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Enhanced CH4 emissions from global
wildfires likely due to undetected small fires

Junri Zhao 1,2, Philippe Ciais 1,3, Frederic Chevallier 3, Josep G. Canadell 4,
Ivar R. van der Velde5,6, Emilio Chuvieco 7, Yang Chen 8, Qiang Zhang 9,
Kebin He 2,10 & Bo Zheng 1,2

Monitoring methane (CH4) emissions from terrestrial ecosystems is essential
for assessing the relative contributions of natural and anthropogenic factors
leading to climate change and shaping global climate goals. Fires are a sig-
nificant source of atmospheric CH4,with the increasing frequencyofmegafires
amplifying their impact. Global fire emissions exhibit large spatiotemporal
variations, making the magnitude and dynamics difficult to characterize
accurately. In this study, we reconstruct global fire CH4 emissions by inte-
grating satellite carbon monoxide (CO)-based atmospheric inversion with
well-constrained fire CH4 to CO emission ratiomaps. Here we show that global
fire CH4 emissions averaged 24.0 (17.7–30.4) Tg yr−1 from 2003 to 2020,
approximately 27% higher (equivalent to 5.1 Tg yr−1) than average estimates
from fourwidely usedfire emissionmodels. This discrepancy likely stems from
undetected small fires and underrepresented emission intensities in coarse-
resolution data. Our study highlights the value of atmospheric inversion based
on fire tracers like CO to track fire-carbon-climate feedback.

Methane (CH4) has greater global warming potential but a shorter
atmospheric lifetime than carbon dioxide (CO2), making CH4 emission
reduction anattractive strategy to limit near-term temperature rise1. As
the second-largest sink of hydroxyl radicals, which govern atmo-
spheric oxidation capacity and thus control the lifetimes of many
reactive species in the troposphere, CH4 plays a crucial role in atmo-
spheric chemistry2. Accurate and in-depth knowledge of the global
CH4 budget, including its source–sink patterns and spatiotemporal
trends, variations, and drivers, are needed tomanage CH4 emissions in
the face of climate and air pollution challenges.

Global CH4 sources are associated with biogenic, thermogenic, or
pyrogenic processes, with fires being the largest source of pyrogenic

CH4 emissions. Fires generate CH4 emissions through incomplete
combustion of biomass and soil organic carbonunder hot, dryweather
and high fuel load conditions. Fires are estimated to account for
approximately 4% of global total CH4 emissions (biogenic, thermo-
genic, and pyrogenic sources) per year3; however, the interannual
variations in fire CH4 emissions are comparable to those of wetlands4—
the largest single CH4 nature source. Moreover, CH4 emissions gen-
erated by fires are isotopically heavier than methane of biogenic
origin5, as methane from burning C3 vegetation (e.g., trees), and
especially from burning C4 vegetation (e.g. many tropical grasses,
maize, sugar cane)6, is typically enriched in 13C compared to biogenic
emissions from wetlands, ruminants, or waste. Thus, accurate
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estimation of fire emissions is important for tracking the total and
isotopic budgets of atmospheric CH4. Multiple global fire emission
models have been developed7–10; however, their discrepancies indicate
the existence of large uncertainties in the calculation of fire emissions.
Intercomparison studies have demonstrated a range of 6.4–13.2
(min–max) Pg CO₂ yr⁻¹ in global fire emissions across different
models11, while estimates of fire particle emissions need to be
increased by 2–3 times12,13 to align chemical transport model simula-
tions with measured aerosol optical depth. Although few studies have
evaluated fire CH4 emissions, the large uncertainties in estimated
emissions of other species indicate potential uncertainties in our cur-
rent understanding of the global fire CH4 budget.

Improving fire emission estimation is critically needed but sub-
stantially challenging due to our limited capacity to appropriately
representfire combustionconditions and characteristics. For example,
images obtained from global-coverage satellites utilized to detect
burned areas typically have a spatial resolution of several hundred
meters14, implying a systematic underestimation bias due to unde-
tected small fires, especially over the tropics15–18. Moreover, high-
intensity fires burn litter and organic horizons of soil, which poses
challenges19 for remote sensing detection and accurate estimation of
fuel consumption. Further, peat burning from smoldering processes
occurs in natural and disturbed peat in the Arctic and tropics, which is
extremely difficult to detect via burned area observations. Burning
efficiency is affected by flaming and smoldering combustion, which
vary dynamically in space and time due to environmental factors20.

Nevertheless, current fire emission models tend to utilize static,
biome-averaged emission factors, raising the questionofwhether such
average data are sufficiently representative21. These limitations hinder
our understanding of fire CH4 emissions and their impacts on the total
CH4 budget.

