selected at random. We display the data and DDF forecast for the
z-height, z(6,3,t). The time delay parameters are DE = 10, τ = 20h, h = 0.1 hour and the
DDF parameters are β = 10−9, R = 10−6, NC = 1000, and train time = 1000 hours.
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6.6 Average Regional Error of Fluid Heights

We now discuss our forecasting results in a context that benchmarks their accuracy

for future comparison with future machine learning models of a similar nature. We will

take the three existing SWE forecasting examples we have examined in the text above

and quantify their accuracy through the use of an average percent error equation. This

equation is Equation(6.66) which averages the height z over a region R at each forecast

time in the validation window. We define the regional average percent error as:

< z >R (t) = 100
dimR

∑
R

|z(R, t)data − z(R, t)DDF Forecast|
|Max(zdata) − Min(zdata)|

(6.66)

dim R is the number of observed z across the region R. z(R, t)DDF Forecast is

achieved using the time delay embedding method previously described and z(R, t)data is

the observed data, but only the z dimension of observed data.

The maximum and minimum observed z values are taken across the entire region R,

and are not location specific. The < z >R (t) results we show in Figures (6.16,6.17,6.18)

show quite accurate results across a long time in the forecasting window. From data

alone, DDF can build a model of the shallow water equation output at the regional sensor

locations that forecast up to 500 hours with an average percent error in z that is less than

10% as shown in the 3 by 3 and sparse examples.

The motivation for choosing the denominator as the difference between the largest

wave height and lowest wave height comes from the fact that we view the error DDF

produces as originating from trying to follow the attractor in a set volume of phase space.

The choice of largest minus smallest height sets the scale of DDFs operating range and

thusly allows for the most relevant scaling of error that something like the magnitude of

the height would fail to achieve.

This forecasting metric of forecasting performance is nearly the same as [68], and
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both provide an informative look at the performance of a ML construction. The work of

[68] analyzes an instantiation of the SWE of the SWE with neither forcing nor dissipation.

Figure 6.16. Using Equation(6.66) we evaluated < z >R (t) for the data provided in
Figure(6.7) for the 3 by 3 system.

Figure 6.17. Using Equation(6.66) we evaluated < z >R (t) for the data provided in
Figure(6.11) for the 2 by 2 system.
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Figure 6.18. Using Equation(6.66) we evaluated < z >R (t) for the data provided in
Figure(6.15) for the sparse system.
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6.7 Addressing Noisy Data

Our twin experiment examples using ’global data’ from a shallow water flow

have implicitly assumed we had data with a very high signal to noise ratio. Unlike the

Neurodynamics section, which worked with real noisy data, our study of Fluid Dynamics

has not dealt with noise yet. In this section, we take these very clean data and add

Gaussian noise before constructing a DDF model of the regional dynamics.

We use 10 by 10 SWE data and focused on the 3 by 3 corner region. For each of

the 27 time series in this region, we added Gaussian noise with zero mean and variance

Sσ2 where σ is calculated independently for each of the 27 dimensions (this relative noise

keeps dimensions with large standard deviations from having an unbalanced effect on

dimensions with small deviations). Sσ2 is the variance of the signal O(R, t) in the sensor

region. In this configuration, the signal to noise ratio Signal/Noise = 1/S. For small S,

the data is essentially noise free, as S approaches and exceeds unity, the noise level slowly

overcomes the signal.

