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Purpose: This study aims to elucidate the electrotaxis response of alveolar epithelial cells (AECs) in
direct-current electric fields (EFs), explore the impact of EFs on the cell fate of AECs, and lay the foun-
dation for future exploitation of EFs for the treatment of acute lung injury.
Methods: AECs were extracted from rat lung tissues using magnetic-activated cell sorting. To elucidate
the electrotaxis responses of AECs, different voltages of EFs (0, 50, 100, and 200 mV/mm) were applied to
two types of AECs, respectively. Cell migrations were recorded and trajectories were pooled to better
demonstrate cellular activities through graphs. Cell directionality was calculated as the cosine value of
the angle formed by the EF vector and cell migration. To further demonstrate the impact of EFs on the
pulmonary tissue, the human bronchial epithelial cells transformed with Ad12-SV40 2B (BEAS-2B cells)
were obtained and experimented under the same conditions as AECs. To determine the influence on cell
fate, cells underwent electric stimulation were collected to perform Western blot analysis.
Results: The successful separation and culturing of AECs were confirmed through immunofluorescence
staining. Compared with the control, AECs in EFs demonstrated a significant directionality in a voltage-
dependent way. In general, type I alveolar epithelial cells migrated faster than type II alveolar epithelial
cells, and under EFs, these two types of cells exhibited different response threshold. For type II alveolar
epithelial cells, only EFs at 200 mV/mm resulted a significant difference to the velocity, whereas for, EFs
at both 100 mV/mm and 200 mV/mm gave rise to a significant difference. Western blotting suggested
that EFs led to an increased expression of a AKT and myeloid leukemia 1 and a decreased expression of
Bcl-2-associated X protein and Bcl-2-like protein 11.
Conclusion: EFs could guide and accelerate the directional migration of AECs and exert antiapoptotic
effects, which indicated that EFs are important biophysical signals in the re-epithelialization of alveolar
epithelium in lung injury.

© 2023 Chinese Medical Association. Production and hosting by Elsevier B.V. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Acute lung injury (ALI) and/or acute respiratory distress syn-
drome (ARDS) is a life-threatening disease with a high fatality rate
of 40% e 60%.1 ALI/ARDS mainly manifests as the acute onset of
progressive hypoxemia, dyspnea and bilateral pulmonary edema
resulting from uncontrolled inflammatory responses, excessive
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alveolocapillary permeability, and widespread damage to alveolar
epithelial cells (AECs).2e4 AECs, consisting of type 1 cells (AT1s) and
type 2 cells (AT2s), are structurally and functionally important for
the integrity of the lung. Upon injury, AT2s migrate directionally
into the sites of injury and transdifferentiate into AT1s, which are
primary regulators of alveolar immunological activities, and AT1s
collaborate with AT2s in epithelial repair and regeneration.5e8

However, the complicated regulatory mechanism behind this pro-
cess has not been fully elucidated. Therefore, it is important to
further study the mechanisms of pulmonary epithelial repair.

In epithelial tissue, the polarized distribution of ion channels
and the subsequent difference in ion transporting capacity lead to
the transepithelial potential difference. Upon injury, the damaged
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epithelial barrier creates endogenous electric fields (EFs), the
damage center being the cathodal pole, and cells within the fields
migrate directionally toward the cathode, which is one of the key
steps of re-epithelialization.9,10 In a previous study on tracheal
epithelial injury, the immediate current reached (1.59 ± 0.21) mA/
cm2 upon injury, and the applied EFs guided the directional
migration of airway epithelial cells.11 However, the impact of EFs on
AECs remains to be discovered.

In the current study, we successfully extracted AECs from rat
lungs and, by analyzing their responses to different voltages of EFs.
We found that EFs guided directional migration of AECs and human
bronchial epithelial cells, increased their proliferation, suppressed
their apoptosis and increased their antiapoptotic ability through
activation of the phosphoinositide 3-kinase (PI3K)/AKT pathway.
Our study indicated the underlying therapeutic effects of EFs and
may shed light on future treatments for ALI/ARDS.

