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ABSTRACT OF THE DISSERTATION

Algorithms for Constrained Route Planning in Road Networks

by

Michael Norris Rice

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2013

Dr. Vassilis J. Tsotras, Chairperson

This dissertation examines advanced pre-processing techniques and query al-

gorithms for efficiently solving several practical, real-world route planning problems for

personalized navigation in road networks. Unlike most prior research in this domain,

where shortest paths are assumed to be static, this research supports dynamically-

constrained shortest path queries in which the resulting solution paths can vary de-

pending on each traveler’s unique requirements. Specifically, this research is comprised

of two parts, each focusing on a high-level class of constrained route planning problems

in road networks. In the first part, we consider route planning problems with avoidance

constraints, in which the route is required to avoid certain types of roads (e.g., toll roads,

unpaved roads, etc.). In the second part, we consider route planning problems with de-

tour constraints, in which the route is required to visit one or more categorical points of

interest along the way (e.g., gas stations, coffee shops, etc.). We consider several specific

sub-problems for each of these high-level problems and present extensive experimental

results of our proposed algorithms on the continental road networks of North America

and Europe (with over 50 million edges and 90 million edges, respectively).
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Chapter 1

Introduction

Route planning in road networks is a common task in everyday life, whereby

travelers must effectively navigate their way through local streets in order to reach their

destination in the most efficient manner possible. Contemporary algorithmic approaches

for route planning typically involve modeling the road network as a graph whose edges

represent individual streets connected at nodes representing the street intersections. The

weight, or cost, of these edges can represent any measure of interest to be optimized over

the course of the intended route, such as the travel time, distance, fuel consumption, or

monetary cost to traverse each edge (i.e., street). Given this graph-theoretical model,

classical graph search algorithms, such as the well-known Dijkstra’s algorithm [39], are

capable of solving many common route planning problems to optimality.

However, such standard algorithms are unfortunately still quite impractical

in practice when applied to very large-scale, real-world road networks (e.g., the North

American road network with over 50 million edges), as they may often require searching

nearly the entire graph to find the optimal solution path1, thus taking too much time to

1For example, Dijkstra’s algorithm processes nodes in order of increasing cost (e.g., distance or time)
from the source until it reaches the destination. All nodes closer to the source than the destination is
will therefore be processed during the search.
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compute. Given such scalability limits, and due to the increasing presence of personal

navigation systems and applications over the last decade, much research focus has re-

cently been given to more efficiently solving route planning problems in such large-scale,

real-world road networks.

Recent pioneering efforts from within the algorithm engineering community

(e.g., see [5]) have focused on greatly improving the performance and scalability of such

standard algorithms via an increasingly-dominant paradigm in algorithm design, based

on a common two-phased algorithmic approach. This approach consists of an offline

pre-processing (or indexing) phase to compute a set of auxiliary data and an online

query phase intended to utilize this auxiliary data to speed up the required processing.

The pre-processing phase is typically only required once, and can thus incur significantly

more space and time overhead than the query phase, if necessary. The query phase can

occur as often as necessary and is intended to be as fast and efficient as possible.

Given that most road networks are fairly static in nature (i.e., it is infrequent

that new roads are added or old roads are removed), such a two-phased approach makes

practical sense for enabling more efficient route planning algorithms in road networks.

However, most work in this particular domain to-date has focused solely on simple route

planning (e.g., find only a least-cost, or “shortest”2, overall path), whereas most travelers

tend to have very specific and unique travel requirements, in practice. For example, some

travelers may wish to avoid toll roads to avoid the toll fee, even if taking the toll road

would result in less travel time or a shorter travel distance to the destination. Likewise,

depending on the traveler’s vehicle dimensions, some roads may be considered infeasible

for travel (e.g., a compact car may pass easily under a low highway overpass, but a large

2The phrase “shortest path” is commonly used by convention in the literature (and throughout this
dissertation) to refer to a least-cost path for any cost measure of interest (even those which are not
based on actual travel distance).
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truck pulling a trailer may be too tall to pass without incurring damage to the vehicle

or overpass). For such cases, the route planning process involves dynamically restricting

certain types of edges (streets) from being allowed in the resulting solution path.

Additional route planning scenarios which are dynamically-constrained by spe-

cific traveler requirements include so-called errand-scheduling problems in which the

traveler wishes to complete several errands along the way to their destination. For ex-

ample, a traveler may wish to stop by an ATM and a coffee shop on the way to their

destination, taking the minimum possible detour along the way (note that there may be

many ATMs and/or coffee shops to choose from). As we shall see, some versions of this

problem also turn out to be NP-hard and thus cannot easily be solved using existing

route-planning techniques.

In the remainder of this work, we address several of these common constrained

route-planning problems. Part II of this dissertation (summarized in Section 1.1) presents

our work on designing practical graph indexing and query algorithms for efficiently sup-

porting route planning with avoidance constraints, enforced by dynamic edge restric-

tions. Part III of this dissertation (summarized in Section 1.2) presents our work on de-

signing efficient algorithms (both exact and approximate) for solving detour-constrained

route-planning problems, such as errand scheduling and other related problems.

1.1 Route Planning with Avoidance Constraints

In Part II, we explore a new type of constrained shortest-path queries, based on

avoidance constraints, in which the query can be dynamically parameterized to restrict

the type of edges which may be included in the resulting shortest path. More specifi-

cally, each edge has an associated set of Boolean and/or scalar values representing both
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qualitative and quantitative information about the edge, respectively (e.g., Does the

edge represent a toll road (yes/no)?, What is the maximum-allowed vehicle height for

the edge (in meters)?). The query then specifies a constraint for each value type (e.g.,

restrict toll roads and any roads with vehicle height clearance under 3 meters), thus

limiting the edges which may be considered valid for a solution path. To the best of

our knowledge, this is the first work to address this practical variant of shortest path

query. For this research, we further distinguish between two types of edge-restricted

shortest path queries, based on two different classes of restrictions: label restrictions

and parameterized restrictions.

Label restrictions (discussed in Chapter 3) represent the set of qualitative con-

straints which may be applied to route planning in the road network. In this context,

the graph is defined with a fixed set of possible edge classes (e.g., highways, toll roads,

ferries, unpaved roads, etc.). Each edge is then assigned a subset of “labels” to indicate

which class(es) it belongs to in the graph. A shortest-path query can then be dynami-

cally adjusted according to which labels (i.e., classes) of edges should be excluded from

the resulting shortest path. For example, a traveler may wish to find the shortest path

between two locations which avoids both toll roads and ferries, or, alternatively, they

might prefer to find the shortest path which avoids only unpaved roads.

Parameterized restrictions (discussed in Chapter 4)3 represent the set of quan-

titative constraints which may be applied to route planning in the road network. For

parameterized restrictions, the graph is defined with a fixed set of parameter types (e.g.,

vehicle height, vehicle weight), whose values are to be specified at query time. Each edge

is then assigned a threshold value defining an absolute limit for each parameter type,

3This chapter is based on work done in collaboration with Robert Geisberger and Peter Sanders of
the Karlsruhe Institute of Technology (KIT).
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beyond which the edge will be restricted for that parameter type. For example, if an

edge represents a section of road which travels under an overpass or through a tunnel,

then its “vehicle height” threshold value will be equal to that of the height clearance for

that overpass or tunnel, so that no vehicle taller than this threshold can be routed on

that section of road. A shortest-path query can then be dynamically adjusted by provid-

ing different combinations of parameter values for each parameter type (e.g., different

vehicle types will have different heights, weights, etc., resulting in potentially different

shortest paths between the same pairs of locations).

1.2 Route Planning with Detour Constraints

Within the last decade, the growing online presence of geospatial information

systems has made possible many novel applications in the fields of transportation and

location-based services. Many massive, online location databases are now being made

publicly available for mining spatial locations based on categorical points of interest,

thus paving the way for highly-advanced navigation solutions.

As an example, consider a traveler in a new city for the first time. On their way

to do some sightseeing at a local attraction, they wish to visit a coffee shop, a gas station,

and an ATM (in no particular order). However, there may be many such locations to

choose from for each of these categorical location types. As the traveler likely does not

care exactly which gas station, ATM, or coffee shop they visit (since each provides the

same general type of service4), a desirable solution is then any path which visits one of

each of these location types with the least overall detour on the way to the destination.

Such a scenario is a common occurrence for everyday personal navigation needs, and

4Note that the locations are user-defined and may be made more specific, as necessary; e.g., only
consider gas stations of a certain brand.
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also has many additional applications in the logistics industry as well. For example,

for long-haul trucking, the route may require multiple days of traveling long distances,

necessitating the recurrent need for refueling, lodging, eating, etc. throughout the trip.

Selecting the optimal location(s) amongst all of these options to minimize travel time

and cost is an important part of the route planning process.

This basic problem is more commonly known as the Generalized Traveling

Salesman Path Problem (GTSPP), and it is known to be NP-hard, as the solution must

determine not only which location from each location type to visit, but also the op-

timal order in which to visit them. However, for many scenarios, the order in which

each location type is visited during the trip can often be very important (or even re-

quired). For example, in the previous personal navigation scenario, the traveler might

wish to refuel first if their vehicle is low on gas. Additional scenarios from logistics in

which the visit order of each location type is crucial include deliveries which require

specialized equipment, such as moving equipment or regulated containers (e.g., for stor-

ing temperature-sensitive materials). In such cases, the vehicle must first pick up the

equipment along the way at any one of several pickup (or rental) locations, then pick up

the package and make the delivery. Only after the delivery can the equipment then be

returned at any one of the other pickup (or rental) locations. Problems such as these, for

which the visit order of each location type is fixed, are called here Generalized Shortest

Path (GSP) queries. Unlike GTSPP, which is NP-hard, GSP problems can be solved

efficiently in polynomial time.

In Part III of this dissertation, we explore solutions to both GSP and GTSPP

problem types. Chapter 5 presents our initial work on efficiently solving GSP queries,

demonstrating that GSP algorithms may also be used to effectively approximate GTSPP

queries as well. Chapter 6 presents our later work on designing exact algorithms for
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solving the more-practical GTSPP queries to optimality in road networks. Chapter 7

concludes our examination of GTSPP by considering effective pre-processing techniques

and approximation algorithms which allow us to ultimately solve such practical queries

in only a matter of milliseconds on the entire road network of North America.
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Chapter 2

Background and Related Work

In this chapter, we briefly summarize the formal notation, background informa-

tion, and related work referenced throughout the remainder of this dissertation. While

each of the remaining chapters of this dissertation are intended to be fully self-contained,

there are many recurring references and notational conventions which we present here

as a general primer for the remainder of this work.

2.1 Graphs, Paths, and Cycles

A graph G = (V,E) represents a set of entities called nodes (a.k.a., junctions or

vertices), V , related by a set of edges, E ⊆ V × V , such that n = |V | and m = |E|. The

edge set contains pairs of nodes, referenced as (u, v) ∈ E for some u, v ∈ V , to represent

some relation of interest (e.g., connectivity) between the pair of nodes. If the pairs are

unordered (i.e., the relation is implicitly mutual), the graph is said to be undirected. If

the pairs are ordered (i.e., the relation is explicit only in the given direction, from u

to v), the graph is said to be directed. For a directed graph, G = (V,E), a backward

(a.k.a., reverse) graph, Ḡ = (V, Ē), is the translation of G in which all edge directions

are reversed: Ē = {(v, u) | (u, v) ∈ E}.
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A path Ps,t = 〈v1, v2, . . . , vq〉 in a graph G represents a traversal sequence of

related (e.g., connected) nodes starting at a source node, s = v1 ∈ V , and ending at a

target node, t = vq ∈ V , such that, for 1 ≤ i < q, (vi, vi+1) ∈ E. In some contexts, we

may alternatively reference a path by its constituent, consecutive edges (instead of its

nodes) as Ps,t = 〈e1, e2, . . . , eq〉, such that, for 1 ≤ i ≤ q, ei ∈ E. A simple path is any

path which does not traverse any node more than once in the sequence (i.e., each node

in the path is distinct). A non-simple path traverses one or more nodes more than once.

A cycle in a graph is any non-simple path Ps,s = 〈v1, . . . , vq, v1〉 which starts

and ends at the same node s = v1 ∈ V . A directed graph is said to be a directed

acyclic graph (DAG) iff the graph contains no cycles; i.e., ∀ s, t ∈ V , ∃Ps,t ⇒ @Pt,s.

A topological ordering of a DAG is any sequential ordering of the nodes, such that, if

(u, v) ∈ E, u comes before v in the ordering. A reverse topological ordering is simply a

topological ordering of the reverse graph of a DAG.

A graph G = (V,E,w) is said to be a weighted graph when provided with an

additional weight function, w : E → R, mapping each edge to a real value. Unless stated

otherwise, we shall assume that all weight functions are positive (i.e., w : E → R>0).

In a weighted graph, the weight, or cost, of a path Ps,t = 〈e1, e2, . . . , eq〉 is

given as w(Ps,t) =
∑

1≤i≤q w(ei). For any given s, t ∈ V , we denote a minimum-weight

(a.k.a., least-cost or “shortest”) path as P ∗s,t, such that, ∀Ps,t in G, w(P ∗s,t) ≤ w(Ps,t).

Note that there may be many such minimum-weight paths, and ties may be broken

arbitrarily. We formally reference the shortest-path cost (a.k.a., distance) between any

pair of nodes, s, t ∈ V , as d(s, t) = w(P ∗s,t).

In this work, our graphs of interest are those representing real-world road

networks, where the edges represent streets connected at nodes representing the street

intersections. Our edge weights represent the travel time (in minutes) for each street.
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2.2 Graph Search Algorithms

In this section, we summarize many of the classical graph search algorithms

referenced throughout this dissertation. The algorithms presented here require no pre-

processing. To simplify our discussion, we typically present each search algorithm as if

we are only seeking to determine the existence or cost of some path (possibly a shortest

path), and not the path itself. However, for all algorithms presented here, it is quite

straightforward to extend them to additionally maintain parent-node pointers for recon-

structing either the entire search tree or just the desired solution path(s), as necessary.

Backward Search. While not necessarily a unique search algorithm in and of itself,

this concept remains relevant for all subsequent graph search algorithms discussed below.

A backward search in this context is simply any of the following search algorithms applied

to the reverse graph, Ḡ (as defined earlier), instead of the original graph, G.

Breadth-First Search (BFS). Breadth-first search (BFS) is a search algorithm

which establishes paths based on the fewest number of edges from a source node to

the other nodes in the graph. BFS is typically used to determine basic connectivity

(i.e., Does a path even exist?) between nodes, as well as to find shortest paths in un-

weighted graphs (in which all edges are assumed to have equivalent, unit-weight cost).

BFS takes as input a graph G = (V,E), a source node s ∈ V , and (optionally) a set of

target nodes T ⊆ V . The algorithm maintains for each node, v ∈ V , a hop count, c(v),

to represent the minimum number of edges needed to reach v via some path from the

source node s. Initially, c(v) = ∞ for all v ∈ V (i.e., all nodes are unreached, since no

path has yet been found to them). The algorithm begins by assigning c(s) = 0 for the

source node s, and inserts s into a queue [33] data structure. At each iteration, a node
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u is removed from the front of the queue. Upon removing u, for each (u, v) ∈ E such

that c(v) =∞ (i.e., v is unreached), the algorithm sets c(v) = c(u)+1 and adds v to the

back of the queue. The algorithm may terminate once all nodes from the target node

set T have been popped from the queue, or whenever the queue is empty, whichever

comes first. The time complexity of BFS is O(m+ n) [33].

Depth-First Search (DFS). Depth-first search (DFS) is another search algorithm

which may be used to determine basic connectivity between nodes, but may also be used

to detect cycles in graphs or establish topological orderings for directed acyclic graphs.

The general concept is to search as “deep” into the graph as possible before backtracking

to continue the search. DFS takes as input a graph G = (V,E) and a source node s ∈ V .

Initially, all nodes are marked as unreached, since no path has yet been found to them.

The algorithm begins by marking s as reached and inserting s into a stack [33] data

structure. At each iteration, the node u at the top of the stack is examined (but not yet

removed). If ∃(u, v) ∈ E such that v is unreached, the algorithm marks (one such) v as

reached, adds v to the top of the stack, and begins another iteration. Otherwise, if no

unreached adjacent nodes remain, u is removed from the top of the stack. The algorithm

may terminate once the stack is empty. The time complexity of DFS is O(m+ n) [33].

As alluded to earlier, DFS may be used to establish a topological ordering

for directed ayclic graphs. To achieve this, we may simply loop over all nodes in the

graph, and, at each iteration, if the current node v ∈ V is still unreached, we perform

a DFS from v. This loop continues until all nodes have been marked as reached. Upon

completion, the order in which the nodes were removed from the stack defines a reverse

topological ordering for the directed acyclic graph. This ordering may simply be reversed

to establish a standard (i.e., forward) topological ordering of the explored acyclic graph.
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Dijkstra Search. Dijkstra’s algorithm [39] takes as input a weighted1 graph G =

(V,E,w), a source node s ∈ V , and (optionally) a set of target nodes T ⊆ V . The

algorithm maintains for each node, v ∈ V , a cost, or “distance”, d(v), to represent the

total cost of the current-best path found from the source node s to node v. Initially, for

all v ∈ V , d(v) =∞, and all nodes are marked as unsettled (i.e., their costs are not yet

known to be correct). The algorithm begins by assigning d(s) = 0 and inserting s into

a set F (the “fringe” of the search). At each iteration, the algorithm removes from F a

node, u, with minimum d-value, marks u as settled (since d(u) = d(s, u) is now provably

true [33]), and expands u as follows. For all e = (u, v) ∈ E, if d(v) > d(u) + w(e), the

algorithm sets d(v) = d(u) +w(e) and F = F ∪{v}. The algorithm may terminate once

all nodes from the target node set T have been settled (i.e., their shortest-path costs are

correct), or whenever F is empty, whichever comes first.