Inverse modeling provides a promising approach to infer CH4

fluxes from ambient CH4 observations3,22 based on in situ or satellite
observations. However, accurately distinguishing fire CH4 emissions
from total CH4 fluxes is challenging due to contributions from other
human and natural sources and interactions among multiple CH₄
sources. The measurement of carbonmonoxide (CO), a well-observed
tracer of fire smoke plumes, provides an alternative top-down con-
straint on fire emissions compared to CH4 or CO2 measurements
alone23,24. CO has a short lifetime of 1 to 2 months; therefore, its
ambient concentrations exhibit large deviations and gradients from
background levels, which are distinct between fires and fossil fuel
emissions in terms of seasonality and location. We previously devel-
oped a method to infer fire CO2 emissions from satellite retrieval of
CO25,26. Reconstruction of burning efficiency maps, which represent
the fraction of carbon emitted as CO2 during burning, based on
satellite-observed CO inversion lays the foundation for linking com-
bustion conditions and fire-carbon release. This approach was devel-
oped, maintained, and has been successfully applied by our research
group to estimate global fire CO and CO2 emission trends and drivers
for the past two decades25,27.

Herein, we explore the possibility of constraining fire CH4 emis-
sions based on fire CO inversion, considering that both gases result
from incomplete combustion of biomass. We developed new conver-
sion functions to relate fire CH4 and CO emissions by biome based on
148 sets of field measurements sampled on the ground and applied
these functions post-inversion to the CO emissions from fires derived
from our inversion system. Field campaigns that sampled fire plumes
by aircraft were further selected to evaluate the correlation between
CH4 and CO emissions. We compared our CO-based fire CH4 emission
estimates with those obtained from existing global fire emission
models based on satellite-observed burned areas and fire radiative
power. Differences in the results were analyzed by region and by
month, and we investigated the reasons for discrepancies with pre-
vious estimates with the help of high-resolution burned areas, fire fuel
consumption estimates, and land cover maps to deepen our under-
standing of the uncertainties associated with the global fire CH4

budget.

Results
Global fire CH4 emissions inferred from CO inversion
Our satellite-observed CO-based estimates indicated that global fires
released an average of 24.0 TgCH4 yr

−1 between 2003 and 2020, which
was 5.1 Tg higher than the average estimates obtained from 4 global
fire emission models, including the Global Fire Emissions Database
(GFED) v4.1s10, Fire Inventory from NCAR (FINN) v2.528, Global Fire
Assimilation System (GFAS) v1.28, and Quick Fire Emissions Dataset
(QFED) v2.5r19. The construction of these models is based on satellite-
observed burned areas or fire radiative power and they are widely
utilized in fire emission assessment. The average estimates of these
models lay close to the lower boundary of our emission uncertainty
range, considering the uncertainties in calculating the fire CO to CH4

emission ratio (CO/CH4 ER) (Fig. 1a). Except for FINNv2.5, the global
total CH4 emission estimates of the other 3 fire emission models were
approximately 5–9 Tg CH4 lower than our CO-based results over the
18-year period (Supplementary Table 1). FINNv2.5 employs an aggre-
gation algorithm for burned area determination, which combines
multiple detections to identify larger burned areas using satellite
active fire products at a nominal 1 km2 resolution, resulting in an
approximately doubled estimate compared to its precedent version,
FINN v1.57. Compared to our fire CH4 estimates, FINNv2.5 is generally

Fig. 1 | Comparison between global CO-based fire CH4 emission estimates and
globalfire emissionmodel results. aAnnual trends infireCH4 emissions fromCO-
based estimates (red curve) and average estimates of 4 global fire emissionmodels
(green curve) from 2003 to 2020, including the fitted linear trends (dashed red and
green lines). The shaded gray region represents the range of error derived from
uncertainties in CH4/CO emission ratios and inversion-based CO estimates, which
vary with changes in dry matter and CO estimates (Methods). Trend assessments
are conducted using the nonparametric Mann–Kendall test and Theil–Sen esti-
mator, with 2003–2020 trends and uncertainties provided. Significant trends are
denoted by asterisks (*p <0.1 and **p <0.05). b Spatial distribution of differences
between CO-based CH4 emission estimates and those of 4 fire emission models.
Data averaged between 2003 and 2020 are at the spatial resolution of 3.75° long-
itude × 1.9° latitude.
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higher (Supplementary Fig. 1a), particularly from 2003–2010, though
the estimates convergemore closely from 2011–2020 (with an average
difference of ~1.5 Tg yr⁻¹). Spatially, our fire CH4 estimates are higher
than those from FINNv2.5 in most regions (Supplementary Fig. 1b),
except in high-biomass areas such as the Amazon Basin and Central
Africa, where Wiedinmyer et al.28 suggested that FINNv2.5 likely over-
estimates emissions, as indicated by comparisons between model
results and satellite observations.

