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Abstract
We explore the viability of modeling dynamic problems with a new formulation
of an impulse-based Level-Set DEM (LS-DEM). The new formulation is stable,
fast, and energy conservative. However, it can be numerically stiff when the
assembly has substantial mass differences between particles. We also demon-
strate the feasibility of modeling deformable structures in a rigid body frame-
work and propose several enhancements to improve the convergence of collision
resolution, including a hybrid time integration scheme to separately handle
at rest contacts and dynamic collisions. Finally, we extend the impulse-based
LS-DEM to include arbitrarily shaped topographic surfaces and exploit its algo-
rithmic advantages to demonstrate the feasibility of modeling realistic behavior
of granular flows. The new formulation significantly improves the performance
of dynamic simulations by allowing larger time steps, which is advantageous for
observing the full development of physical phenomena such as rock avalanches,
which we present as an illustrative example.

K E Y W O R D S
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1 INTRODUCTION

Typical DEM codes use penalty-based approach to resolve contacts between discrete bodies, which are then converted
to forces, accelerations, and displacements. This approach has varying amounts of complexity in generating a contact
interaction force based on the separation distance between the particles in contact.1 It is also computationally demanding,
if not prohibitively expensive, for large-scale DEM simulations with complex-shaped grains or particles. While recent
research efforts have been made to accelerate these DEM codes using high-performance computing clusters or graphics
processing units (GPUs),2–5 such resources are not generally or broadly accessible.

Alternatively, an impulse-based DEM formulation is significantly more computationally efficient since it directly
computes the velocity increment of the modeled objects. This approach was originally designed to accelerate computer
graphics6–8 and prioritizes code speed, stability, and physical plausibility over simulation fidelity. Recent work9–12 demon-
strates that, in addition to much improved code speed and numerical stability, the impulse-based technique also produces
results with comparable accuracy to the corresponding penalty-based DEM simulations. This makes the impulse-based
approach intriguing, since it is capable of addressing very large dynamic problems.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
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Herein we outline the framework of impulse-based rigid body dynamics, which is fundamentally a process of kinetic
energy conversion to elastic energy. Rather than providing a broad introduction to the subject, we focus on the numer-
ical aspects of the impulse-based approaches and the possibility of parallelizing impulse-based LS-DEM using the
domain decomposition approach.13,14 We show that in comparison to parallel implementation for penalty-based LS-DEM,
impulse-based DEM saves considerable effort in data communication, but requires additional handling of multibody
assemblies in direct contact. We then introduce a modified Energy Tracking Method (ETM),9 in order to resolve collisions
between a wide range of grain shapes and sizes and to add deformable structures into rigid body dynamics. Finally, we
illustrate the performance and applicability of the impulse-based LS-DEM for rock fall and rock avalanche simulations.

2 FORMULATION OF IMPULSE-BASED RIGID BODY DYNAMICS

A negative relative velocity between two objects at the time of a collision suggests that they are about to penetrate. To avoid
penetration between rigid bodies, the negative relative velocity is increased till it reaches zero by applying a sequence of
impulses in the normal direction of contact. The compression phase converts kinetic energy to elastic energy, which is then
stored at the contact points. Following that, previously held elastic energy is released to restore relative normal velocity,
repelling the two bodies from one another and concluding the collision process. As it is almost impossible to predict the
microstructure of materials during collisions in practice, we adopt Stronge’s hypothesis:15 the amount of energy absorbed
and released may vary according to the restitution coefficient. For example, for a perfectly elastic collision with no energy
loss. Stronge’s hypothesis states that energy is dissipated as follows:

Wrelease = 𝜖2Wabsorbed (1)

Where Wrelease and Wabsorbed denote the energy released and absorbed during release and compression phases, respec-
tively. 𝜖(0 ≤ 𝜖 ≤ 1) denotes the coefficient of restitution that determines the elasticity of the contact. Without the loss
of generality, we formalize a single collision process by considering a body bA collides with another bB due to the i-th
impulse Pi, which effectively changes their linear velocities (VA and VB) and angular velocities (𝝎A and 𝝎B, as shown
in Figure 1 via:

Pi
A = MAΔVA (2)

Pi
B = MBΔVB (3)

F I G U R E 1 Collision between bodies bA and bB: VA and VB are linear velocities of the center of mass, 𝝎A and 𝝎B are angular velocities,
ri

A and ri
B are the vectors from the center of mass of bodies to the contact point where the i-th impulse Pi applied, ui

A and ui
B are the velocities

at the contact points, and ni is the contact normal.
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TAN et al. 3 of 24

ri
A × Pi

A = IAΔ𝝎A (4)

ri
B × Pi

B = IBΔ𝝎B (5)

Pi
A = −Pi

B (6)

Where MA and MB are the masses, IA and IB are the inertial tensors, ri
A and ri

B are the relative positions from the center
of gravity of bA or bB to the contact point at which the i-th impulse was applied. The velocities ui

A and ui
B of contact points

on bA and bB in global frame are:

ui
A = VA + 𝝎A × ri

A (7)

Therefore, the velocity changes at a point of contact between body bA and body bB due to the i-th impulse respectively
is given below. Here, we suppose that the collision occurs and resolves quickly enough that the contact point i remains
stationary.

Δui
A = ΔVA + Δ𝝎A × ri

A =
1

MA
Pi

A + I−1
A ri

A × Pi
A × ri

A =
(

1
MA

− r̃i
AI−1

A r̃i
A

)
Pi

A (8)

Δui
B = ΔVB + Δ𝝎B × ri

B =
1

MB
Pi

B + I−1
B ri

B × Pi
B × ri

B =
(

1
MB

− r̃i
BI−1

B r̃i
B

)
Pi

B (9)

The second equality converts cross product between vectors into equivalent matrix-vector multiplication. In the vector
space3, the cross produce (×) is an operator taking two vectors to a third vector:

a × b =
⎛⎜⎜⎜⎝

aybz − azby

azbx − axbz

axby − aybx

⎞⎟⎟⎟⎠
= ãb (10)

Where ã is a 3 × 3 skew-symmetric matrix. In the collision formula above:

r̃ =
⎛⎜⎜⎜⎝

0 −rz ry

rz 0 −rx

−ry rx 0

⎞⎟⎟⎟⎠
(11)

Above formulas imply that if we know the change of relative velocity at the contact points, the resulted impulse can
be computed via:

Δ
(
ui

A − ui
B
)
= Δui

A − Δui
B =

[(
1

MA
+ 1

MB

)
I −

(
r̃i

AI−1
A r̃i

A + r̃i
BI−1

B r̃i
B
)]

Pi
A (12)

K =
(

1
MA

+ 1
MB

)
I −

(
r̃i

AI−1
A r̃i

A + r̃i
BI−1

B r̃i
B
)

(13)

Where Pi
A is the i-th impulse exerted on the body bA, and K is termed as the collision matrix and it is non-singular,

symmetric, positive definite and defined in global frame for a given collision.16 Collision contact occurs within a very short
time interval for a rigid body, implying that displacement and change in the contact area are insignificant. This indicates
that the collision matrix K remains constant throughout the collision, and that once the change in relative velocity is
known, the collision matrix is used to compute the impulses:

Pi = K−1Δui (14)

Where Pi = Pi
A = −Pi

B is the i-th impulse, ui = ui
A − ui

B is the relative velocities at the contact points where the i-th
impulse is applied, andΔui is the change of relative velocities. This formula remains true if the friction forces are ignored
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4 of 24 TAN et al.

or if the friction forces are constant. As a result, if there is no slip between the bodies, only the normal component of the
change in relative velocity Δui

n is non-zero, because it is the relative normal velocity at the contact locations that drives
the bodies to collide. Thus, the preceding formula is reduced to:

ni ⋅KPi = ni ⋅ Δui = Δui
n (15)

|||Pi
n
||| = ni ⋅ Pini (16)

Pi
t = Pi − Pi

n (17)

If sliding occurs, apart from ensuring that relative normal velocity changes are consistent with the prescribed value, the
impulse must be recalculated to meet Coulomb’s friction requirement, which limits the magnitude of tangential impulse:

|||Pi
t
||| = 𝜇|||Pi

n
||| (18)

Pi = |||Pi
n
|||ni + 𝜇|||Pi

n
|||ti (19)

|||Pi
n
||| =

Δui
n

ni ⋅ (Kni + 𝜇ti)
(20)

Where ni, ti are the contact normal and tangential direction at the i-th collision, and Pi
n and Pi

t are the normal and
tangential components of applied impulse. This concludes the compression phase where the corresponding impulse is
generated based on the change of relative velocity and the kinetic energy is stored in the form of elastic energy at the
contact.

The next step is to dissipate the elastic energy and invert the sign of the relative normal velocity to separate the bodies.
This is the inverse of the compression phase: a predefined amount of elastic energy is dissipated to increase the relative
normal velocity via a series of impulses. Mirtich16 proved that if the relative contact velocity ui proceeds from ui

0 to ui
f

during a collision and over some arbitrary path, the total work done by the collision impulse Pi is independent of the
path taken and is given below, which enables the change in relative velocities to be calculated from the released elastic
energy.

ΔW i = 1
2

(
ui

f + ui
0

)T
K−1

(
ui

f − ui
0

)
= 1

2

(
ui

f + ui
0

)T
Pi (21)

Given that rigid body motion is better defined in terms of its principal or local frame, it is more convenient to
address collisions in the local coordinate system via the rotation matrix R, which defines the transformation from body to
global coordinates. In our implementation, rotations are handled numerically via a singularity-free quaternion technique
given by:

R =
⎛⎜⎜⎜⎝

−q2
1 + q2

2 − q2
3 + q2

4 −2(q1q2 − q3q4) 2(q2q3 + q1q4)
−2(q1q2 + q3q4) q2

1 − q2
2 − q2

3 + q2
4 −2(q1q3 − q2q4)

2(q2q3 − q1q4) −2(q1q3 + q2q4) −q2
1 − q2

2 + q2
3 + q2

4

⎞⎟⎟⎟⎠
(22)

Where the q’s are the quaternions.17 The time derivatives of the orientation parameters (q1, q2, q3, q4) can be expressed
in terms of the quaternions and the angular velocities.

q̇1 =
1
2
(−q3𝜔x − q4𝜔y + q2𝜔z)

q̇2 =
1
2
(q4𝜔x − q3𝜔y − q1𝜔z)

q̇3 =
1
2
(q1𝜔x + q2𝜔y + q4𝜔z)

q̇4 =
1
2
(−q2𝜔x + q1𝜔y − q3𝜔z)

(23)
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TAN et al. 5 of 24

4∑
i=1

q2
i = 1 (24)

These equations can be solved explicitly for the quaternion values at the new time step in terms of the old values, and
for the angular velocities at the midpoint of the time step. Then

ΔW i = 1
2

(
ui

f + ui
0

)T
Pi = 1

2

(
Rui

f + Rui
0

)T
RP̃i = 1

2

(
ui

f + ui
0

)T
Pi (25)

Where u0, uf and Pi denote initial relative velocity, final relative velocity, and applied impulse, all with respect to the
body frame. During a collision, the work done by the impulse can be decomposed into the work done by the impulse in
the normal direction ΔW i

n and the work done by the impulse in the tangential direction ΔW i
t .

ΔW i = ΔW i
n + ΔW i

t (26)

ΔW i
n =

1
2
(
2ũi

n + Δũi
n
)

P̃i
n (27)

ΔW i
t =

1
2
(
2ũi

t + Δũi
t
)

P̃i
t (28)

Where ũi
n, ũi

t and P̃i
n, P̃i

t are the normal and tangential component of relative velocities and impulses at con-
tact points defined in the body frame. It is more usual to depict a plane perpendicular to the contact normal using
two orthogonal vectors, which is also compatible with the rotation operation using three orthogonal vectors. We
decided not to differentiate the two tangential directions here since we were only concerned with the normal com-
ponents: tangential velocities would remain unchanged because they did not break the impenetrability requirements
between rigid entities. Due to the fact that work performed in the different directions is independent, the change
in the relative normal velocity has no effect on the amount of work performed in the normal direction by the
impulse, which later inverts the relative normal velocity by releasing the energy absorbed during the compression
phase.

The change of relative velocity Δui and the corresponding work done ΔW i by the impulse implies that there
should be a way to compute Δui (ΔW i) if the collision work ΔW i (Δui) is known. Indeed, simply changing
the relative normal velocity results in the generation of tangential impulses and thus the associated work. How-
ever, because the work performed in the normal directions is decoupled, the change in relative normal veloc-
ity Δui

n can be retrieved provided that we get access the normal impulse P̃i
n and the absorbed/released work

caused by P̃i
n. Additionally, the tangential restitution coefficient is set to zero, which requires calibration but

is plausible in many impulse-based simulators. As a result, the collision work ΔW i and ΔW i
n are used inter-

changeably, and we focus on the conversion of kinetic to elastic energy in the contact normal direction. For
instance, during the compression phase, the relative normal velocity decreases and eventually converts to the elastic
energy:

ΔW i
n =

1
2
(
2ũi

n + Δũi
n
)

P̃i
n (29)

Where P̃i
n is the normal component of applied impulse. In the separation phase, the absorbed elastic energy reduces

and changes the sign of the relative normal velocity via an impulse along the contact normal:

KPi = Δui (30)

ni ⋅K
(

P̃i
nni

)
= niΔui = Δũi

n (31)

P̃i
n =

Δũi
n

ni ⋅ (Kni)
(32)

Δũi
n = −ũi

n +
√
(ũi

n)2 + 2ΔW i
nni ⋅ (Kni) (33)
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6 of 24 TAN et al.