A näıve implementation of Dijkstra’s algorithm requires a worst-case time com-

plexity of O(n2), since we have up to n iterations, and a linear scan of the unsettled

nodes in F at each iteration (to choose the one with minimum cost) takes O(n) time.

However, this can be greatly improved by using a so-called priority queue [33] data

structure (e.g., binary heaps[33] or Fibonacci heaps[49]) to maintain and access all F

nodes in order of increasing cost from the source. Such data structures improve the time

complexity to O((m+ n)logn) for binary heaps or O(m+ nlogn) for Fibonacci heaps.

Bidirectional Dijkstra Search. A bidirectional version of Dijkstra’s algorithm takes

as input a weighted graph G = (V,E,w), a source node s ∈ V , and a (single) target node

t ∈ V . Bidirectional Dijkstra involves carrying out two Dijkstra searches simultaneously:

one forward Dijkstra search from the source node s and one backward Dijkstra search

1Edge weights are assumed to be non-negative.
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from the target node t. Let ds be the set of path costs maintained by the forward search

(from s) and dt be the set of paths costs maintained by the backward search (from t). A

value, γ, is used to maintain the cost of the best path seen thus far. Initially γ =∞. The

search alternates between the forward and backward search direction at each iteration.

When a node u is settled by the forward search, for all edges (u, v) ∈ E such that v has

been settled by the backward search, the algorithm sets γ = min{γ, ds(u) + w(u, v) +

dt(v)}. A similar update procedure is done for the backward search. The algorithm may

terminate once any node has been settled by both directions, at which point γ = d(s, t).

A∗ Search. A∗ Search [62] takes as input a weighted graph G = (V,E,w), a source

node s ∈ V , and a (single) target node t ∈ V . The general concept is to quickly direct

the search towards the target node t by using some rough estimate on the remaining

cost to t. The search maintains for each reached node, v, an f -value, computed as

f(v) = d(v) + h(v), where d(v) represents the current best-known path cost from s to

v, and h(v), defined as the heuristic function2, represents an estimate on the shortest

path cost from v to t. The search proceeds in much the same fashion as a Dijkstra

search, except that, instead of choosing a node with minimum d-value at each iteration,

it chooses a node with minimum f -value. The algorithm may terminate once t has been

removed from F for expansion, or whenever F is empty, whichever comes first.

The correctness and time complexity of A∗ search depends primarily on the

properties of the chosen heuristic function, h. A∗ will return the correct shortest-path

cost to t if the function h is admissible: ∀v ∈ V , h(v) ≤ d(v, t) (i.e., h never overestimates

the true shortest-path cost). A∗ will expand each node at most once in the search if the

function h is consistent : ∀(u, v) ∈ E, h(u) ≤ w(u, v) + h(v). Consistency ensures that

2This function is also referred to as the potential function in some contexts.
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we may still mark a node v as settled once it is removed from F , as d(v) = d(s, v) will be

correctly established by this time. However, inconsistent functions do not maintain this

property and thus may require re-inserting nodes back into the set F multiple times.

Bidirectional A∗ Search. The original A∗ concept was later further extended to

bidirectional A∗ search in [91], where two separate unidirectional A∗ searches are car-

ried out simultaneously from both nodes s and t. A forward A∗ search is carried out

from node s (toward goal node t) and a backward A∗ search is carried out from node t

(toward goal node s). Each search direction must make use of its own distinct heuris-

tic function, given that each direction is searching towards a different goal node. We

denote the heuristic search functions as hs and ht for the forward and backward search

directions, respectively. In the context of bidirectional A∗ search, hs(v) behaves as be-

fore by providing a lower-bound estimate on the cost d(v, t), whereas ht(v) provides a

lower-bound estimate on the cost d(s, v). For forward search, the f -values are computed

as fs(v) = ds(v) + hs(v). For backward search, ft(v) = dt(v) + ht(v). Similarly, each

search direction maintains its own set of “fringe” nodes (described earlier): Fs and Ft.

The search proceeds in much the same fashion as a bidirectional Dijkstra search,

iteratively swapping between search directions, and keeping track of a tentative best-

path cost, γ. The algorithm may terminate as soon as max(ks, kt) ≥ γ, where ks =

min{fs(v) | v ∈ Fs} and kt = min{ft(v) | v ∈ Ft}, ensuring that γ = d(s, t) [91]. This

termination criterion is correct for any admissible heuristic functions, hs and ht (even

inconsistent ones, as long as node re-insertion into Fs/t is allowed, as necessary).

An alternative bidirectional A∗ algorithm is presented in [66]. The authors

prove that, by using a set of balanced3 and consistent heuristic functions, h′s and h′t,

3Such functions have also been commonly referred to as consistent heuristic functions in [54]. How-
ever, this conflicts with the original use of the term consistency in the historical context of A∗ literature.
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such that, for all nodes v ∈ V , h′s(v) + h′t(v) = c (for some constant, c), then the search

may terminate as soon as the first node has been settled in both directions. The authors

further demonstrate a simple approach for deriving such balanced heuristic functions by

using h′s(v) = (hs(v)− ht(v))/2 and h′t(v) = (ht(v)− hs(v))/2 = −h′s(v), where hs and

ht are arbitrarily-defined consistent functions (note the requirement of consistency).

2.3 Graph Search Algorithms with Preprocessing

In this section, we examine various graph search algorithms for finding short-

est paths which incorporate a separate preprocessing phase to speedup the associated

queries. We consider three high-level categories of preprocessing-based search algo-

rithms: goal-directed, hierarchical, and hybrid search (i.e., combinations of the former).

2.3.1 Goal-Directed Search with Preprocessing

The first category of preprocessing is based on the concept of goal-directed

search, in which the algorithm uses its preprocessed data to quickly guide, or “direct”,

the search towards the target node (a.k.a., the “goal”). We give various examples below.

A∗ Search + Landmarks + Triangle Inequality (ALT). ALT [54] involves pre-

processing which selects a small subset of so-called landmark nodes, L ⊆ V , typi-

cally such that |L| � |V |. For each landmark, l ∈ L, the preprocessing step com-

putes and stores the shortest-path costs from and to all other nodes, v, in the graph:

d(v, l) and d(l, v), respectively. After preprocessing, a bidirectional A∗ search may be

carried out using heuristic functions derived from the preprocessed landmark costs:

hs(v) = max
∀l∈L′
{max{d(v, l) − d(t, l), d(l, t) − d(l, v)}} and ht(v) = max

∀l∈L′
{max{d(s, l) −

Therefore, we have adopted the term balanced from [90] to describe this property.
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d(v, l), d(l, v)− d(l, s)}}, for some small landmark subset L′ ⊆ L, chosen at query time.

Geometric Containers (GC). GC [112] preprocessing defines a bounding geometry

(e.g., a minimum bounding rectangle [MBR]) for each edge in the graph, such that

the bounding geometry contains all nodes that can be reached via some shortest path

starting with that edge. This methodology requires some explicit spatial embedding of

the nodes of the graph (e.g., geographic coordinates). The set of geometric containers

can then be used by any shortest-path search algorithm (e.g., Dijkstra’s algorithm) to

ignore any edge whose container (e.g., MBR) does not geometrically contain the target

node. Pre-processing requires a computation of all-pairs shortest paths.

Arc Flags. Arc-Flags [77] preprocessing partitions the nodes of the graph into k

disjoint regions and, for each edge in the graph, defines k binary “flags” on the edge

to indicate whether or not that edge belongs to some shortest path into each partition,

respectively. The set of edge flags can then be used by any shortest-path search algorithm

(e.g., Dijkstra’s algorithm) to ignore any edge whose flag for the target node’s partition

is false (i.e., = 0), indicating that it cannot belong to any shortest path from s to t.

More efficient preprocessing approaches for deriving the arc flags are presented in [64].

Reach. Reach [60] preprocessing defines the reach of a node, v, with respect to some

path Ps,t = Ps,v · Pv,t (where · indicates path concatenation) as min{w(Ps,v), w(Pv,t)}.

The (global) reach, r(v), is then defined as the maximum over all shortest paths P

containing v of the reach of v with respect to P . Let d(u, v) be any lower-bound estimate

on the shortest-path distance from u to v, and let r(v) be any upper bound on the

reach of v. Any shortest-path search algorithm (e.g., Dijkstra’s algorithm) may prune

a node v from the search if r(v) < d(s, v) and r(v) < d(v, t). The calculation of reach
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values typically involves pre-calculating all-pairs shortest paths within the graph, which

can be very expensive. More efficient approaches for reach calculation have also been

established by [55, 56].

Pre-Computed Cluster Distances (PCD). PCD [82] partitions the nodes of the

graph into k disjoint partitions, or “clusters”. The shortest connecting path distance

between each pair of clusters is then pre-calculated and recorded in a distance table (here

shortest path distance between clusters is defined as the minimum-overall shortest-path

cost from some boundary node in one cluster to some other boundary node in the other

cluster). This inter-cluster cost table may then be used as a lower bound cost estimate

within the search. PCD performs a bidirectional Dijkstra search until an upper bound

on the cost of the shortest path can be established (via either the searches meeting or

based on costs to certain cluster-boundary nodes plus their inter-cluster distances), after

which time the search may prune any node whose distance from the source node plus its

partition’s cost to the target node’s partition is greater than the current upper bound.

2.3.2 Hierarchical Search with Preprocessing

The second category of preprocessing is based on the concept of hierarchi-

cal search, in which the nodes and/or edges of the graph are classified into mutually-

exclusive levels of hierarchy. A bidirectional search (from s and t, simultaneously) is

typically carried out, such that each search leads toward higher (i.e., more-important)

levels in the graph, while progressively ignoring lower (i.e., less-important) levels of the

graph. The power of hierarchical search comes from this implicit pruning effect, which

often significantly reduces the size of the resulting search space, to achieve much faster

query times, (usually) without sacrificing the optimality of the resulting solution path.
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Multi-Level Overlays (MLO). Given a weighted graph G = (V,E,w) and some

subset S ⊆ V , MLO [65] defines a shortest-path overlay graph G′ = (S,E′, w) as follows.

For each (u, v) ∈ S × S, a shortcut edge (u, v) is added to E′ iff no internal vertex on

any shortest u-v path belongs to S. In this context, a shortcut edge is a replacement

of a shortest path P ∗u,v = 〈u, . . . , v〉 by an edge (u, v), such that w(u, v) = d(u, v).

By iteratively repeating this overlay graph construction on each newly-produced graph

level, the procedure defines an explicit hierarchy of k overlay graphs such that V = S0 ⊃

S1 ⊃ S2 ⊃ . . . ⊃ Sk. A shortest-path query may then be carried out in a small subgraph

composed of only the necessary overlay-graph components, as determined by a so-called

tree of connected components data structure.

Highway Hierarchies (HH). HH [101, 102] begins with the original graph as the

lowest-level hierarchy. It proceeds by iteratively identifying edges that exist outside of

the local shortest-path neighborhoods of the nodes in the current hierarchy of the graph

and promoting such edges to the next level of the hierarchy. Specifically, an edge (u, v)

is considered a highway edge for the next level of hierarchy construction if there exists

some shortest path P ∗s,t = 〈s, . . . , u, v, . . . , t〉 in the current hierarchy level, such that v

is not in the local shortest-path neighborhood of s and u is not in the local shortest-

path neighborhood of t. A bidirectional query procedure can then progressively prune

increasing levels of the hierarchy the farther along it gets in its search, without affecting

the correctness of the results.

Transit Node Routing (TNR). TNR [19, 20] preprocessing establishes a relatively

small set of so-called transit nodes, T ⊆ V , such that, for every pair of nodes which are

“sufficiently far apart” (in terms of shortest-path distance) from each other, a shortest
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path between them contains one or more transit nodes. TNR pre-calculates the shortest-

path distances between every pair of transit nodes. Any (non-local) shortest path query

can then perform a bidirectional Dijkstra search until the forward shortest-path tree

from s is covered by some subset of transit nodes, Ts ⊆ T , and the backward shortest-

path tree from t is covered by some subset of transit nodes, Tt ⊆ T (note that these

subsets may also be preprocessed and stored for every node as well). The shortest path

cost may then be computed as d(s, t) = min{d(s, u) + d(u, v) + d(v, t) | u ∈ Ts, v ∈ Tt}.

Local queries (i.e., for those pairs of nodes which are too close together to be covered

by T ) may be handled by a standard bidirectional Dijkstra search.

Contraction Hierarchies (CH). CH [50, 53] preprocessing establishes a total order-

ing of the nodes in the graph, and then contracts (or shortcuts) the nodes in this order.

To contract a node, v, means to bypass it in the graph by adding new shortcut edges, as

necessary, to preserve shortest paths in the remaining, higher-ranking subgraph. Specif-

ically, for each pair of incoming and outgoing edges, (u, v) and (v, x), leading from and

to higher-ranking nodes, respectively, if the path 〈u, v, x〉 is a unique shortest path, then

a new shortcut edge (u, x), with weight w(u, v) + w(v, x), is added to bypass v in the

higher-ranking subgraph. A bidirectional Dijkstra shortest-path search may then be car-

ried out such that each search only explores edges leading to higher-ranking nodes. The

search in a given direction may be aborted once its minimum unsettled node distance

exceeds the cost of the best connecting path seen so far.

Hub Labeling (HL). The concepts of Hub Labeling have been examined in various

forms in [7, 32]. For each node v ∈ V , the preprocessing must establish both a forward

and backward labeling of the nodes, Lf (v) ⊆ V and Lb(v) ⊆ V , respectively, with the
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following shortest-path cover property: ∀s, t ∈ V , Lf (s) ∩ Lb(t) contains at least one

node along a shortest path from s to t. For each x ∈ Lf (v) (and for each u ∈ Lb(v)), the

shortest-path cost d(v, x) (respectively, d(u, v)) is also preprocessed and stored along

with the labeling. After preprocessing, for any s, t ∈ V , the shortest-path cost from s

to t may be computed as d(s, t) = min{d(s, v) + d(v, t) | v ∈ Lf (s) ∩ Lb(t)}.

2.3.3 Hybrid Search with Preprocessing

The third, and final, category of preprocessing is based on a hybrid combination

of aspects from each of the two previous categories: goal-directed and hierarchical search.

Reach + ALT (REAL). REAL [55, 56] integrates the previously-introduced con-

cepts of Reach, shortcut edges, and ALT. By maintaining landmark data for only a

relatively small subgraph of those nodes with the highest reach, the memory overhead

may be greatly improved without significantly impacting performance.

Shortcuts + Arc-Flags (SHARC). SHARC [22] integrates Arc-Flags with the hi-

erarchical concept of shortcut edges (obtained via contraction, to bypass less-important

parts of the graph). The result is a very fast unidirectional shortest-path search algo-

rithm, intended to help solve those shortest-path problem variants for which bidirectional

search is typically impractical (e.g., time-dependent shortest path problems).

Core ALT (CALT). CALT [23] is a variant of ALT combined with a hierarchical

technique, such as CH, in which landmark distances are established only for some rel-

atively small core of the “uppermost” (i.e., most important) nodes in the hierarchy.

This can be seen to greatly reduce the space overhead for storing landmark distances,

as compared to the original ALT. For nodes not within the core, a multi-phase search
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algorithm utilizes their closest core nodes, known as their proxy nodes, to establish

valid lower bounds for carrying out the remainder of the search using the preprocessed

landmark distances in the core.

CH + Arc-Flags (CHASE). CHASE [23] combines CH and Arc-Flags by estab-

lishing a relatively small core of the highest nodes in the hierarchy (similar to CALT).

Arc-Flags are preprocessed for the core subgraph, and a two-phase query algorithm is

carried out by first performing a bidirectional Dijkstra search into the core and then

switching to a bidirectional Arc-Flags search within the core, as necessary.

Reach + Arc-Flags (ReachFlags). ReachFlags [23] combines Reach and Arc-Flags

by establishing a relatively small subgraph containing only those nodes with reach ≥

r (for some sufficiently-large r ∈ R>0). Arc-Flags are preprocessed for the smaller

subgraph, and a two-phase query algorithm (similar to that for CHASE) is carried out.

TNR + Arc-Flags (TNR+AF). TNR+AF [23] combines the concepts of TNR and

Arc-Flags. The preprocessing partitions the transit nodes of the graph into k disjoint

regions (similar to Arc-Flags), and establishes flags on related node/access-node pairs

to indicate whether or not they are useful for finding a shortest path into each region,

respectively. This helps to reduce the number of unnecessary table lookups performed

by the standard TNR technique.
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Chapter 3

Shortest Paths with Label

Restrictions

3.1 Introduction

Due to its ubiquitous usage over the web and in many commercial navigation

products, point-to-point shortest path search on graphs has again become a major topic

of interest over the last decade, with much research being devoted to designing practical

indexing techniques for extremely fast graph searches. Graph indexing techniques have

been widely explored for establishing efficient data structures for pruning and/or direct-

ing the search of shortest path algorithms, while still guaranteeing the optimality of the

resulting paths. Such techniques have resulted in many improvements over the stan-

dard Dijkstra’s algorithm [39], and may also be used to minimize the overall I/O costs

incurred by the graph search for very large, external-memory graph datasets [57, 104].

However, focus thus far has been mostly on static shortest paths with no constraints.