The trends of our emission results were broadly consistent with
those of previous emission models, albeit indicating a slightly modest
downward trend.Our results revealed a slight decline in globalfire CH4

emissions of −1.1% ± 1.2% yr−1 from 2003 to 2020 (nonparametric
Mann–Kendall test, 95% confidence interval), equivalent to
−0.29 ±0.31 Tg CH4 yr−1 (red curve in Fig. 1a). The average of the 4
global fire emission models exhibited a decreasing trend of −1.6% ±
1.0% yr−1 (−0.35 ± 0.22TgCH4 yr

−1) during the sameperiod (green curve
in Fig. 1a). Worden et al.23 estimated a decrease of 3.7 ± 1.4 Tg CH4 yr

−1

in global annual average fire CH4 emissions from 2001–2007 to
2008–2014 based on atmospheric inversion of satellite-based CO
observations. During a similar period, our study estimated a decrease
in the annual mean fire CH4 emissions of 4.3 ± 1.0Tg CH4 yr−1 from
2003–2007 to 2008–2014, which was similar to that estimated by
Worden et al.23 and 64% higher than that of the GFED v4.1 s model.

Spatiotemporal distribution of fire CH4 emissions
OurCO-basedfireCH4 emissions revealed adistinct dipoledistribution
pattern across latitude bands, characterized by CH4 emission hotspots
concentrated over tropical and boreal regions, consistent with the
average estimates of the 4 global models (Supplementary Fig. 2). The
higher fire CH4 emissions derived from our atmospheric CO inversion
compared to those from the 4 fire emission models were pre-
dominantly concentrated within the tropical latitude band spanning
30°S–15°N (Fig. 1b), accounting for the majority of the disparity in
global total CH4 emissions (5.7 Tg CH4). By contrast, our results indi-
cated slightly lower fire CH4 emissions than those from the 4 fire
emission models within the 15°N–45°N latitude band, for a total mean
difference of −0.9 Tg CH4 emissions. The decadal decrease in fire CH4

emissions from 2003–2011 to 2012–2020 revealed by our CO-based
results was attributed to the pronounced decrease in fire emissions
over the 30°S–15°N latitude band (Supplementary Fig. 3), in which
satellites detected a decline in grassland burning due to population
growth and agriculture expansion29, which are likely the main con-
tributing factors.

Additionally, our CO-based results demonstrated a prominent
decreasing trend in fire CH4 emissions over South America, which
accounted for approximately 62% of the total decadal decrease in the
30°S–0° region, a finding that was consistent with the observations by
van Wees et al.30 of reduced fire contributions due to Amazon forest
loss. For the 0°–30°N region, most of the CH4 emission decrease was
observed in Africa, consistent with the findings of previous research31.
However, boreal fire emissions increased since 2003 likely driven by
changes in the moisture balance as the Arctic continues to warm,
which partly offset the rapid decrease in tropical fire emissions and
caused a gradual shift in fire emission distribution toward northern
high latitudes. Our CO-based results depicted more substantial chan-
ges in tropical and borealfire emissions since 2003 compared to those
from the 4 global emission models (Supplementary Fig. 3).

During fire season months, our CO-based estimates of fire CH4

emissions were approximately 52% higher than those of the 4 global
fire emissionmodels (as shown in Fig. 2a). Such conditions occur from
November to March (CH4 emission estimates of our model were
32%–59% higher than those of the 4 fire emission models) at 0°–15°N
and from July toOctober (45–68%higher) at 30°S–0° (Fig. 2b),with the
greatest disparity between model results occurring in October (68%).
In addition, our atmospheric CO-based results indicate a larger

allocation of fire CH4 emissions to the late fire season (February,
March, and November at 0°–15°N, and October at 30°S–0°). The
importance of late fire season emissions was also reported in regional
studies26,32,33, reflected by late fire season peaks in satellite-observed
CO, ammonia, and aerosol optical depth over fire regions compared to
levels observed via atmospheric transport model simulations. Ramo
et al.16 highlighted the contribution of previously undetected small
fires during the late fire season inAfrica, which was consistent with our
CO-based fire CH4 emission estimates. Similarly, van der Velde et al.18

found a better agreement with satellite-observed CO column con-
centrations when these small fires were accounted for.

Undetected small fires explain higher CO-based CH4 emissions
The fire CO emissions inferred from atmospheric CO inversion were
constrained by satellite CO column retrieval and comprehensively
evaluated in previous studies25,27,34. In particular, posterior CO emis-
sions corrected the underestimation bias of simulated global CO
concentrations compared with satellite and independent surface
observations. Although potential uncertainties remain, we argue that
the systematic bias of CO fluxes was removed and well constrained.
Taking this into account, the discrepancies between our CO-basedCH4

emission estimates and those from global fire emission models could
be due to: 1) CH4/CO ERs being overestimated in our study, and 2)
previous fire emission models underestimating parameters such as
emission factors, burned area, or fuel combustion per unit of area
burned, resulting in lower fire emissions. Therefore, we separately
evaluated each possible factor and identified the leading factor.

