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Abstract 
Levels of gene expression underpin organismal phenotypes1,2, but the nature 
of selection that acts on gene expression and its role in adaptive evolution 
remain unknown1,2. Here we assayed gene expression in rice (Oryza sativa)3, 
and used phenotypic selection analysis to estimate the type and strength of 
selection on the levels of more than 15,000 transcripts4,5. Variation in most 
transcripts appears (nearly) neutral or under very weak stabilizing selection 
in wet paddy conditions (with median standardized selection differentials 
near zero), but selection is stronger under drought conditions. Overall, more 
transcripts are conditionally neutral (2.83%) than are antagonistically 
pleiotropic6 (0.04%), and transcripts that display lower levels of expression 
and stochastic noise7,8,9 and higher levels of plasticity9 are under stronger 
selection. Selection strength was further weakly negatively associated with 
levels of cis-regulation and network connectivity9. Our multivariate analysis 
suggests that selection acts on the expression of photosynthesis genes4,5, but 
that the efficacy of selection is genetically constrained under drought 
conditions10. Drought selected for earlier flowering11,12 and a higher 
expression of OsMADS18 (Os07g0605200), which encodes a MADS-box 
transcription factor and is a known regulator of early flowering13—marking 
this gene as a drought-escape gene11,12. The ability to estimate selection 
strengths provides insights into how selection can shape molecular traits at 
the core of gene action. 



Main 
To investigate the strength and pattern of selection on gene expression, we 
assessed transcriptome variation in two rice populations (Supplementary 
Tables 1–4)—one consisting of 136 varietal group ‘Indica’ accessions 
(comprising the indica and circum-aus subgroups) and the other of 84 varietal 
group ‘Japonica’ accessions (comprising the japonica and circum-basmati 
subgroups)—in a field experiment in the Philippines3. Replicates of each 
population, with three individuals per accession, were planted in a 
continuously wet paddy and a field that imposed intermittent drought 
(Fig. 1a, Extended Data Figs. 1–3). We used 3′-end mRNA 
sequencing14 (Methods) to measure mRNA levels in leaf blades of the 
1,320 plants at 50 days after sowing, corresponding to 17 days after 
withholding water in the dry field. We observed genetic variation in the levels 
of 15,635 widely expressed transcripts15 (a broad-sense heritability of about 
0.08 to about 0.95, false discovery rate (FDR)-adjusted q < 0.001) (Fig. 1b, 
Extended Data Figs. 2, 3, Supplementary Text, Supplementary Tables 5–
8 provide overviews of genetic, environmental and interactive effects). 

We focused our analyses on the Indica population, which is the predominant 
rice population grown globally3. We applied phenotypic selection analysis to 
measure the strength and pattern of selection on the levels of all 
15,635 transcripts4,5, using several complementary approaches. We initially 
measured total (direct and indirect) selection, and calculated univariate linear 
(S) and quadratic (C) selection differentials; these differentials estimate 
directional and stabilizing or disruptive selection, respectively, on the basis of 
the relationship between the trait value (transcript abundance) and fitness4,5. 
We considered total lifetime fitness through two multiplicative fitness 
components16: (i) flowering success, defined as flowering and producing filled 
grains before the end of the season6,11,12 (which was only relevant under 
drought, owing to stress-related flowering delay and spikelet sterility)11,12; 
and (ii) fecundity, which was quantified as the numbers of filled grains 
produced (and which was relevant for both fields)6,11,12 (Fig. 1a, Extended 
Data Fig. 1, Supplementary Tables 2, 9, Supplementary Notes 1, 2). 
 
In wet conditions, selection on expression appeared to be weak. 
Transcriptome-wide selection strength was |S|median = 0.035, with very few 
transcripts showing |S| > 0.1, which suggests that—for most genes— 
variation in expression is (nearly) neutral (Fig. 1c); this is similar to the 
distribution of selection strengths for higher-level organismal traits4,17. 
Directional selection (S) showed an overall bias for stronger and more-
prevalent positive selection (a greater fitness with greater expression) than for 
negative selection (a lower fitness with greater expression) (7,973 versus 7,569 



transcripts, with Smedian = 0.0361 (for positive selection) and Smedian = −0.0345 (for 
negative selection), respectively; Mann–Whitney U-test, z = 2.38, P = 0.0173). 
By contrast, C was negative (consistent with stabilizing selection) for the 
majority of transcripts (8,070 transcripts with C < 0 and 7,472 transcripts 
with C > 0)—although when C was positive, it tended to be stronger (Mann–
Whitney U-test, z = −3.28, P = 0.001) (Fig. 1d, e, Supplementary Tables 10, 11). 
However, none of the transcript levels covaried significantly with fitness, for 
either S or C, after Bonferroni correction (P < 3.2 × 10−6). This suggests that—at 
microevolutionary timescales—variation in gene expression is (nearly) neutral 
or exhibits very weak stabilizing selection. This contrasts with stronger 
directional and stabilizing selection at larger evolutionary timescales18. 
 
Selection was stronger (|S|median = 0.1367) under drought conditions than 
under wet conditions (Mann–Whitney U-test, z = 99.99, P < 0.0001) (Fig. 1c). 
Although no individual transcript breached the Bonferroni 
threshold, S and C exhibit more extreme values under drought conditions, 
indicating drought-induced shifts in both the strength and pattern of selection 
(Kolmogorov–Smirnov test, D = 0.327 (for S) and D = 0.269 (for C), P < 0.0001) 
(Fig. 1d, e, Extended Data Fig. 4, Supplementary Text show results for fitness 
components under drought conditions). We examined selection on expression 
across environments and found patterns of antagonistic pleiotropy (S exhibits 
opposite directionality between environments) for 6 transcripts (about 0.04%) 
and conditional neutrality (significant S in one environment) for 
443 transcripts (2.83%) (Fig. 1f). Compared to expectations that are based on 
chance alone, conditional neutrality appears much more common than 
antagonistic pleiotropy under our conditions6 (Supplementary Table 12). This 
result indicates a general lack of trade-offs at the gene-expression level, and 
suggests a mechanistic explanation for the lack of yield penalty on drought 
tolerance in modern rice breeding lines12. 
 
To identify factors that shape rates of microevolutionary change in gene 
expression, we performed partial correlation analysis with factors that 
influence macroevolutionary rates of expression 
divergence7,8,19,20,21 (Supplementary Table 13). We focused on |S| because this 
value is directly proportional to the response to selection5, which is a measure 
of microevolution22. Relative expression level and stochastic expression noise 
were negatively correlated with |S| (Pearson’s 
partial r < −0.119, P < 5.13 × 10−48) (Fig. 2a, b, Supplementary Table 14), 
suggesting fitness is buffered—to some extent—for expression variation in 
highly expressed genes, as well as for high stochasticity in transcript 
abundance9. However, we observed that accessions with higher genome-wide 
levels of expression stochasticity tend to have a lower 
fecundity23,24 (Spearman’s ρ < −0.174, P < 0.05) (Fig. 2c, Extended Data Fig. 5, 



Supplementary Table 15). |S| also correlated positively with tissue 
specificity τ (Pearson’s partial r > 0.024, P < 0.01) (Fig. 2a, b), and for fecundity 
with expression plasticity (differential gene expression between the two 
environments; Pearson’s partial r > 0.017, P < 0.05) (Fig. 2a, Extended Data 
Fig. 5). This is consistent with previous reports that tissue specificity can 
minimize pleiotropic constraints on selection21, and expression plasticity can 
affect the efficacy of selection19,20. Supporting the importance of plasticity, 
accessions that induce expression of more genes under drought conditions 
experience fitness benefits (Spearman’s ρ = 0.15, P = 0.041) (Fig. 2d, 
Supplementary Table 16). 
 