Three graphs have been chosen to be displayed as testaments to DDF’s robustness to

ever-increasing noise. We summarize the robustness of DDF to added noise in Figure(6.22)

where the RMS error in the x-velocity is shown for the noise range level S we considered.
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Figure 6.19. SWE on a 10 by 10 grid. The sensor region consists of 9 blue dots in a
corner region. We display the z(3,3,t) noisy data and DDF forecast. S = 0.01

Figure 6.20. SWE on a 10 by 10 grid. The sensor region consists of 9 blue dots in a
corner region. We display the z(3,3,t) noisy data and DDF forecast. S = 0.1
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Figure 6.21. SWE on a 10 by 10 grid. The sensor region consists of 9 blue dots in a
corner region. We display the z(3,3,t) noisy data and DDF forecast. S = 1

Figure 6.22. SWE on a 10 by 10 grid. The sensor region consists of 9 blue dots in a
corner region. We display the RMS error in the x-velocity as a function of S over the
range we considered.
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6.8 Data Collection of Fluid Dynamical Systems

We had a discussion previously in the Neurodynamics section on the difficulties in

making accurate observations of neuronal network behavior, fortunately, the observations

of fluid dynamical systems are much easier and available to us. There are many different

types of tools and measurements that are made in studying oceanic behavior beyond

what we’ve done in the SWE, like wind speed (anemometers), wind direction (wind

vanes), pressure (barometers), temperature (thermometers), salinity, conductivity, oxygen

concentration, carbon dioxide concentration, pH (acidity), seawater density, and more.

These measurements can be made by people on boats, drifters (buoyant objects that record

currents as well as some of the observable quantities mentioned previously), moorings (a

collection of devices anchored to the sea floor to recording measurements at various levels

of height but always in the same location), weather balloon, and satellite [78].

As our interests in applying DDF are for regional purposes and with that comes

some reliefs and some challenges. With DDF we can construct model dynamics to make

forecasts on a grid in the SWE, we built into the assumptions that the state variables

we are forecasting are at the same location in space at all observations; perhaps this

seems obvious, but if we rely on drifters, we’d be dealing with the challenge of having a

different observation at different locations in space at every data point meaning that each

observation is of a different state variable as state variables vary with time but are rigid

in space. This could mean drifters aren’t reliable tools for dynamical model construction

(neither would mobile weather balloons). Some organizations use data collected by boat

cyclically throughout the year, but this comes with some challenges too; this data may be

in the same spot (with some error which we can attribute to noise), but may not be often

enough to fully flesh out the model dynamics as a function of time unlike the drifters that

can record data continuously.

The most reliable form of data collection will come from mooring as they can
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provide observations all the way from the air to the sea floor, support a wide variety

of instrumentation, and unlike satellites are much easier to modify as needed; they also

don’t suffer from the issue of making data recordings in different locations as they are

anchored (unlike drifters). The benefit of using systems like these are both economical

and scientific; the ability to perform regional weather forecasting would aid in maritime

coastal operations for economic purposes. Regional DDF would also be a useful tool in

forecasting other important markers in the ocean that are being affected by both climate

change and localized discharge of anthropologically enhanced nutrients[79]; cases like this

show the importance of focusing on regional weather impacts in addition to the global

climate. As of 2019 there are 370 moorings located around US coasts and lakes, this would

mean that regional weather forecasting would likely be done with a single digit number of

moorings for a coastal region, which as we’ve shown isn’t a problem as long as time delay

embedding is utilized [80].

6.9 Concluding Remarks on Fluid Dynamics

We have introduced a method for building a nonlinear discrete time forecasting

system for observed state variables in geophysical dynamical settings where the underlying

model of the dynamics is not known. The method relies on observed data to train model

parameters in a representation of the unknown dynamical rules. Time series of the data

are considered to be samples of the distribution in state space visited by the trajectories of

the selected physical variables, and the representation of the vector field of the dynamical

flow uses well tested interpolating basis functions to give information among the observed

samples.

The method for representing the unknown dynamics of the physical flow adopted in

our work uses weighted linear combinations of radial basis functions, and the estimation of

the weights is a linear algebra problem. This linear algebra operations require a Tikhonov
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regularization, also known as ridge regression [81][82]. These methods and algorithms

implementing them are well tested and widely discussed in the literature.