We established fire CH4/CO ERmaps by grid cell and by month to
correlate fire CO emissions with fire CH4 emissions (see Methods)
based on the spatiotemporal distribution of different types of fire and
fire emission measurements across biomes (Supplementary Fig. 4).
Suchmaps reflect the dynamics of combustion conditions that vary by
location, time, and biome; however, such evaluations are challenging
due to the lack of large-scale, direct, and independent measurements.
Since the data from field campaigns on the ground were previously
utilized in our modeling, we used independent airborne measure-
ments from the Fire Influence on Regional to Global Environments and
Air Quality (FIREX-AQ)35 campaign over the United States and the
Atmospheric TomographyMission (ATom)36 campaign near the South
Atlantic equatorial region for further analysis of potential over-
estimation of CH4/CO ERs. Although these two aircraft campaigns
covered limited regions and periods, the data provided an indepen-
dent basis for evaluation.

We identified wildfire plumes from FIREX-AQ and ATom data
according to their measurement characteristics (see Methods, Sup-
plementary Figs. 5–8). CH4/COERswere determined as the slope of the
regression line fitted to CH4 and CO aircraft measurements within fire
plumes, considering species loss during plume transport (Methods).
The FIREX-AQ and ATom data provided consistent fire CH4/CO ER
values of 0.09 and 0.08 ppb/ppb, respectively (Supplementary Fig. 9),
albeit they were performed over different biomes (e.g., temperate
forest vs. savanna). Moreover, recent studies37–39 based on aircraft
measurements of regional wildfire smoke over the United States
reported average CH4/CO ER values of 0.08–0.10 ppb/ppb. For com-
parison, we extracted the CH4/CO ERs utilized in our study from the
multiannual average map (Supplementary Fig. 10, “Methods”) corre-
sponding to the time and location of the FIREX-AQ and ATom cam-
paigns, yielding an average CH4/CO ER value of 0.08 ppb/ppb.
Additionally, aircraft measurements of near-field fire plumes over the
savanna region in Senegal reported40 CH4/CO ERs of 0.04–0.05 ppb/
ppb, consistent with the 0.04 ppb/ppb ER used for the savanna biome
in this study. This alignment with previous aircraft measurements
suggested that the uncertainties in CH4/CO ER were not the dominant
factor driving thediscrepancies betweenmodel results, though further
biome-specific testing is required to confirm this across all regions.

Article https://doi.org/10.1038/s41467-025-56218-w

Nature Communications |          (2025) 16:804 3

www.nature.com/naturecommunications


To assess potential underestimation of burned areas, we
employed the data from FireCCISFD11, a 20m resolution data product
over sub-Saharan Africa for the year 2016 which has better accuracy
than existing coarse-resolutiondata16, to recalculatefireCH4 emissions
using the emission intensity under the GFED v4.1 s framework (see
Methods). Such CH4 emission estimates addressed part of the under-
estimations in the GFED v4.1 s emission estimates over sub-Saharan
Africa (Fig. 3a, b). The CO-based and FireCCISFD11-based results (GFED
v4.1 s framework) were higher than those of GFED v4.1 s by 3.0 and 1.1
Tg in Northern Africa (Fig. 3a), respectively, and by 4.2 and 1.6 Tg in
Southern Africa (Fig. 3b), respectively. However, the FireCCISFD11-
based CH4 estimates (GFED v4.1 s framework) remained 35%–37%
lower than our CO-based results, primarily due to lower estimates over
the 15°S–10°S and 5°N–10°N regions (cyan and purple curves in
Fig. 3c), which accounted for 51% of the global total CH4 emission
differencedespite this region having themost substantial increment in
burned areas between GFED v4.1 s and FireCCISFD11, exceeding 40
Mha (depicted by the dark blue dashed curve in Fig. 3c).

We further analyzed the Sentinel-2 land cover map16 jointly with
FireCCISFD11-based burned areas. More than 40% and 50% of
FireCCISFD11-based burned areas over the 15°S–10°S and 5°N–10°N
regions, respectively, were covered by trees, whereas other land cover
types (i.e., grassland, shrub, and cropland) dominatedburned areas over
other latitudinal areas in sub-Saharan Africa (Fig. 3e). We suspect that
differences between the CO-based and FireCCISFD11-based CH4 emis-
sion estimates over the 15°S–10°S and 5°N–10°N regions were probably
due to the incorrect characterization of fuel load and consumption or to
forest-specific emission factors, which are key components of emission
intensity, in tree-dominated areas under the GFED v4.1 s framework.

Fig. 2 | Difference between global CO-based fire CH4 emission estimates and
global fire emission model results by month and latitude. a Monthly fire CH4

emissions from CO-based (red curve) estimates and average estimates of 4 fire
emission models (green curve) and their difference (shaded gray region) averaged
between 2003 and 2020. The error bars represent one standard deviation due to
interannual variation from 2003 to 2020. b Differences between CO-based CH4

emission estimates and those of four models by month and latitude.