3 IMPULSE-BASED LS-DEM IMPLEMENTATION

3.1 Contact model

Just as in a penalty-based method, the contact in impulse-based LS-DEM is handled through node-to-surface contact
algorithm and the contact normal direction is also interpolated from the underlying signed distance function grid of a
grain. The difference is that contact force calculation is skipped in the impulse-based formulation; however, it could be
retrieved from the applied impulse with high-precision. In addition, the inter-grain tangential contact is significantly
easier to manage in an impulse-based DEM because it does not track friction evolution and updates velocities directly.
During the force resolution phase, the impulse-based DEM iterates through the surface nodes between colliding bodies,
identifying all contact points with negative relative velocities, and calculating repulsive impulses to satisfy impenetrability
constraints.

The friction type of contact is examined to ensure that the magnitude of the tangential component of the collision
impulse follows Coulomb’s friction law. Due to the fact that LS-DEM aims to simulate arbitrarily complex grain shapes,
it is unavoidable that multiple contact points collide when two reconstructed avatars are on a collision course. To handle
many collisions and various contacts, the simultaneous impulse methods (SMM)18,19 assembles all collisions into a sys-
tem of linear equations, enforces non-penetration restrictions as a linear complementary problem (LCP) and evaluates
the outcomes in a single step. However, the SMM fails to capture the propagation of contact forces during a collision.
The Sequential Impulse Method (SQM)20 resolves each collision within a single time interval and treats the contacts as if
they occurred sequentially. This method inverts the relative velocity directly using Newton’s law and prioritizes contact
points based on the depth of inter-penetration; it is iterative and continues until all contact points have positive relative
velocities. The primary disadvantage of SQM is that edge-surface or surface-surface contacts do not end up with similar
repulsive velocities and the results depend on the sequence in which collisions are addressed. This issue can be resolved
by gradually changing the relative normal velocity and elastic energy in such a way that all contact points with similar nor-
mal directions can adjust velocities to similar magnitudes.9,12 The compression phase involves incrementally increasing
the relative normal velocities at contact points until all relative normal velocities are non-negative. During the separa-
tion phase, the absorbed energy is gradually released until no energy remains at the contact points, again in an iterative
fashion.

3.2 Discrete equations of rigid body motion in impulse-based LS-DEM

The original implementation of LS-DEM21 solves Newton’s and Euler’s governing equations of motion for trans-
lational and rotational components of motion, respectively. For the translational component of motion, the posi-
tions, forces, and velocities are known at the end of each time step so that grain motion can be explicitly
updated via the governing translational equation given by Newton’s law using a centered finite-difference integration
scheme. For the rotational components of motion, the time derivatives of the angular accelerations in the princi-
pal frame are given by Euler’s equations of motion, which is nonlinear and implicit, hence prone to numerical
instability.

Again, it is much simpler to change the velocities of two rigid bodies with the impulse-based method. For example,
if the contact master body bA experiences a collision contact with bB under the corresponding impulse Pi, in accordance
with Newton’s law, the changes in velocity for each rigid body are given by:

ΔẋA,B = M−1
A,BPi

A,B (34)

Δ ̇𝜽A,B = I−1
A,B

(
ri

A,B × Pi
A,B

)
(35)

The velocities and positions for the rigid bodies are subsequently updated via symplectic Euler scheme:

ẋA,B = ẋA,B + ΔẋA,B (36)

̇𝜽A,B = ̇𝜽A,B + Δ ̇𝜽A,B (37)
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TAN et al. 7 of 24

xA,B = xA,B + ẋA,BΔt (38)

𝜽A,B = 𝜽A,B + ̇𝜽A,BΔt (39)

3.3 Collision resolution algorithm

The ETM algorithm is demonstrated with three vertically stacked spheres as shown in Figure 2. The concurrent collisions
are treated as a series of single point collisions and include an additional iteration within the compression and separation
phase to make the results insensitive to the order of the impulses. When dealing with numerous contact collisions, ETM
gradually delivers impulses to adjust the relative normal velocities of several collisions, yielding low angular velocity
errors. The time step within the sub-cycle loop can be adjusted adaptively to obtain more stable and energy-conservative
rigid body dynamic simulations.12 In the impulse-based DEM, if any pair of rigid bodies is connected to a group of LS
avatars via a chain of contacting avatars, collisions at all contact points are resolved simultaneously, as the impulse can
propagate within the group. The algorithm begins by iterating through contact points created by collisions and prioritizing
those with a negative relative normal velocity. During the compression phase, the priority queue is sorted by minimum
relative normal velocity; after the algorithm enters the separation phase, it is sorted by elastic energy. To expedite the
process, a group of adjacent contact points is glued together and treated as a single contact. Kinetic and elastic energy are
converted to one another during the compression and separation phases.

The kinetic energy gradually decreases to zero as a result of the application of a series of impulses in the compression
phase, and the relative velocity reverts to its initial sign during the energy release phase. Following Stronge’s hypothesis
(setting the coefficient of restitution to 0.5), the restored elastic energy abruptly decreases at the end of the compression
phase and gradually decreases to zero during the energy release phase. Although the relative velocity or elastic energy
converge arbitrarily close to zero, they do not achieve it numerically. Rather, a threshold value is chosen to truncate small
values and to make the algorithm more efficient. The threshold value should be less than the time step, as otherwise
velocity changes may not be reflected, thus accumulating errors. In addition, While the grain interactions can be recon-
ciled element by element in a penalty-based approach, a contact island illustrated in Figure 3, in which any pair of grains

F I G U R E 2 Energy conservative property of impulse-based collusion resolution, kinetic energy (blue) and elastic energy (red) during
compression and separation phases. The coefficient of restitution is 0.5.
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8 of 24 TAN et al.

F I G U R E 3 Illustration of contact islands (indicated in different colors) in which a group of bodies is associated via a contact chain
which can span over several sub-domains. For example, two red bodies in a same group could influence each other via alternate paths.

is connected via a chain of immediately contacting grains, must be solved concurrently to satisfy the impenetrability
constraints in the impulse-based formulation. The resulting algorithm is presented in Algorithm 1.

3.4 Time stepping algorithm

Explicit time integration is ideally suited to dynamic contact/impact problems, as small time steps allow for the han-
dling of contact/impact discontinuities. In a traditional penalty-based DEM, the governing equations determine the
resultant force acting on objects and then update accelerations and velocities via a numerical integrator. In compari-
son, the impulse-based dynamic simulation modifies velocity directly using a different numerical scheme, obviating the
requirement for force computations. This results in the symplectic Euler scheme of first order.

vt+1 = ẋt + Δẋt = vt + Δvt (40)

xt+1 = xt + vt+1Δt (41)

𝝎
t+1 = ̇𝜽

t + Δ ̇𝜽t = 𝝎t + Δ𝝎t (42)

𝜽
t+1 = 𝜽t + 𝝎t+1Δt (43)

Above formulations are different from the time integration methods used in penalty-based DEM, an example of second
order finite difference scheme in the time-centered form22 is displayed below.

vt+ 1
2 = vt− 1

2 + v̇tΔt (44)

xt+1 = xt + vt+ 1
2Δt (45)

Which is equivalent to the formulation of Reference 10:

xt+1 = xt + ẋtΔt + 1
2

ẍtΔt2 (46)
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TAN et al. 9 of 24

Algorithm 1. Collision resolution algorithm

Input: A list of contacts within a contact island including contact IDs of colliding bodies A and B; branch vectors from centers to
contact point r; contact normal direction n; relative velocity ũ; elastic energy W and body mass M.