Gene expression is regulated through networks of transcription factors that 
interact with cis-regulatory DNA elements9, and these relationships have been 
shaped by past selection. Highly connected transcripts in regulatory networks 
should be controlled by more transcription factors9,25,26 and have evolved to 
reduce the effects of expression variation on fitness, contributing to 
robustness9. Supporting this hypothesis, fitness was less strongly associated 
with the expression of genes with higher connectivity (Kruskal–
Wallis test, H ≥ 18.94, P < 0.001), numbers of known cis-regulatory DNA 
elements and transcriptional regulators (Mann–Whitney U-
test, z ≥ 2.74, P < 0.05) (Fig. 2e, f, Extended Data Fig. 5, Supplementary 
Table 17). 
 
Because interactive network effects appear to curb the strength of phenotypic 
selection on gene expression, we hypothesize that genetic correlations 
between multivariate suites of transcripts may constrain the outcome of 
selection. We performed dimensional reduction of the transcriptome data 
using principal component (PC) analysis, and considered the principal 
components that explain >0.5% of overall variance as suites of transcripts in a 
multivariate selection analysis5 (Supplementary Table 18). We estimated 
linear (β) and quadratic (γ) selection gradients, which together measure 
the strength and pattern of direct (instead of total) selection on a trait4,5. 
Quadratic selection was generally weak, but PC7 showed significant positive 
directional selection under wet conditions (PC7wet β = 0.017, P = 1.44 × 10−6). 
Under drought conditions, PC6 displayed positive directional selection for 
flowering success (PC6dry β = 0.025, P = 0.023), and was marginally non-
significant for total lifetime fitness (β = 0.032, P = 0.07) (Fig. 2g, Extended Data 
Tables 1, 2). Furthermore, fecundity selection under drought conditions was 
positive for PC4 (PC4dry β = 0.017, P = 0.014), whereas selection for flowering 
success had the opposite effect—albeit marginally non-significant 
(β = −0.019, P = 0.07) (Fig. 2g). We can predict the outcomes of selection and 
evolutionary constraints on gene expression using the breeder’s equation10. 
Although the principal components as multivariate suites of transcripts were 



uncorrelated at the phenotypic level, they genetically covaried given that 
individual plants were accompanied by two additional genetically identical 
plants in the population. Despite stronger selection under drought conditions, 
evolutionary responses to stress were weak owing to constraints (as 
evidenced by the opposite signs of the direct and indirect responses to 
selection) that arose from genetic correlations between gene groups (Fig. 2h, 
Extended Data Table 1). 
 
Gene expression presumably influences fitness through regulating 
phenological, morphological or physiological traits, and we measured three of 
these traits: (i) flowering time, (ii) leaf area and (iii) chlorophyll concentration 
(all of which display significant genetic variation) (Fig. 3a, Supplementary 
Tables 2, 19). We find stabilizing selection for flowering time and positive 
directional selection for leaf area in wet conditions. Drought selected for 
earlier flowering, and leaf area and chlorophyll concentration experienced 
positive fecundity selection (Fig. 3a, Supplementary Table 20). We assessed 
whether selection on these traits could have been driven by selection on suites 
of transcripts. In the multivariate analysis, translation- and photosynthesis-
related gene ontology terms showed loading-value enrichment on principal 
components with β > 0 (Supplementary Table 21). Moreover, the levels of 
several photosynthesis-related transcripts correlated with leaf area, 
chlorophyll content and fitness (Fig. 3b, Extended Data Fig. 6, Supplementary 
Tables 10, 11, 22), indicating their expression may increase fitness through 
promoting growth vigour11,12 (Supplementary Text). We also ranked 
biological processes by median selection strengths |S| from the univariate 
analyses. We observed different rankings between dry and wet conditions 
(Mann–Whitney U-test, z = −13.51, P < 0.001) (Fig. 4): plants in wet conditions 
showed a relatively strong selection on genes related to growth and defence, 
whereas under drought conditions plants showed a stronger selection 
associated with genes involved in water deprivation responses, growth and 
flowering (Fig. 4, Supplementary Table 23). 
 
Flowering time was the trait under strongest selection in drought conditions. 
Interestingly, expression of only a single gene (OsMADS18)—which encoded 
the transcription factor OsMADS18—was both under selection for flowering 
success after Bonferroni correction (S = 0.77, P = 5.99 × 10−11), and coming close 
to significance for total lifetime fitness (S = 0.914, P = 3.81 × 10−6) (Fig. 3b). 
Increased expression of OsMADS18 was tightly linked with early flowering 
(Extended Data Fig. 6), which has previously been functionally validated13. 
Furthermore, the gene sits in a major quantitative trait locus (QTL) for 
flowering and yield under drought conditions across O. sativa27,28, and the 
expression of this gene is also under relatively strong selection for flowering 



success under drought conditions in our Japonica population (Supplementary 
Table 24), suggesting OsMADS18 is an important drought-escape gene11,12. 
 
To examine the genetic architecture of fitness-related genes, we conducted a 
genome-wide association study that mapped expression QTLs (eQTLs) for 
transcripts and expression principal components with significant selection 
differentials or gradients in our Indica populations29, using 179,634 randomly 
sampled single-nucleotide polymorphisms (SNPs)—or about 1 SNP every 
2.2 kb. We observe no significant cis-eQTLs after Bonferroni correction 
(P < 2.78 × 10−7). However, trans-eQTLs appeared for three of eight transcripts 
under drought-induced selection (Extended Data Fig. 7, Supplementary 
Tables 25–27). Although our sample size limits mapping power, these 
findings suggest trans-acting loci have key roles in the expression variation of 
fitness-related genes29. We also mapped fitness component traits, and found 
no significant QTLs (Supplementary Tables 25–27). Furthermore, taking the 
top 0.5% of SNPs with the strongest association with fitness, we observed no 
enrichment for genes with high selection differentials in 100-kb regions 
surrounding these SNPs (χ2 = 0.088, P = 0.77) (Extended Data Fig. 8, 
Supplementary Table 27). This suggests that, although there may be strong 
selection for expression on particular genes, fitness continues to behave (as 
expected) as a polygenic trait29. 
 
Gene expression is a fundamental molecular mechanism that is essential for 
trait development. Previous studies have focused on long-term transcriptome 
evolution across species1,2,7,18; our approach using phenotypic selection 
analysis demonstrates that measuring the strength and type of ongoing 
selection on individual genes across the entire genome is possible. However, 
our study has limitations: we are measuring selection on a snapshot of leaf 
gene expression, and it would be interesting to see whether selection strength 
varies across tissues and developmental time points30. If so, then the final 
effect of gene expression on adaptation may arise from the integration of 
expression over the entire life cycle30. Moreover, examining selection across 
more environments relevant for plants may provide further insights into how 
gene expression evolves1,2,30. Nevertheless, our work opens up the possibility 
of dissecting the intrinsic and extrinsic factors that drive adaptive evolution 
via regulated gene expression, providing crucial links between adaptation at 
the molecular and organismal levels. 
 
 
Methods 
Representative studies from the literature were used to determine sample 
size11,24,31. The investigators were blinded to the genetic identity of 



individuals in the experiment during sampling, sample processing and 
outcome assessment. The planting order of individuals was randomized 
according to an alpha lattice design. 

 
Plant material 
Plants of 220 O. sativa accessions—136 accessions from the Indica varietal 
group (including the circum-aus and indica subgroups) and 84 accessions 
from the Japonica varietal group (including the circum-basmati, and 
temperate, sub-tropical and tropical japonica subgroups) (Supplementary 
Table 1), consisting of landraces and breeding lines and two additionally 
replicated checks (accessions IR64 and Sahod Ulan 1)—were selected for the 
experiment12,25,26,32,33,34,35,36,37,38. Seeds for all accessions were obtained from 
the International Rice Genebank Collection at the International Rice Research 
Institute (IRRI), and from IRRI’s Rice Breeding Platform – Breeding for 
marginal environments. 