Methods

Purification and culture of rat AECs

The animal study protocols were approved by the Laboratory
AnimalWelfare and Ethics Committee of the ThirdMilitary Medical
University (approval number for production: SCXK (PLA) 20120011;
approval number for application: SCXK (PLA) 20120031). AECs
were obtained through the detailed procedure reported in our
previous study.12 Sprague‒Dawley rats weighing 120 e 150 g and
aged 3 e 4 weeks were obtained from the animal center of Daping
Hospital, Army Medical University. After euthanasia, pharyngeal
skin and tissues were dissected to perform tracheal intubation. The
lung samples were obtained en bloc from the rats, and were
washed twice with saline before being completely digested, cut
into pieces, and filtered. The resulting samples were then centri-
fuged to obtain the cell precipitate, which was dispersed and
blended with anti-rat T1a (Sigma, #1995, St. Louis, USA). The cells
were subsequently incubated with anti-rabbit IgG microbeads
(Miltenyi Biotec, #130-047-102, Bergisch Gladbach, Germany), and
then resuspended and cultured in 8-well plates.

Electrotaxis assay and quantification of cell migration

We applied EFs through agar-salt bridges in Steinberg's solution
connected with silver/silver chloride electrodes to pooled medium
on either side of the electrotaxis chamber. Cells after 48 h of in vitro
culture were exposed to direct-current-induced EFs of 0, 50, 100,
and 200 mV/mm, and serial time-lapse images were taken. Cellular
migration directionality (cos q, where q is the angle formed by the
EF vector and a straight line connecting the initial and final posi-
tions of the cellular movements) and velocity were analyzed using
ImageJ software (NIH, Bethesda, Massachusetts, USA) with the
MTrackJ and Chemotaxis tool plugins. The trajectories of cells were
pooled to composite graphs. A directionality value close to 0 indi-
cated high randomness of cellular movements.

Cells and reagents

The human bronchial epithelial cells transformed with Ad12-
SV40 2B (BEAS-2B cells) were provided by Professor Lin P from
Southwest University, Chongqing, China, and cultured in RPMI-
1640 (HyClone, SH30096.01, Utah, USA) with Earle's salts (Gibco,
#11150059, Massachusetts, USA), 2 mmol/L L-glutamine (Gibco,
#25030081, Massachusetts, USA), 10% fetal bovine serum (Gibco,
#10100147C, Massachusetts, USA), and 100 U/mL penicillin-
streptomycin solution (HyClone, #16777e164,Utah, USA) at 37 �C,
5% CO2 and 90% humidity. Anti-Bcl-2-like protein 11 (Anti-Bim)
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(#2933S), AKT (#9272S), phosphorylated AKT (#4060S), B-cell
lymphoma-extra large (#2764), phosphorylated-myeloid leukemia
1 (#14765), myeloid leukemia 1 (MCL-1) (#94296), Bcl-2-
associated X protein (Bax) (#41162), and glyceraldehyde-3-
phosphate dehydrogenase (#2118S) antibodies were purchased
from Cell Signaling Technology (Massachusetts, USA).

Immunofluorescence staining

Cells were washed with phosphate-buffered saline (PBS), and
fixation with 4% paraformaldehyde was performed at room temper-
ature for 30min. The blockage for nonspecific bindingwasperformed
utilizing 10% normal goat serum (Cell Signaling Technology, #5425S,
Massachusetts, USA) for BEAS-2B cells and 10% donkey serum
(Abcam, ab7475, Cambridge, England) for AECs. Former incubated
cells (overnight in PBS with 10% bovine serum albumin at 4 �C) were
then further incubated with the primary antibodies, rabbit mono-
clonal phosphorylated AKT for BEAS-2B cells, aquaporin-5 (AQP5)
(Abcam, ab78486, Cambridge, England) for AT1s and pro-surfactant
protein C (Abcam, ab40897, Cambridge, England) for AT2s.

After being washed with PBS, the cells were incubated with
secondary antibodies at 37 �C for 30 min, Cy3-conjugated goat-
anti-rabbit IgG (Bioworld Technology, BS10007, Nanjing, China)
and conjugated secondary antibodies donkey-anti-mouse IgG
(Bioworld Technology, BS10016, Nanjing, China) for another 1 h at
37 �C. Finally, the cells were counterstained with 40,6-diamidino-2-
phenylindole (Solarbio, C0065, Beijing, China) and viewed through
an ImageXpress Micro (Molecular Devices, California, USA) high-
throughput imager.