1: Define parameter 𝛼 to control velocity increment in sub-iteration, Coulomb’s friction coefficient 𝜇, tolerance 𝛽 ≈ 1-5%12, and
Stronge’s coefficient 𝜖.

2: for all contact points do
3: Compute inertial matrix in global frame I = RI0RT , cross-product matrix of colliding bodies r̃, relative normal velocity un,

collision matrix K =
(

1
MA

+ 1
MB

)
I − (r̃AIA

−1r̃A + r̃BIB
−1r̃B), wrap computed quantities as Λc.

4: end for
5: Prepare a priority queue for all contact points with negative relative normal velocity, sorted by the minimum value. Λmin V ∶=
{Λc, key = un}.

6: while Λmin V is not empty do
7: /* Compression Phase */
8: while Λmin V is not empty do
9: Generate a list ΓV containing Λc with minimum relative normal velocity umin

n and those with similar magnitude,
|u′n−umin

n |
|umin

n | ≤ 𝛽.

10: Obtain increment of relative normal velocity: Δumin V
n = umin

n
𝛼⋅|ΓV | .

11: for all contact points in ΓV do
12: P̃ = Δumin V

n K−1n, P̃n = n(P̃ ⋅ n) and P̃t = P̃ − P̃n.
13: if |P̃t| ≥ 𝜇|P̃n| then
14: |P̃n| = Δumin V

n
n⋅[K(n+𝜇t)]

15: P̃ = |P̃n|n + 𝜇|P̃n|t
16: end if
17: Calculate change in velocity, Δũ = M−1P̃, Δ𝝎̃ = I−1(r × P̃).
18: Restore elastic energy, ΔW = 1

2
(2un + Δumin V

n )|P̃n|.
19: end for
20: Compute updated relative normal velocities and reset Λmin V .
21: end while
22: /* Restitution Phase */
23: for all contact points in the contact island do
24: Multiply restored elastic energy by Stronge’s coefficient to imitate energy dissipation. W ← 𝜖W .
25: end for
26: /* Separation Phase */
27: Build a priority queue for all contact points with non-negative elastic energy, sorted by the maximum value. Λmax W ∶=

{Λc, key = W}.
28: while Λmax W is not empty do
29: Generate a list ΓW containing Λc with maximum restored elastic energy W max and those with similar magnitude,

|W ′−Wmax |
|Wmax | ≤ 𝛽.

30: Obtain change of relative normal velocity at point with largest elastic energy. Δumax W
n = −umax W

n +
√
(umax W

n )2 + n ⋅ (Kn)
31: for all contact points in ΓW do
32: P̃ = Δumin V

n K−1n, P̃n = n(P̃ ⋅ n) and P̃t = P̃ − P̃n.
33: if |P̃t| ≥ 𝜇|P̃n| then
34: |P̃n| = Δumax W

n
ñ⋅[K(ñ+𝜇t̃)]

35: P̃ = |P̃n|ñ + 𝜇|P̃n|t̃
36: end if
37: Calculate change in velocity, Δũ = M−1P̃, Δ𝝎̃ = I−1(r × P̃).
38: Release elastic energy, ΔW = − 1

2
(2un + Δumax W

n )|P̃n|.
39: end for
40: Compute updated restored elastic energy and reset Λmax W .
41: end while
42: /* some velocities can be negative after above two iterations */
43: Identify all contact points with negative relative normal velocity and update priority queue Λmin V , Λmin V ∶= {Λc, key = un}.
44: end while
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10 of 24 TAN et al.

For motion update, the penalty-based DEM is second order accurate, but the impulse-based dynamic simulation
updates the motion via a linear change in velocities. In other words, the symplectic Euler scheme analyzes velocity
changes in the ‘secant’ direction, whereas the time-centered Euler scheme considers velocity changes in the ‘tangent’
direction. Regarding the numerical stability, both schemes are conditionally stable and require a critical time step such
that there is limited oscillation in the solution and any numerical errors do not accumulate.10 In addition, the rigid body
dynamic simulation also requires that the numerical solution does not produce spurious energy gains in the modeled
system for a sufficiently long simulation time.

The symplectic Euler integration is also conditionally stable in the sense that the numerical results are bounded only if
a smallΔt is used that is less thanΔtcr . However, because the contact stiffness is omitted from the impulse-based dynamic
formulation, the critical time step is determined by the Courant-Friedrichs-Lewy (CFL) condition, which is substantially
larger than the criterion for the penalty-based DEM formulation. The CFL condition prevents obvious penetration errors
between objects, which implies that the time step is limited by the physics of the problem, where an excessively large time
step size results in objects passing through one another, but not by numerical stability issues. Additionally, it possesses
the virtue of numerical stability over a long simulation period due to the fact that the total energy of a modeled system
is nearly conserved even at large Δt. Thus, the impulse-based simulation may use a time step several orders greater than
penalty-based DEM simulations, maintaining comparable computational fidelity. This feature is especially advantageous
for modeling natural granular materials with large grain size distributions, for which standard DEM is prohibitively
expensive. Also, while mass scaling is widely employed in DEM,23 it is not advisable if a dynamic analysis requires high
frequency response.

Energy conservation is ensured by the combined usage of the symplectic scheme and iterative collision resolution
algorithm. This trait, however, is less desirable when modeling a granular system with a broad variety of shapes and
sizes. Consider a small grain sandwiched between two considerably larger grains, both of which are attempting to crush
the small grain at opposing contact locations (Figure 4 left). The small grain may elastically bounce back and forth
in a protracted succession of near-simultaneous encounters. This procedure is unstable in the long run in that even
a very small numerical inaccuracy is likely to accumulate and result in the simulation becoming unstable. To address
this issue, global damping is introduced, and the velocity change caused by global damping is updated in the following
manner:

ẋ = ẋ(1 − 𝜉Δt) (47)

̇𝜽 = ̇𝜽(1 − 𝜉Δt) (48)

0 ≤ 𝜉Δt ≤ 1 (49)

Where 𝜉 is the global damping ratio. While this approach helps accelerate convergence in the case of multi-
ple collisions in a complicated system, it may still fail when a stiff boundary is involved. Rather being squashed
by larger grains, for example, a small grain may rest on a rigid plane in one direction while colliding with a
larger grain in the opposite direction (Figure 4 right). The rationale for applying damping to dynamic collisions
between grains is that collisions will eventually resolve after a sufficient number of repetitions, and damping is a
last choice for expediting this process. Interacting with a rigid boundary, on the other hand, is fundamentally dif-
ferent, as the rigid boundary’s velocity cannot be dampened, resulting in a numerically stiff problem as discussed
next.