Fig. 3 | Comparison of African fire CH4 emissions derived from different model
frameworks. Monthly variations in fire CH4 emission estimates based on CO esti-
mates (black bar), FireCCISFD11-based burned areas under the M-500m (red bar)
and GFED v4.1 s (pink bar) frameworks, M-500m (dark green bar), and GFED v4.1 s
(light green bar) compared for the (a) northern and (b) southern hemispheres of
sub-Saharan Africa in 2016. c Differences between fire CH4 emission estimates
based on FireCCISFD11-based burned areas (GFED v4.1 s framework) and

GFEDv4.1 s, CO-based and GFED v4.1 s, and burned areas FireCCISFD11 and GFED
v4.1 s, shown by latitude band. d Differences between fire CH4 emission estimates
based on FireCCISFD11-based burned areas (M-500m framework) and M-500m,
CO-based and M-500m, and burned areas FireCCISFD11 and M-500m, shown by
latitude band. e Fractions of different land cover types over the burned area within
corresponding latitudinal regions.
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To evaluate this hypothesis, we further utilized the framework of
the fuel consumption product41 with a resolution of 500m (M-500m)
−but regridded to 0.25° spatial resolution to ensure commonality with
GFED v4.1 s (Supplementary Fig. 11)−to recalculate fire CH4 emissions
with the FireCCISFD11-based burned areas for sub-Saharan Africa. The
FireCCISFD11-based CH4 emission estimates using the M-500m fra-
mework could resolve the disparities between the CO-based and
FireCCISFD11-based CH4 emission estimates (GFED v4.1 s framework),
but they also surpassed our CO-based results by 1.8 and 2.0 Tg over
Southern and Northern Africa, respectively. The most substantial
increment between the FireCCISFD11-based (M-500m framework) and
CO-based results was observed in the 5°N–10°N region (Fig. 3d),
characterized by the highest tree cover fraction compared to other
latitudinal bands. The aggregation of fuel consumption and burned
area may have introduced errors, contributing to higher emission
estimates. A recent 2019 study18 on biomass burning found emissions
for Southern Africa exceeded those of GFED v4.1 when using the
unaggregated M-500m fuel consumption model and updated, region-
specific dynamic emission factors42, alongside 500mburned area data
from Sentinel-217. This method estimated methane emissions at 7 Tg,
which closelymatches the inverse estimate from our study, albeit for a
different year (Fig. 3b). Interpreting such differences is difficult, but
our sensitivity analysis suggested that the fire emission models based
on high-resolution burned areas or fuel data yielded larger fire CH4

emission estimates than othermodels, which tended tomove closer to
our independent CO-based results than previous coarse-resolution
model estimates.

Discussion
Our study suggests that existing fire emission models may under-
estimate global fire CH4 emissions due to their reliance on coarse-
resolution burned area and emission intensity. Coarse-resolution data
cannot represent the heterogeneity of fire dynamics within a coarse
grid cell, and, more importantly, they are subject to large omission
errors and miss small fires. Although these observations were only
based on a regional analysis of Africa, this continent accounts formore
than half of the global burned area andfire emissions.We acknowledge
that tropical Africa is not a quasi-natural land surface, as it is heavily
impacted by emissions from anthropogenic activities, which affect
emission patterns and their representation in fire-related datasets.
High-resolution data from different regions, especially those that
consider anthropogenic activities, will aid in a more comprehensive
evaluation. Emissions from small-fire types (e.g., landfill and crop
residue burning) may not be accurately captured by burned-area-
based products43. However, their plumes are likely included in satellite
CO observations, which are used to constrain fire emissions in our
inversion system. It should be noted that a recently developed burned
area product by Chen et al.44, employing the latest version of GFED
(v5), demonstrated an approximately 61% increase in global burned
area compared to GFED v4.1 s by adjusting for commission and omis-
sion errors, particularly those associatedwith smallfires. This indicates
that fire emissions based on GFED v4.1 s were largely underestimated,
supporting the findings presented in this study. The upcoming fire
emissions datasets based on the GFED v5-based burned areas are
expected to help reconcile the discrepancies between our CO-based
and GFED model CH4 emission estimates.