Western blot analysis (WBA)

EF-stimulated cells were collected, washed with PBS, and then
lysed for 30 min at 4 �C in radio-immunoprecipitation assay buffer
(Thermo Fisher Scientific, #89900, Massachusetts, USA). The lysates
were then centrifuged at 12,000�g for 20 min at 4 �C, and protein
concentration was determined using a bicinchoninic acid assay
(Millipore, #71285-3CN, Massachusetts, USA). Equal amounts
(25 mg) of determined proteinwas loaded on electrophoresis gel for
2 h at 110 V, followed by transfer onto polyvinylidene fluoride
membranes (90 min, 200 mA) (Millipore, C3117, Massachusetts,
USA). Then, blocking was performed using 5% bovine serum albumin
for 1 h at room temperature, and incubationwith primary antibodies
was carried out overnight at 4 �C. After washed, the membranes
were incubated with horseradish peroxidase-conjugated goat anti-
rabbit (Sino Biological, SSA004, Beijing, China) at a concentration of
0.02 mg/mL for 1 h. Visualization was achieved through the Chem-
iDoc Touch System (Bio-Rad, #1708370, California, USA).

Statistical analysis

We set the velocity and directionality of cells in EFs of different
voltages as two independent targets and compared the significance
of their difference respectively among groups. The comparison of
difference was conducted firstly between control and experimental
groups, which, if significant, were further followed by the compari-
son among experimental groups. GraphPad Prism 9.0 (GraphPad
Software, California, USA) was used for the unpaired 2-sided t tests.

Results

AECs were separated from rat lung tissues and identified

AECs were obtained from digested rat lung tissues, and single-
cell isolation was successfully performed using magnetic
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activated cell sorting (Fig. 1A). AQP5, a specific antigen on the
membrane of AT1s, and proSPC, which exists in the cytoplasm of
AT2s, were used as cellular markers for the identification of AECs.
Immunofluorescent staining (Fig. 1B) illustrated high expression
levels of AQP5 in cultured AT1s and high levels of surfactant protein
C (SPC) in AT2s; these results indicated the successful separation of
rat AECs.
EFs guided and accelerated the directional migration of AECs

After the successful isolation of AECs, the cells were placed into
direct-current EFs of different voltages (0, 50, 100 and 200 mV/
mm), and cell migration was recorded. The time-lapse figures
(Figs. 2A and 3A) showed the cellular activity with and without EFs.
In the control groups, 0 mV/mm, through observation for 90 min,
the cells exhibited random movements, while cells within EFs
demonstrated directed migration from the anode to the cathode
(Figs. 2B and 3B, and Appendix A1-4).
Fig. 1. Purification of rat AECs by MACS and identification. (A) Schematic illustration of pu
nofluorescent staining of purified AECs. AQP5 for AT1s, SPC for AT2s and DAPI for nuclei.
AECs: alveolar epithelial cells; MACS: magnetic-activated cell sorting; AT1s: type I alveolar e
protein C; DAPI: 40 ,6-diamidino-2-phenylindole.

157
Then, we investigated whether the cellular responsiveness was
voltage-dependent. We obtained trajectories by placing AECs in EFs
of different voltages (0, 50, 100, and 200 mV/mm) and recorded
their movements. Without EFs, both AT1s and AT2s migrated
randomly. As the voltage of the EFs increased, an increasing num-
ber of AECsmigrated directionally to the cathode. The directionality
of cells within EFs at both 100 mV/mm and 200 mV/mm was
significantly higher than that of EFs at 0 mV/mm and 50 mV/mm,
suggesting voltage dependency (Figs. 2 and 3). For AT2s, especially,
cells within EF at 50 mV/mm demonstrated significantly higher
directionality, indicating the difference relating to cell types in
response. The impact of EFs on cellular velocity, however, differed.
Generally, AT1s moved faster than AT2s, and for AT1s, EFs at both
100 mV/mm and 200 mV/mm resulted in significantly higher
speeds than thosewithout EF and at 50mV/mm. However, for AT2s,
only EFs at 200 mV/mm contributed to a significantly higher speed
(Figs. 2C and 3C). In conclusion, EFs can guide directional migration
rifying AECs through MACS. T1aþ for AT1s and T1a- EpCAM þ for AT2s; (B) Immu-

pithelial cells; AT2s: type II alveolar epithelial cells; AQP5: aquaporin-5; SPC: surfactant



Fig. 2. The responses of AT1s to EFs. (A) Time-lapse photographs of AT1s with and without an EF of 200 mV/mm at 0 min and 90 min, with red line segments and yellow ar-
rowheads representing cell migration paths and their directions, respectively; (B) Migration trajectories of AT1s at an EF of 0, 50, 100 or 200 mV/mm, with black lines as the
migrations toward the cathodal pole and red lines toward the anodal pole (or left and right in control, EF of 0 mV/mm); (C) and (D) Migration speeds and directionality of AT1s at
different voltage levels.
#p < 0.001 compared with 50 mV/mm.
*p < 0.001 compared with the control.
AT1s: type I alveolar epithelial cells; EF: electric field; Ctrl: control, 0 mV/mm.