F I G U R E 4 Left: A small grain is sandwiched by two larger grains. Right: A small grain is resting on rigid plane while colliding against
a large grain. The collision resolution algorithm for these cases might take extremely large number of iterations.
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TAN et al. 11 of 24

4 NUMERICAL CHALLENGES OF THE IMPULSE-BASED LS-DEM

4.1 Contact with rigid boundaries

The conventional approach for impulse-based DEM is to integrate the equations for rigid body evolution forward in time
and then resolve collisions to update velocities. This requires the ETM algorithm to modify the velocity discontinuously
and to treat all types of interactions in the same manner to reap the algorithmic benefits. That is, regardless of the mag-
nitude of relative velocity and friction status, both inter-grain and wall-grain interactions are considered equivalent. We
will demonstrate how resting contact on rigid wall causes the ETM algorithm to enter an infinite loop when dealing with
a system of complex shaped objects. We define the following terms: resting contact refers to the state of objects being
stationary, whereas dynamic collision refers to the state of grains experiencing a change in force due to interference. A
simplified explanation is that because the velocity of a rigid wall remains unchanged, it violates the premise of the ETM
algorithm, which separates two objects by sequentially applying repulsive impulses to both. Collisions require impulses
to modify the velocity, whereas contacts are more closely associated with forces and accelerations. As a result, a special
treatment is required to distinguish impulse-based collision treatment and needs a penalty-springs approach for at rest
contact.

We used a time sequence similar to Guendelman et al.20 to distinguish the two types of contacts with the magnitude
of the relative velocity suggested by Moore and Williams24 and Mirtich.6 The critical concept behind this procedure is to
detect static contacts that violate impenetrability constraints and correct velocity immediately after the ETM algorithm
is used to update the velocity. To avoid an infinite loop during the collision resolution, only dynamic collisions are
considered. The general application of velocity correction is dependent on two critical factors: a low relative velocity
and rigid boundary interaction. If one of these two criteria is not met, a wall-grain contact is still classified as a nor-
mal collision and treated using a collision resolution algorithm. After the ETM algorithm is completed, the object is
advanced in the next time step using the newly solved velocities. The interference between rigid walls and grain is then
checked, and the grain velocity is corrected, as we want the objects to move to positions where there are no rigid wall
interactions. To ensure this, we use the old velocities to predict the positions of the rigid bodies and use corrected veloc-
ities to progress through time steps. For instance, in the collision phase, if an object’s current position and velocity are
x and v, we test for interference with rigid walls using the predicted position x′ = x + v ⋅ Δt, and then apply correc-
tion to the current velocity such that the resulting velocity v∗ does not interfere with rigid walls. Finally, we advance
the object’s position xt+1 = xt + v∗ ⋅ Δt. The algorithm’s overall structure is shown in Figure 5: it moves all rigid bod-
ies to their predicted locations first, and then it identifies and resolves all grains that penetrate rigid boundaries. This
idea is visualized in Figure 6, that is, we consider all nodes within the interpenetrating edges of a grain and move the
one with deepest penetration till it is no longer in contact with the rigid wall. Angular velocity is also corrected by
integrating the repulsive forces due to temporary grain-wall overlaps. After velocity correction, new contacts with neg-
ative relative velocities are identified and included in contact islands; we then re-evolve the position using the new
post-collision velocity and locate grains penetrating with rigid walls once again. We repeat the process until all con-
tacts are either non-interpenetrating or separating. By design, this time sequence also ensures impenetrability between
a grain and the rigid wall; if the velocity correction step were to occur before collision resolution, the objects would
otherwise pass through the rigid wall. We note that, Wriggers and Laursen25 and Zohdi26 implemented a similar adap-
tive time-stepping algorithm with convergence criterion to resolve the interaction between the network fabric and the
rigid body.

4.2 Modeling deformable structures

In comparison to rigid bodies, dynamic simulation excludes a wide variety of methods for modeling deformable structures,
as the motion of a deformable structure is frequently unpredictable using a mathematical formula, for this reason, it is not
considered in a dynamic simulation. As a result, impulse-based methods are frequently ignored or avoided in dynamic
simulations of deformable structures, and are instead used exclusively for rigid bodies. The assertion that impulse-based
methods can be applied only to rigid body models16 is intuitive: impulses are instantaneous changes in momentum,
whereas deformation is a gradual process that occurs over time. However, many applications of DEM, such as numerical
modeling of experimental triaxial tests or studies of the interaction between retention barriers and boulders in debris
flow simulation, require the modeling of a flexible membrane. The central idea is to represent structures using a group
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12 of 24 TAN et al.

F I G U R E 5 Flowchart of the time stepping integration, post-collision velocities were corrected by checking grain-boundary contact,
membrane sphere velocity was corrected after it advanced to the next time step to ensure impenetrability.

of rigid balls: while each ball changes velocity in a sequence of instantaneous impulses, the configuration of the balls
in the group changes in a seemingly gradual manner over time. We claim that this design does not contradict the rigid
body assumption of impulse-based formulation because individual balls are still rigid. This method is different from the
soft-contact model used for penalty-based DEM in that the springs used in contact detection and force resolution in
penalty-based DEMs are inserted temporarily between detached colliding objects, whereas the springs used in the flexible
membrane are permanent, and the distinct balls represent an entire entity. Using a similar idea, Zohdi26 computationally
simulated a network of coated yarn using coupled fiber-segments, which include damage and plastification of the yarn.
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TAN et al. 13 of 24

F I G U R E 6 Collision time sequence: gray grain obtains post-collision velocity, temporarily translates to the position marked in yellow,
subject to repulsive forces and correct velocities to satisfy impenetrability constraints.

To demonstrate the flexible membrane model, a representative example of several complex shaped grains falling into
a flexible net is considered. The flexible nature of the net is modeled as a blanket of linked balls organized in hexago-
nal patterns with a stiffness of K = 0.1 for the internal springs between balls. The grains are subjected to vertical body
force and the time step is t = 2 × 10−4; the simulation takes approximately 16,000 iterations to reach an equilibrium state
equivalent to 3.2 physical seconds. Figure 7 depicts the simulation results after 0 iteration, 4000 iterations, 8000 iter-
ations, and 12,000 iterations. The flexible membrane or net is square and has four clamped edges. All balls along the
clamped edges are given an initial velocity of zero, and forces are zeroed out, effectively immobilizing them. External
downward forces are applied to grains at regular time intervals via impulses and the grains begin to fall and contact
the initially flat membrane. When the membrane comes into contact, it begins to sag and then exhibits a wave-like
pattern as a result of internal velocity propagation triggered by the initial fall via a chain of springs. After 12,000 iter-
ations, the induced waves have mostly subsided, and the grains have settled to form a depression in the membrane.
This simulation took only 2 min to complete, which is compelling because it eliminated the need to select regular time
intervals. The selection of an appropriate time interval in the case of granular systems is complicated by the fact that
interacting entities can differ in size and momentum by many orders of magnitude. Because the size and mass of the
membrane ball are much smaller than grains in this example, they would have governed the time step in the conven-
tional penalty-based DEM for the sake of numerical stability, necessitating significantly more iterations to complete the
simulation.