 
Establishment of the field experiment 
The field experiment was conducted during the 2016 dry season at IRRI in Los 
Baños, the Philippines. Two to three grams of seed from each of the accessions 
was sown onto a seed bed on 4 January 2016, and at 17 days after sowing 
(DAS) seedlings were pulled and transplanted into two different experimental 
fields. The first, known as UJ (14° 008′ 41.5″ N, 121° 015′ 53.8″ E), remained 
flooded as a wet paddy field environment. The second, known as UR and 
located in a rain-out shelter, (14° 008′ 33.3″ N, 121° 016′ 03.4″ E), was 
maintained flooded until 33 DAS, at which time irrigation was stopped and 
the field was drained to initiate the drought-stress treatment. This dry field 
was rewatered by flooding at 53, 64 and 91 DAS to let the plants experience 
intermittent drought throughout the remainder of the season. 

The experiments were arranged in an alpha lattice design with each accession 
planted in 3 replicates with 1 plant per hill in single 2-m rows with 0.2-
m × 0.2-m spacing for a total of 1 focal plant (in the fourth hill) and 9 
neighbouring plants per plot. Basal fertilizer was applied at 30 DAS using 
complete fertilizer (14-14-14) at the rate of 50 kg ha−1 each of N2, P2O5 and K2O. 
Manual weeding was done regularly in both treatments. Cymbush (1 l ha−1) 
and Cartap (0.96 kg ha−1) were applied at 37 DAS, and Provado (1.92 l ha−1) 
was applied at 40 DAS and again at 60 DAS to control insect pests in both 
treatments. 



Soil moisture levels in the dry field were monitored by recording soil water 
potential using nine tensiometers (Soilmoisture Equipment) installed at a 
depth of 30 cm in each replicate, and volumetric soil moisture by frequency 
domain reflectometry (Diviner 2000, Sentek) at 10-cm depth increments 
through 70-cm PVC tubes installed at 9 locations in the experimental area. 

 
Leaf tissue collection for mRNA sequencing 
Leaf sampling was performed at 50 DAS on the focal plant in all plots of the 
wet and dry fields from 10:00 to 12:00 (4 h after dawn) as previously 
described25. The aim was to collect leaf samples in the shortest amount of time 
possible to minimize the effects of physiological changes patterned with the 
circadian rhythm of the plants. Four pairs of technicians were assigned to 
collect leaves, and the wet and dry fields were sampled simultaneously by 
different teams working in the same order by replicate and plot. 

During collection, two fully expanded leaves were selected for sampling. 
Approximately 12 cm of leaf length were cut into small pieces and submerged 
into 4 ml chilled RNALater solution in 5-ml screw-cap tubes. Scissors used for 
leaf sampling were wiped with 70% ethanol to avoid contamination between 
plots. The tubes with the collected leaf samples were placed on ice in a 
styrofoam ice chest, then transferred to a cold room at −4 °C overnight. A total 
of 1,320 tubes were used for the collections in the wet and dry fields. Leaf 
samples from each of the 5-ml tubes were then transferred into pairs of 2-ml 
tubes, then stored at −80 °C. One 2-ml tube of each of the 1,320 pairs was sent 
to New York University in liquid -nitrogen dry shippers for long-term storage 
and further processing for mRNA sequencing. 

 
Higher-level trait measurements 
A set of physiological, morphological and phenological measurements was 
conducted to assess individual and genotypic differences in drought 
response. In both the wet and dry fields, ground cover images were taken 
from each focal plant at 52 DAS using a high-resolution digital camera at the 
same height from the ground. Images were processed and analysed using 
ImageJ software version 1.52 to determine the leaf area (leaf area index or per 
cent groundcover)39. For images in which other green material was present, 
GNU Image Manipulation Program (GIMP) software version 2.10.0 was used 
to select the leaves of the designated plant to determine the leaf area index 
(www.gimp.org). Chlorophyll concentration (chlorophyll content index) 
(Apogee Instruments) was measured on one leaf of each focal plant at 49 DAS 



in the dry field, and 50 DAS in the wet field. Flowering time was recorded as 
the day on which 50% of plants in a plot flowered; these plants included the 
focal plant and the nine neighbouring plants. 

 
Grain harvesting and processing 
To avoid grain loss from shattering, individual panicles were harvested 
separately from the focal plant in each plot as they reached maturity, for a 
total of 1,320 plants harvested individually. Filled, partially filled and unfilled 
grains were sorted and counted with the use of a seed counter (Hoffman 
Manufacturing) except for seeds with awns, which were counted manually. 

 
Preparation of RNA for library construction 
Frozen leaf samples were thawed at room temperature and blotted briefly on 
a KimWipe for removal of excess RNALater. The leaf tissue was then flash-
frozen in liquid nitrogen and pulverized in liquid nitrogen with a pre-cooled 
mortar and pestle (CoorsTek), and frozen again at −80 °C. Total RNA was 
extracted from the pulverized bulk tissue using the RNeasy Plant Mini Kit 
according to manufacturer’s protocol (Qiagen). The RNA was quantified on a 
Qubit (Invitrogen), after which the quality of the RNA was assessed on an 
Agilent BioAnalyzer (Agilent Technologies). The total RNA preps were then 
stored at −80 °C in nuclease-free water. 

 
RNA-sequencing library construction and sequencing 
Total RNA for each sample was processed individually according to a 
barcoded, plate-based 3′-end mRNA sequencing (3′ mRNA-seq) protocol that 
presents a modification of the SMART-seq2 and SCRB-seq protocols40,41,42. In 
brief, aliquots of total RNA from all samples were transferred individually 
into wells in 96-well-plates, and diluted to a concentration of 10 ng in a total 
of 50 μl nuclease-free water. Then, the total RNA was mixed with 5 × Maxima 
reverse transcription buffer, dNTP mixture, RNase inhibitors (NxGen RNase 
Inhibitor, Lucigen, at 40 μg μl−1) and water. We reverse-transcribed the 
mRNAs using Superscript II Reverse Transcriptase (Thermo Fisher Scientific), 
and amplified cDNAs for each sample in individual wells using the Smart-
seq2 protocol41, with a custom modification in which a 12-bp well barcode 
was included in the 3′ end reverse transcriptase primer using barcoded 
oligonucleotides from the SCRB-seq protocol42. This enabled us to perform 
multiplexed pooling of 96 samples before library preparation with the 
Nextera XT DNA sample prep kit (Illumina) and returned 3′-biased cDNA 



fragments, similar to the Drop-seq protocol14. Each library consisted of a pool 
of 96 sister samples—that is, 48 samples from the wet field environment were 
matched with samples from the same plot numbers in the dry field 
environment. We quantified the 14 cDNA libraries on an Agilent BioAnalyzer 
and sequenced them at 2 × 50 bases on the Illumina NextSeq 500 using the 
following settings: read 1 was 20 bp (bases 1–12, well barcode; bases 13–20, 
unique molecular identifier (UMI)), and read 2 (paired end) was 50 bp. 

 
RNA-sequencing data processing 
The 3′ mRNA-seq read data were quantified according to the McCarroll 
Laboratory Drop-seq Cookbook using Drop-seq tools version 1.12 (J. Nemesh 
and A. Wysoker, https://github.com/broadinstitute/Drop-seq/releases), a 
wrapper for aligning and parsing both reads and their embedded barcodes 
with the STAR aligner version 020201. The reference genome used by STAR 
was Nipponbare IRGSP 1.0 (GCF_001433935.1) including plastids. A reference 
annotation was generated from Ensembl’s IRGSP nuclear O. sativagenome 
annotation (1.0.37) (ftp://ftp.ensemblgenomes.org/pub/plants/release-
37/gff3/oryza_sativa) and supplemented with the Refseq Mitochondrial and 
Chloroplast annotations 
(ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/433/935/GCF_00143393
5.1_IRGSP-1.0). Metadata were generated with Picard tools version 2.9.0 
(https://broadinstitute.github.io/picard/) and Drop-seq tools. The genome 
and annotations were indexed using STAR (genomeGenerate with options --
runThreadN 12 --genomeDir inc_plastids --genomeFastaFiles 
Oryza_sat_CpMt.fa --sjdbGTFfile 1.0.37_all.gtf --sjdbOverhang 49). Where 
necessary, annotations were converted between RAP-DB and MSU-7 
identities using the Rice Annotation Project’s conversion table (RAP-
MSU_2017-04-14.txt, latest version is 
at https://rapdb.dna.affrc.go.jp/download/irgsp1.html). For quantification, 
raw reads were first converted from FASTQ to unaligned BAM format using 
Picard tools FastqToSam and subsequently processed using the unified script 
(Drop-seq_alignment.sh) in essentially default mode for a FASTQ starting 
format. Digital gene-expression profiles were then generated with the 
DigitalExpression utility, with the expected number of barcodes (indicative of 
individual samples rather than droplets in our case) set to 96. For quality 
assurance purposes, the digital gene-expression profiles were output both as 
UMI count and raw read count matrices with transcripts as rows and samples 
as columns. The values represent the number of raw reads or UMIs that were 
detected. 