Selection of observations in a region means that the full state space of the dynamics

is not sampled. This entails a projection from the full state space to the subspace of

selected observables. Construction of an equivalent state space to the unknown physical

state space is, in effect, an unprojection from the observed subspace. This is accomplished

using time delay embedding, something that is widely analyzed in the nonlinear dynamics

literature.

In the example of DDF regional forecasting we investigated in this section, we

took as our global dynamics the PDEs of shallow water flow realized on a rectangular

mid-latitude plane. Clearly this is a useful, but major reduction in complexity compared to

the collection and set of data from real field observations. We have found it instructive to

begin in this manner, and the results illustrate the issues to be encountered in a practical

application of the formulation.

In this framework we demonstrated in a number of scenarios that observations

of a subset of ‘global’ shallow water flows can be used to build a discrete time flow

O(R, t) → O(R, t + h) allowing for accurate forecasting beyond a temporal domain where

data has been previously collected.

In investigating the examples we presented, we were required to generate our own

data, performing what is often called a twin experiment [83] at a choice of grid points

used to approximate solutions to the SWE PDFs. As one proceeds to using our results

to guide DDF weather forecasting, at no stage do we approximately solve some physical

PDEs on a grid of some spatial resolution, we have no restrictions on where the regional

measurements may be performed. In working with observed data, there are no grid points.

These are only introduced to aid in the solution of the PDEs of a physical model.

The gains of the DDF models must be recognized as having been only achieved

by relinquishing many of the details about earth systems processes that are captured by
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detailed physically based PDEs. In DDF only the observed state variables can be forecast;

however, when the forecast is all one needs to know, DDF provides a way to forecast based

on sampled data and forcing terms alone.

Chapter 6, has been adapted from a paper that is currently submitted for publication

in the journal Physical Review Fluids. The material may appear as Randall Clark, Luke

C. Fairbanks, Ramon E. Sanchez, Pacharadech Wacharanan, and Henry D.I. Abarbanel.

"Data Driven Regional Water Forecasting: Example Using the Shallow Water Equations".

Submitted to Physical Review Fluids 2023. Arxiv: https://arxiv.org/abs/2303.16363. The

dissertation author was the primary investigator and author of this paper.
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Chapter 7

Conclusion

The goal of studying and creating methods that help us analyze dynamical physical

systems is to enable physicists to both glean insight into physical systems in ways that may

not be experimentally available and to forecast the future behavior of the system, which is

a goal at the heart of understanding the system in the first place. In our introduction to

DDF we have shown the build up to and construction of DDF, we have shown how this

hybrid model captures elements of the physics while not constrained by complex equations;

it is not entirely a black box as it makes a clear distinction between the parts of the

interpolation that are physics based and that which are machine learning based. DDF is

accurate, flexible to different interpolation schemes, adaptable to external forces it wasn’t

trained on within limitation, robust to noise, computationally fast, parallelizable, it can

preserve fractal dimension, it is capable of exhibiting chaos, and it is easy to implement.

DDF’s reconstruction of the state space through data alone, even with reduced dimensions,

is capable, as depicted in its applications to Neurodynamics and Fluid Dynamics, of being

a useful tool for physicists interested in studying and forecasting dynamical systems with

the use of observed data alone.

The Neurodynamics section of this dissertation made calculations displaying DDF’s

robustness to real noisy data and resiliency to external forces not previously trained upon.

The creation of DDF neurons gave us the tools to take what is now a long-lost neuron
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and ask it how it would respond to new stimuli (within limitation) not previously shown

to it during its life. In the field of Neurodynamics, the neuron networks are a hot area

of research and DDF Neurons have shown to be capable of being duplicated and put in

networks. This all comes together to give physicists the tools to seek greater understanding

of their models and systems through exploitation of DDF and its model approximations.