This study is subject to potential uncertainties associated with
multiple factors, mainly involving the global CO inversion and the fire
CH4/CO ERs developed based on field measurement data. The atmo-
spheric CO inversion system benefits from the short atmospheric
lifetime of CO and the reliability of satellite CO column retrieval. The
CO inversion system was previously evaluated, demonstrating a sub-
stantial improvement in CO concentration simulation compared to
independent CO observations. Regarding CH4/CO ERs, evaluation

against aircraft measurements revealed a close agreement between
field-measured values and the data employedherein. The uncertainties
persist, stemming from the inversion process, limited spatiotemporal
coverage of the evaluation datasets (e.g., the FIREX-AQ and ATom
campaigns were only conducted in summer and winter, respectively),
and lack of peat fire plume observations. Despite these uncertainties,
the lower bound of the uncertainty range (averaging 18.1 Tg yr⁻¹ for
2003–2020) remains in close alignment with the average estimate of
four global fire emission models (18.9 Tg yr⁻¹ for the same period),
indicating that they are unlikely to significantly affect the main con-
clusions of this study. Incorporating additional observational datawith
broad spatiotemporal coverage, such as synergistic satellite retrieval
of CH4 and CO column concentrations over fire regions, will improve
our understanding of the dynamic changes in CH4/CO ER in the future.
This study presents integrated uncertainties (shaded area in Fig. 1a),
which arise from the approximated uncertainties in inversion-based
CO estimates andCH4/CO ER uncertainties. However, we acknowledge
that uncertainties remain in the emissions factor-based approach. For
example, the uncertainty in hydroxyl radical (OH) concentrations—
being the primary sink of CO—can significantly impact the atmospheric
CO and CH4 burden4,45, highlighting the importance of accurately
quantifying OH levels in fire emission estimates. The ongoing debate
regarding OH variation46 and the challenges in simulating its nonlinear
chemistry in global models emphasize the need for further work to
refine OH field estimates. Additionally, uncertainties in prior emission
estimates and the partitioning of posterior CO fluxes across emission
sectors23 represent other key challenges in this study. These uncer-
tainties arise from limitations in emission inventories, including out-
dated data and oversimplified assumptions in bottom-up calculations,
which can bias modeled CO distributions and propagate through
scaling factors to affect posterior estimates. Additionally, overlapping
sources, such as wildfires and fossil fuels, complicate the accurate
sectoral partitioning of posterior CO fluxes, potentially impacting
source-specific trend analyses. Addressing these challenges requires
enhanced emission inventories incorporating high-resolution obser-
vational data and the application of supplementary tracers, such as
isotopic signatures or co-emitted species, to improve source attribu-
tion and refine sectoral partitioning.

Our study findings suggest that previous estimates of global fire
CH4 emissions based on coarse-resolution burned areas tend to be
underestimated by 27%, which leads to a potentially large under-
estimation of global fire impacts on climate. The extent of such
underestimation, based on the total difference (equivalent to 5.1 Tg yr−1)
between our results and the four models, corresponds to a significant
proportion, ranging from 8% to 78%, of the total anthropogenic CH4

emissions (all sectors in the EDGARv7.047 database) from the top 10
emitting countries (Supplementary Fig. 12). As global warming con-
tinues,wildfires are projected tooccurmore frequently inmanyparts of
the world48,49, and fire weather season will likely intensify and become
longer, leading to even higher fire CH4 emissions and exacerbated
global warming50. Inadequate management of emissions from small
fires (e.g., landfill, crop residue burning) in developing countries, which
are exhibiting obvious growth trends in certain regions51, leads to
increased CH4 emissions and the release of other harmful gases and
particulates. Without improved regulation, the future may further
exacerbate such emissions52. To enhance our understanding of fire’s
climate impact and support mitigation and adaptation strategies, top-
down estimates of fire greenhouse gas emissions based on multiple
satellites need to be integrated into a global fire monitoring and mod-
eling system to evaluate global and regional fire-carbon budgets and
resolve fire–climate feedback. Carbon and air pollution sensors are
powerful tools for monitoring fire-carbon emissions directly and indir-
ectly, respectively, with the latter being an important complement to
our current fire emission monitoring system.
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Methods
Fire CO emissions derived from atmospheric inversion
We utilized a global atmospheric inversion system to estimate global
CO fire emissions from 2000 to 2020 at a spatial resolution of 3.75°
longitude and 1.9° latitude. The system was developed based on the
three-dimensional transport model of the Laboratoire de Météor-
ologie Dynamique (LMDz) coupled with the Simplified Atmospheric
Chemistry Assimilation System (SACS)53,54, which has been maintained
by the French Laboratoire des Sciences du Climat et de l’Environne-
ment for the past 15 years25,34,55,56. This system follows Bayesian
principles57, which involves minimizing the cost function that com-
bines prior information and satellite CO observations. These data
products are connected through a global chemical transport model
and weighted according to their respective uncertainties. Recent
updates25,34 to themodel have enabled accurate reconstructions of the
global CO budget, correcting for prior modeling biases of CO and
showing good agreement with in situ CO observations. The optimized
CO budgets were robust to different observational constraints, cor-
rected misrepresentations of CO emission trends in developing
countries58, and improved the estimation of fire CO emissions during
the late dry season in Africa26.