To distinguish sample barcodes arising from beads exposed to total RNA 
from an individual rice plant, rather than those that corresponded to beads 
never exposed to RNA, we ordered each of the UMI digital gene-expression 
matrices from our first 13 libraries by the total number of transcribed elements 
per barcode, and plotted each barcode in the matrix by the number of 
transcribed elements from highest to lowest number. As previously 
described14, Drop-seq-type data always display a ‘knee’ at a sample barcode 
number that is equal to or just under the known number of samples included. 
All sample barcodes with a number of transcribed elements that was larger 
than this cutoff were used in downstream analyses, and the remaining sample 
barcodes were discarded. Samples with RNA-seq data that had to be 
discarded were replaced by extracting RNA from a back-up sample, and these 
replacement samples were included in the remaining slots of our fourteenth 
library. 

 
Data normalization 
The aim of normalization is to make expression levels comparable between 
samples by removing the effect of sequencing depth, and technical sources of 
heterogeneity (in our case the processing of samples in different libraries) that 
may confound the signal of interest. To account for differences in the total 
number of molecules sequenced per library, we normalized UMI counts from 
each sample by dividing by the total number of UMIs detected in that sample. 
These numbers were multiplied by 1 × 106 to obtain transcripts per million. 
This scaling factor largely represents a consistent increase or decrease across 
all positive values in our dataset. We then merged the 14 pruned digital gene-
expression matrices into one super-matrix that contained transcripts-per-
million expression data for all 1,320 samples after the low-quality samples had 
been removed. After this, very lowly transcribed elements (transcript models 
with a sigma signal < 20) were filtered out, and a relatively strong 
normalization was applied to the remaining elements in the matrix through 
invariant set normalization using the DChip utility version 2010.0143 (Wong 
Laboratory, https://sites.google.com/site/dchipsoft/). These steps ensured 
that rarely encountered elements were filtered out and that confounding 
technical effects were removed. All downstream calculations were performed 
in log-space, using normalized levels (log2(normalized transcripts-per-million 
value + 1)) of transcribed elements that were obtained using the R (version 
3.4.3) package edgeR version 3.1444,45. To make sure we did not consider 
transcripts that are relevant only for accessions in the temperate japonica 
subgroup of which Nipponbare is a representative38, we kept only transcripts 
from protein-coding genes on nuclear chromosomes that were detected in at 
least 10% of individuals across our populations for all subsequent analyses. 



 
Quantitative genetics of gene expression 
Expression measures were then processed by ANOVA to partition phenotypic 
variation. For each gene-expression trait, we fit a mixed-effect general linear 
model, including a term for accession or genotype (G) as a random factor, 
field environment (E) as a fixed factor, the G × Einteraction as a random factor 
and the error variance (ε). The significance of the variance explained by each 
of the factors was tested using an F-test. In these analyses, we controlled for 
multiple testing using a FDR-adjusted q value of 0.00146. Statistical analyses 
were carried out using the lme4 package version 1.1 in R45,47, and were 
performed separately for the Indica and Japonica populations to control for 
the major source of population structure in O. sativa. We estimated broad-
sense heritabilities as H2 = 0.5 × σ2G/(0.5 × σ2G + (0.5 × σ2GE/e) + (σ2E/re)), in 
which σ2G, σ2GE and σ2E are the among-genotype, G × E and within-genotype 
variance components (respectively), e is the number of environments and r is 
the number of replicates per environment. Because the pre-dominant 
reproductive mode of O. sativa is selfing, we applied the factor 0.5 to adjust 
for the twofold overestimation of additive genetic variance among inbred 
accessions31. We estimated cross-environment genetic correlations 
as rWD = covij/σiσj, in which covij is the covariance of accession means between a 
trait as i in the wet and j in the dry field environments, and σi and σj are the 
square roots of the among-genotype variance components for the trait in the 
wet and dry field environments. 

 
Gene set enrichment analysis on differentially expressed transcripts 
We performed gene set enrichment analysis (GSEA) to obtain additional 
biological insight into the transcripts with a significant field-environmental 
bias (significant E term and log2-transformed fold change of ≥ 1.5) in their 
abundance using the PlantGSEA analysis pipeline version 1 at default 
settings48. 

 
Univariate phenotypic selection analyses 
We measured the strength of selection on gene expression separately for 
the O. sativa Indica and Japonica populations in each of the two field 
environments. We used univariate regression to estimate the covariance 
between the expression level of each transcript individually and total lifetime 
fitness across the populations in the wet and dry fields, as well as the 
multiplicative fitness components flowering success and fecundity for the 
populations under drought conditions4,5,16,49. To prepare data for univariate 



selection analysis for total lifetime fitness in the wet field, we removed 
individuals with zero fecundity fitness (no filled grains produced) from the 
analysis (59 for Indica and 33 for Japonica), because these presented too few 
individuals for a selection analysis on flowering success—leaving fecundity 
fitness as a proxy for total lifetime fitness. 

For selection analyses for fecundity fitness, the filled grain number for each 
individual plant was normalized by dividing by the mean filled grain number 
of the population after filtering out individuals with zero fecundity fitness in 
the previous step: w′ = wi/mean(w). After this, the abundance values of each 
transcript across individuals expressing that transcript were standardized by 
subtracting the population mean abundance of the transcript and dividing by 
the s.d. of the abundance of that transcript over the 
population: z = (xi − mean(x))/s.d.(x). Finally, individuals that were severe 
outliers for the relative abundance of a transcript (±3 s.d.) were removed on a 
per-transcript basis to satisfy the assumption of normality for the selection 
analyses. Only transcripts that were expressed in at least 20 individuals in a 
population were used for analysis using a custom script in Python version 2.7 
(Supplementary Note 1). 

We performed separate analyses to estimate the strength and direction of 
selection on gene expression for the fitness component flowering success 
using univariate logistic regression for each individual transcript (expressed 
in ≥ 20 individuals) across all individuals in the populations in the dry field 
environment50, again using a custom Python script (Supplementary Note 2). 
Flowering success was defined as a binary state in which individuals were 
given a value of 1 if they were able to produce at least one filled grain before 
the end of the growing season, and 0 if not. Because, in our study, flowering 
success and fecundity are multiplicative fitness components16, we added up 
the selection differentials and error estimates for these fitness components 
under drought conditions to establish selection differentials and error 
estimates for total lifetime fitness in dry conditions51. 

Both the linear and logistic regression analyses output standardized 
directional-selection differentials (S = cov[w, z]), and disruptive- or balancing-
selection differentials (C = cov[w, (z − mean(z) (z − mean(z))T)]) that reflect the 
total (direct and indirect) selection on the expression level of a gene4,5. 