Fig. 3. The migration of AT2s became swifter and more directional in EFs. (A) Time-lapse photographs of AT2s at 0 min and 90 min in the control and 200 mV/mm EF, with red line
segments and yellow arrowheads indicating cell migration paths and their directions, respectively; (B) Trajectories of AT2 migration at different voltage levels of EFs, cells migrating
toward the cathode being represented by black lines and vice versa by red ones (or left and right in the control, no EF); (C) and (D) The speed of migration and directionality of AT2s
at different EFs.
*p < 0.001 compared with the control; #p < 0.001 compared with 50 mV/mm.
AT2s: type II alveolar epithelial cells; EF: electric field; Ctrl: control, 0 mV/mm.
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of AECs in a voltage-dependent manner and speed up cell
migration.
EFs guided the directed migration of BEAS-2B cells and promoted
cell survival

Next, we aimed to further determine the impact of EFs on pul-
monary tissues. Commercial BEAS-2B cells, epithelial cells isolated
from the normal human bronchial epithelium of noncancerous
individuals, were cultured and placed in EFs. Time-lapse images
showed random migration in the control group and directed
migration in the experimental group (Fig. 4A and Appendix A5-6).
Cell trajectories in all groups were drafted, and obvious
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directionality was observed at an EF of 200 mV/mm (Fig. 4B).
Applying EFs to BEAS-2B cells significantly affected their migration
speed and directionality (Fig. 4C). Then, whether the phosphory-
lation of AKT played a role in responses to EFs was studied. Through
immunofluorescence staining and WBA, we deduced that EFs
increased the phosphorylation of AKT and thus participating in the
activation of PI3K/AKT pathway. Next, we studied whether EFs in-
fluence cellular apoptosis. WBA demonstrated distinctively
increased MCL-1, a Bcl-2 family protein that enhances cell survival,
and significantly decreased Bim and Bax, which are proapoptotic
proteins that promote cell death, indicating the antiapoptotic po-
tential of EFs.



Fig. 4. Electrotaxis of BEAS-2B cells and the antiapoptotic potential of EFs. (A) Time-lapse photographs of BEAS-2B cells in the control group and the experimental group at an EF of
200 mV/mm, with red lines and yellow arrowheads as cell migration routes and their directions; (B) Trajectories of the migration of BEAS-2B cells with EFs at 0 and 200 mV/mm,
with black lines as cells migrating toward the cathode and red lines vice versa (or left and right in the control, no EF); (C) Velocity and directionality of cellular migration in EFs. (D)
Immunofluorescence staining of BEAS-2B cells with EFs of 0 and 200 mV/mm; (E) WBA showing the difference in the phosphorylation of AKT after application with EFs in BEAS-2B
cells; (F) WBA showing the difference in apoptosis-related molecules after application with EFs in BEAS-2B cells.
*p < 0.001 compared with the control.
BEAS-2B cells: human bronchial epithelial cells transformed with Ad12-SV40 2B; WBA: western blot analysis; EF: electric field; Ctrl: control, 0 mV/mm; DAPI: 40 ,6-diamidino-2-
phenylindole; P-AKT: phosphorylated AKT; P-MCL-1: phosphorylated myeloid leukemia-1; Bcl-xl: B-cell lymphoma-extra large; Bax: Bcl-2-associated X protein; Bim: Bcl-2-like
protein 11; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase.
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Discussion

ARDS is characterized by widespread alveolar epithelial damage.
Thus, it is vital to repair the damaged epithelia to help regain pulmo-
nary function.13 Alveolar epithelial damage triggers themigration and
differentiation of AT2s to gain cellular balance in the alveoli.6 In the
current study, byapplyingEFs of different voltage levels,we found that
EFs guided directional migration of AECs, and this electrotactic
response is consistent with other epithelial cells, such as skin and
cornea.14 The increased phosphorylation of AKT and MCL-1 and
decreased expression of Bcl-2-like protein 11 proved the positive ef-
fectsofEFsonpulmonarycellproliferationaswell. Therefore, EFs could
be regarded as a potential therapeutic method for alveolar repair.