Another numerical example is illustrated in Figure 8, where an assembly of grains is initially seated on an inclined
plane and then subjected to gravity force. Grain collisions are first resolved using the ETM algorithm and then the grain
positions are temporarily updated using our new time stepping scheme with the post-collision velocities. When grains
collide with a rigid plane as the result of gravity and interference, post-collision velocities are corrected to enforce impen-
etrability constraints. Then, additional pairs of grains that may collide at new velocities are identified and resolved with
the ETM algorithm. When the assembly descends and rolls into the protection net, the membrane spheres interact with
the grains, registering and resolving their collisions using the ETM algorithm. The membrane spheres update their posi-
tions after evolving velocities to avoid colliding with other spheres and grains. Following that, the velocity of the sphere is
altered to account for spring and pressure forces acting on the membrane’s surface. The sphere velocity must be corrected
immediately following position advancement via post-collision velocity, and the order is critical, as the grain may other-
wise pass through the membrane. A network of membrane spheres propagates a velocity wave and causes the entire entity
to appear deformable in the presence of sequential collisions. Interestingly, some small grains pass through the protection
net due to the stretched spheres creating gaps among them. It is worth noting that the domain re-decomposition strat-
egy improves the efficiency of the parallel code by ensuring that the entire computational domain only encompasses the
assembly’s geometric configuration and distributes workload evenly across all processors. The mass difference is greater
than 400 in this simulation; however, it does not cause the algorithm to stall because this is a dynamic problem which
has relatively fewer resting contacts.
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14 of 24 TAN et al.

F I G U R E 7 Flexible membrane model: Grains falling into a flexible net.

F I G U R E 8 Demonstration of the rigid boundary-grain interaction and flexible membrane interaction with the impulse-based LS-DEM
code.
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TAN et al. 15 of 24

4.3 Weighted relative velocity implementation

Typically, the impulse-based approach is used to model similar-sized objects or to decompose large objects into uniform
elements,11 implying that the collision matrix between attached objects is of the same order of magnitude. This does not
hold for our application, as we attempted to simulate a granular system of particles with a wide range of grain shapes and
sizes, resulting in colliding pairs having significantly different masses. Indeed, this may introduce numerical oscillation,
causing small grains to be bounced back and forth unnecessarily due to their greater sensitivity to applied impulses. To
address this issue, we modified the original ETM algorithm by considering weighted relative normal velocity, defined
as: ũ = m1m2

m1+m2
u, where m1 and m2 are the masses of the colliding pairs. In this way, the contact points between larger

grains are resolved earlier. This approach is superior to simply relying on relative velocity to determine the sequence
of contacts, because larger grains respond more gently to impulses, whereas tiny grains tend to oscillate violently even
with insignificant amounts of impulses. In addition, this change enables larger grains to achieve desired post-collision
velocities more quickly, and when smaller grains take control of the algorithm the resulting update has a negligible effect
on larger grains.

5 PARALLEL IMPLEMENTATION OF IMPULSE-BASED LS-DEM

To improve performance, we employ a domain decomposition strategy and a binning algorithm is implemented through
a series of linked lists that map relationships between grains and bins with a search complexity of O(1).13,14 There are
two types of data communication to consider: border communication and grain migration. The first type is treated using
an efficient algorithm consisting of three sequential calls to the optimally tuned MPI routine MPI_Sendrecv to update
exchange halo layers and automatically handle edge cases. While grain migration across sub-domains is a complicated
step in a penalty-based LS-DEM,14 it is much easier to handle in an impulse-based method because it does not track
the evolution of friction forces, allowing all quantities to be packed and communicated collectively, thereby lowering
communication overheads.

The domain decomposition strategy divides a large computation task into smaller tasks and assumes that each
sub-domain has access to all necessary resources to run independently. Because the collision reaction is associated with
a change in the geometric configuration at the contact point, the change in acceleration must occur over a positive time
interval. Indeed, the forces take some time to propagate throughout the body due to the its elasticity. Collision contact,
however, occurs within a very short time interval for a rigid body, which means that the displacement and the change
in the contact area are negligible or remain unchanged. However, in the impulse-based formulation a contact island can
span an arbitrary number of sub-domains as illustrated by the grid in Figure 3, resulting in grains within a sub-domain
becoming indistinguishable from those in other sub-domains. Thus, the impulse-based method requires one processor to
gather and resolve all collisions in a contact island.

The force resolution step of the impulse-based method uses an O(n) binning algorithm. This step identifies and reg-
isters all contact points that violate impenetrability constraints, including contact IDs, branch vectors, and the normal
direction of a collision between two avatars. Following that, the master MPI processor (rank 0) collects these contacts and
summarizes a list of contact IDs, determining the number of contact islands and grains contained within. The concept of
obtaining contact islands was inspired by the fact that colliding bodies make contact with one another, and that the sys-
tem of all colliding pairs forms an undirected graph. As a result, the problem of determining contact islands becomes a
graph partition problem of determining all connected components. Additionally, we can consider the graph as a sparse,
symmetric square matrix whose dimension equals the number of grains and whose entries are non-zero only when the
corresponding pair of grains collides. When the problem is rephrased as permuting such a matrix into a band matrix
with a small bandwidth, the Cuthill-Mckee algorithm27 is used, which is based on the graph’s Breath First Search (BFS)
algorithm. Algorithm 2 contains the Cuthill-Mckee algorithm optimized for our application. Following the identifica-
tion of contact islands, collisions between rigid bodies are resolved within each contact island, which may span multiple
sub-domains. To minimize data communication, a processor gathers a contact island that already contains the majority
of collisions. Due to the small and specific size of the data being communicated, it can be packed and transferred effi-
ciently and collectively. After collision resolution is complete, the change in the velocity of each grain is computed and
distributed back to the grain’s original process, which updates the velocity of the grain and advances the time step. This
procedure formalizes the parallel strategy used in the Algorithm 3 for impulse-based LS-DEM.

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7546 by N
icholas Sitar - U

niv of C
alifornia L

aw
rence B

erkeley N
ational L

ab , W
iley O

nline L
ibrary on [06/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



16 of 24 TAN et al.

Algorithm 2. CutHill-Mckee algorithm

Input: A list LID with length of Ngrains including IDs of contact neighbors for all grains in assembly.
Output: the number of contact islands in an assembly Nislands, a list Λislands of size Nislands such that Λislands[i] denotes IDs of elements
in the i-th contact island.

1: From LID generate a list Ldegree denoting the degree of an element, and a list Lchecked denoting if an element is looked up already.
2: Set the number of contact islands Nislands = 0, the total number of checked elements Nchecked = 0; and prepare a priority queue Λd

for elements in the assembly, sorted by the minimum degree.
3: while Nchecked < Ngrains do
4: Iterate Ldegree to find an element i with minimum degree among all unchecked elements.
5: Sort all elements in LID[i] into Λd if they are not already, and set Lchecked[i] = true.
6: while Λd is not empty do
7: Pop out the first element j from Λd.
8: if j is not already in Λislands[Nislands] then
9: Insert j into Λislands[Nislands], and set Lchecked[j] = true.