 
Multivariate phenotypic selection analyses 
For each population, we performed separate dimensional reductions on the 
transcriptome datasets per field environment through principal component 



analysis (PCA) using the prcomp function in R45,52, and conducted 
multivariate selection analyses for total lifetime fitness in the wet and dry 
environments, and for flowering success and fecundity in the dry 
environment5,49,50,51. We calculated both the linear selection gradients, 
(β = P−1 S), and quadratic selection gradients, (γ = P−1 C P−1), in 
which P represents the phenotypic variance–covariance matrix of the 
transcript abundances included as traits5. Selection gradients for total lifetime 
fitness under drought conditions were obtained in the same way as described 
in ‘Univariate phenotypic selection analyses’. The selection gradients reflect 
the strength and direction of direct selection on a trait. In addition to 
determining the pattern and strength of selection on gene expression, we also 
estimated selection differentials and gradients for the three higher-level traits 
we measured: chlorophyll concentration, flowering time and leaf area. 

 
Factors affecting the strength of selection on gene expression 
We performed a series of analyses to assess whether there are factors that 
might be linked to the heterogeneity of selection strengths between different 
transcripts. For the Indica population, the covariates of expression level, 
stochastic noise and polymorphism were directly derived from the transcript 
expression super-matrix with expression level defined as the grand mean 
expression level of a transcript in each field environment, expression noise 
defined as the average variance in the abundance of a transcript between 
individual replicates of all accessions and expression polymorphism as the 
population-wide variance between accession mean expression levels. 
Transcript H2 and rWD were calculated as described in ‘Quantitative genetics of 
gene expression’. 

For nearly all transcripts, information on their length and GC content could be 
downloaded from the Ensembl Plants BioMart release 43 
(https://plants.ensembl.org/biomart/martview) O. sativa Japonica IRGSP-1.0 
dataset. In addition, we obtained tissue-specific expression data for 29,122 
genes in 9 tissues from the EMBL-EBI Expression Atlas, experiment E-MTAB-
2039 (https://www.ebi.ac.uk/gxa/experiments/E-MTAB-2039/Results), 
originally generated in a previous publication53. From these data, the tissue 
specificity index value for each gene was calculated: 
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in which n is the number of tissues and xi is the normalized expression profile 
component54. For each of the covariates described thus far, information was 
available for the vast majority of all transcripts (n = 14,753 transcripts or 
94.4%) that were included in our phenotypic selection analyses. 

The nine covariates did not have irregular distributions and were included in 
a partial correlation analysis (n = 14,753 transcripts) using the R package 
corpcor version 1.6.945,55. We started by calculating parametric Pearson 
product–moment correlations between pairs of all variables for each field 
environment by selection component combination, after which we estimated 
the partial correlations by establishing the pseudo-inverse of the resulting 
correlation matrices7,56. 

 
Relation between fitness and global gene-expression stochasticity and plasticity 
We computed mean values for fecundity across replicates for each accession 
that were included in the phenotypic selection analyses, and correlated these 
fitness values with genome-wide (global) measures of gene-expression 
stochasticity and plasticity (the latter only for the dry field environment). To 
obtain estimates of global gene expression plasticity, we performed targeted 
ANOVA for each accession individually by fitting a fixed-effect general linear 
model, including a term for field environment (E) as a fixed factor, and the 
error variance (ε). The significance of the variance explained by the 
environment factor was tested using an F-test. The number of significant 
drought-induced transcripts at FDR-adjusted q < 0.05 for an accession was 
taken as a proxy for global gene-expression plasticity for that accession15. 

To obtain estimates of global gene-expression stochasticity for accessions in 
each field environment, we averaged the variance across the three replicate 
individuals of an accession for all transcripts as previously described24, after 
we calculated the level of stochastic noise for each transcript within an 
accession as σ2/μ2, variance divided by the mean squared, known as CV2 (the 
squared coefficient of variation)57. Our measure of expression stochasticity is 
corrected by including expression level as a covariate in the analysis, just as it 
was in the partial correlation analysis. The relation between fitness and global 
gene-expression plasticity and stochasticity was obtained through computing 
nonparametric Spearman’s rank correlation coefficients. 



 
Network effects on the strength of selection on gene expression 
We performed separate analyses on four independent measures of network 
effects on the strength of selection on gene expression. We obtained measures 
of within-cluster connectivity from 53 clusters of 17,931 co-expressed 
transcripts that were previously derived from transcriptome data of 240 
samples25. These samples were taken in time series from Indica and Japonica 
accessions growing in wet (irrigated, flooded paddy) and dry (rain-fed) field 
environments across a dry and a wet season, in the same geographical 
location as our experiment. 

The number of cis-regulatory element groups in the promoter regions (from 
−1 kb to +200 bp relative to the transcription start site) of 3,907 genes that 
overlapped with genes in our analysis were obtained from the Plant Promoter 
Database (PPDB) version 3.058, which we accessed at http://ppdb.agr.gifu-
u.ac.jp/ppdb/cgi-bin/index.cgi. Only those cis-regulatory element groups 
that correspond to known cis-elements were included59. The median number 
of cis-regulatory element groups per promoter was 5, and we tested whether 
the expression of genes with up to 5 cis-regulatory element groups in their 
promoter (n = 2,141 transcripts) experienced stronger selection than the 
expression of genes with 6 or more cis-regulatory element groups in their 
promoter (n = 1,766 transcripts) by performing a Mann–Whitney U-test. 

The number of transcription factors predicted to regulate the abundance of 
each transcript in a network context (that is, the ‘in-degree’ of each gene) was 
obtained from 2,905 transcripts in previously created environmental gene 
regulatory influence networks26 that overlapped with transcripts in our 
analysis. The environmental gene regulatory influence networks were built 
through combining prior knowledge on experimentally validated or inferred 
transcription-factor binding preferences60, with rice gene-expression and 
chromatin-accessibility data from plants grown in wet and dry conditions25,26. 
We tested whether the level of transcripts predicted to be regulated by one 
transcription factor (n = 1,505) experienced stronger selection than the level of 
transcripts predicted to be regulated by more than one transcription factor 
(n = 1,400) by performing a Mann–Whitney U-test. 

 
GSEA on transcripts under selection 
We performed GSEA to obtain additional biological insight into the 
transcripts in the 5% tails of the distributions of transcripts’ loading values on 
principal components with significant selection gradients, and of the P value 



distributions of the transcripts’ selection differentials for total lifetime fitness 
in wet and dry conditions, and for fecundity and flowering success under 
drought conditions using the PlantGSEA analysis pipeline version 1 at default 
settings48. 

 
Ranking Gene Ontology biological processes by selection strength 
Gene Ontology term annotations were downloaded from Monocots PLAZA 
4.061,62. We obtained biological-process Gene Ontology annotations for 11,901 
transcripts that overlapped with transcripts in our analyses. To minimize 
redundancy among Gene Ontology terms, we focused our analysis on 
biological-process Gene Ontology terms that were represented in the 
annotations of at least 20 transcripts in our dataset. This resulted in the 
inclusion of 6,161 transcripts with Gene Ontology biological-process term 
annotations in our analysis. 

We used the median selection strength |S| of all transcripts annotated to be 
involved in a particular biological process as a proxy for the selection strength 
|S| on that process. By setting the minimum size per term as at least 20 
transcripts and by considering the median |S| for each Gene Ontology term, 
we not only limited redundancy but also avoided estimates of selection 
strength per Gene Ontology term being influenced by small group sizes. We 
tested for rank shifts in the order of biological processes by their median |S| 
between field environments for total lifetime fitness through conducting 
Mann–Whitney U-tests (n = 243 biological processes per group). Furthermore, 
per field environment by fitness component combination, we considered any 
biological process to be under significantly stronger selection than the 
transcriptome-wide median (n = 6,161 transcripts) if the median selection 
strength for a process was removed from the transcriptome-wide median 
selection strength by at least the 95% confidence interval for the selection 
strength of that process. 

 
Transcript associations with higher-level traits 
We identified transcripts significantly associated (P < 0.01) with the three 
higher-level organismal traits we measured (chlorophyll concentration, 
flowering time and leaf area) for the Indica population in each field 
environment by using regression models: Y = μ + T + ε, in which Y represents 
the higher-level trait of interest, μ an intercept parameter, T denotes the 
transcript covariate and ε residual error. 