The observational constraint in this study was the Level 2
Measurements Of Pollution In The Troposphere (MOPITT) version 9
CO column product59, which benefits from improved cloud detec-
tion andmapping of highly polluted scenes compared with previous
MOPITT retrieval versions, further enhancing the inversion system’s
capabilities. Prior fire emissions were obtained from GFED v4.1 s
from 2003 to 202010. Prior anthropogenic fossil fuel and biofuel
fluxes for 2003–2019 were derived from the latest Community
Emissions Data System (CEDS) emission inventory60,61, which cor-
rected for an overestimation of global CO emissions in the previous
version. To provide prior fluxes before 2020, we utilized daily
country- and sector-level CO2 emission growth rates from the Car-
bon Monitor dataset62,63, combined with CEDS emission data from
2019. The methodology for CO inversion is detailed in Supplemen-
tary Text 1.

Fire CH4 emissions derived from CO inversion
We employed our established methodology25,26,34 to quantify fire CO
emissions, and then estimated global gridded monthly fire CH4 emis-
sions based on a variation of the methodology we previously devel-
oped to reconstruct global CO2 fire emissions27, according to Eqs. (1)
and (2):

ERCH4 :CO
i, j, t =

P
pDMi, j, t,p ×CF

CH4 :CO
pP

pDMi, j, t,p
ð1Þ

ECH4
i, j, t =E

CO
i, j, t ×ER

CH4 :CO
i, j, t ð2Þ

where i and j correspond to the row and column of simulation grid
cells, respectively; t represents an individual month between 2003
and 2020; p represents the biome, including savanna, temperate
forest, tropical forest, boreal forest, peatland, and agricultural land;
and ER represents emission ratio, E represents emissions, and CF
signifies the conversion factor from fire CO to CH4 emission factors,
derived from 148 field measurements obtained from Andreae et al.64

and other literature (Supplementary Table 3). These measurements
cover a wide range of different fire types, resulting in CF values
ranging from0.009 to 0.085 (g kg−1/g kg−1) (Supplementary Fig. 4). A
statistically insignificant correlation (p-value < 0.05) was observed
for peatland fires, and relatively lower R-values were noted for
boreal forest fires. Hence, for boreal forest and peatland fires, the
average CH4/CO emission factor ratios determined from measure-
ment were used as the CF, while for other fire types, the regression

slopes were utilized. DM represents the dry matter combustion of
different fire types, which is used as a weight in the calculation of
gridded monthly fire CH4/CO emission ratios from 2003 to 2020
(Supplementary Fig. 10), which was subsequently multiplied by the
fire CO emissions derived from the LMDz-SACS inversion system to
obtain CO-based fire CH4 emissions (Eq. (2).

Herein, theDM data input was derived fromGFED v4.1 s. Although
GFED v4.1 s tends to systematically underestimate burned areas and
emissions, we assumed that such errors tended to affect all ecosystem
fires to a similar extent within each grid cell; therefore, the repre-
sentation of spatiotemporal distribution patterns across different fire
types was not subject to systematic errors.We assess the uncertainties
associated with CO-based CH4 emissions (shaded area in Fig. 1),
according to the Eq. (3):

ΔECH4
i, j, t =E

CH4
i, j, t ×
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@
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A

2
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Where, ΔE and ΔER represent the uncertainties in emissions and
emission ratios, respectively. The ΔER was derived based on Eq. (1),
where we substituted the average CH4/CO emission factor ratio with
the standard deviation of the CH4/CO emission factor ratios for CFs of
boreal forest and peatland, and we replaced the regression slope with
the standard deviation of the residuals for other fire types. The ΔE for
inversion-based CO emissions was obtained by calculating the
standard deviation of monthly and grid-based CO inversion results
from three sensitivity simulations in our previous study (see Table 2 in
Zheng et al.34). Subsequently, we evaluated the uncertainty range ofΔE
and ΔER, and propagated such uncertainties to estimate the emission
uncertainties.

Aircraft measurement-based evaluation of CH4:CO
emission ratio
Weutilizedmeasurements from the FIREX-AQandATom (https://daac.
ornl.gov/ATOM/campaign/) campaigns to evaluate fire CH4/CO ER.

The FIREX-AQ campaign’s near real-time sampling capability
enabled the detection of prominent wildfire plume signals during
wildfire combustion (Supplementary Fig. 6). The measured mixing
ratios of CH4 andCO in theseplumes reached levels as high as3218 and
5688 ppb, respectively. The level of hydrogen cyanide (HCN), a long-
lived tracer ofwildfire emissions65, reached amaximumvalue of 34,189
ppt. We classified data points as plumes originating from wildfires
when enhanced CH4, CO, and HCN levels exceeded the standard
deviation of their corresponding daily mean. Since plume transport
timewasmuch shorter than CO (1month) or CH4 (9 years) lifetime66,67,
we neglected CH4 and CO losses due to transport from the fire to the
plume interception location during the FIREX-AQ campaign. The
concentration enhancement ratio of CH4 to CO was thus close to the
CH4/CO ER.