In fact, the feasibility of EFs has been proven in some fields. For
instance, in the blood samples of COVID-19 patients, the usage of
alternating electric fields prevented cytokine storms through the
suppression of clonal expansion of the activated lymphocytes.15 In
159
addition, applying EFs to wounds has been shown to control
inflammation, enhance wound blood perfusion, and increase
fibroblast migration, and the therapeutic use of EFs in wound and
pain management has been listed in some guidelines.16 Besides,
coupling a 15 e 30 V electrical stimulation significantly decreased
the Staphylococcus aureus biofilm formation, which is promising in
fighting infections.17 Moreover, the addition of intratumoral mod-
ulation therapy that uses multiple electrodes to deliver EFs to treat
cancer has been proven to improve the survival of certain glio-
blastoma patients.18 Interestingly, a study on collective cells sug-
gested that even though the barrier competed with the electric
stimulation and recovered quickly, the center cells could memorize
the previous command and the intercellular interaction dynamics
could remain affected even poststimulation, noting the need for a
deeper understanding of the mechanisms.19

Nonetheless, the impacts of EFs on lung injury repair are com-
plex. A recent study showed that applying EFs could result in a
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transient increase in lung neutrophils and a decrease in eosino-
phils, accompanied by an increase in IL-6 levels,20 and an early
study demonstrated that neutrophils could help repair airway
epithelium by removal of injured epithelial cells.21 Furthermore, a
recent study stated that EFs could guide the directionalmigration of
T cells to the cathode, but significantly decrease T-cell activation,
and remarkably dampen CD4 (þ) T-cell polarization.22 Additionally,
EFs can significantly strengthen the macrophage phagocytic ability
of various targets, including apoptotic neutrophils, enhance PI3K
and extracellular signal-regulated kinase activation, and selectively
modulate cytokine production.23 Besides, the EFs have also been
proven tomodulate the follistatin production of mesenchymal stem
cells from human bone marrow, which serves negatively in the
activation of transforming growth TGF-b and exerts anti-fibrotic
role. Since the activation of TGF-b characterizes the transitional
state, EFs may contribute to the early stage of re-epithelialization of
ALI repair by promoting AT2s self-renewal.24,25

Moreover, upon injury, multiple other factors affect epithelial
repair. Researchers found that microvesicles secreted by ALI/ARDS
alveolar macrophages suppressed the expression of a subunit of
epithelial sodium channels and alveolar fluid clearance, contrib-
uting to lung injury and pulmonary edema,26 and that exposure to
microenvironmental IL-37 and HMGB1 induces pulmonary in-
juries,27 suggesting multidirectional communication between the
cells and the environment. Also, the culture medium for in vitro
experiments can play a role in the cell fate determination. A549
cells, for example, acquire an AT1 phenotype when grown onto
traditional plastic substrates.28 Thus, a more comprehensive un-
derstanding of the factors affecting the re-epithelialization and
regeneration of pulmonary tissues is important.

Though we demonstrated that EFs are important bio-physical
signals for the alveolar damage repair, some limitations still
remained. First, the experiment is conducted at cellular level,
convenient but limiting the practicability at tissue and higher
levels, which could be further improved by animal experiments.
What's more, the experimental EFs were applied horizontally,
suitable for attached cells, but not enough for the aim as medical
use. More detailed researches into the injury-targeted usage of EFs
are needed, the method for EFs generation within alveoli at the
center of the damage, for example. Besides, the voltages givenwere
based on, alveolar epithelia having none, the previous measure on
the EF changes of damaged airway epithelia that may be incon-
sistent with the ones in the alveoli, which could be improved by the
further researches into the bio-electric features of alveoli.

In conclusion, through extracting AECs from pulmonary tissues
and exploring their responses to direct-current EFs, we demon-
strated that EFs could guide and accelerate the directional migra-
tion of AECs and exert antiapoptotic effects through the activation
of PI3K/AKT pathway, suggesting their therapeutic potential in
alveolar damage.
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