 
Selection of DNA sequence read data 
Raw FASTQ reads from 27 accessions included in the 3K-RG project were 
downloaded from the Sequence Read Archive (SRA) website under BioProject 
PRJEB618038. For a further 188 accessions, raw FASTQ reads were 
downloaded from SRA BioProject accession numbers PRJNA422249 and 
PRJNA55712234. DNA sequence data were available for 215 out of 220 
accessions; one accession was a ‘filler’ accession and its genome was not 
resequenced, and a further four accessions were replicated checks of two 
accessions, IR64 and Sahod Ulan 1. Accession numbers and origins of tissue 
for DNA extraction can be found in Supplementary Table 1. Overall, a total of 
1,203,564,772,205 bp (about 1.2 Tbp) were included for downstream analyses. 

 
Reference-genome-based DNA read alignment 
FASTQ reads were preprocessed using the bbduk program of BBTools version 
37.66 (https://jgi.doe.gov/data-and-tools/bbtools/) for read quality control 
and adaptor trimming. For bbduk, we used the options: minlen = 25 qtrim = rl 
trimq = 10 ktrim = r k = 25 mink = 11 hdist = 1 tpe tbo. This trimmed reads 
below a phred score of 10 on both sides of the reads to a minimum length of 
25 bp, trimmed 3′ adapters using a k-mer size of 25 as well as a k-mer size of 
11 for ends of reads, allowed one Hamming distance mismatch, trimmed 
adapters based on overlapping regions of the paired-end reads, and trimmed 
reads to equal lengths if one of them was adaptor-trimmed. FASTQ reads 
were aligned to the reference O. sativa Nipponbare IRGSP 1.0 genome 
downloaded from EnsemblPlants release 37 
(ftp://ftp.ensemblgenomes.org/pub/plants/). Read alignment was done 
using the program bwa-mem version 0.7.16a-r118163. Only the 12 
pseudomolecules were used as a reference, and the unassembled scaffolds 
were left out. PCR duplicates during the library preparation step were 
determined computationally and removed using the Picard tools version 
2.9.0. 

 
SNP calling 
For each accession, genotype calling for each site was conducted using the 
GATK HaplotypeCaller engine version 3.8-0-ge9d806836 in the -ERC GVCF 
mode to output files in the genomic variant call format (gVCF). The gVCF 
files from each accession were merged together to conduct multi-accession 
joint genotyping using the GATK GenotypeGVCFs engine. Genotypes were 
divided into SNP or insertion and deletion (indel) variants and filtered using 



the GATK bestpractice hard filter pipeline64. For SNP variants we excluded 
regions that overlapped repetitive regions and variants that were within 5 bp 
of an indel variant. We then used vcftools version 0.1.15 to select SNPs that 
had at least 80% of sites with a genotype call, and exclude SNPs with minor 
allele frequency <5% to remove potential false-positive SNP calls arising from 
sequencing errors or false genotype calls65. Because domesticated rice is an 
inbreeding species, we also implemented a heterozygosity filter for sites that 
had a heterozygous genotype in more than 5% of the samples using the 
program vcffilterjdk.jar from the jvarkit suite version 1 
(https://figshare.com/articles/JVarkit_java_based_utilities_for_Bioinformati
cs/1425030). Missing genotypes were imputed and phased using Beagle 
version 4.166. Finally, we randomly pruned the SNPs by sampling a 
polymorphic site every 1,000 bp using plink version 1.967, leaving a SNP 
dataset of 179,634 markers. 

 
G-matrix estimation and prediction of short-term phenotypic evolution 
A G-matrix consists of the additive genetic variances and covariances of a 
series of traits, and we assembled one for the principal component axes as 
eigengenes or reflections of suites of transcripts in our transcriptome data 
across rice individuals. Although the principal components are—by 
definition—uncorrelated at the level of the individual replicate plants at 
which we generated them, they start showing genetic covariances when 
loading values of replicates of each genotype are averaged. Estimates of 
additive genetic variance and covariance were obtained using a previously 
described approach68. First, we constructed a kinship matrix from the SNP 
dataset using the VanRaden method in the R package GAPIT version 3, a 
genome association and prediction integrated tool69,70. We let GAPIT estimate 
the contribution of structure between accessions to each trait (principal 
component) using a variance component model, providing us with the 
fraction of phenotypic variance explained by the kinship matrix. This fraction 
(termed pseudo-heritability) resembles the narrow-sense heritability 
estimated from a pedigree, and serves as an estimate of the additive genetic 
variance of a trait71. We then applied a bivariate genetic model as previously 
outlined68 to obtain estimates of the additive genetic covariance between traits 
and principal components. 

We used the G-matrix to predict the outcome of selection on gene expression 
across one generation (∆z), and assess whether evolutionary constraints were 
present, by combining it with the linear selection gradients on the principal 
components in the multivariate breeder’s equation: ∆z = G β. 



 
Genome-wide association study 
We conducted genome-wide association mapping in GAPIT by applying a 
multi-locus linear mixed model, a model based on EMMA that uses forward–
backward stepwise linear mixed-model regression to estimate variance 
components72,73. We included population structure cofactors as well as the 
kinship matrix described in ‘G-matrix estimation and prediction of short-term 
phenotypic evolution’ as a random factor in the model. Structure in our Indica 
population of 131 different genotypes was inferred with a PCA, and GAPIT 
used the first four principal components as cofactors (Supplementary 
Table 26). Significant SNPs were identified using a conservative Bonferroni 
threshold74, which was at P < 2.78 × 10−7. Finally, we selected the top 
approximately 0.5% SNPs (1,000 SNPs) based on P value for association with 
total lifetime fitness in each environment75, with the aim of testing whether 
the 100-kbp windows surrounding these SNPs were enriched for transcripts 
classed as showing non-neutral microevolutionary selection patterns 
(selection strength |S| P < 0.05). The window size was chosen as a range of 50 
kbp at either side of a SNP, which is conservative given an estimated 
breakdown of linkage disequilibrium in a range of 75–125 kbp 
in O. sativa subgroup indica38,76,77,78. 

 
Reporting summary 
Further information on research design is available in the Nature Research 
Reporting Summary linked to this paper. 

 

Data availability 
Raw FASTQ reads for 188 accessions with resequenced genomes were 
downloaded from the SRA under SRA BioProject accession 
numbers PRJNA422249 and PRJNA557122. Raw FASTQ reads for a further 27 
accessions included in the 3K-RG project were downloaded from the SRA 
under BioProject accession number PRJEB6180. RNA sequence data that 
support the findings of this study have been deposited under SRA BioProject 
accession number PRJNA588478. Processed RNA expression count data have 
been deposited in Zenodo (https://zenodo.org/record/3533431 with DOI 
10.5281/zenodo.3533431), alongside a sample metadata file with a key to the 
RNA sequence data in SRA BioProject accession number PRJNA588478. This 
key can also be found in Supplementary Table 4. Source Data for Figs. 1–4and 
Extended Data Figs. 1–8 are provided with the paper. 