In this chapter, we focus on a variant of shortest path queries in which dynamic

constraints may be placed upon the type of edges which may appear on a valid shortest
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path. For example, the shortest path from Irvine, CA to Riverside, CA travels along

State Route 261, which is a local toll road through this area. However, consider the case

where the traveler does not wish to pay the toll fee, and would therefore rather find the

shortest path from Irvine to Riverside that actually avoids all toll roads. As yet another

example, trucks delivering certain hazardous materials may not be allowed to cross over

some types of roadways, such as bridges or railroad crossings, due to the public health

and safety risks of any potential accidents. Therefore, this query type can be seen

to have practical applications in both personalized location-based services, as well as

in many logistics and commercial transportation scenarios. Making this query highly

efficient on real-world, large-scale graphs, such as the road network of the continental

United States, is therefore crucial to effectively supporting such practical applications.

3.1.1 Related Work

In recent years, hierarchical graph indexing techniques have been shown to

be some of the most time- and space-efficient approaches towards indexing graphs for

shortest path computations [23, 53, 65, 69, 102, 104, 105]. Hierarchical techniques

generally involve some classification of the nodes/edges within the graph into mutually-

exclusive, ordered levels of hierarchy, based on some notion of importance within the

graph structure. Shortest path queries carried out on a hierarchical graph index typically

prefer searching towards higher (i.e., more-important) levels of the graph hierarchy, while

progressively ignoring lower (i.e., less-important) levels of the hierarchy, in order to more

effectively reduce the overall search space explored by the query.

Schultes and Sanders [105] have previously explored a variant of their hierar-

chical indexing techniques designed to support dynamic changes in graph edge weights

or cost functions. However, support for this dynamic approach requires either explicit
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recomputation of the graph index online as the weights (or cost functions) change or

the query algorithm must make increasingly-limited use of the information available in

the static graph index based on the dynamic changes.

Yet another practical graph indexing approach is the goal-directed approach of

the ALT algorithm [54, 57]. The ALT algorithm is based primarily on the concepts of

A* search [62], in which the search from a source node is “directed” towards the target

node by the use of a potential function to estimate the shortest path cost to the target.

The ALT algorithm allows preprocessing in which a set of so-called landmark nodes

is selected from the graph and the shortest path is computed for each landmark node

to/from all other nodes in the graph. Using properties of the triangle inequality derived

from the costs to/from all landmark nodes, a highly efficient potential function can be

constructed, thus greatly reducing the resulting search space. This technique has been

further studied within the context of dynamic graphs in [36], and it can be shown that

the potential functions from the original landmark preprocessing remain correct for all

shortest paths as long as the edge weights can only increase in a dynamic scenario.

In the context of our own constrained shortest path query presented here, the

idea of dynamically restricting an edge from being allowed in the search for a particular

query can be seen as equivalent to simply increasing the weight of that edge to infinity for

the lifetime of the query. Thus, the ALT technique is the only existing indexing technique

applicable to our query type without requiring additional or specialized preprocessing.

3.1.2 Our Contributions

To the best of our knowledge, this is the first work to address this variant of

shortest path query. In particular, our contributions can be summarized as follows. We

formalize this problem as a restricted class of language constrained shortest paths, thus
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tying it to the existing literature and giving this new problem some relative context.

To efficiently support this type of dynamically constrained shortest path query,

we detail a practical and efficient approach to extend the hierarchical graph indexing

technique known as Contraction Hierarchies [50, 53]. Given implicit knowledge of the

range of possible constraints for shortest path queries on a graph, we propose to incor-

porate this knowledge directly into the graph index construction to avoid the overhead

of reconstructing the index for each possible constraint scenario at query time.

Using one of the largest commercial real-world road network datasets, we

present experimental results with improvements of over 3 orders of magnitude com-

pared to the näıve adaptation of the standard Dijkstra’s algorithm1 to support this

query type. We also show an improvement of over 2 orders of magnitude compared to

the dynamic ALT algorithm examined in [36].

The remainder of this chapter is organized as follows. In Section 3.2, we present

the concept of constraints on the allowable edges for a given shortest path query as a

specific variant of language constrained shortest paths. Section 3.3 presents an overview

of Contraction Hierarchies. Section 3.4 extends this technique with the proposed al-

gorithms for constructing and querying the hierarchical graph index to support these

constraints for shortest path queries. Section 3.5 presents our experimental analysis of

this technique. Section 3.6 concludes the chapter.

3.2 Language Constrained Shortest Paths

Language constrained shortest paths [18] are shortest paths whose edge labels

must satisfy some formal language constraint over a fixed alphabet Σ. We define this

concept more formally as follows. Let G = (V,E,w,Σ, `) be a weighted directed graph,

1We refer here to the more efficient bidirectional version.
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where V is the set of vertices in G, E is the set of edges in G, w : E → R>0 is a function

mapping edges in G to a positive, real-valued weight, Σ is a finite alphabet used for

labeling of edges in G, and ` : E → Σ is a function mapping edges in G to a label in Σ.

Let Ps,t = 〈e1, e2, . . . , eq〉 be any path in G from some vertex s ∈ V to some

vertex t ∈ V , such that e1 = (s, v1) ∈ E, eq = (vq−1, t) ∈ E, and for 1 < i < q,

ei = (vi−1, vi) ∈ E. Let w(Ps,t) =
∑

1≤i≤q w(ei) be the total weight of all edges in Ps,t.

Let `(Ps,t) = `(e1)`(e2) . . . `(eq) be the concatenation of the labels of all edges in Ps,t.

Given any formal language L ⊆ Σ∗, a language constrained shortest path is a path P ′s,t

in G such that `(P ′s,t) ∈ L and ∀ Ps,t in G where `(Ps,t) ∈ L, w(P ′s,t) ≤ w(Ps,t).

The Regular Language Constrained Shortest Paths (RLCSP) problem is a basic

variant of language constrained shortest paths where the constraint language L must

be a regular language. In [15, 18], Barrett et al. show that RLCSP is solvable in

polynomial time by performing a shortest path search in the product graph of the original

graph and the non-deterministic finite automaton (NFA) graph representing the specified

regular language. More specifically, a regular language L can be represented by a non-

deterministic finite automaton (NFA) M = (Q,Σ, δ, q0, F ), where Q is the set of states,

Σ is the alphabet, δ : Q × Σ → P(Q) is the transition function (where P(Q) denotes

the power set of Q), q0 is the starting state, and F is the set of accepting states. Let T

represent the set of transitions between state pairs qi, qj ∈ Q for some α ∈ Σ such that:

qj ∈ δ(qi, α)⇔ ∃ t = (qi, qj) ∈ T ∧ `(t) = α. Given any graph G and NFA M , a product

graph G ×M = (VG,M , EG,M ) is constructed where VG,M = {〈v, q〉 | v ∈ V ∧ q ∈ Q},

EG,M = {(〈u, qi〉, 〈v, qj〉) | e = (u, v) ∈ E ∧ t = (qi, qj) ∈ T ∧ `(e) = `(t)}, and

∀(〈u, qi〉, 〈v, qj〉) ∈ EG,M , w(〈u, qi〉, 〈v, qj〉) = w(u, v) [15]. For any origin s ∈ V and

destination t ∈ V , a RLCSP problem may be solved by finding the shortest path in the

resulting product graph from 〈s, q0〉 ∈ VG,M to some 〈t, f〉 ∈ VG,M for some f ∈ F .
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The Linear Regular Expression (LRE) constrained shortest paths problem [16]

is a variation of RLCSP in which the regular expressions representing the constraint-

language Lmust be of a specific form related to a restricted subclass of regular languages.

In particular, linear regular expressions must be of the form x+
1 x

+
2 . . . x

+
k , where for

1 ≤ i ≤ k, xi ∈ Σ, and x+
i = xix

∗
i .

LRE is presented primarily as a means of expressing modal constraints on

real-world transportation networks, where a traveler knows the exact modes of travel

(i.e., labels) they wish to consider and the exact order in which they wish to travel

through these modes. As an example (taken from [15]), consider a multimodal network

consisting of labels Σ = {c, b, p}, which represent travel modes for (c)ars, (b)uses, and

(p)edestrians, respectively. A traveler may wish to walk to the bus station and take no

more than one bus line (i.e., no transfers) before walking to their final destination. This

could be specified using the linear regular expression p+b+p+.

One drawback to this approach is that such information may not always be

known by the traveler in advance. For example, the traveler may not always know the

best order of modes to take in their trip; however, they are still likely to know exactly

which modes they are ultimately willing to take (as well as those modes which they are

unwilling to take). Therefore, we present a new variant of language constrained shortest

paths (below) designed specifically to support this more flexible scenario.

3.2.1 Kleene Language Constrained Shortest Paths

We present the Kleene Language Constrained Shortest Paths (KLCSP) problem

as a variant of language-constrained shortest paths based on another (simpler) subclass

of regular languages which we shall call here the Kleene languages (note that this is not

a formally-recognized language class, but is used here for convenience of discussion).

29



A Kleene language may be defined in this context as the Kleene closure of any

subset of Σ. More formally, ∀A ⊆ Σ, L(A∗) defines a Kleene language over alphabet

A. Note that the subset alphabet A merely defines the set of allowable labels that

can appear on a valid shortest path for a KLCSP problem. However, unlike LRE, the

labels in A are not required to appear on a shortest path for a KLCSP problem and

the sequence of the labels of such a path is irrelevant. Additionally, for any Kleene

language over A ⊆ Σ, there is an implicitly defined subset of restricted labels R = Σ\A,

such that no labels in R may appear on any valid KLCSP solution. A Kleene language

over A ⊆ Σ may therefore be equivalently defined simply by specifying the set of such

restricted labels, R, where A = Σ \ R. Given this definition, the KLCSP problem is

designed to support the specification of language constraints on the allowed (restricted)

set of labels which may (not) appear over a given shortest path, in any permutation. It

is considered more common in practice to specify this constraint as the set of restricted

labels, R, so we will adopt this approach for the remainder of this chapter.

As a simple example, consider a transportation network consisting of labels

Σ = {l, h, i, t, f}, which represent (l)ocal roads, (h)ighways, (i)nterstates, (t)oll roads,

and (f)erries, respectively. A traveler may wish to find the shortest path between two

locations in the network that avoids both toll roads and ferries. A Kleene language

supporting this constraint could be defined as L((Σ \ {t, f})∗).

The practical applications of KLCSP are also not restricted merely to modal

constraints on a shortest path query. A label in Σ can correspond to any arbitrary

predicate condition associated with the edges of the graph. In later sections dealing

with the graph index construction, we must extend the notion of edge labels to include

support for multiple labels per edge. This also proves highly useful in scenarios where

a given edge can support multiple such predicate conditions simultaneously.
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In order to support this, we redefine the function ` to support multiple labels

per edge as follows2: ` : E → P(Σ) is the labeling function mapping edges to a set of

labels in Σ (where P(Σ) denotes the power set of Σ). Since this new function can now

map a given edge to multiple potential labels, we must also redefine what it means for

a path Ps,t to be valid for a given Kleene language constraint. For any restricted subset

of labels R ⊆ Σ, we say that an R-restricted path is any path Ps,t = 〈e1, e2, . . . , eq〉, such

that, for 1 ≤ i ≤ q, `(ei) ∩ R = ∅ (i.e., the path avoids all restricted labels in R). We

denote the least-cost, or “shortest”, R-restricted path from s ∈ V to t ∈ V as PRs,t.

Unlike the algorithms for RLCSP and LRE, which require a search through a

product graph, this simple subclass of regular languages allows for a much more efficient

optimization of the constrained shortest path search. In particular, we need now only

verify that a given edge’s labels do not belong to the restricted subset of labels, as

indicated by R, before relaxing the edge in the search. We present the pseudocode for

solving the KLCSP problem using a straightforward adaptation of Dijkstra’s algorithm

in Algorithm 1. Note that a similar bidirectional search can also be performed instead

of the unidirectional search presented in this pseudocode. We present the unidirectional

variant here merely for simplicity and greater ease of understanding.

3.3 Contraction Hierarchies (CH)

CH [50, 53] have been proposed as an efficient graph indexing technique for

supporting static point-to-point shortest path queries. The primary idea of CH is to

establish some total order of the vertices in the graph (i.e., the ordering defines a bi-

2Note that supporting multiple labels per edge no longer fits properly into the original, formal
language-constrained shortest paths model. To retrofit such scenarios back into this formal model, one
can establish a new meta-alphabet Σ′ such that each distinct subset of labels (from Σ) supported by
one or more edges in the graph is represented by a single, distinct meta-label in Σ′. Formal language
constraints can then be properly re-defined according to the new alphabet Σ′.
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Algorithm 1 KLCSP-Dijkstra(G, s, t, R)

Input: Graph G = (V,E,w,Σ, `), s, t ∈ V , restricted alphabet R ⊆ Σ

Output: Cost of shortest path PRs,t

1: PQ← ∅

2: for all v ∈ V do

3: d[v]←∞

4: end for

5: d[s]← 0

6: PQ.Insert(s, d[s])

7: while ¬PQ.Empty() do

8: u← PQ.ExtractMin()

9: if u = t then

10: return d[t]

11: end if

12: for all e = (u, v) ∈ E do

13: if `(e) ∩R = ∅ ∧ d[u] + w(e) < d[v] then

14: d[v]← d[u] + w(e)

15: if v /∈ PQ then

16: PQ.Insert(v, d[v])

17: else

18: PQ.DecreaseKey(v, d[v])

19: end if

20: end if

21: end for

22: end while

23: return ∞
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jective function φ : V → {1, ..., |V |}) with respect to some notion of general, relative

importance. Given such an ordering, preprocessing proceeds by “contracting” one ver-

tex at a time, in increasing order of importance. When a vertex, v, is contracted, it

is (temporarily) removed from the current graph “in such a way that shortest paths in

the remaining...[sub]graph are preserved” [53]. In particular, for any pair of remaining

vertices, u and w, adjacent to v in the original graph whose only shortest u-w path is

〈u, v, w〉, a so-called shortcut edge (u,w) must be added with the weight of the original

shortest path cost through v (see Figure 3.1 for an example). However, if there is an

equivalent- or lesser-cost path from u to w other than 〈u, v, w〉, then no such shortcut

edge is needed. Such a path is called a witness path. In order to detect witness paths,

a local search from all nodes u, such that (u, v) ∈ E and φ(u) > φ(v), to all nodes w,

such that (v, w) ∈ E and φ(v) < φ(w), is carried out to determine if a (u,w) shortcut

edge is necessary.

(7)

(4)

(3
)

(3
)

(2)

(3
)

v

u

w

x

y

Figure 3.1: Contracting node v. Edges are labeled with their weights. The shortcut

edge is represented with a dashed line.
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Note that the number of shortcut edges added when contracting a graph is

heavily dependent on the given ordering. Therefore, establishing a good ordering is one

of the most crucial aspects of this methodology. In [53], Geisberger et al. establish

several metrics to be associated with a given node that can help in determining the

overall priority of that node in the ordering. In this context, vertex ordering is directly

integrated into the contraction phase by first simulating the contraction of a given node

to determine its resulting priority terms, and ordering the nodes in a priority queue based

on a weighted linear combination of these terms. Some of these metrics include: the

difference between the number of shortcut edges added and the number of adjacent edges

removed when contracting a node (edge difference), the number of neighbors of a node

that have already been contracted (contracted neighbors), and the number of original

edges represented by any new shortcuts added when contracting a node (original edges).

The interested reader is referred to [50, 53] for a more exhaustive list and greater details

on each priority term considered. At each iteration, the node with minimum priority

value is removed from the priority queue, contracted, and the priority values of all of its

neighboring vertices are updated for the next iteration.

Once the set of shortcut edges, E′, has been established for a given ordering,

shortest path queries may then be carried out using a bidirectional Dijkstra search

variant which performs a simultaneous forward search in the upward graph G↑ = (V,E↑),

where E↑ = {(v, w) ∈ E ∪ E′ | φ(v) < φ(w)}, and backward search3 in the downward

graph G↓ = (V,E↓), where E↓ = {(u, v) ∈ E ∪ E′ | φ(u) > φ(v)}. A tentative shortest

path cost is maintained and is updated only when the two search frontiers meet to form

a shorter path. The search in a given direction may be aborted once the minimum key

3Backward search in a graph G = (V,E) is the equivalent of performing a standard (i.e., forward)
search in the graph Ḡ = (V, Ē), where Ē = {(v, u) | (u, v) ∈ E}.
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for the priority queue in that direction exceeds the cost of the best tentative path seen

so far. Once both search directions are finished, the best path seen thus far represents

the shortest path cost.

As with any graph search algorithm, the efficiency of the search process is

directly proportional to the number of nodes and edges explored during the search. The

effectiveness of the CH search technique therefore comes from the use of the newly-

added shortcut edges, which allow the Dijkstra search to effectively bypass irrelevant

nodes during the search, without invalidating correctness, thus resulting in a greatly-

reduced search space (and therefore, better runtime), as compared to the standard

Dijkstra search on the original graph.

3.4 Contraction Hierarchies with Label Restrictions (CHLR)

Despite the näıve adaptation of Dijkstra’s algorithm to support the Kleene

language constrained shortest paths, as presented in Algorithm 1, this variation is still

prohibitively slow on large graph datasets, as will be demonstrated later in our experi-

mental results section. We therefore present the first enhancements to the hierarchical

graph indexing concepts of Contraction Hierarchies to support KLCSP problems as fol-

lows. We start with a brief overview of the existing limitations of Contraction Hierarchies

for solving this particular problem below.