10: Sort all elements in LID[j] into Λd if not already.
11: end if
12: end while
13: Nchecked ← Nchecked + |Λislands[Nislands]|
14: Nislands ← Nislands + 1
15: end while

Algorithm 3. Algorithm to parallel contact islands

Input: MPI rank i maintains a list Λi
C of contact details ΦC including contact IDs of colliding bodies A and B; branch vectors from

centers to contact point r; contact normal direction ñ; relative velocity ũ; elastic energy W and body mass M, such that Λi
C ∶= {ΦC ∶

ΦC ∈ rank i}.
1: /* Start Graph Partition to Detect Contact Islands */
2: if rank_id ≠ 0 then
3: Generate a list Λi

ID contains IDs of contacting neighbors for each grain belongs to the rank.
4: MPI_Send Λi

ID to rank 0.
5: else
6: for rank_id = 1 ∶ Nranks do
7: MPI_Recv Λi

ID from rank rank_id.
8: end for
9: /* Prepare For the CutHill-McKee Algorithm */

10: Build a list LID with length of Ngrains to register contact IDs for all grains in assembly.
11: Prepare a list Λislands of size Nislands such that Λislands[i] denotes IDs of elements in the i-th contact island.
12: [Nislands, Λislands] = CutHill-McKee(LID).
13: for island_id = 1 ∶ Nislands do
14: determine the host rank that contains most collisions of the i-th contact island, and register the host ranks in list Lhost with

length of Nislands.
15: end for
16: end if
17: /* Broadcast Contact Islands Information */
18: MPI_Bcast Λisland and Lhost.
19: /* All-To-All Communicate Contact Detail ΦC */
20: MPI_Alltoall number of contact details that each rank should receive from others.
21: MPI_Alltoallv specific contact details that each rank should receive from others.
22: /* Collision-Resolution Phase */
23: for island_id = 1 ∶ Nislands do
24: if Lhost[island_id] == rank_id then
25: Resolve collisions via Collision-Resolution Algorithm.
26: end if
27: end for
28: /* Broadcast and Update Velocities */
29: MPI_Allgatherv linear and angular velocities from other ranks.
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TAN et al. 17 of 24

The flowchart of the parallel impulse-based LS-DEM code is shown in Figure 9. There are several implementation
details worth noting. As the basic element of impulse-based method is an island of collisions which could spread over
multiple processors, each processor still needs to generate a simplified avatar containing mass, moment of inertia for those
that do not belong to the sub-domain, and it has to keep track of the position, rotation, velocity, and angular velocity of
all grains. In addition, both post-collision velocity that is attained from solving a contact island and the corrected velocity
after interacting with rigid boundaries must be broadcast to all processors before updating a grain’s motion. Moreover,

F I G U R E 9 Flowchart of parallelized impulse-based method.
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since each processor interacts with its neighbors via halo layers, the grain-halo contacts are duplicated when contacts in
an island that spreads across multiple processors are gathered to one processor, hence half of interactions with halo layers
need to be removed.

6 NUMERICAL TESTS

6.1 Block sliding on a plane

The accuracy of the code is demonstrated using a block sliding on an inclined surface, which has an exact analytical
solution. In this case we model a cubic block sliding on a surface inclined at 30◦ and coefficient of friction equivalent to
20◦ and 25◦, respectively. The results of the simulations are presented in Figure 10. In this case we used very low modulus
to allow the block to slide along a rigid surface, as has been suggested by Reference 12. As the plots show, the numerical
and analytical solutions are in excellent agreement, as is required. In this context the results validate both the contact
algorithm and the frictional interface model.

6.2 Performance speedups with impulse-based LS-DEM

The speed-up of the impulse-based formulation was investigated by modeling the flow of 1600 arbitrarily complex shaped
grains under artificial gravity from a smooth container, as shown in Figure 11. The grains in the assembly have wide range
of grain shapes and sizes, forcing the time-step of the conventional penalty-based approach to be very small. Table 1 shows
model parameters for the penalty-based and the impulse-based LS-DEM. The values for inter-grains friction coefficient
𝜇, normal contact stiffness Kn, and shear contact stiffness Ks were adopted from Reference 21. The coefficient of nor-
mal restitution according to Stronge’s hypothesis is taken Rn = 0.65, which was obtained by Reference 12 by conducting
experiments. The coefficient of tangential restitution Rt needs also to be calibrated, but many impulse-based simulators
show good physical plausibility with a default value of zero.10 Global damping is 𝜉g = 0.5 for both approaches. Different
time steps for impulse-based formulation (Δti) were chosen to study the speed up as well as the simulation fidelity over
the reference penalty-based simulation. The time step of penalty-based LS-DEM was computed by assuming a factor of
safety 0.1 and the value 2.5 × 10−4 is selected for the ease of comparison.

F I G U R E 10 Velocity versus distance for a block sliding on a plane inclined at 30 degrees as a function of interface friction angle, 𝜙.
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TAN et al. 19 of 24

F I G U R E 11 Initial configuration of 1600 very high-resolution grains in 800 × 800 × 800 domain for impulse-based method with large
time steps.

T A B L E 1 List of model parameters and values used for the simulations.

Common parameters

Specific gravity of solids Gs 2.65

Inter-grain friction coefficient 𝜇 0.55

Global damping coefficient 𝜉g 0.5

Penalty-based LS-DEM Impulse-based LS-DEM

Normal contact stiffness Kn 3 × 104 Coefficient of normal restitution Rn 0.65

Tangential contact stiffness Ks 2.7 × 104

Δt = 0.1 ×
√

Kn

Mmin
≈ 2.98 × 10−4 (50)

In the simulations, the outer walls of the container were removed and the sand was allowed to flow out. The geome-
tries of the resulting mounds, approaching the angle of repose, were compared at the end of 8 s time interval. In each time
step, the post-collision velocities were corrected for rigid boundary contact until the computed velocities did not violate
either inter-grain or grain-wall impenetrability. In this example, we repeated this procedure several times within a single
time step, and we found 10 iterations were enough to stabilize the velocity of grains. The code speed-up was measured in
terms of central processing unit (CPU) time. Five simulations using impulse-based formulation were conducted, with the
time step used varying from Δti = 1Δt = 2.5 × 10−4 to Δti = 16Δt = 4.0 × 10−3. Figure 12 shows the mound geometry for
each simulation and Table 2 tabulates the speed up times for the different time steps in the impulse-based simulations. The
simulation fidelity can be checked in terms of final height and spread of mound. Although all simulations produced sim-
ilar shaped mounds, discrepancies in positions and rotations of individual grain can be large. Calibrating impulse-based
method to achieve reasonable agreement to the reference penalty-based simulation is not easy, as it requires the identifi-
cation of actual or ad hoc internal variables and constitutive relations. In addition, there are too many degrees of freedom
even for a single grain and to make a one-to-one comparison is not feasible. Instead, we aimed to explore to what extent
both methods agree with each other in a qualitative sense. At the same time we found that the simulation results, even
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20 of 24 TAN et al.

F I G U R E 12 Specimen height and spread after 8s settlement under gravity with varying time steps.

T A B L E 2 Comparison of CPU time and speed up between the different methods.