Code availability 
Selection analyses were run using custom-made scripts in Python version 2.7, 
which are available in Supplementary Notes 1, 2, and on GitHub in 
repositories icalic/Linear-regression-analysis 
(https://github.com/icalic/Linear-regression-analysis.git) and 
icalic/Logistic-regression-analysis (https://github.com/icalic/Logistic-
regression-analysis.git). For all other analyses we used previously developed, 
publicly available software and code: leaf area was assessed using ImageJ 
v.1.52 and GIMP v.2.10.0; RNA-seq data were processed and analysed using 
Drop-seq tools v.1.12, STAR aligner v.020201, Picard tools v.2.9.0, DChip 
v.2010.01 and R v.3.4.3 packages edgeR v.3.14 and lme4 v.1.1; gene-set 
enrichment analyses were performed using PlantGSEA v.1; statistical analyses 
were performed in R v.3.4.3, further using packages lme4 v.1.1 and corpcor 
v.1.6.9; and genome analyses were performed using bbduk v.37.66, bwa-mem 
v.0.7.16a-r1181, the GATK GenotypeGVCFs engine v.3.8-0-ge9d806836, 
vcftools v.0.1.15, jvarkit suite v.1, Beagle v.4.1, plink v.1.9 and GAPIT v.3. 
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Figures 
 

Fig. 1: The strength and pattern of selection on heritable rice-leaf transcript 
levels differ across field environments. 

a, The Indica population showed significant genotype × environment (G × E) variation 
in fitness as determined by measuring the multiplicative fitness components, fecundity 
(magenta and green in wet and dry conditions, respectively) and flowering success 
(zero filled grains indicate no flowering success); variation in flowering success is 
relevant only under drought conditions. Two-way analysis of variance (ANOVA), G × E 
P = 4.68 × 10−23, n = 136 accessions. b, Distribution of broad-sense heritability (H2) for 
transcripts with significant expression polymorphism. Two-way ANOVA, genotype 
FDR-adjusted q < 0.001, n = 136 accessions. c, The strength of selection |S| on gene 



expression when considering total lifetime fitness differed between wet (magenta) and 
dry (blue) conditions. Mann–Whitney U-test, two-
sided P < 0.001, n = 15,542 transcripts. d, Positive directional selection (top 
right, n = 7,973 transcripts) was stronger than negative directional selection (top 
left, n = 7,569 transcripts) in wet conditions (magenta) (Mann–Whitney U-test, two-
sided P = 0.017), and selection shifted to more extreme values under drought conditions 
(blue) (Kolmogorov–Smirnov test, two-sided P < 0.001, n = 15,542 transcripts). e, 
Patterns of stabilizing (top left) and disruptive (top right) selection were significantly 
more extreme under drought conditions. Kolmogorov–Smirnov test, two-
sided P < 0.001, n = 15,542 transcripts. f, Patterns of conditional neutrality (light grey) 
and antagonistic pleiotropy (magenta and blue denote transcripts beneficial in wet and 
dry conditions, respectively) for gene expression. Black indicates transcripts that 
experienced selection in the same direction in both fields. 

Fig. 2: Gene-expression level, stochasticity, plasticity, tissue specificity and 
connectivity influence microevolutionary rates of expression change. 

a, b, Partial correlation analyses of factors that negatively (grey) and positively 
(mustard) influence selection strength |S| on gene expression in wet (a) and dry (b) 
conditions. Dots indicate statistical significance for Pearson’s partial r correlations; t-
test, P < 0.05, n = 14,753 transcripts (Supplementary Table 14). c, Global expression 
stochasticity limits fecundity. Spearman’s ρ = −0.189, t-
test, P = 0.036, n = 123 accessions. d, Global expression plasticity correlates with 
fecundity under drought conditions. Spearman’s ρ = 0.15, t-
test, P = 0.041, n = 135 accessions. e, |S| is bounded by expression connectivity. 
Kruskal–Wallis test, two-sided P = 0.000017, n = 12,502 transcripts. Left, box plot with 
centre line = median, cross = mean, box limits = upper and lower quartiles, 
whiskers = 1.5 × interquartile range and points = outliers. Right, mean ± s.e.m. f, |S| is 
limited by regulatory constraints, as assessed through numbers of cis-regulatory 
promoter elements (REGs) (n = 3,907 transcripts; Mann–Whitney U-test, P = 0.0061) and 
transcription factors regulating a gene (in-degree) (n = 2,905 transcripts; Mann–
Whitney U-test, P = 0.0061). Left, boxes and whiskers as in e. Right, mean ± s.e.m. g, 
Linear (β) (coloured) and quadratic (γ) (grey) selection gradients ( ± s.e.) on suites of 
transcripts as principal components (eigengenes). n = 408 plants. β values are for total 
lifetime fitness in wet (magenta) and dry (blue) conditions, and for flowering success 
(lime) and fecundity (green) under drought conditions. h, Prediction of the outcome of 
selection (∆z) for PC7wet and PC6dry in g, indicating that the efficacy of selection under 
drought is limited (total change (T) lower than β for total lifetime fitness) through 
genetic constraints (indirect or correlated change (I) and direct change (D) have 
opposite signs). β values are as in g for comparison. Extended Data Tables 1, 2 provide 
more details. P values are two-sided. 

Fig. 3: Transcripts under selection could affect fitness through regulating 
early growth vigour and flowering time. 

a, Wet conditions (magenta) impose stabilizing selection on flowering time (FT) and 
positive directional selection on growth vigour (leaf area, Lf) (t-tests). Drought induces 



strong, positive flowering-success (z-test) and total-lifetime-fitness selection (t-test) on 
early flowering (lime and blue, respectively), and leads to weaker fecundity selection 
(green) (t-test) on chlorophyll concentration (Ch), early flowering and early growth 
vigour (Supplementary Table 20). Linear (β) and quadratic (γ) selection gradients are 
denoted by coloured and grey markers, respectively. Mean ± s.e.m., n = 408 plants; 
asterisks indicate selection-gradient significance, two-sided, unadjusted P < 0.05. b, Two 
transcripts with significant linear selection differentials (n = 408 plants; z-test, two-
sided, Bonferroni-adjusted P < 0.05 for 15,565 transcripts) for flowering success under 
drought conditions (lime) may promote drought escape through regulating early 
flowering; absolutized transcript–trait correlations are significant (Pearson’s |r| > 0, t-
test, two-sided, unadjusted P < 0.01) (Extended Data Fig. 6). Three of four transcripts 
with significant selection differentials (n = 408 plants; t-test, two-sided, Bonferroni-
adjusted P < 0.05 for 15,343 transcripts) for fecundity under drought conditions (green) 
may affect fitness by influencing photosynthesis and—consequently—early growth 
vigour; transcript–trait correlations are significantly positive (Pearson’s r > 0, t-test, two-
sided, unadjusted P < 0.01) (Extended Data Fig. 6, Supplementary Text). 

Fig. 4: Selection targets expression patterns in different biological processes 
in wet and dry conditions. 

Biological processes that experience stronger selection appear to be linked to growth 
and defence for total lifetime fitness in wet conditions (magenta). Under drought 
conditions, biological processes that experience stronger selection are involved in 
growth for total lifetime fitness (blue), in early growth vigour and flowering for 
fecundity (green), and in regulatory processes for flowering success (lime). Only 
biological processes with n ≥ 20 transcripts and with significantly higher median 
selection strengths |S|median than the transcriptome-wide median are shown 
(nonoverlapping 95% confidence intervals). 

 

Extended data figures and tables 
 
Extended Data Fig. 1 Experimental setup. 
a, Geographical origins of 220 O. sativa accessions, of which 4 constitute additionally replicated 
checks (Supplementary Table 1). Seven accessions that are not from Eurasia or Africa are not 
shown. Varietal group (vg.) Indica accessions are indicated in indigo and vg. Japonica accessions 
are indicated in jade. Map data ©2019 Google. b, Populations of Indica and Japonica accessions 
(planted in triplicate alongside one another) were monitored for total lifetime fitness in wet 
(magenta) and dry (blue) fields. Both fields had identical layouts. Numbers reflect Indica 
populations with 3 × 136 accessions = 408 individuals planted in each field; Extended Data 
Fig. 3 shows Japonica populations. Under drought conditions, both multiplicative fitness 
components (flowering success (lime) and fecundity (green)) were relevant (multiplying to total 
lifetime fitness), but in wet conditions only the latter was relevant (fecundity equating to total 
lifetime fitness, magenta). c, Drought exerts truncating selection on the populations (declining 



and shifting blue versus magenta bar), and end-of-season was reached earlier under drought 
conditions. d, Cumulative rainfall shows one major rainfall event that caused the rainout shelter 
over the dry field to close temporarily after the start of the drought treatment and the sampling of 
leaf tissue for RNA sequencing (>51 DAS). e, During the period of flowering (>51 DAS), there 
was an increasing deficit in soil water potential. f, g, Patterns of volumetric soil moisture and 
vapour pressure deficit (VPD) were consistent with the pattern of soil water potential. Lighter 
shades of grey in f indicate deeper layers of soil. Grey and mustard lines in g indicate the VPD in 
the wet and dry field, respectively. h, Day length increased over the course of the experiment. i, 
Air temperature generally increased over the course of the experiment (grey and mustard lines 
indicate the wet and dry field, respectively). 