3.4.1 Limitations of CH

In order to showcase the limitations of CH for Kleene language constrained

shortest paths, let us consider a simple example graph with label alphabet Σ = {r, g, b},

representing the colors red, green, and blue, respectively. This example graph is illus-
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Figure 3.2: Contracting a labeled graph. Each edge, e, is labeled as (w(e), `(e)).

trated in Figure 3.2, where the edges have been colored according to their respective

labels. In this scenario, when node v is contracted, a local search will be performed to

find a potential witness path from node u to node w in the graph induced by the set

of nodes “higher” in the hierarchy than node v (e.g., nodes u, w, x, and y). This local

search will find a witness path, 〈u, x, y, w〉, with cost equal to 8, which happens to be less

than the cost of the path 〈u, v, w〉, which is 10. In this case, no shortcut will be added

between nodes u and w during the pre-processing. However, if we later wish to perform

a Kleene language constrained shortest path query from u to w, in which we restrict the

color red from our shortest path (i.e., our language constraint is L((Σ\{r})∗)), then the

bidirectional search will be unable to find any such path between u and w (since there

are no valid shortcuts between u and w and the edge (x, y) will be invalid based on its

red label), even though there exists a valid shortest path that avoids the color red in

this graph: the path 〈u, v, w〉 with cost 10.

One näıve solution to this problem would be to establish a separate graph index

for all possible subsets of the label alphabet Σ, and then use the appropriate index based
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on the incoming query constraints R. However, this is prohibitive, and would require

the construction and maintenance of 2|Σ| separate index datasets. Therefore, in the

following sections, we propose methods to extend the concepts of Contraction Hierarchies

to properly support any Kleene language constraints, and we prove the correctness of

this approach, as well as providing experimental evidence in favor of this approach over

other existing techniques (e.g., ALT).

3.4.2 CHLR Index Construction

The revised contraction algorithm for graph index construction (shown in Al-

gorithm 2) works as follows. The algorithm processes each node v ∈ V in the order

defined by φ (which, for simplicity, we may assume is pre-defined). For each such node

v, the algorithm considers all possible pairs of incoming edges e↓ = (u, v) and outgoing

edges e↑ = (v, w), such that both u and w occur after v in the ordering defined by φ

(i.e., they occur “higher” in the hierarchy). For each such pair of edges, the algorithm

performs a KLCSP-Dijkstra search in the subgraph defined by G′v (the subgraph of G′

induced by nodes with “higher” hierarchy than v), using the set of restricted labels, R,

defined to be the set of labels “avoided” (or not supported) by both e↓ and e↑. If the

KLCSP-Dijkstra search is able to find an equivalent- or lesser-cost path than the path

〈u, v, w〉, which also avoids the same set of restricted labels avoided by both e↓ and e↑,

then no shortcut edge is necessary (since there can be no possible constraint scenario for

which the path 〈u, v, w〉 is required). Edges are processed in order of increasing weight

(see Lines 4 and 5) to ensure that the total number of shortcut edges constructed by

this process is minimal for the given ordering φ. See Section 3.4.5 for a formal proof of

both correctness and minimality.
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Algorithm 2 KLCSP-Contraction(G,φ)

Input: Graph G = (V,E,w,Σ, `) and bijective node order function φ : V → {1, ..., |V |}

Output: Augmented graph G′ = (V,E ∪ E′, w,Σ, `), where E′ represents newly-added

shortcut edges

1: G′ ← G

2: E′ ← ∅

3: for all v ∈ V ordered by φ do

4: for all e↓ = (u, v) ∈ E ∪ E′ ordered by w(e↓) : φ(u) > φ(v) do

5: for all e↑ = (v, w) ∈ E ∪ E′ ordered by w(e↑) : φ(v) < φ(w) ∧ w 6= u do

6: G′v ← G′[{z ∈ V | φ(v) < φ(z)}]

7: R← Σ \ {`(e↓) ∪ `(e↑)}

8: shortcutCost← w(e↓) + w(e↑)

9: witnessCost← KLCSP-Dijkstra(G′v, u, w,R)

10: if shortcutCost < witnessCost then

11: e′ ← (u,w)

12: w(e′)← shortcutCost

13: `(e′)← {`(e↓) ∪ `(e↑)}

14: E′ ← E′ ∪ {e′}

15: G′ ← (V,E ∪ E′, w,Σ, `)

16: end if

17: end for

18: end for

19: end for

20: return G′
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3.4.3 Multi-Edge Support

One important aspect of the enhancements to the graph contraction algorithm

shown above is that our graph index must now support multi-edges (i.e., parallel edges)

due to the potential for multiple possible paths between a given pair of nodes in the

graph, depending upon the set of restricted labels chosen for the query. For example, in

the graph illustrated in Figure 3.3, if the nodes are contracted in order from bottom to

top, we must now insert two separate shortcut edges between nodes u and w: edge e is

necessary when contracting node v and edge e′ is necessary when contracting node v′.

Note that, in this particular case, we cannot simply replace one shortcut edge with the

other when added, since they might both be necessary for ensuring correctness of the

resulting shortest paths, depending upon the set of restricted labels. In particular, if

the restricted label set is R = {r, b}, then the shortest path between u and w will make

use of the shortcut edge e, giving a cost of 10 and a final (expanded) path of 〈u, v, w〉.

However, if the restricted label set is R = {r, g}, then the shortest path between u and

w will make use of the shortcut edge e′, giving a cost of 12 and a final (expanded) path

of 〈u, v′, w〉.

3.4.4 CHLR Index Queries

Once the CHLR hierarchy has been established with the shortcut edge set, E′,

shortest path queries for any given restricted label set, R ⊆ Σ, may then be carried out

as follows. The search algorithm employed is (mostly) the same bidirectional Dijkstra

search variant as is used for the static CH query algorithm (described in Section 3.3).

However, we must now further augment the resulting upward and downward search

graphs explored for a given query, respective of R. We redefine the upward search graph

39



(7,{b
})

(5
,{b
})

v'

(6,{g})

(4
,{g
})

(3
,{
b}
)

(2,{r})

(3
,{b
})

v

u

w

x

y

e (10,{g})
e' (12,{b})

Figure 3.3: Multi-edge example

as G↑ = (V,E↑), where E↑ = {e = (v, w) ∈ E ∪ E′ | φ(v) < φ(w) ∧ `(e) ∩ R = ∅},

and the downward graph as G↓ = (V,E↓), where E↓ = {e = (u, v) ∈ E ∪ E′ | φ(u) >

φ(v) ∧ `(e) ∩ R = ∅}. The CHLR query will now explore only those edges whose label

sets are valid for the given query constraints.

3.4.5 Correctness and Minimality

Lemma 1 Let PR
′

s,t define an R′-restricted shortest path from s ∈ V to t ∈ V for some

R′ ⊆ Σ. For any R ⊆ R′, w(PRs,t) ≤ w(PR
′

s,t ).

Proof. Suppose there exists an R-restricted shortest path PRs,t such that w(PRs,t) >

w(PR
′

s,t ). The path PR
′

s,t is clearly a valid path for the restricted label set R too, since

R ⊆ R′ and, by definition, PR
′

s,t must therefore avoid all restricted labels in R as well.

However, this contradicts the optimality of PRs,t.

Theorem 2 Given a graph G′ = (V,E ∪E′, w,Σ, `) constructed by the KLCSP-Contraction

algorithm, the query algorithm is correct for any s ∈ V , t ∈ V , and R ⊆ Σ.
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Proof. For consistency, we extend the original proof of correctness presented in [50]

for static Contraction Hierarchies to support our new language constrained variant. For

a given path Ps,t = 〈s = v1, . . . , vi, . . . , vq = t〉, let MPs,t = {vi ∈ Ps,t | 1 < i <

q, φ(vi−1) > φ(vi) < φ(vi+1)} (i.e., the set of all local minima in Ps,t with respect to φ).

We can classify all paths, Ps,t, in a given graph into one of two basic forms: (1) those

with MPs,t = ∅ and (2) those with MPs,t 6= ∅.

Since the search algorithm only searches forward in the upward graph G↑ and

backward in the downward graph G↓ (i.e., φ is strictly increasing in each search direc-

tion), then it will explore only paths of the form (1) during the search. For any origin

node s ∈ V , destination node t ∈ V , and restricted label set R ⊆ Σ, suppose there exists

a shortest path PRs,t of the form (2) above in the original graph. We must now prove the

claim that there must also exist an alternate (and equivalent) shortest path of the form

(1) above after the KLCSP-Contraction algorithm has been run on the graph.

Since MPRs,t
6= ∅, let m(PRs,t) = min{φ(v) | v ∈ MPRs,t

}. Let vi be the node in

path PRs,t such that φ(vi) = m(PRs,t) (i.e., vi is the lowest order node in MPRs,t
). For edges

ei = (vi−1, vi) and ei+1 = (vi, vi+1) in a shortest path PRs,t of the form (2) above, let

R′ = Σ \ {`(ei) ∪ `(ei+1)}. We first demonstrate that R ⊆ R′.

Suppose for the sake of contradiction that R * R′. This implies that ∃α ∈ R,

such that either α ∈ `(ei) or α ∈ `(ei+1). In either case, the subpath 〈ei, ei+1〉 would

then be invalid for any R-restricted shortest path, contradicting the validity of PRs,t.

Therefore, in this context, R ⊆ R′ must be true.

Next, let us consider the hypothetical scenario where we perform a call to

the KLCSP-Dijkstra search algorithm to find an R-restricted shortest path PRvi−1,vi+1
in

the subgraph G′vi = G′[{z ∈ V | φ(vi) < φ(z)}]. If w(PRvi−1,vi+1
) < w(ei) + w(ei+1),

then there exists a shorter R-restricted path between vi−1 and vi+1 in G′vi (that does
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not include ei or ei+1), contradicting the optimality of PRs,t. Therefore, w(PRvi−1,vi+1
) ≥

w(ei) + w(ei+1) must hold true. Given that R ⊆ R′, then by Lemma 1, we know

that w(PR
′

vi−1,vi+1
) ≥ w(PRvi−1,vi+1

) must also hold true. This gives us w(PR
′

vi−1,vi+1
) ≥

w(ei) + w(ei+1). Note that R′ is exactly equal to the restricted label set used in the

search for a restricted witness path during the graph index construction of the KLCSP-

Contraction algorithm when processing node vi, where e↓ = ei and e↑ = ei+1. In the

case where w(PR
′

vi−1,vi+1
) > w(ei)+w(ei+1), then the KLCSP-Contraction algorithm will

have added a shortcut edge from vi−1 to vi+1 with weight w(ei) + w(ei+1). In the case

where w(PR
′

vi−1,vi+1
) = w(ei) + w(ei+1), then this means that there already exists an

alternate and equivalent-cost path in the subgraph G′vi , defined above. Either way, we

can construct a new path P̄Rs,t which bypasses vi altogether (using either the shortcut or

the path between vi−1 and vi+1 in G′vi ; since R ⊆ R′, either is valid for R), such that

w(P̄Rs,t) = w(PRs,t). If P̄Rs,t is of the form (1), then the proof is complete. If P̄Rs,t is itself of

the form (2), then, since vi /∈ P̄Rs,t and φ(vi) = m(PRs,t), we know that m(P̄Rs,t) > m(PRs,t),

and we can apply the same argument (as above) recursively to P̄Rs,t. Since there are only

a finite number of possible levels in φ (i.e., the function m cannot increase indefinitely),

then this recursive argument must eventually produce an alternate path P̄Rs,t, such that

MP̄Rs,t
= ∅.

Therefore, for any shortest path PRs,t of the form (2) above, there also exists an

alternate and equivalent shortest path of the form (1) above. Since the query algorithm

performs a shortest path search amongst all and only the paths of the form (1), then

the query algorithm is correct for any s ∈ V , t ∈ V , and R ⊆ Σ.

Another property that we wish to discuss in this work, which has not been

previously addressed even for static Contraction Hierarchies, is that of edge minimality

for a given ordering φ. One might be easily tempted to believe that, when processing
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edges e↓ = (u, v) and e↑ = (v, w) in arbitrary order, where R = Σ \ {`(e↓) ∪ `(e↑)}, if

PRu,w * G′v then a shortcut edge (u,w) is absolutely necessary for correctness. However,

this is not always the case. Consider the example graph in Figure 3.4. If we start

the contraction of v by first processing edges e↓ = (u, v) and e↑ = (v, w), then clearly

PRu,w * G′v (since G′v contains only the edges (u, x) and (y, w)). Regardless, it turns

out that there is still no need to add a (u,w) shortcut edge for this scenario (since

PRu,w 6= 〈u, v, w〉). To demonstrate why, consider what happens if we had first processed

the edges e↓ = (x, v) and e↑ = (v, y). In this case, we would have added a shortcut

edge (x, y) with a weight of 3. If we then process edges e↓ = (u, v) and e↑ = (v, w),

PRu,w ⊆ G′v will be true, in which case, no shortcut is necessary. In fact, in the extreme

case for this degenerate example, if we process the pairs of edges in the order 〈e↓ =

(u, v), e↑ = (v, w)〉, then 〈e↓ = (u, v), e↑ = (v, y)〉, then 〈e↓ = (x, v), e↑ = (v, w)〉, and

finally 〈e↓ = (x, v), e↑ = (v, y)〉, this will result in the addition of 4 separate shortcut

edges (one for each pair). However, if we process these same pairs of edges in the reverse

order of that above, we will have added only 1 shortcut edge (x, y). Also note that we

cannot simply remove edges (u, v) or (v, w) from this graph, since they may be necessary

depending on the incoming label constraint (e.g., P
{b}
u,v = (u, v)).

Therefore, even in the case where PRu,w 6= 〈u, v, w〉, if we are not careful to

process the adjacent edges in the correct order, we may be unable to find a valid path

PRu,w ⊆ G′v, resulting in unnecessary shortcut edges. In particular, we need a way to

ensure that, when processing edges e↓ = (u, v) and e↑ = (v, w), either PRu,w = 〈u, v, w〉

or PRu,w ⊆ G′v always holds true. The following lemma suggests that this property will

be met if we process each contracted node’s adjacent edges in order of increasing weight

(as shown in Algorithm 2).
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Figure 3.4: Counter-example showing lack of minimality when edges are considered in

arbitrary order.

Lemma 3 Let e↓ = (u, v) and e↑ = (v, w) be the pair of edges currently being processed

by the KLCSP-Contraction algorithm during contraction of node v ∈ G′. Either PRu,w =

〈u, v, w〉 or PRu,w ⊆ G′v must hold true.

Proof. Suppose for the sake of contradiction that PRu,w 6= 〈u, v, w〉 and PRu,w * G′v. Note

that PRu,w * G′v implies that v ∈ PRu,w, while PRu,w 6= 〈u, v, w〉 implies that (u, v) /∈ PRu,w,

or (v, w) /∈ PRu,w, or both.

Consider the case where e = (v, w) /∈ PRu,w. Since we know that v ∈ PRu,w,

then PRu,w = 〈u, . . . , v, y, . . . , w〉 such that e′ = (v, y) ∈ E ∪ E′ (i.e., if (v, w) /∈ PRu,w

and v ∈ PRu,w, then v must reach node w through some other edge e′ = (v, y)). This

means that w(e′) < w(e), otherwise we could construct a lesser-cost path PRu,w that

actually includes (v, w). However, since we process all outgoing edges e↑ in order of

increasing weight in the construction algorithm, then w(e′) < w(e) implies that we must

have already processed the pair 〈e↓ = (u, v), e↑ = (v, y)〉. By definition, this means that

PRu,y ⊆ G′v, so, using this subpath, we can construct a path from u to w that avoids v

such that PRu,w ⊆ G′v, leading to a contradiction. A symmetric argument holds for the
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case where e = (u, v) /∈ PRu,w, relative to the fact that we process all incoming edges in

order of increasing weight as well.

Theorem 4 Given a fixed node ordering function, φ, the edge set E′ constructed by

the KLCSP-Contraction algorithm is minimal (i.e., there is no algorithm which can

produce a smaller set of shortcut edges, while still guaranteeing correctness).

Proof. Suppose there exists some algorithm which can construct a set of shortcut

edges, E′′, from the ordering φ, such that |E′′| < |E′|, and the set E′′ is correct for any

possible restricted label set R ⊆ Σ. This means there must exist some edge e = (u,w),

such that e ∈ E′ and e /∈ E′′. Since e ∈ E′, then by definition, there must also exist

some node v, such that φ(u) > φ(v) < φ(w), e↓ = (u, v), e↑ = (v, w) ∈ E ∪ E′, and

w(e) = w(e↓) + w(e↑). Let R = Σ \ {`(e↓) ∪ `(e↑)}. By Lemma 3, we know that, when

processing e↓ and e↑ to contract node v, either PRu,w = 〈u, v, w〉 or PRu,w ⊆ G′v must hold

true. If PRu,w ⊆ G′v, then, by definition, if such a path exists, the index construction

algorithm would not have added a shortcut from u to w, contradicting the fact that

e ∈ E′. However, if PRu,w = 〈u, v, w〉, then E′′ is incorrect for the query to find PRu,w,

since e /∈ E′′. Either case leads to a contradiction.