If the NeuroDynamics section represents DDF’s value to scientific research and

deepening understanding, then the Fluid Dynamics section represents the practical appli-

cation of DDF to forecasting problems. In the Fluid Dynamics section, we’ve seen how

DDF excels in making accurate forecasts in a regional model with reduced dimensional

observations. The application of Time Delay Embedding enables DDF to reconstruct

the state space information that is lost to us by the projection of the state space to a

lower dimension when fewer than maximal dimensions are observed. As described in

the Time Delay Embedding section, the use of time delays enables us to reconstruct the

statistical properties of the dynamics, like the attractor. As opposed to numerical weather

prediction of the whole world, which is a computational task of tremendous proportion,

we present regional weather forecasting with DDF as a substitute for those interested in

local forecasting (even outside a fluid dynamical context). The ease of implementation of

DDF makes it a viable candidate for this use.

Finally, we conclude our thoughts on DDF by looking to the future and what is

next for DDF. While DDF is a completed project and ready for service, the search for

improvement goes on. Different interpolators, more careful selection of centers, different

radial basis functions, choosing the R hyperparameter in the Gaussian RBF to be nearest

neighbor dependent, or even more fundamental adaptations to how the step from time

n to n+1 is implemented in the update rule, these could all be areas of focus for future

DDF researchers to explore as new and challenging data sets present themselves. In the

area of finding data sets, research in NeuroDynamics continues as an active field of study

and weather forecasting remains an area of both research and commercial interest. It is

132



ultimately the hope and intention that this work gains traction in the scientific community

as a viable and easy to pick up method for scientific research.
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Appendix A

A.1 Choosing Hyper Parameters

Upon obtaining a data set one wishes to perform DDF on, we come to the important

question of choosing the best hyperparameters that will give us the best fit to the data.

The hyperparameters in question that we have come across in this dissertation are beta,

the ridge regression parameter that prevents over fitting, R, the radial basis function

parameter, τ , the length of the time delay, and DE, the number of time delay dimensions.

We’ve discussed at length how to choose the time delay parameters, but haven’t discussed

how we came about choosing R and beta. We don’t have much intuition for choosing beta

and since it is data set dependent, it will always require some guesswork. A simple method

for choosing R as mentioned by Wu [23] is to let R be determined by nearest neighbors;

the R for each center will be individual and determined by the center’s distance to the

next nearest center (or some combination of nth nearest neighbors). In our experience,

this method requires more testing for DDF, as initial exploration didn’t yield noticeably

better forecasts. For the purposes of this paper, we relied on two methods for choosing R

and Beta.

The first and easiest method is with basic grid sweeping. Even with τ and DE we

found that a little bit of grid sweeping could optimize DDF performance. This method

is very brute force, we would choose R and beta scale by magnitude, usually starting
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around 1e-12 and cycling through to 1e-1 netting us 144 tests when done for both beta

and R (There is no rule of thumb where beta and R should succeed in, these parameters

are highly data set dependent). This amount of testing grows ever larger when we start

varying τ and DE. Fortunately, DDF is a quick process, and depending on the number of

dimensions (and time delay dimensions) and centers, the testing for hundreds or thousands

of trials can range from minutes to hours. This method is easily parallelizable and jobs

can be doled out to a super computer with ease. We have had much success with this

simple brute force method, many of the results in this dissertation were found from this

method as the R and beta values chosen (particularly from the NeuroDynamics and Fluid

Dynamics section) are just orders of magnitudes.

The second method that we have employed is the Differential Evolution (DE)

method [84][85]. When we were very serious about choosing the most optimized possible

hyperparameter, we turn to DE. DE is an evolutionary algorithm, also known as a genetic

algorithm, that creates a parent set of hyperparameters that it combines in random ways

to create test sets of hyperparameters to compare with. If the newly created sets perform

better than the parent, they become the new parent for the next round of tests, otherwise,

they were tossed out. This evolutionary algorithm repeats this cyclical process repeatedly

and ultimately finds a very precise set of hyperparameters that maximize forecasting

potential for a data set. The two reasons we didn’t employ it all the time is that it doesn’t

search across orders of magnitudes as well as grid searching does (this is why DE is best

performed after grid searching as a refinement process), the second reason we didn’t always

use it is that it can cause DDF to overfit to the data set it is training on, which is bad if

we are trying to create DDF neurons or DDF oceans that can extrapolate to new external

forces. It is still a very useful tool for improving forecasting, and is something handy to

keep in our bag of tricks for training difficult models.
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A.1.1 Differential Evolution