𝚫t (sec) CPU time (mins) Time step diff Speed-up

Penalty-based 2.5 × 10−4 ∼ 4000

Impulse-based 2.5 × 10−4 265 1Δt 15.1

5.0 × 10−4 132 2Δt 29.4

1.0 × 10−3 72 4Δt 55.6

2.0 × 10−3 42 8Δt 95.2

4.0 × 10−3 42 16Δt 95.2

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7546 by N
icholas Sitar - U

niv of C
alifornia L

aw
rence B

erkeley N
ational L

ab , W
iley O

nline L
ibrary on [06/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense
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using a very large time steps, showed no obvious penetration errors between particles and the geometric fidelity was
maintained across all simulations.

In this simulation, the particles were reconstructed from a very high-resolution data set (3.4𝜇m∕pixel) and each
grain was represented by 2561 nodes on the average and storing 1600 grains required 3.36 GB of memory. Using such
high-resolution avatars for large scale simulation with the penalty-based method is challenging in with an efficient paral-
lel code,14 because actual workload corresponds to the total number of nodes rather than the number of grains. In contrast,
even though impulse-based method still interpolates normal direction from the LS grids, the impulse-based formulation
does not compute, update, and track complicated history-dependent friction. This simplified force resolution and helps
to keep LS grids in a cache and enables continuous, fast access. In addition, the amount of time required for sub-iterations
to resolve multiple collisions is less demanding because doing arithmetic operations is 100 times faster than moving data
around in modern machines.

Overall, significant speed up is achieved in impulse-based method with larger time steps, which is not likely for con-
ventional penalty-based DEM formulation. As grains settle down, the number of contact islands decreases and the number
of contacts per island increases. We observed that as many as 300 contact islands still remained at the end of the simula-
tion, the largest number of contacts in an island was more than 2000, which implies that most of the grains were grouped
into several clusters and the time used to resolve collisions increased. We also found that the number of contact islands
and contacts increases with the time step, as a larger time step changes configuration more rapidly and adds more colli-
sions. The ratio of mass differences between the largest and the smallest grains in this example was around 30, and we
found that at this ratio the algorithm remained stable and converged at different time steps, accelerations, and boundary
conditions.14

6.3 Example rock avalanche simulation

Even though the impulse-based formulation allows using much larger time steps and eliminates substantial amount of
the demand to compute forces, the fundamental issue of a particle-based method to model an assembly with wide range
of object sizes still remains. In that context, modeling the topography presents an analogous problem.

Any arbitrarily shaped surface, such as a real topography with ridges and valleys, can be captured using the LS frame-
work. In this example, the LS algorithm was first used to locate the zero-valued contour, from which the fast-marching
method28 was used to construct the underlying signed distance grid by solving a boundary value problem of Eikonal
equation:

|▿𝜙(x)| = 1
f (x)

for x ∈ Ω (51)

𝜙(x) = 0 for x ∈ 𝜕Ω (52)

Such a problem describes the evolution of a surface as a function of LS 𝜙 with speed f (x) in the normal direction at a
point x on the propagating surface. Alternatively, 𝜙(x) can be thought of as the shortest time required to reach x starting
from the zero contour, of course,𝜙(x) = 0 for x on the zero LS contour 𝜕Ω. The algorithm is similar to Dijkstra’s algorithm
and uses the fact that information only flows outward from the area that is already labelled with a value. Thus, a digitized
topography and its LS representation are constructed as a large LS-DEM object to exploit algorithmic advantages and we
treat grain-topography interaction identically to grain-grain interaction. In this case, the digitized topography occupies
the entire computational domain and consumes as much as 10GB computer memory. To avoid large memory demand,
we only saved a narrow band of the grid adjacent to the zero LS contours, which is sufficient to interpolate the amount
of penetration between objects and keep the memory requirement low.

We show three examples of simulated rock avalanches in which a granular deposit assembly was allowed to slide as
gravity overcame the internal friction of the deposit. The digitized topography is inclined at 25◦, and the coefficient of
internal friction between the particle and the topography is 0.2. Larger particles are red and smaller particles are orange.
In all cases, the particle mass moves fluid-like down the stream channel. In the first example (Figure 13), the avalanche
ran out on a flat plane and formed fan-shaped deposit, as is typical of rock avalanche deposits. In the second example,
shown in Figure 14, the deposit ran out onto a surface sloping at only 3◦, again similar to many natural settings, and
was deflected down slope. In the third example (Figure 15, we simulated a flexible barrier, such as is often used for rock
fall protection. In this case, the avalanche was initially contained until it overflowed the barrier. Our interest in these
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22 of 24 TAN et al.

F I G U R E 13 Rock avalanche runout onto a horizontal surface.

F I G U R E 14 Rock avalanche runout onto a sloping surface.

F I G U R E 15 Rock avalanche impact on a protection net.
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simulations was to explore the potential of the impulse-based DEM to realistically handle field-size problems rather than
solving a particular problem. The first two simulations ran on a single CPU and completed 20,000 steps in 2 h, while the
third simulation completed the same number of steps in 5 h due to the more complicated membrane-grain interaction.
Overall, the results are very promising, as rock avalanches have been typically modeled as an equivalent viscous fluid (see
e.g., References 29,30), rather than as an assemblage of particles, in order to make the simulation tractable.

7 CONCLUSIONS

We demonstrate that the impulse-based DEM is attractive in large part because it alleviates the need to choose regular time
intervals and saves substantial amount of force computation for complex shaped objects. The combined effects speed-up
the simulation by at least factor of 10 with reasonable levels of fidelity. We modified the ETM algorithm making it more
suitable for dealing with a system with wide range of particle shapes and sizes. Instead of removing the smallest relative
velocity from priority queue each time, we prioritize the weighted relative velocity which considers the masses of colliding
bodies for better convergence. This measure is effective because it first considers larger objects, as later updates of small
objects trivially influence the larger objects. Compared to SMM and SQM, the ETM algorithm is advantageous in that it
is less sensitive to the order of impulses and tends to be more energy conservative. By applying impulses gradually to the
contact points, the impulses can influence multiple contact points at the same time and enable propagation of impulse
effects and improve the overall ability of the method to capture propagation of forces during dynamics simulations. We
further incorporated the impulse-based formulation into an LS framework. We also used a novel time integration scheme
that separates the treatment of inter-grain collision and wall-grain resting contact. This improves the robustness of the
collision resolution algorithm, thereby avoiding numerical oscillation and unrealistic energy dissipation. Also, the simu-
lation of protection nets demonstrates that impulse-based methods can be used to simulate the dynamics of deformable
structures.

The major limitation of the impulse-based method still lies in modeling a system of irregular, non-convex,
non-uniform objects especially in a highly confined quasi-static setting, whereby objects with very different shapes and
sizes interact with each other at many contact points and have small velocities. However, our modified ETM algorithm
and the time integration scheme are capable of simulating a range of very different objects and a range of dynamic phe-
nomena. Thus, the current work provides a starting point for further enhancement and development of a more robust
analysis tool to probe contact forces and impulses for wider range of problems.
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