3.4.6 Optimizations

As indicated in the KLCSP-Contraction index construction algorithm, during

the contraction of a given node v, where I↓v = {(u, v) ∈ E ∪ E′ | φ(u) > φ(v)} and

O↑v = {(v, w) ∈ E ∪ E′ | φ(v) < φ(w)}, the algorithm performs a total of |I↓v | · |O↑v |

calls to KLCSP-Dijkstra4. While correct and minimal (for a given ordering φ), the

overall efficiency of the contraction of v can be improved by instead performing only

4Pairs 〈e↓ = (u, v), e↑ = (v, w)〉 where u = w are ignored.
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a single local search from the source, u, of each incoming edge e↓ = (u, v) ∈ I↓v until

all nodes in the set W = {w ∈ V | (v, w) ∈ O↑v} have been settled, or until a distance

of w(e↓) + max{w(e↑) | e↑ = (v, w) ∈ O↑v , w 6= u} has been reached (this is similar

to the approach used in [53]). Using this approach we can set R ← Σ \ `(e↓) and

pass this restricted label set to the augmented version of KLCSP-Dijkstra. Note that

this does not affect the correctness of the resulting index, since the set R that we pass

to KLCSP-Dijkstra in this case is a superset of the restricted label set passed to the

KLCSP-Dijkstra calls in the original algorithm, for all possible pairs of incoming and

outgoing edges. This means that any resulting witness paths are still valid (i.e., they

are more constrained than normal) and this approach can only result in a superset of

(potentially superfluous) shortcuts to that of the original approach. Therefore, by taking

this approach, we lose the property of minimality. However, initial experiments indicate

that this approach scales much better in practice.

A more complex bidirectional version of this technique is used in [53] in which

they first perform a single-hop backward search from all nodes w ∈W to their immediate

neighbors in X = {x ∈ V | (x,w) ∈ E∪E′, w ∈W,x 6= v}, and then perform the forward

search from u to the target set X (instead of W ). This allows the distance bound of the

forward search to be further reduced to w(e↓) + max{w(e↑)−min{w(e) | e = (x,w) ∈

E∪E′} | e↑ = (v, w) ∈ O↑v , w 6= u}. We further adapt this technique to our own language

constrained variant by performing the restricted forward search from u as indicated in

the paragraph above and by relaxing only edges e = (x,w) for each node w ∈ W in

the single-hop backward search if `(e) ⊆ {`(e↓) ∪ `(e↑)}, where e↑ = (v, w), thus still

preserving correctness.

Additionally, we employ the technique of using hop limits [53], in which we

specify a limit on the number of hops that the paths on our local search can take. Each
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local search is aborted once the number of hops on the paths found by the search exceeds

the specified constant limit. This can greatly speed up the local search times, but, like

our other optimization, may result in unnecessary shortcuts being added during con-

traction. We use this optimized version of our algorithm for all subsequent experimental

results presented in this chapter.

3.5 Experiments

3.5.1 Test Environment

All experiments were carried out on a 64-bit server machine running Linux

CentOS 5.3 with 2 quad-core CPUs clocked at 2.53 GHz with 72 GB RAM (although

only one core was used per experiment). Our implementation of the CHLR technique is

an extended implementation of the original Contraction Hierarchies source code, written

in C++, and further detailed in [50]. Our implementation of the ALT algorithm (used

for comparison against CHLR) is based on the algorithm described in [36]. All programs

were compiled using gcc version 4.1.2 with optimization level 3.

3.5.2 Test Dataset

For our experiments, we used the continent-wide graph dataset of North Amer-

ica (this includes only the US and Canada), represented by a total of 21, 133, 774 nodes

and 52, 523, 592 edges. 6, 779, 795 of these edges support one or more labels in this

dataset, with 0.21 labels per edge, on average. Table 3.1 offers some additional in-

formation on the 16 different real-world labels supported in the North American graph

dataset. This dataset (including labels) was derived from NAVTEQ transportation data

products, under their permission.
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Table 3.1: Graph Label Support for North America

Label # Edges

Ferry 2,610

Toll Road 47,388

Unpaved Road 3,645,458

Private Road 1,662,314

Limited Access Road 682,396

4-Wheel-Drive-Only Road 139,284

Parking Lot Road 160,850

Hazmat Prohibited 45,950

All Vehicles Prohibited 64,414

Delivery Vehicles Prohibited 148,010

Trucks Prohibited 475,472

Taxis Prohibited 147,628

Buses Prohibited 151,272

Automobiles Prohibited 114,192

Pedestrians Prohibited 1,253,030

Through Traffic Prohibited 2,050,562

3.5.3 Node Ordering

Our initial experiments were focused on determining a good approach for node

ordering in the context of Kleene language constrained shortest paths. For this ex-

periment, we took an approach similar to that of [50], in which we considered several

different ordering metrics, along with several different combinations of weighted coeffi-

cients for each metric tested. In particular, we considered 6 unique ordering metrics (the

first 5 of which come from [50]): edge difference, contracted neighbors, original edges,

search space depth, local search space size, and a new priority term introduced here,

which represents the number of new multi-edges introduced during the contraction of a

node (new multi-edges).

For each metric, we defined a range of possible values for their associated weight

coefficient (e.g, 0− 300), as well as an incremental step size (e.g., 100). We then carried

out experiments on all possible combinations of coefficients for these metrics, using the
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specified ranges and step sizes. In all, we tested 4, 096 (i.e., 46) combinations of the

6 different ordering metrics on a subgraph of the North American graph, representing

the state of Virginia (with 483, 504 nodes and 1, 113, 602 edges). For each configuration

of coefficient values for these 6 metrics, the graph index was constructed using that

particular configuration, and then a series of 10, 000 uniform random shortest path

queries were run on the index (the same random pairs were used for each configuration

for consistency). For each pair of nodes in the set of random test cases, we ran both a

non-restricted search (i.e., no labels were restricted; R = ∅) and a fully-restricted search

(i.e., all labels were restricted; R = Σ)5.

From these results, we calculated the product of the construction time of the in-

dex and the average overall query time (considering both the unrestricted and restricted

results together), and then chose the configuration with the smallest such product value.

The smallest of these products can be seen as a good compromise of construction time

and query time. From these experiments, we found that a combination of only 2 par-

ticular ordering metrics was sufficient to produce the best overall results for the graphs

tested here. In particular, for all subsequent experiments carried out here, we have

chosen to use only the edge difference metric, with a weighted coefficient of 100, and the

original edges metric, with a weighted coefficient of 200.

3.5.4 Comparative Results

In Table 3.2, we present the results of this approach when applied to the full

North American graph. This table compares both the preprocessing and query results of

CHLR against the bidirectional adaptation of Dijkstra’s algorithm, as well as the ALT

algorithm, constructed using 64 landmarks (ALT-64). As with the original node ordering

5This is feasible since not all edges support labels in our test datasets.
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experiments, for the queries, we take the averages of 10, 000 random unrestricted queries

(where R = ∅) and 10, 000 random restricted queries (where R = Σ). Even though the

CHLR technique requires nearly 3 times the preprocessing time than that of ALT-64 for

the North American graph, we are able to achieve 3 orders of magnitude improvements

in both search space and query times over both the Dijkstra algorithm and ALT-64, on

average (this is due primarily to the effectiveness of the shortcut edges in CHLR, which

greatly reduce the resulting search space, and thus, the query times). However, as we

will see in later experiments, the overall performance of these techniques can strongly

depend on the chosen set of restricted labels.

Table 3.2: Experiments on the North American Graph Dataset

Preprocessing Queries
Time Space # Settled Time

Technique [H:M] [B/node] Nodes [ms]

Bidir. Dijkstra 0:00 0 6,799,486 3,043.89

ALT-64 0:49 512 1,141,430 1,528.80

CHLR 2:10 62 993 2.18

3.5.5 Degree Limits

An adverse side effect to the fact that this new approach must now support

multi-edges is that of degree explosion during the graph index construction. As indicated

in Figure 3.5(a), as the index construction proceeds for the North American graph,

the average degree of the remaining subgraph quickly grows from 10 to 271 during

contraction of the last 2% of the nodes. This degree explosion can also be seen to have

a strong impact on the overall runtime of the index construction algorithm in practice,

where, for the North American graph, roughly 90% of the runtime was spent contracting

only the last 1% of the nodes (see Figure 3.5(b)).
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Figure 3.5: Effects of Degree Explosion During Construction of the North American

Graph Dataset
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In order to combat this effect, we introduce the concept of a degree limit within

the construction algorithm, in which contraction of the remaining nodes is aborted as

soon as the average degree of the remaining nodes reaches some critical threshold, as

defined by the limit. The remaining (uncontracted) nodes in the graph make up what

are called the core nodes of the graph index (a concept introduced and explored in [69]

and also in [50] for many-to-many shortest path searches and in [23] for goal-directed

routing). Once the contraction is aborted after reaching the degree limit, then, for all

remaining nodes, v, in the core, we set φ(v) = |V | 6. To maintain correctness of results,

we then need only adjust our search graphs as follows. We set G↑ = (V,E↑), where

E↑ = {e = (v, w) ∈ E ∪ E′ | φ(v) ≤ φ(w) ∧ `(e) ∩ R = ∅} and G↓ = (V,E↓), where

E↓ = {e = (u, v) ∈ E ∪ E′ | φ(u) ≥ φ(v) ∧ `(e) ∩ R = ∅} (i.e., we no longer maintain a

strict total node ordering like we did before). Using these search graphs, the algorithm

still maintains correctness; however, searching in the core now becomes more exhaustive

due to the relaxed filtering.

Table 3.3 shows the results of our experiments over several different degree

limits on the North American graph. As can be seen, the index construction time can

be greatly reduced by using reasonable degree limits, without sacrificing too much of

the overall speed of any subsequent queries on the index. Even for the smallest degree

limit of 10, with the worst query times, we are still able to outperform the ALT-64

results from Table 3.2 by an order of magnitude (on average), requiring only 6 minutes

of preprocessing time.

6The function φ is no longer a bijective function in this context.
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Table 3.3: Degree Limit Experiments on the North American Graph Dataset

Preprocessing Queries
Degree Time Space # Settled Time Core
Limit [H:M] [B/node] Nodes [ms] Size

10 0:06 60 238,513 130.14 252,719

20 0:13 61 59,244 40.44 64,153

30 0:18 62 28,732 25.32 30,863

40 0:23 62 16,807 17.12 17,677

50 0:29 62 11,212 11.63 11,541

100 0:57 62 3,577 4.96 3,184

200 1:43 62 1,236 2.63 498

3.5.6 Restriction Cardinality

Here we present experiments on the overall effects of the number of restricted

labels chosen for a given KLCSP query. For this set of experiments, we compare the

CHLR technique against the ALT-64 technique. Since the North American graph sup-

ports only 16 different labels, we perform 17 sets of experiments, one for each possible

size of the restricted label set, |R| = 0, . . . , 16. For each of the 17 possible cardinalities

of R, we perform a set of 10, 000 uniform random shortest path queries. For each of the

random pairs of vertices in the test set for a given cardinality, i, we choose a random re-

stricted label set R ⊆ Σ, such that |R| = i. The results of this experiment are presented

as a box-and-whisker plot in Figure 3.6.

An interesting property emerges from our proposed CHLR technique, as com-

pared to ALT-64 in these experiments. In particular, we can see that, the more restricted

the shortest path query is, the better the CHLR technique performs, in general. Alter-

natively, the performance of ALT-64 actually becomes much worse as the query becomes

more restricted (by up to an order of magnitude). The improvements in performance

of the CHLR technique as the queries become more restricted can be attributed to the

fact that more of the shortcut edges are also now likely to be restricted, thus pruning
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the search space even more than in the relatively unrestricted cases. The degradation of

performance for ALT-64 is primarily due to the fact that the potential functions com-

puted during preprocessing become much weaker in general as the dynamic constraints

on the graph continue to change, as indicated in [36].
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Figure 3.6: Experiments on Restriction Cardinality

3.6 Conclusion

We have presented and formalized a new shortest path query type as a variant

of language constrained shortest path problems. We have also successfully extended the

graph indexing technique known as Contraction Hierarchies to efficiently support this

new dynamically constrained query type. Experimental results on real-world graph data

indicate that this new technique is several orders of magnitude better than Dijkstra’s

algorithm and the ALT algorithm, both in terms of query time and search space. Ad-

ditionally, the performance of this technique also seems to improve under more heavily
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constrained query scenarios, making it a perfect candidate for supporting this new query

type. While this technique has proven highly applicable on real-world road network data,

further exploration of the overall robustness of our technique on different synthetically

labeled graph configurations might allow to better determine the properties of graph

labeling which can affect the relative performance and scalability of our proposed tech-

nique. Additional work in this area also includes extending the concepts of this research

to more complex edge restriction types, such as height and weight restrictions for road

networks. We further explore such complex edge restrictions in the following chapter.

We conclude this chapter by presenting an alternative perspective and algorith-

mic approach for guaranteeing edge minimality in the resulting graph index, as originally

discussed in Section 3.4.5.

3.6.1 Alternative Index Construction

Another way of looking at the previous problem suggested by Figure 3.4 is that,

by always omitting the junction v from the induced subgraph G′v, the local search will

never be able to find witness paths of the form PRu,w = 〈u, . . . , x, v, y, . . . , w〉 such that

u 6= x and/or y 6= w, resulting in the possibility of adding (u,w) shortcuts unnecesssarily.

One alternative solution to that previously suggested is not to omit v from G′v, but

rather, to include v, and instead model a “turn restriction” in the local search, in which

we do not allow the local search to perform a transition from the incoming edge (u, v)

to the outgoing edge (v, w). This will ensure that we find the best possible path from u

to w other than the path 〈u, v, w〉, including any valid witness paths of the above form.

If this alternate path cost is less than or equivalent to the cost of path 〈u, v, w〉, then no

shortcut is needed, and both minimality and correctness remain preserved.

Using this alternative approach, the order of the local searches relative to v
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then becomes irrelevant, making this methodology more efficient in practice (since we no

longer have to rely on sorting adjacent edges). However, this requires a more complex

redefinition of the local search algorithm.

Here we present the pseudocode for these alternative local search and index

construction algorithms, as well as a brief discussion of correctness and minimality. For

the purposes of this discussion, we shall call the new local search and index construction

algorithms KLCSP-Dijkstra-Alt and KLCSP-Contraction-Alt, respectively.

We start with the revised local search algorithm (KLCSP-Dijkstra-Alt; see

Algorithm 3). This local search algorithm behaves almost exactly the same as before,

except we now keep track of the parent node for each node in the current shortest path

tree. We store this information in the newly added p array. This information is used

to ensure that we do not allow the local search to make a transition from the incoming

edge (s, r) to the outgoing edge (r, t), as defined by the input parameter constraints.

This “turn restriction” is enforced in Line 13 when deciding which edges to relax from

the current node during the search. Here, the search will skip the relaxation of the edge

(u, v) if (p[u] = s) ∧ (u = r) ∧ (v = t) is true, which indicates the restricted transition

from (s, r) to (r, t). We note, however, that this constraint alone is not sufficient to fully

guarantee that we always find the best alternate path from s to t, other than 〈s, r, t〉.

For example, consider the graph presented in Figure 3.4. Assume that we have

reduced the weight of edge (u, v) in this graph to 2. If we call KLCSP-Dijkstra-Alt to

find the shortest path from u to y other than 〈u, v, y〉, then node v will be relaxed from

parent edge (u, v) first during the search (giving p[v] = u and d[v] = 2). By the time we

relax edge e = (x, v) in the local search, we will not be able to improve the value d[v] at

Line 15 (since d[x] + w(e) = d[v]). If we leave p[v] = u, then we will be unable to find

any valid path from u to y, since we will ultimately restrict the relaxation of edge (v, y)
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due to the transition from (u, v). However, there is still an equivalent cost shortest path

from u to y other than 〈u, v, y〉: 〈u, x, v, y〉.

To ensure that we are able to find such alternate, equivalent paths, we must

include the additional condition at Line 23 to always “prefer” equivalent-cost paths

from node s to node r other than the incoming edge (s, r) in the local search, thus

eliminating this problem. Note that we do not have to add similar constraints for

preferring equivalent-cost paths from r to t other than (r, t), since the edge (r, t) will

only be relaxed if p[r] 6= s.

The index construction algorithm (KLCSP-Contraction-Alt; see Algorithm 4)

is then changed to omit the ordering of the edges relative to v by weight (since this is no

longer necessary, as we will show below), as well as to include v in the induced subgraph

G′v, and, finally, to call the new local search algorithm.

For the remainder of the discussion, we must first clarify some potentially

troublesome notation. We note that, in the context of the original KLCSP-Contraction

algorithm pseudocode, the induced subgraph G′v is defined such that v /∈ G′v when con-

tracting node v. However, in the context of the new KLCSP-Contraction-Alt algorithm

pseudocode, we have that v ∈ G′v. We shall refer here only to this latter subgraph

definition of G′v.

In Lemma 3, we showed that, by processing adjacent edges in order of increasing

weight when contracting node v, we can guarantee that, when processing edges e↓ =

(u, v) and e↑ = (v, w), either PRu,w = 〈u, v, w〉 or PRu,w ⊆ G′v \{v} must (already) be true.

Here, we prove a slightly different claim for the KLCSP-Contraction-Alt algorithm.