A total of 16 fire plume interceptions were identified in the ATom
campaign. The interception data labeled #9–16 (Supplementary
Table 2) were based on wildfire plume interception information
reported by Chen et al.68, which included detailed identification of fire
plumes intercepted during ATom-3 and ATom-4 deployments36 in
September–October 2017 and April–May 2018, respectively. Please
refer to Chen et al.68 for further details on this dataset. As for ATom-1
(July–August) and ATom-2 (January–February) deployments, we
restricted our analysis to the South Atlantic region (35°S–35°N,
65°W–10°N), which was close to the fire-prone areas of sub-Saharan
Africa along the flight path.

Afterfiltering formissing values,weobtainedobservationdata for
February 13 and 15, 2017, for which the flight tracks and time series
measurements are depicted in Supplementary Figs. 5 and 7, 8,
respectively. Thewildfire plume signals were relatively weak due to the
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relatively large distances between the plume interception locations
and the fire-burning continental area. To aid in plume source attribu-
tion, we included additional measurements, such as the biomass
burning (BB) fraction, which was based on the abundance of particles
detected by the particle analysis by laser mass spectrometry instru-
ment onboard the aircraft during the ATom campaign. Case-by-case
identification of plumes intercepted during the Atom campaign was
performed as described by Chen et al.68, employing the following cri-
teria: CH4 > 1840 (ppb), CO> 100 (ppb), HCN> 320 (ppt), and BB >
30% for February 13, 2017, and CH4 > 1840 (ppb), CO> 120 (ppb),
HCN> 330 (ppt), and BB > 50% for February 15, 2017, as indicated by
the dashed horizontal lines in Supplementary Figs. 7 and 8. Tomitigate
the influence of low-frequency fluctuations, the measurements were
aggregated by averaging the observed values for COwithin each 5 ppb
interval ranging from 70 to 420 ppb (e.g., 70–75, 75–80,…, 415–420
ppb). Plume age was determined based on time since the most recent
fire influence, which was based on back trajectories68 obtained from
ATom datasets69, as indicated by Fire inf in Supplementary Table 2.
Since the plume transport time was relatively long, we calculated first-
order losses of CH4 and CO and converted the concentration
enhancement ratio of CH4 to CO to the CH4/CO ER, as described by
Lutsch et al.65. This conversion process can be represented by the
following equation:

ERCH4 :CO = EnRCH4 :CO ×
exp d

τCH4

� �

exp d
τCO

� � ð4Þ

whered is the ageof thefireplume; τ is the atmospheric lifetimeofCH4

and CO (9 years and 30 days, respectively); ER represents the fire CH4/
CO emission ratio; and EnR represents the measured fire CH4/CO
concentration enhancement ratio.

Other datasets used in this study
We employed the FireCCISFD11 burned area product and its corre-
sponding land cover dataset from Sentinel-2 instruments derived from
Ramoet al.16, whichcovers the entire sub-SaharanAfrica regionat 20m
resolution for the year 2016. The FireCCISFD11 dataset was system-
atically validated by sampling Sentinel image pairs, and the error
matrices revealed that it had substantially lower average errors in
burned areas (e.g., omission and commission errors of 24.5% and 8.1%,
respectively, and a Dice Coefficient of 0.83) than other global
products14,70,71. To estimate FireCCISFD11-based fire CH4 emissions (as
depicted in Fig. 3), we aggregated the FireCCISFD11-based burned
areas into a spatial resolution of 0.25° × 0.25° and recalculated fire
emissions using emission intensity based on the GFED v4.1 s10 and M-
500m41 model frameworks, replacing the burned area data. The
emission intensity was calculated by dividing the fire emissions by the
burned areas fromGFEDv4.1s (0.25° ×0.25°),which is basedonMODIS
burned area augmented with the GFED small fires algorithm, and
M-500m (0.25° × 0.25°), which is based on MODIS burned area hence
the addition ‘M’ to M-500m, for the year 2016 (Supplementary
Fig. 11a, c).

In addition, we compared our CO-based estimates with those
from four global fire emission models (Supplementary Table 1),
including FINNv2.528, QFED v2.5r18, GFAS v1.28, and GFED v4.1s10. We
derived global anthropogenic CH4 emissions for 2003–2020 from
EDGARv7.045, as shown in Supplementary Fig. 12.

Data availability
All of the datasets associated with the main findings of this study have
been detailed in themain text andMethods section. The CO-based fire
CH4 emissions generated in this study can be obtained from the cor-
responding author upon reasonable request.

Code availability
The code for the global atmospheric CO inversion system utilized in
this study can be accessed at http://community-inversion.eu/
installation.html#getting-the-code.
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