DE is a powerful global optimization technique that that behaves similarly to an

evolutionary algorithm and has gained much attention from many researchers and, as such,

has had many alterations and variations made in an effort to improve it [84][85]. DE was

built with a handful of useful properties; It was built to handle nonlinear, multi-modal,

non-differentiable cost function, it’s easily parallelizable, it’s easy to program, and has

good convergence properties. In this section, we’ll briefly go over the basic DE method

that we use.

As mentioned, DE is a search method that will utilize NP D-Dimensional parameter

vectors:

xi,G, i = 1, 2, ..., NP (A.1)

where G represents that this vector comes from the Gth generation and will be used to

make the trial vectors for the G+1 generation. To make the trial vectors, we put the

previous generation G vectors through three phases, mutation, crossover, and selection.

The mutation phase is simple, we create NP mutant vectors from the G generation vectors:

vi,G+1 = xr1,G + F (xr2,G − xr3,G) (A.2)

F is a constant typically chosen to be 0.5, r1, r2, and r3 are all randomly chosen different

vectors and not the ith vector. It is for this reason that NP must be at least 4. The

next step is the cross-over step, this is done to increase the diversity of the perturbed

vector. With this step we make the trial vector ui,G+1 by going through each dimension of

the ith mutant vector, vi,G+1, and ith parent vector, xi,G and randomly choosing between

which elements of each vector to take. The method of choosing goes as follows: for a D

dimensional vector first choose RN to be an integer between 1 and D and choose CR to be

a value between 0 and 1 (typically 0.9), then the jth dimension of vector vi,G+1 will be a
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component of the trial vector ui,G+1 if j = RN or a random number generated between 0

and 1 is less than or equal to CR. If these conditions aren’t met, then the jth dimension of

the trial vector will be taken from parent xi,G.

With the crossover finished, we will have the ith trial vector comprised of the ith

mutant and parent vector. The trial vector will then be compared against its parent vector

using the greedy criterion, whichever vector provides a lower value for the cost function

will become the next parent for the next generation xi,G+1.

In our work with DDF, we initially used a standard cost function, the error squared

across averaged dimensions. This method tends to let us down however because of the

large amounts of error that are gained from all time past the divergence between the

forecast and test data. This doesn’t frequently result in DE trying to increase the length

of the prediction, rather it tries to change the shape of the prediction to minimize error,

not taking into account the forecast.

There is an easy and simple modification we make to the standard DE model,

instead of minimizing a cost function, we maximize the forecast length with a point system.

We use a metric called the valid prediction time (VPT) to test how long the forecast is

valid for and at the time it becomes no longer valid, that time is recorded and is labelled

as the score for that trial. The score, or time length, is listed as a number of time steps

taken before the forecasts becomes invalid. We will use DE to select vectors that maximize

the VPT. The VPT in practice takes the following form [17]:

V PT (t) =

√√√√ 1
D

D∑
d=1

[x
DDF
i − xtrue

i

σi

]2 > ϵ (A.3)

D is the dimension of the system, σi is the standard deviation of the ith dimension to

normalize each dimension’s time series data, and epsilon is an arbitrary threshold usually

taken to be 0.3-0.5.

DE helps us choose our hyperparameters through an iteration of easily parallelizable
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generations of trial vectors to maximize the VPT. DE’s success in this through our small

modification has earned it a discussion in this appendix.