Lemma 5 Let e↓ = (u, v) and e↑ = (v, w) be the pair of edges currently being processed

by the KLCSP-Contraction-Alt algorithm during contraction of node v ∈ G′. Either
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Algorithm 3 KLCSP-Dijkstra-Alt(G, s, r, t, R)

Input: Graph G = (V,E,w,Σ, `), s, r, t ∈ V , restricted alphabet R ⊆ Σ

Output: Cost of shortest path PRs,t, such that PRs,t 6= 〈s, r, t〉

1: PQ← ∅

2: for all v ∈ V do

3: d[v]←∞

4: p[v]← null

5: end for

6: d[s]← 0

7: PQ.Insert(s, d[s])

8: while ¬PQ.Empty() do

9: u← PQ.ExtractMin()

10: if u = t then

11: return d[t]

12: end if

13: for all e = (u, v) ∈ E : (p[u] 6= s) ∨ (u 6= r) ∨ (v 6= t) do

14: if `(e) ∩R = ∅ then

15: if d[u] + w(e) < d[v] then

16: d[v]← d[u] + w(e)

17: p[v]← u

18: if v /∈ PQ then

19: PQ.Insert(v, d[v])

20: else

21: PQ.DecreaseKey(v, d[v])

22: end if

23: else if d[u] + w(e) = d[v] ∧ u 6= s ∧ v = r then

24: p[v]← u

25: end if

26: end if

27: end for

28: end while

29: return ∞
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Algorithm 4 KLCSP-Contraction-Alt(G,φ)

Input: Graph G = (V,E,w,Σ, `) and bijective node order function φ : V → {1, ..., |V |}

Output: Augmented graph G′ = (V,E ∪ E′, w,Σ, `), where E′ represents newly-added

shortcut edges

1: G′ ← G

2: E′ ← ∅

3: for all v ∈ V ordered by φ do

4: for all e↓ = (u, v) ∈ E ∪ E′ : φ(u) > φ(v) do

5: for all e↑ = (v, w) ∈ E ∪ E′ : φ(v) < φ(w) ∧ w 6= u do

6: G′v ← G′[{z ∈ V | φ(v) ≤ φ(z)}]

7: R← Σ \ {`(e↓) ∪ `(e↑)}

8: shortcutCost← w(e↓) + w(e↑)

9: witnessCost← KLCSP-Dijkstra-Alt(G′v, u, v, w,R)

10: if shortcutCost < witnessCost then

11: e′ ← (u,w)

12: w(e′)← shortcutCost

13: `(e′)← {`(e↓) ∪ `(e↑)}

14: E′ ← E′ ∪ {e′}

15: G′ ← (V,E ∪ E′, w,Σ, `)

16: end if

17: end for

18: end for

19: end for

20: return G′
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PRu,w = 〈u, v, w〉 is true or PRu,w ⊆ G′v \ {v} will eventually be true (specifically, by the

time we are finished contracting node v).

Proof. It suffices to consider the case where PRu,w 6= 〈u, v, w〉 in G′v and PRu,w * G′v \{v}.

This implies that v ∈ PRu,w, and, therefore, PRu,w = 〈u, . . . , x, v, y, . . . , w〉 such that u 6= x

and/or y 6= w. However, since PRx,y = 〈x, v, y〉, then when the construction algorithm

(eventually) processes the edges e↓ = (x, v) and e↑ = (v, y), the algorithm will be

forced to add shortcut edge (x, y), by definition. Therefore, when the contraction of v

is complete, there must exist a path PRu,w = 〈u, . . . , x, y, . . . , w〉 ⊆ G′v \ {v}.

Note that this property holds true even in the context of the original KLCSP-

Contraction algorithm. However, for the original construction algorithm, we had to

prove the stronger claim that, if PRu,w 6= 〈u, v, w〉, then PRu,w ⊆ G′v \ {v} must (already)

be true. This is because the previous algorithm would only avoid adding a (u,w) shortcut

if this latter condition already held. However, the new local search algorithm is able to

find witness paths of the form shown in the above lemma (to detect that PRu,w ⊆ G′v \{v}

will eventually be true), and no shortcut edge will be added in this scenario.

We now have that the KLCSP-Contraction algorithm and the KLCSP-Contraction-

Alt algorithm will both only add a shortcut edge (u,w) if PRu,w = 〈u, v, w〉 (and this is

the only shortest path) when processing edges e↓ and e↑ (based on the properties of Lem-

mas 3 and 5, respectively). Therefore, they will generate the exact same shortcut edge

set for a given ordering φ. Correctness and minimality of the KLCSP-Contraction-Alt

algorithm thus follows from equivalence.
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Chapter 4

Shortest Paths with

Parameterized Restrictions

4.1 Introduction

Routing in road networks is one of the showcases of algorithm engineering.

In the last decade, much research has been done to develop increasingly more efficient

algorithms to solve shortest-path problems in road networks with fixed, non-negative

edge weights. However, these algorithms are generally restricted to static query scenarios

and further research is needed to develop efficient algorithms for more flexible scenarios.

Speaking in broad terms, a shortest-path algorithm for a flexible scenario answers a

shortest-path query from a source to a target node subject to additional, dynamic query

parameters. This chapter considers the flexible scenario with edge restrictions regarding

properties of the represented roads. A query then can specify the properties of roads

that should not be included in the resulting shortest paths. Considering such edge

restrictions is of high practical relevance, as they are often necessary for guaranteeing

the feasibility of the paths in real-world applications. For example, large delivery trucks
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may not be able to travel certain roads, depending on their size and weight, due to height

and weight limits of overpasses and bridges, respectively. However, smaller vehicles, such

as cars, may still be allowed to use such roads. In principle, one could create different

graphs for obeying different restrictions, and apply the basic speed-up algorithms already

developed. However, this is highly inefficient, as it duplicates a lot of work and results

in redundant data storage, since each restriction scenario is based on the same road

network. Therefore, we augment existing speed-up techniques to this flexible scenario

so that duplicate work is avoided. Furthermore, we develop new algorithmic ingredients

tailored to this scenario to make our algorithms more efficient.

4.1.1 Related Work

A survey of the many existing techniques for speeding up basic shortest-path

queries can be found in [35]. Nearly all of these techniques rely on some variant of

the classical Dijkstra’s algorithm [39], in which a shortest-path tree is constructed by

performing a weighted, unidirectional search from the starting node, s, until the target

node, t, is reached. A common extension of this search algorithm performs a bidirectional

search, in which both a forward search from s and a backward search1 from t are

simultaneously performed until the searches meet. A more detailed description of this

bidirectional Dijkstra search may be found in [54].

The existing body of research on preprocessing techniques can be classified into

three general categories: hierarchical techniques, goal-directed techniques, and combina-

tions of the two. Hierarchical techniques (such as [53, 65, 101]) seek to order the nodes

and/or edges within the graph into hierarchically-nested levels, based on some measure

of overall importance within the graph structure. Shortest-path queries carried out on

1Backward search in a graph G = (V,E) is the equivalent of performing a standard (i.e., forward)
search in the graph Ḡ = (V, Ē), where Ē = {(v, u) | (u, v) ∈ E}.
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a hierarchical graph progressively search towards higher (i.e., more important) levels of

the graph hierarchy, while bypassing lower (i.e., less important) levels of the hierarchy,

thus effectively reducing the overall search space explored by the query. One of the most

efficient hierarchical preprocessing techniques to-date is that of Contraction Hierarchies

(CH) [53], which will be discussed in further detail in a later section.

Goal-directed search techniques attempt to “direct” the shortest-path search

towards some explicit target node (i.e., the “goal”), in order to speed up the overall query

time. Two of the most effective goal-directed search techniques based on preprocessing

are Arc-Flags [64, 77] and the ALT [54] algorithm. Arc-flags involves partitioning the

graph into k separate subgraphs, and, for each edge, a vector of k binary “flags” is

established to indicate whether that edge lies on some shortest path into each partition,

respectively. This can then be used by the shortest-path search algorithm to filter any

edges whose flag for the target node’s partition indicates that it cannot belong to the

shortest path. The ALT algorithm is based on the concepts of A∗ [62] search, which

uses a potential function to estimate the shortest-path distance from a given node to

the search target. ALT involves preprocessing which selects a set of landmark nodes, L,

and then, for each landmark node, l ∈ L, calculates the shortest-path distance to/from

every node, v, in the graph: d(l, v) and d(v, l), respectively. For any node, v, with

target node, t, the triangle inequality provides two lower bounds for each landmark,

l ∈ L: d(l, t) − d(l, v) ≤ d(v, t) and d(v, l) − d(t, l) ≤ d(v, t). The maximum of these

lower bounds is used during a bidirectional A∗ search.

Goal-directed techniques have also previously been successfully combined with

several hierarchical preprocessing techniques (e.g., see [23] for a discussion). Some of

the more efficient hybrid implementations rely on the concept known as Core-ALT [23],

which is a variant of ALT in which landmark distances are only established for some
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core subset of important nodes (e.g., nodes highest in the hierarchy). For nodes not

within the core, we rely on their closest core nodes, known as their proxy nodes, to

establish valid lower bounds from the preprocessed landmark distances in the core.

Further details on Core-ALT will be provided in a later section. This technique has

already been effectively incorporated into the CH-related preprocessing technique for

supporting a flexible scenario with multiple edge weights in [51].

4.1.2 Our Contributions

In this chapter, we explore a new type of shortest-path query, in which the

query can be dynamically parameterized to constrain the type of edges which may be

included in the resulting shortest path. More specifically, each edge has an associated

set of boolean and/or scalar values representing both qualitative and quantitative infor-

mation about the edge, respectively (e.g., toll road: no, max. vehicle height: 5m). The

query then specifies a constraint for each value type (e.g., restrict toll road: yes, vehicle

height: 3m), thus limiting the edges which may be considered valid for a solution path.

We demonstrate how to correctly and efficiently incorporate the constraints of

this new problem type into the well-known Contraction Hierarchies preprocessing tech-

nique for speeding up the resulting shortest-path queries. Initial research on extending

Contraction Hierarchies for supporting edge restrictions was originally presented in [94].

However, this research focused only on a single type of edge restriction (discussed fur-

ther below). This chapter serves as an extension of this initial research, with many

additional optimizations and experimental results. Specifically, we present several effec-

tive algorithmic optimizations for further improving the overall speed and scalability of

the resulting preprocessing and query algorithms. This includes the addition of goal-

directed search techniques, search space pruning techniques, and generalizing the con-
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straints of the local search during contraction. Experiments are then presented for two

of the largest real-world road networks in the world: the North American and European

road networks. The results of these experiments showcase the general effectiveness and

scalability of our proposed methodology to large-scale, real-world graphs.

The remainder of the chapter is organized as follows. In Section 4.2, we present

the concept of edge restrictions as constraints on the allowable edges for a given shortest-

path query. We also formalize a universal framework for simultaneously supporting two

general classes of edge restriction types: label restrictions [94] (e.g., a boolean toll road

label) and parameterized restrictions (e.g., a vehicle height limit). Section 4.3 presents

an overview of Contraction Hierarchies, along with the primary extensions necessary to

correctly support flexible edge restrictions. Section 4.4 extends this technique further

with the concepts of goal-directed search. Section 4.5 presents several additional opti-

mizations to the basic approach given in Section 4.3 for further improving preprocessing

and query times. Section 4.6 presents the experimental analysis of this technique. Fi-

nally, Section 4.7 concludes the chapter.

4.2 Edge Restrictions

Within the context of this chapter, we consider two general types of edge

restrictions: label restrictions and parameterized restrictions. For clarity, we first define

each of these concepts separately in the subsections below. However, for simplicity, we

then establish a single, unified framework for simultaneously supporting both types of

edge restrictions.
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4.2.1 Label Restrictions

Originally introduced in [94], label restrictions are the most basic type of edge

restriction possible. In this context, the graph is defined with a fixed set of possible

edge classes (e.g., highways, toll roads, ferries, unpaved roads, etc.). Each edge is then

assigned a subset of “labels” to indicate which class(es) it belongs to in the graph. A

shortest-path query can then be dynamically adjusted according to which labels (i.e.,

classes) of edges should be excluded from the resulting shortest path. For example, a

traveler may wish to find the shortest path between two locations which avoids both

toll roads and ferries, or, alternatively, they might prefer to find the shortest path which

avoids only unpaved roads. Also note that, in addition to excluding a certain label (e.g.,

highway), we may also force its presence on all edges of the computed path. This can

be easily done by putting an inverted label (e.g., “no highway”) on the complementing

set of edges and then excluding edges with this inverted label.

4.2.2 Parameterized Restrictions

The second class of restrictions, known as parameterized restrictions, are in-

troduced for the first time here. This class of restrictions defines a slightly more flexible

form of constraint as compared to the label restrictions, discussed above. For parame-

terized restrictions, the graph is defined with a fixed set of parameter types (e.g., vehicle

height, vehicle weight), whose values are to be specified at query time. Each edge is

then assigned a threshold value defining an absolute limit for each parameter type, be-

yond which the edge will be restricted for that parameter type. For example, if an edge

represents a section of road which travels under an overpass or through a tunnel, then

its “vehicle height” threshold value will be equal to that of the height clearance for this
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overpass or tunnel, so that no vehicle taller than this threshold can be routed on this

section of road. A shortest-path query can then be dynamically adjusted by provid-

ing different combinations of parameter values for each parameter type (e.g., different

vehicle types will have different heights, weights, etc., resulting in potentially different

shortest paths between the same two locations for the different vehicles).

4.2.3 Unified Framework

So far, we have presented a basic intuition for how edge restrictions are intended

to work, in general, across two different classes of edge restrictions. We now define and

further unify these concepts more formally as follows. Let G = (V,E) be a directed

graph, where V is the set of nodes and E is the set of edges, with non-negative edge

weight function c : E → R>0 and edge threshold function vector τ = 〈τ1, τ2, . . . , τr〉,

such that ∀ i ∈ [1, r], τi : E → R>0 ∪ {∞} is a function mapping edges in G to a real-

valued threshold, or∞ if the edge is not restricted. Given this graph definition, we have

that an Edge-Restricted Shortest-Path (ERSP) query is of the form q = 〈s, t, p〉, where

s ∈ V is the starting node, t ∈ V is the target node, and p = 〈p1, p2, . . . , pr〉 is the set

of parameters that constrain the query (henceforth referred to as the query constraint

parameters). Given any query specification, q, of the above form, we define the ERSP

to be the shortest path, Pq, with respect to edge weight function c, in the edge-restricted

graph Gp = (V,Ep), where Ep = {e ∈ E | ∀ i ∈ [1, r], pi ≤ τi(e)}.2 An example of an

edge-restricted graph and query is given in Figure 4.1.

Additionally, this particular form of parameterized edge restrictions subsumes

the simpler form of label restrictions discussed earlier. More specifically, for any given

2We use threshold values only as upper bounds to simplify the description in this chapter, but our
algorithm can easily be modified to handle lower bound threshold values, too.
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Figure 4.1: For this graph, we have threshold function vector τ = 〈τ1, τ2〉. Each edge, e,

is labeled as (c(e), 〈τ1(e), τ2(e)〉). For query q = 〈s, t, 〈3, 7〉〉, the original graph is shown

here with edge set Ep in thick black and all other (restricted) edges in grey. For this

query, Pq = 〈(s, w), (w, v), (v, t)〉.

class of edge types (e.g., highways, toll roads, ferries), we may simply define a new

threshold function, τj . For any edge, e ∈ E, we then have that τj(e) = 0 if the edge

belongs to class j and τj(e) = ∞, otherwise. Then, for any associated query in which

we wish to restrict all edges of class j, we set pj =∞ in the query definition. It is clear

to see that, by definition, no edges with that particular classification can then belong to

the edge-restricted graph for this query. This formulation therefore provides us with a

single, universal framework which is now general enough to support even the most basic

of restrictions (i.e., label restrictions) yet flexible enough to support the more powerful

parameterized restrictions.

Definition 6 (Minimum Threshold) Given two edges e and e′, we define the minimum

threshold vector for these two edges to be:

τ(e) g τ(e′) = 〈min(τ1(e), τ1(e′)),min(τ2(e), τ2(e′)), . . . ,min(τr(e), τr(e
′))〉

Definition 7 (Maximum Threshold) Given two edges e and e′, we define the maximum

threshold vector analogously:

τ(e) f τ(e′) = 〈max(τ1(e), τ1(e′)),max(τ2(e), τ2(e′)), . . . ,max(τr(e), τr(e
′))〉
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Figure 4.2: For the path P = 〈(u, v), (v, w), (w, x), (x, y)〉, we have τ(P ) = 〈2, 3〉.

The minimum/maximum threshold operators define the most/least restrictive

set of threshold values between the two edges’ threshold function vectors, respectively.

Definition 8 (Path Threshold) For any path, P = 〈e1, e2, . . . , ek〉, we define the path

threshold as the minimum threshold over all of its edges (e.g., see Figure 4.2):

τ(P ) = τ(e1) g τ(e2) g . . .g τ(ek)

The path threshold operation effectively defines the most restrictive set of pos-

sible query constraint parameters for which the associated path will still be unrestricted.

Definition 9 (Threshold Dominance) Given two threshold function vectors τ and τ ′,

we define a weak dominance relation as follows:

τ � τ ′ ⇔ ∀i ∈ [1, r], τi ≤ τ ′i

τ � τ ′ ⇔ ∃i ∈ [1, r], τi > τ ′i

In this context, we say that τ ′ weakly dominates τ (τ � τ ′) if it is no more

restrictive than τ for all possible restrictions. Likewise, we say that τ is non-dominated

by τ ′ (τ � τ ′) if it is less restrictive than τ ′ for at least one restriction. We additionally

apply this notation to reflect the relation between any query constraint parameters,

p = 〈p1, . . . , pr〉, and the threshold function vectors. For example, we say that p �

τ(e) ⇔ ∀i ∈ [1, r], pi ≤ τi(e) to indicate that p is not restricted by τ(e). A similar

notation holds for � as well.
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4.3 Contraction Hierarchies with Parameterized

Edge Restrictions

The Contraction Hierarchies (CH) technique involves preprocessing a directed

graph G = (V,E), with edge weight function c : E → R>0. Each node in the graph is

ordered according to some notion of relative importance. The CH is then constructed

by contracting the nodes in increasing order of importance. Contracting a node u

means removing u from the graph without changing shortest-path distances between

the remaining (more important) nodes by adding shortcuts. A shortcut is an edge

(v, w) representing a whole path 〈v, . . . , w〉 in the original graph.