Extended Data Fig. 2 Systems genetics of gene expression in the Indica populations in 
wet and dry field environments. 
a, Environmental bias for transcript expression. Magenta and blue dots represent transcripts 
showing a 1.5-fold difference in expression between the wet and dry field environments, 
respectively. ANOVA, Indica environment FDR-adjusted q < 0.001, n = 136 accessions. b, 
Distribution of cross-environment genetic correlations (rWD) for transcripts showing significant 
(blue) genotype × environment (G × E) variance. ANOVA, Indica genotype × environment 
FDR-adjusted q < 0.001, n = 136 accessions. 

Extended Data Fig. 3 Systems genetics of gene expression in the Japonica populations in 
wet and dry field environments. 
a, Monitoring the Japonica populations, with 3 × 84 accessions = 252 individuals planted in both 
the wet and dry fields, for flowering success, fecundity fitness and total lifetime fitness (legend 
as in Extended Data Fig. 1b, c). b, Environmental bias for transcript expression. Magenta and 
blue dots represent transcripts showing a 1.5-fold difference in expression between the wet and 
dry field environments, respectively. ANOVA, Japonica environment FDR-
adjusted q < 0.01, n = 84 accessions. c, Distribution of broad-sense heritabilities (H2) for 
transcripts with significant expression polymorphism. ANOVA, Japonica genotype FDR-
adjusted q < 0.01, n = 84 accessions. d, Distribution of cross-environment genetic correlations 
(rWD) for transcripts showing significant (blue) genotype × environment (G × E) variance. 
ANOVA, Japonica genotype × environment FDR-adjusted q < 0.01, n = 84 accessions. 

Extended Data Fig. 4 The strength and pattern of selection on Indica rice-leaf transcript 
levels under drought conditions differ across fitness components. 
a, The strength of selection |S| on gene expression differed between selection for flowering 
success (lime), and fecundity (green) in the dry field. Mann–Whitney U-test, two-
sided P < 0.001, n = 15,343. b, Positive directional selection (n = 11,304) was stronger than 
negative selection (n = 4,039) for fecundity under drought (green) (Mann–Whitney U-test, two-
sided P < 0.001), and selection for flowering success showed higher absolute values 
(Kolmogorov–Smirnov test, two-sided P < 0.001, n = 15,343). c, Patterns of quadratic selection 
differed significantly for the two fitness components. Kolmogorov–Smirnov test, two-
sided P < 0.001, n = 15,343. d, Patterns of conditional neutrality (light grey) and antagonistic 
pleiotropy (lime and green for transcripts beneficial for flowering success and fecundity, 



respectively) for gene expression under drought conditions. Black indicates transcripts that 
experienced selection in the same direction for both fitness components. 

Extended Data Fig. 5 Stochastic expression noise and transcript connectivity limit the 
efficacy of selection on gene expression. 
a, b, Partial correlation analyses of factors that negatively (grey) and positively (mustard) 
influence the strength of selection |S| on gene expression for flowering success (a) and fecundity 
(b) fitness in dry conditions. Dots indicate statistical significance of Pearson’s partial r (t-test, 
two-sided P < 0.05, n = 14,753) (Supplementary Table 14). c, Global expression stochasticity 
limits fecundity under drought conditions. Spearman’s ρ = −0.174, t-test, two-
sided P = 0.042, n = 136 accessions. d, As in wet conditions, |S| is bounded by expression 
connectivity under drought conditions. Kruskal–Wallis test, P = 0.0008, n = 12,502 transcripts. 
Left, box plot with centre line = median, cross = mean, box limits = upper and lower quartiles, 
whiskers = 1.5 × interquartile range, points = outliers. Right, mean ± s.e.m. e, In dry as well as in 
wet conditions, |S| is limited by gene regulatory constraints as assessed through the number 
of cis-regulatory elements in the promoter (n = 3,907 transcripts, Mann–Whitney U-test, two-
sided P = 0.000015), and the number of transcription factors regulating a gene (n = 2,905 
transcripts, Mann–Whitney U-test, two-sided P = 0.0027) illustrated for selection for total 
lifetime fitness under drought. Left, boxes and whiskers as in d. Right, mean ± s.e.m. 

Extended Data Fig. 6 Distributions of transcript–trait correlations for the three higher-
level traits measured in the dry field environment. 
a, Absolute Pearson’s correlations |r| of transcripts with leaf area (green). n = 15,635 transcripts. 
The cloud delineates transcripts (listed) that show significant linear or quadratic selection 
differentials for fecundity under drought conditions, and significant correlations with leaf area 
(Supplementary Text). b, Absolute Pearson’s correlations |r| of transcripts with chlorophyll 
concentration (green). n = 15,635 transcripts. The cloud delineates a transcript that shows a 
significant quadratic selection differential for fecundity under drought conditions, and a 
significant correlation with chlorophyll concentration (Supplementary Text). c, Absolute 
Pearson’s correlations |r| of transcripts with flowering time (lime). n = 15,635 transcripts. The 
cloud delineates transcripts (listed) that show significant linear selection differentials for 
flowering success under drought conditions, and significant correlations with early flowering 
(Supplementary Text). 

Extended Data Figure 7 Genome-wide association mapping of the genetic architecture 
of transcripts that covary significantly with fitness in the Indica population under 
drought conditions. 
Three out of eight transcripts are partially controlled by trans-eQTLs (illustrated for expression 
of the glycine-rich family protein-coding gene Os11g0209000 under drought conditions). 
Supplementary Table 27 provides results for other transcripts and for expression principal 
components or eigengenes as suites of transcripts. a, PCA of 179,634 SNP markers from the 
Indica population that were selected for analysis; the three principal components, plus a fourth, 
were included as cofactors in the multi-locus linear mixed model. b, Distribution of expected 
versus observed P values for associations between SNP markers and Os11g0209000 expression 
in a Q–Q plot. n = 131 genotypes; multi-locus linear mixed model, two-sided, Bonferroni-



adjusted P < 0.05 for 179,634 SNP markers. c, The Manhattan plot indicates two 
significant trans-eQTL peaks for expression of Os11g0209000 (gene location indicated with 
vertical red bar). Only the top approximately 5% of SNPs (10,000 SNPs) are shown. 

Extended Data Fig. 8 Genome-wide association mapping for fitness in the wet and dry 
field environments. 
Taking the top approximately 0.5% of SNPs (1,000 SNPs) with the strongest association to total 
lifetime fitness in the wet (magenta) and dry (blue) field conditions after genome-wide 
association mapping, we observed no enrichment for transcripts (n = 809 and 142 transcripts in 
the wet and dry fields, respectively) that were expressed in the leaves and had significant linear 
selection differentials S (n = 408 plants, t-test, two-sided, unadjusted P < 0.05) among transcripts 
(n = 1,960 transcripts in the wet field and n = 1,671 transcripts in the dry field) from genes in 
100-kb regions surrounding these SNPs, compared to transcripts from genes in other genomic 
regions (χ2, not significant (ns); two-sided P = 0.862 for the wet field and P = 0.85 for the dry 
field). Supplementary Table 27 provides genome-wide association mapping results for total 
lifetime fitness in wet and dry conditions, and for flowering success and fecundity under drought 
conditions. 

Extended Data Table 1 Phenotypic selection gradients, G-matrices and outcomes of 
selection for transcript levels in wet and dry conditions 
 
Extended Data Table 2 Phenotypic selection gradients on transcript levels for 
flowering success, fecundity and lifetime fitness in dry conditions 
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