A.2 Calculating Lyapunov Exponents

As described by Oseledec in his multiplicative ergodic theorem [12], the lyapunov

exponents can be calculated from the log of the eigenvalues from the Oseledec matrix,

however, the task of calculating the eigenvalues from the Oseledec matrix is not numerically

trivial and is ill posed. This difficulty comes from the fact that the eigenvalues of the

Oseledec matrix, OSL ∼ exp(2λt), making the max eigenvalue significantly greater than

the rest as t goes to infinity (which is a requirement for the lyapunov exponents to converge

to their true value). The solution is to make use of recursive QR decomposition to calculate

the lyapunov exponents for large time scales [13, 86]. Let’s look back at the Oseledec

matrix and break it down into usable terms:

OSL(x, N) = ([TN(x)]T · TN(x)) (A.4)

We know from linear algebra that the square of a matrix has that same matrix’s eigenvalues

but also squared, therefore we only need to calculate the eigenvalues of the whole Oseledec

matrix, we only need to calculate them from TN(x) and square root it (effectively this

just means that instead of dividing the final result by 2N, where N is the total time, we

will divide by N). Let’s break down this form:

TN(x) = T (x(n + N − 1)) · T (x(n + N − 2)) · · · T (x(n)) (A.5)

This x(n) will be data taken from either our generated data set from numerical integration

of model equations, or from DDF’s generation of data trained upon generated data. Now

recall that T is the Jacobian of the update rule, not of the dynamical system equations, this
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means that if we take a simple update rule, say Euler’s method xi(n+1) = xi(n)+fi(x, n)∗h

where i is the ith dimension of a dynamical system and h is the time step chosen, we can

put this in place of the F that T uses in its Jacobian calculations. So say we have our

dynamical system with D dimensions and D equations, fi(x, t), then we can also describe

the Jacobian of this system as Jab(x) = ∂fa(x)
∂xb

. Now let’s put this all together to describe

our T matrix:

T (x) = ID + h ∗ J(x) (A.6)

TN(x(n)) = (ID + h ∗ J(x(n + N − 1))) · (ID + h ∗ J(x(n + N − 2)))

· · · (ID + h ∗ J(x(n)))
(A.7)

Now we have our series of matrices in known terms (which we assume the Jacobian

is known or at least able to be estimated) but need a way to calculate the eigenvalues.

To do this calculation, we’ll recursively break up the right most matrix into it’s QR

decomposition, recombine the Q term with the next T matrix to be QR decomposed on

the next round and collect the upper right-hand matrix for calculating the eigenvalues. In

mathematical terms, the recursion is as follows:

T (j) · Q(j − 1) = Q(j) · R(j) (A.8)

We begin this recursion by setting Q(0) = ID, the identity matrix. Then we perform the

recursion as follows:

T (0) = Q(1) · R(1) (A.9)

T (1) · Q(1) = Q(2) · R(2) (A.10)

Now taking this to completion:

TN(x) = Q(N) · R(N) · R(N − 1) · · · R(1) (A.11)
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The lyapunov exponents can then be read off as:

λa = lim
N→∞

1
N · h

N∑
n=1

log(Raa(n)) (A.12)

A.3 Calculating The Fractal Dimension

The method we use for calculating the fractal dimension is the Correlation Algorithm,

a popular method commonly used for its ease of implementation. A special note is made

for the reader to make them aware of the box counting algorithm that is also commonly

used but will not be used in this dissertation. The Correlation Algorithm is best explained

in parts, the first part of the algorithm we need is our density function. We will define a

density function as a ration of the number of data points in a sphere of user chosen radius

r divided by the total number of data points in our data set. This function is modeled as:

η(x, r) = 1
N

N∑
k=1

θ(r − |y(k) − x|) (A.13)

Where N is the number of data points in the data set, θ is the Heaviside function, and y

is the kth data point in the data set. Now this function alone is not going to be useful to

us because it is not an invariant of the motion, as time evolves, and as we move through

phase space, this density value will change. The solution is to average it over the phase

space resulting in a function known as the "correlation function" specifically defined as:

C(q, r) =
∫

dDxρ(x)η(x, r)q−1 (A.14)

C(q, r) = 1
N

N∑
k=1

[ 1
N

N∑
n=1

θ(r − |y(k) − y(n)|)]q−1 (A.15)

Where, again, y is taken from the data set. This method is quite easy to implement,

but requires some finesse in choosing a proper r value. Also note the q term is chosen to
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be 2 for our purposes (this is a pretty standard and easy choice for q). In the limit that r

is small but not too small that it ignore the finite nature of our data, it is assumed that:

C(q, r) ≈ r(q−1)Dq (A.16)

From this equation we can arrive at a formula for the fractal dimension. The fractal

dimension is now defined by the limit:

Dq = lim
r small

log(C(q, r))
(q − 1) log(r) (A.17)

In practice, the way we will calculate this term is by calculating multiple values of C(q, r)

at different r values and plotting out the numerator and denominator of equation(A.17)

to calculate the slope (granted this will fail at large r and very small r, so a data specific

range of r must be found). [13, 14]

A.4 Code for the implementation

We did all our testing and programming in Python. We provide links to the code

published in GitHub. In the links is a DDF program written specifically for Shallow Water

Equations, Bio Physical Neuron Networks, and a more general overview of the basics of

DDF. The General overview listed as "Thesis DDF Code" includes python scripts and

example Jupyter notebooks detailing how the scripts are to be used for Radial Basis

Functions, Taylor Series Expansion Methods, and Time Delay Embedding Dimensions.

The SWE code includes the python script and Jupyter notebook used to get the results in

the dissertation (and original paper) as well as code to solve the shallow water equations.

Here we list links to the GitHub repositories which store these codes:

• https://github.com/RandarserousRex/Thesis-DDF-Code

• https://github.com/RandarserousRex/DDF-Applications-to-Neurons
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• https://github.com/RandarserousRex/SWE-DDF

A.5 Memory Management

One important note to consider is the size of the matrices that are involved in the

training process, for they can grow to the size of gigabytes. If one is caught unaware,

they could rapidly run into memory issues. The matrix that grows most prodigious is

the training matrix that collects all the values of all the RBF’s at all times; say we are

training on a data set with 25,000 time series data points in it and are using 5,000 centers

to accurately forecast the data set, then if we’re using float64 values (which we normally

do), the total data consumption from this matrix is 25,000 x 5000 x 8 bytes = 1 Gigabyte.

There will also need to be enough memory to take transposes and inverses of this matrix.

This could be the limiting factor if one is running multiple tests in parallel on a CPU or

on a cluster with limited storage.

A.6 Parallelizing the DDF Calculations

This section serves to comment on the parallelizability of DDF and its associated

programs for future users of DDF may tackle bigger and more challenging problems that

may consume excessive computer resources and time. For these larger tasks (or even some

of the tasks tackled in this paper), the using of parallel processes can make running DDF

much faster.

The first and most obvious case for parallelizability comes from the hyperparameter

searching discussed earlier in the appendix. Both the grid sweeping method and differential

evolution method run evaluations of DDF with different sets of hyperparameters that have

no reliance or relation to the tests that come before or after. For this reason, both method

of hyperparameter searching are extremely parallelizable, and it’s easy to do so as long as

one has the computers to split up jobs on.
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The second form speed increase from parallelizing processes comes from the large

matrix operations that DDF undergoes. The bulk of the training time in my tests comes

from the large matrix multiplications that come from the Ridge Regression process; the

prediction phase is just a loop of matrix multiplications (or at least it can be coded this

way as matrix multiplication is one of the things Python can do quickly), and while the

loop isn’t parallelizable because each iteration depends on the iteration coming before it,

the matrix multiplication in each step is parallelizable. Using GPU’s, matrix multiplication

can be sped up dramatically depending on the size of the matrix (with greater speed-ups

for larger matrices)[87].
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