Node Contraction. When a node u is contracted, we only preserve the shortest-

path distances between the neighbors of u. This is sufficient, as any shortest path

that uses node u in the middle has a subpath between two neighbors of u, which we

preserve. Therefore, given two currently uncontracted neighbors, v and w, with edges

(v, u) and (u,w), we perform a shortest-path search to find the shortest path P between

v and w in the remaining graph avoiding u. When the length of P is longer than the

length of the path 〈v, u, w〉, we add the necessary shortcut between v and w with weight

c(v, u) + c(u,w) to the remaining graph. Otherwise, P is a witness that no shortcut is

necessary (i.e., the shortest path distances remain preserved even without the shortcut).

The search explores usually only a small part of the graph and is therefore called local

witness search.

Query. Once all necessary shortcuts are added to the graph G for a given ordering,

shortest-path queries may then be carried out using a bidirectional Dijkstra search

variant which performs a simultaneous forward search from s in the upward graph G↑ =
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(V,E↑), where E↑ = {(u,w) ∈ E | u contracted before w}, and backward search from t

in the downward graph G↓ = (V,E↓), where E↓ = {(v, u) ∈ E | v contracted after u}.

A tentative shortest-path distance is maintained and is updated only when the two

search frontiers meet to form a shorter path. The search in a given direction may be

aborted once the minimum key for the priority queue in that direction exceeds the length

of the best tentative path seen so far. Once both search directions are finished, the best

path seen thus far represents the shortest-path distance.

Node Ordering. Assume that each node u has a priority on how attractive it is to

contract u. Then, we contract a most attractive node and update the priorities of its

remaining adjacent nodes. We repeat this until all nodes are contracted. This results

in an ordering of the nodes and, at the same time, adds all necessary shortcuts to the

graph. In practice, the priority values are typically defined as some linear combination

of multiple heuristically-useful terms. The reader is referred to Section 3 of [53] for a

detailed discussion of many of the most commonly-used terms in practice. The priority

defined for our results in this chapter is a linear combination of two terms. The first

term is the edge difference between the number of necessary shortcuts to contract u and

the number of incident edges to remaining nodes. The second term is the sum of the

original edges represented by the necessary shortcuts to contract u. We weight the first

term with 1 and the second term with 2 (these weights were determined from initial

experiments on graphs with label restrictions in [94]).

4.3.1 Incorporating Edge Restrictions

In the following, we show how to further preserve shortest-path distances within

the CH preprocessing for the more flexible edge-restricted shortest-path queries as well.
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Figure 4.3: Contracting node u for flexible edge restrictions. The shortcut edge is

represented by a dashed line.

Given a graph G = (V,E), with weight function c : E → R>0 and threshold function

vector τ = 〈τ1, τ2, . . . , τr〉, we are able to incorporate the constraints of edge restrictions

into the CH preprocessing as follows. As with static CH, we still must establish some

absolute priority order for contracting the nodes.

However, now, when contracting a node u we need to consider edge restrictions.

The potential shortcut (v, w) represents the path 〈v, u, w〉 with path threshold p =

τ(v, u)gτ(u,w). Therefore, to avoid the shortcut, we need to find a witness path whose

witness path threshold weakly dominates p. We do this by performing the local witness

search in the graph Gp, as defined earlier. As before with the static CH preprocessing,

we then only add a shortcut edge (v, w) if the resulting path P has greater length

than the path 〈v, u, w〉, and we omit it otherwise. For example, in Figure 4.3, we show

the result of contracting node u on the example graph. In this case, we have that

p = τ(v, u) g τ(u,w) = 〈3, 6〉. Since there is no valid path, P , for this witness search

which ignores node u (i.e., edge (x, y) is restricted for p1 = 3 and edge (y, w) is restricted

for p2 = 6), then a shortcut edge (v, w) must be added with weight c(v, u) + c(u,w) = 4

and threshold function vector p.
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Note that contrary to the static scenario, we cannot omit parallel edges3. We

need to keep parallel edges for each Pareto-optimal pair of threshold vector and edge

weight. For example, we may have an edge with weight 2 and threshold 〈2, 6〉, and a

parallel edge with weight 4 and threshold 〈3, 8〉. We cannot just keep the edge with

weight 2, as a query with constraints 〈3, 8〉 must not use this edge. However, we identify

edges by their two endpoints in cases where the particular edge is clear from the context.

Lemma 10 Consider the contraction of node u by our CH with Flexible Edge Restric-

tions algorithm. Let v, w be two uncontracted neighbors of u with edge (v, u), (u,w).

Let p be a set of query constraint parameters with p � τ(v, u) g τ(u,w). Either there

exists a witness path P with c(P ) ≤ c(〈v, u, w〉) and p � τ(P ) or a shortcut of weight

c(〈v, u, w〉) and threshold vector τ(v, u) g τ(u,w) is added.

Proof. Follows directly from our definition of node contraction and the transitivity of

the threshold dominance.

After preprocessing is complete, that is, all necessary shortcuts are added to

G, shortest-path queries of the form q = 〈s, t, p〉 may then be carried out. We perform a

simultaneous forward search from s in the upward edge-restricted graph G↑p = (V,E↑p),

where E↑p = {e = (u,w) ∈ E | u contracted before w ∧ p � τ(e)}, and backward search

from t in the downward edge-restricted graph G↓p = (V,E↓p), where E↓p = {e = (v, u) ∈

E | v contracted after u ∧ p � τ(e)}.

Theorem 11 Given a graph G = (V,E) constructed by the CH with Flexible Edge

Restrictions algorithm, our query algorithm is correct for any query.

Proof. Let q = 〈s, t, p〉 be a fixed query. Lemma 10 ensures that we add all necessary

shortcuts such that Gp = (V,Ep) is a CH. As our query corresponds to a CH query

3Parallel edges are unique edge instances between the same pair of nodes, but with potentially
different properties; e.g., see Figure 4.5 for an example.
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on Gp, the correctness of our algorithm follows from the correctness of the CH query

algorithm.

4.4 Goal-Directed Search

In this section, we demonstrate how to further enhance the basic approach of

our suggested algorithm (presented above) using a variant of the ALT algorithm. The

ALT technique has been previously studied within the context of dynamic graphs in

[36], where it is noted that the potential functions computed from landmarks in ALT

remain correct for dynamic scenarios in which edge weights are only allowed to increase

from their original value. Therefore, it is easy to see that ALT remains correct even for

ERSP queries, since restricting an edge is equivalent to increasing its weight to infinity

for the duration of the query.

4.4.1 Goal-Direction in the Core Graph

As discussed briefly in Section 4.1.1, Core-ALT is a variant of ALT in which

landmark distances are established only for some relatively small, core of the “upper-

most” (i.e., most important) nodes in the hierarchy. This can be seen to greatly reduce

the space overhead for storing landmark distances, as compared to the original ALT.

The original Core-ALT [23] uses an uncontracted core. That is, all nodes but the

core nodes get contracted as described in Section 4.3. This is useful when a contraction

of the core nodes would be impractical for performance or scalability reasons. For

example, experiments have shown that the majority of the preprocessing time is spent

contracting the uppermost nodes in the hierarchy, where the remaining subgraph can

become quite dense due to the addition of too many shortcuts. Aborting contraction at

74



the core allows us to avoid the additional preprocessing time necessary to contract the

remaining, relatively-dense subgraph of the core. Due to the contraction of the non-core

nodes, there are shortcuts present in the core to ensure that the shortest-path distances

are preserved. So a regular bidirectional Dijkstra search can be performed in the core.

Using core landmarks is especially helpful in this context for speeding up this search

within the core.

Better query times, however, may be achieved with a contracted core [51]. All

nodes, including the core nodes, get contracted. Now, we can use a CH query algorithm

on the core, that is additionally guided by landmarks.

We incorporate core-based routing as described by [23]. More precisely, for a

given query q = 〈s, t, p〉, a three-phased search algorithm is established as follows. In the

first phase, we perform the bidirectional query algorithm exactly the same as before,

except we prune the search at any core nodes. Specifically, we record each reached

core node and its associated distance from either s or t, but we do not relax any of its

outgoing/incoming edges, respectively. If we find the shortest path during this phase, we

are finished. If not, we continue to the second phase, in which we perform a backward

search from the source node, s, and a forward search from the target node, t, until each

search direction reaches its closest core node (i.e., its proxy node): s′ and t′, respectively.

This gives us the shortest-path distances d(s′, s) and d(t, t′), respectively. In the final

phase, we then reinsert all core nodes reached during the first phase, with their respective

distances, into the priority queues and continue the bidirectional search in the core using

the following A∗ potential function values4. For a given node, v, reached by the forward

core search, and a landmark l ∈ L, we compute a lower bound on the distance to the

4If either search direction fails to reach a core node in the second phase, then we employ a zero-value
potential function for that search direction.
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target: max{d(l, t′) − d(l, v) − d(t, t′), d(v, l) − d(t′, l) − d(t, t′)}. Likewise, for a node,

v, reached by the backward search, we use the following lower bound on the distance to

the source: max{d(l, v)−d(l, s′)−d(s′, s), d(s′, l)−d(v, l)−d(s′, s)}. The tightest lower

bounds are computed as the maximum over all landmarks.

4.4.2 Multiple Landmark Sets

As is discussed in [94], using ALT landmark distances for ERSP queries can re-

sult in ineffective potential functions for very heavily-constrained shortest-path queries.

This is due primarily to the fact that, even though the potential functions remain cor-

rect, the resulting lower bounds become much weaker (i.e., less accurate) when large

numbers of edges become restricted.

In an attempt to alleviate this problem, we propose the new concept of using

multiple landmark sets, L = {L1, L2, . . . , Lk}. In this context, we define a landmark

set, L ⊆ V , as being a set of landmarks created specifically for a single set of query

constraint parameters, pL = 〈p1, p2, . . . , pr〉. The distances for the landmark set L are

based on the edge-restricted graph determined by the query constraints of pL.

Using this concept of multiple landmarks, for a given query q = 〈s, t, p〉, we

may then choose only from the set of landmarks Lp = {L ∈ L | pL � p}. That is,

we may select only from the sets of landmarks, L, whose associated query constraint

parameters, pL, are no more restrictive than the incoming query constraint parameters,

p. By that, we maintain valid lower bounds for the resulting potential function values.

We then select the best set of active landmarks to use from Lp, i.e., the few landmarks

which provide the best potential function values from s to t, for both search directions.

Using multiple landmark sets allows us to derive better potential functions, in general,

by more closely approximating the shortest path distances associated with the dynamic
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query constraints of p.

One possibility to support this for flexible edge restrictions would be to es-

tablish a unique landmark set for all possible combinations of query constraint values.

However, this is clearly infeasible for any real-world implementation. A more realis-

tic approach would therefore be to establish a unique landmark set specific to each

unique threshold function, τi, in the threshold function vector for the graph. That is,

L = {L1, L2, . . . , Lr, Lr+1}, such that, ∀i ∈ [1, r], pLi = 〈p1 = 0, . . . , pi =∞, . . . , pr = 0〉

(i.e., each landmark set Li restricts only edges with finite threshold values for τi). Land-

mark set Lr+1 is established for the fully unrestricted set of query constraint parameters,

pLr+1 = 〈0, 0, . . . , 0〉, to ensure that there is always at least one set of valid landmarks

to choose from.

4.5 Optimizations

In this section, we present several additional algorithmic enhancements to the

basic approach of our algorithm, in order to further optimize the overall speed and

scalability of this approach. Many of the ideas presented in subsection 4.5.1 (below) are

further extensions to approaches originally proposed in [53] and [94].

4.5.1 Improved Local Search

Multi-Target Local Search. With flexible edge restrictions, to ensure that only a

minimal number of shortcut edges are added for a given node ordering, a local wit-

ness search must be carried out separately for every pair of neighbors for which a

shortcut may need to be added [94]. This is necessary, since the exact constraints

applied to any particular local witness search will depend upon the threshold values of
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the specific pair of edges being bypassed by a given (potential) shortcut edge. There-

fore, when contracting a node, u, where I↓u = {(v, u) ∈ E | v contracted after u} and

O↑u = {(u,w) ∈ E | u contracted before w}, the minimal algorithm must perform a

total of |I↓v | · |O↑v | separate local witness searches5. However, if we do not require to

add a minimal number of shortcut edges, the overall efficiency of the contraction of

u can be improved as follows. We may instead perform only a single local witness

search from the source, v, of each incoming edge e↓ = (v, u) ∈ I↓u until all nodes

in the set W = {w ∈ V | (u,w) ∈ O↑u} have been settled, or until a distance of

w(e↓) + max{w(e↑) | e↑ = (u,w) ∈ O↑u, w 6= v} has been reached [53]. We use the

maximum threshold of all of the outgoing edges in O↑u to obtain the path threshold

p = τ(v, u) g
(
f∀e∈O↑u τ(e)

)
(e.g., see Figure 4.4), similar to the approach used in [94].

We perform the multi-target local witness search in Gp. However, this does not affect

the correctness of the resulting CH graph, since the local search constraint parameters,

p, are guaranteed to be as or more restrictive than the query constraint parameters

for any explicit pair with (v, u) as the incoming edge. Therefore, any resulting witness

paths are still valid, even though this approach may result in the addition of unnecessary

shortcuts. As we will see in later experiments, this multi-target approach scales much

better in practice.

Limited Local Search. We limit the depth of the shortest-path tree of the local

search to 7 [53]. This way, we can only guarantee to compute upper bounds to the

nodes. Shortcut decisions based on these upper bounds add all necessary shortcuts,

but sometimes also some unnecessary ones. However, this limit also greatly accelerates

precomputation.

5Pairs 〈e↓ = (v, u), e↑ = (u,w)〉 where v = w may be ignored.
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Figure 4.4: Multi-target local search from v to W = {w, x, y}. In this scenario, the

query constraint parameters are defined as p = τ(v, u) g (τ(u,w) f τ(u, x) f τ(u, y)) =

〈2, 9〉g (〈4, 2〉f 〈3, 5〉f 〈6, 4〉) = 〈2, 9〉g 〈6, 5〉 = 〈2, 5〉.

Local Edge Reduction. During the course of the contraction phase, it may also

be beneficial to see if we can quickly detect and remove any edges which provably can

not belong to any shortest paths for any possible parameter value combinations. The

intended effect of this approach is to further reduce the size of the resulting CH graph,

giving us better overall preprocessing and query times.

One simple, yet effective way of doing this is as follows. After performing a

multi-target local search (discussed above) from the source, v, of some incoming edge

(v, u), we have computed a shortest-path tree rooted at node v. Let Px = 〈e1, e2, . . . , ek〉

be a path in the tree from root node v to any other node x. Then, for all outgoing edges

(v, x) from v, we may remove edge (v, x) if v is not the parent of x in the shortest path

tree (i.e., there is a shorter path from v to x other than (v, x)) and τ(v, x) � τ(Px). In

this case, it is easy to show that edge (v, x) can never belong to any shortest path, for

any possible parameter value combination, since any parameter values for which edge

(v, x) would be valid would also be valid for the path Px, which is shorter than edge

(v, x). Therefore, edge (v, x) can easily be removed in this scenario without affecting

the correctness of any subsequent shortest-path queries on the CH graph.
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Biased Local Search. Additionally, we may further minimize the number of neces-

sary local searches per node contraction as follows. Let in-degree(u) and out-degree(u)

represent the number of incoming and outgoing edges, respectively, for node u. If in-

degree(u) ≤ out-degree(u), then we can perform forward multi-target local searches from

the source nodes of all incoming edges (as suggested above); however, if in-degree(u) >

out-degree(u), then we can instead perform backward multi-target local searches from

the target nodes of all outgoing edges. But as road networks have mostly bidirected

edges, we did not implement this optimization.

4.5.2 Search Space Pruning

Here we present several useful techniques that allow us to quickly detect and

skip over (or “prune”) certain unnecessary edges or nodes during the bidirectional CH

search query.

Parallel Edge Skipping. Due to the presence of multi-edges within the resulting

CH graphs, a näıve shortest-path query on the upward/downward edge-restricted graphs

may perform redundant or unnecessary work on any parallel edges during a given search.

For example, in Figure 4.5, a query with constraint parameters p = 〈1, 3〉 is valid for all

three parallel (u, v) edges. If we relax these edges in an arbitrary order (e.g., in order of

decreasing weight), this may result in multiple calls to the priority queue DecreaseKey

function for the same target node v. However, if we sort and store the adjacent edges

of a given node first by their target node and then by their weight, then, when we

relax the first valid (i.e., unrestricted) edge leading to a given target node, we can

automatically skip over any remaining parallel edges leading to that same target node,

since no remaining parallel edges to that node can improve the current path distance
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Figure 4.5: Skipping parallel edges. Edges to a given target node are accessed in order of

increasing weight to allow pruning. For example, for a query with constraint parameters

p = 〈1, 3〉, we may skip the bottom two parallel edges from node u to node v, since we

can successfully relax the topmost edge.

(see Figure 4.5). This will save on unnecessary calls to the DecreaseKey function.

Additionally, and perhaps more importantly, when incorporating goal-directed search

into the query, skipping of parallel edges will also implicitly save on redundant calls to

compute the potential function value for the same target node, which can be relatively

expensive, depending upon the potential function being used.

Computing Lower Bounds. Instead of deriving the lower bounds from all landmarks

in Lp, we only use a subset of 4 landmarks that give the highest lower bounds on the s-t

distance [54]. This speeds up the overall query, as the computation of the lower bounds

is much faster but still provides good lower bounds.

Node Pruning Using Lower Bounds. In the ALT algorithm, the heuristic potential

function serves to establish a lower bound on the possible shortest-path distance of a

given query. Since we maintain a tentative upper bound on the shortest-path distance

for our current query, we may also skip over any nodes whose resulting key value (which

is a lower bound on the length of a path that visits that node) is greater than or equal

to the current upper bound seen thus far [57]. This simple optimization can also be seen

to have a significant impact on the resulting shortest-path query times.
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Witness Restrictions. Our algorithm described so far tends to have a much larger

search space (i.e., a larger number of relaxed edges and settled nodes) for less restricted

queries than for more restricted queries. For example, experiments on the European

road network suggest that an unrestricted query can explore up to twice as many nodes,

on average, compared to a fully-restricted query on the same network. This comes from

the fact that more restricted queries will filter out more edges from the search. However,

a lot of shortcuts are added during the node contraction that are only necessary for more

restricted queries, while, for less restricted queries, there would be a witness preventing

the shortcut. So we introduce the new concept of witness restrictions, that stores the

information about these witnesses with the shortcuts. More precisely, this information is

a set of witness path thresholds. There can be more than one witness path threshold for

a given shortcut edge. For example, in Figure 4.6, we would store the set {〈1, 6〉, 〈2, 5〉}

with the shortcut (v, w). The shortcut is necessary, e.g., for a query with constraint

parameters 〈3, 5〉, as this restricts both potential witnesses. But a query with constraint

parameters 〈1, 6〉 does not need the shortcut, as a witness is available. Note that the

witness paths considered for the set of witness path thresholds must be strictly shorter

than the shortcut. This is necessary, as the shortcut may be used as a witness when all

the interior nodes on the witness path get contracted before its source and target node.

Also note that it is sufficient to store a Pareto-optimal set of witness path thresholds.

However, storing a whole set of witness path thresholds would require a vari-

able amount of storage overhead per edge, which is impractical. Also, it is too time-

consuming to compute all Pareto-optimal witness path thresholds. Therefore, for prac-

ticality, we will only store a single witness path threshold τ∗(e) with a shortcut e. For

non-shortcuts, e, we set τ∗(e) = 〈−∞,−∞, . . . ,−∞〉. During preprocessing, when a
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Figure 4.6: Contracting node u with two witnesses (dotted) available for a subset of

potential query constraint parameters.

new shortcut edge, e = (v, w), is added to the CH graph, we then perform an additional

unconstrained shortest-path query that tries to find the shortest overall witness path,

Pv,w. We then set τ∗(v, w) = τ(Pv,w), and continue as before. Note that in our ac-

tual implementation, we delay the computation of τ∗(e) until one of its endpoints gets

contracted. This improves the preprocessing performance, as the computation is then

executed on a smaller remaining graph, and the edge reduction technique may have

removed e in between.

Our edge-restricted search graphs are now filtered as follows. The upward

edge-restricted graph G↑p = (V,E↑p) is now defined such that E↑p = {e = (u,w) ∈

E | u contracted before w ∧ p � τ(e) ∧ p � τ∗(e)}. The downward edge-restricted

search graph is defined analogously. As will be seen in later experiments, using witness

restrictions can result in smaller search space sizes and query times, especially for less

restricted queries (e.g., resulting in speedups up to a factor of 1.5, on average, for

unrestricted queries). The only downside of witness restrictions is that they increase

the space required to store an edge. We therefore also propose to store them only for

edges inside a core of the most important nodes, similar to the core-based landmarks

described in Section 4.4.1.
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4.6 Experiments

In this section, we present several detailed experiments highlighting the per-

formance of our proposed algorithm for supporting edge restrictions in various query

scenarios. Sections 4.6.1 and 4.6.2 describe our testing environment and our chosen

test datasets, respectively. Section 4.6.3 provides experimental results showcasing our

many proposed optimizations, and we present a progressive overview of how each suc-

cessive optimization contributes to improve the overall performance of our solution. In

Section 4.6.4, we examine the performance characteristics of the number of chosen re-

strictions for a given query. Finally, Sections 4.6.5 and 4.6.6 wrap up the experimental

results with an in-depth comparison of our proposed solution against static CH.

4.6.1 Test Environment

All experiments were carried out on a 64-bit server machine running Linux

CentOS 5.3 with 2 quad-core CPUs clocked at 2.53 GHz with 72 GB RAM (although

only one core was used per experiment). All programs were written in C++ and compiled

using gcc version 4.1.2 with optimization level 3.

4.6.2 Test Dataset

Experiments were carried out on two of the largest available real-world road

networks: a graph of North America6 and a graph of Europe7. Our North Ameri-

can graph has a total of 21, 133, 774 nodes and 52, 523, 592 edges, while our European

graph has 40, 980, 553 nodes and 94, 680, 598 edges. Table 4.1 summarizes the differ-

6This includes only the US and Canada.
7This includes Albania, Andorra, Austria, Belarus, Belgium, Bosnia and Herzegovina, Bulgaria,

Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Gibraltar, Greece, Hungary,
Ireland, Italy, Latvia, Liechtenstein, Lithuania, Luxembourg, Macedonia, Moldova, Monaco, Montene-
gro, Netherlands, Norway, Poland, Portugal, Romania, Russia, San Marino, Serbia, Slovakia, Slovenia,
Spain, Sweden, Switzerland, Turkey, Ukraine, United Kingdom, and Vatican City.
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Table 4.1: Supported Restriction Types for the North American and European Graphs.

Edges
Restrictions North America Europe

Ferry 2,610 11,334

Toll Road 47,388 237,304

Unpaved Road 3,645,458 14,434,228

Private Road 1,662,314 1,957,380

Limited Access Road 682,396 N/A

4-Wheel-Drive-Only Road 139,284 N/A

Parking Lot Road 160,850 N/A

Hazmat Prohibited 45,950 N/A

All Vehicles Prohibited 64,414 2,326,232

Delivery Vehicles Prohibited 148,010 3,674,338

Trucks Prohibited 475,472 5,347,498

Taxis Prohibited 147,628 3,765,140

Buses Prohibited 151,272 3,811,704

Automobiles Prohibited 114,192 3,772,628

Pedestrians Prohibited 1,253,030 1,653,448

Through Traffic Prohibited 2,050,562 7,210,664

Height Limit 23,873 N/A

Weight Limit 24,627 N/A

ent real-world restrictions supported by each graph dataset. Both datasets (including

restrictions) were derived from NAVTEQ transportation data products, under their per-

mission. Of the 18 unique restrictions, only two of these are true parameterized restric-

tions: Height and Weight Limit. The remaining 16 restrictions are label restrictions

only. For the parameterized restrictions, the data distinguishes between 29 different

height limit values and 57 different weight limit values.

Unless otherwise stated, all query performance results are averaged over the

shortest-path distance queries between 10, 000 source-target pairs. Source and target

nodes are selected uniformly at random. For each source-target pair, we performed an

unrestricted and a fully-restricted query and we report the mean performance. This

covers both ends of the restriction spectrum.
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4.6.3 Engineering an Efficient Algorithm

There is a significant performance difference between the basic implementation

of the idea of Section 4.3 and an efficient algorithm using all the techniques and opti-

misations of Sections 4.4 and 4.5. We analyze this in Table 4.2 for the North American

network. Single-target (i.e., pairwise-edge) local search provides no feasible precomputa-

tion, as it does not finish within 3 days. With multi-target local search, we significantly

decrease precomputation time to 16 hours. Additionally using edge reduction decreases

the precomputation to 7 hours, and also reduces the query time from 7.3 ms to 4.6 ms.

Skipping parallel edges reduces the number of relaxed edges by 70%. But as we still

need to traverse the edges in the graph, and of course the same number of nodes is

settled, the query time is only reduced by 7%. Using witness restrictions increases the

precomputation by less than 20 minutes and improves the query time by 22%. However,

it increases the space-consumption by 9 B/node. Using witness restrictions only on a

core, we even get a slightly improved query time and virtually no space overhead for

witness restrictions. Compared to the baseline bidirectional Dijkstra search, MEPWC

has a speed-up of more than 1, 000 and even requires less space8.

We can significantly decrease the precomputation time when we do not contract

core nodes. As a query would then settle almost all nodes in the core, we use ALT in

the core to improve query performance. We can trade precomputation time for query

time by choosing different core sizes. It is important to use lower-bound pruning, as this

reduces query time especially on large cores by around 22%. The resulting algorithm

MEPWCG110kUL with a core size of 10,000 nodes has a preprocessing time of just 50

minutes, but the query time is more than 63% larger compared to MEPWC. Leaving

8This is possible as edges need to be stored only with the less important node.
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Table 4.2: Experiments on the North American graph showing combinations of re-

sults for (S)ingle-Target Local Search, (M)ulti-Target Local Search, (E)dge Reduction,

(P)arallel Edge Skipping, (W)itness Restrictions (WC for core-only witness restrictions

for a core size of 10,000), and (G)oal-Directed Search for both single (G1) and multiple

(GN ) landmark sets with fixed core sizes of 10,000 (10k), 5,000 (5k), and 3,000 (3k) for

both (U)ncontracted and (C)ontracted cores, with the option of (L)ower-Bound Prun-

ing. All results are averaged for both unrestricted and fully-restricted queries over 10,000

random source-target pairs. The baseline bidirectional (D)ijkstra search (with no pre-

processing) is also presented for comparison. Entries with a value of - were unavailable

due to incompletion of the preprocessing within the allowed time.

Preprocessing Queries
Time Space Time Settled Stalled Relaxed

Algorithm [H:M] [B/node] [ms] Nodes Nodes Edges

D 0:00 35 3,462.75 7,212,135 N/A 17,961,846

S 72:00+ - - - - -
M 16:05 33 7.29 1,033 624 49,436

ME 6:56 32 4.61 946 563 31,320
MEP 6:56 32 4.29 946 563 8,979

MEPW 7:15 41 3.36 834 450 6,769
MEPWC 7:11 32 3.27 855 470 6,881

MEPWCG110kU 0:49 32 6.88 3,806 135 51,437
MEPWCG15kU 1:19 32 5.34 2,342 184 36,607
MEPWCG13kU 1:56 32 4.51 1,744 227 28,377

MEPWCG110kUL 0:49 32 5.35 2,715 133 28,536
MEPWCG15kUL 1:19 32 4.22 1,794 182 20,754
MEPWCG13kUL 1:56 32 3.66 1,410 223 16,191

MEPWCGN10kUL 0:56 37 4.38 1,971 133 19,428
MEPWCGN5kUL 1:26 34 3.87 1,440 182 15,706
MEPWCGN3kUL 2:02 33 3.42 1,192 223 12,803

MEPWCGN10kCL 7:21 37 1.18 491 133 3,073
MEPWCGN5kCL 7:20 34 1.50 578 180 3,675
MEPWCGN3kCL 7:20 33 1.75 648 221 4,072

87



Table 4.3: Experiments on the European graph with the same settings as in Table 4.2.

Preprocessing Queries
Time Space Time Settled Stalled Relaxed

Algorithm [H:M] [B/node] [ms] Nodes Nodes Edges

D 0:00 33 6,273.21 11,366,174 N/A 25,842,792

S 72:00+ - - - - -
M 40:11 31 10.09 1,240 761 58,854

ME 17:27 30 6.60 1,222 704 42,815
MEP 17:27 30 6.05 1,222 704 15,301

MEPW 18:22 39 4.90 1,091 572 11,717
MEPWC 18:10 30 4.52 1,119 601 11,897

MEPWCG110kU 2:03 30 15.31 5,757 196 111,698
MEPWCG15kU 3:36 30 12.99 3,726 287 87,378
MEPWCG13kU 5:40 30 10.75 2,764 368 68,973

MEPWCG110kUL 2:03 30 13.50 4,380 192 69,579
MEPWCG15kUL 3:36 30 11.03 2,914 277 58,413
MEPWCG13kUL 5:40 30 9.36 2,251 354 47,068

MEPWCGN10kUL 2:15 33 11.09 3,410 192 51,873
MEPWCGN5kUL 3:49 31 9.50 2,484 277 49,193
MEPWCGN3kUL 6:07 31 8.64 1,999 354 41,068

MEPWCGN10kCL 18:29 33 2.68 791 191 8,505
MEPWCGN5kCL 18:28 31 3.65 990 276 11,806
MEPWCGN3kCL 18:28 31 3.86 1,096 355 12,337

only 3,000 nodes uncontracted results in roughly 2 hours precomputation time, but

increases the query time only by 12%. As we need to store the landmark distances only

for core nodes, the space consumption does not visibly change.

We can further decrease the query time by using multiple landmark sets. This

slightly increases the precomputation time by about 6–7 minutes. The space consump-

tion increases by 3% (for 3k core) to 16% (for 10k core). The resulting query time for

the 3k core is now only 5% above MEPWC.

The fastest query times are achieved using landmarks on a large contracted

core. On a 10k core, our MEPWCGN10kCL algorithm achieves a query time of 1.18 ms,

that is 2,900 times faster than bidirectional Dijkstra.

Table 4.3 provides the performance results on the European network. We see
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Figure 4.7: Experiments on the North American graph comparing the query times of

the MEP, MEPWC, and MEPWCGN10kCL configurations across different restriction

cardinalities.

a similar performance compared to the North American network, although the absolute

numbers are larger as the network is larger. In general, landmarks do not decrease the

query time as much as for the North American network. The speed-up of MEPWC over

Dijkstra’s algorithm is ≈ 1,300, while the best speed-up with landmarks is ≈ 2,300.

4.6.4 Restriction Cardinality

To assess the performance of our algorithm for different values of query con-

straint parameters, we measure query performance for different restriction cardinalities

of the query constraint parameters p = 〈p1, p2, . . . , pr〉. We define the cardinality of p in

this context as the number of pi 6= 0. For uniformity with label restrictions, the param-

eterized restrictions are either set to 0 or the maximum value. On North America, for
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Figure 4.8: Experiments on the European graph comparing the query times of the

MEP, MEPWC, and MEPWCGN10kCL configurations across different restriction car-

dinalities.

each possible cardinality (0-18), we test the average query times of 10,000 source-target

pairs, where each query is based on a uniform random set of query constraint parame-

ters of the specified cardinality. We provide query times for three different algorithms in

Figure 4.7. We see that without witness restrictions (MEP), the query time decreases

with increasing restriction cardinality, as we need to relax fewer edges. As expected,

witness restrictions improve the performance of less restricted queries with small re-

striction cardinality up to 30%. For more restricted queries, MEP is slightly faster, but

the overall performance is better for MEPWC. Witness restrictions decrease the factor

between unrestricted and restricted queries from 3.1 to 2.0. For MEPWCGN10kCL, our

algorithm with the best query times, this factor is reduced even further to 1.4, providing

very good performance independent of the restriction cardinality.
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On the European graph, we observe similar results in Figure 4.8, where we have

only twelve different restrictions. The absolute query times are larger, as the network is

bigger. Witness restrictions improve the time of unrestricted queries by 34%.

4.6.5 Comparison to Static Contraction Hierarchies

In Table 4.4 we evaluate the performance of static (inflexible) contraction hier-

archies for unrestricted queries ignoring any restrictions (IGNORE), and fully restricted

queries having any restricted edge removed from the graph (REMOVE). We see that

the preprocessing is much faster as it does not need to consider restrictions. The pre-

processing for IGNORE STATIC is 25 times faster than FLEXIBLE on North Amer-

ica, but we can still consider our FLEXIBLE preprocessing as efficient, as we consider

216 ·29 ·57 = 108, 331, 008 different choices of query constraint parameters, and on aver-

age, there are 29.4 different shortest paths over choices of query constraint parameters

(Table 4.5). Also the query times of IGNORE are 11 times faster than FLEXIBLE, as

the node order is tailored to the restriction set and not used for all possible restrictions.

To evaluate this further, we perform the contraction with the node order computed by

our flexible algorithm. The resulting query time is now only 4 times faster than FLEX-

IBLE, although the number of settled nodes and relaxed edges is almost the same. A

big advantage of our flexible algorithm is its space-efficiency: its space consumption in-

creases by less than 50%, mainly due to the larger edge data structure storing thresholds.

This larger edge data structure also affects the cache-efficiency of our query algorithm,

thus explaining some of its slowdown. For fully restricted queries (REMOVE), we see

that the gap in the query time is much smaller, only a factor of 5. This is expected, as

our flexible query algorithm can skip a lot of edges for such heavily-restricted queries.

Also, it seems that the flexible node order is somewhat ‘closer’ to the REMOVE node
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Table 4.4: Static contraction results based on ignoring edge restrictions (IGNORE)

and removing edges with restrictions (REMOVE), compared to our flexible algorithm

(MEPWC). We also give query performance in the case where we use the flexible

node order (FLEX). In this case we report the flexible node ordering time (for MEP,

this is the same node order as MEPWC but does not compute witness restrictions) +

the static contraction time. The performances are compared to our flexible algorithm

(FLEXIBLE).

G
ra

p
h Query Preprocessing Queries

Constraint Time Space Time Settled Stalled Relaxed
Parameters Algorithm [H:M] [B/node] [ms] Nodes Nodes Edges

N
or

th
A

m
er

ic
a

IGNORE
STATIC 0:17 22 0.41 795 382 3,207

STATIC (FLEX) 6:56 + 0:04 22 1.07 1,030 550 9,539
FLEXIBLE 7:11 32 4.34 1,068 588 9,765

REMOVE
STATIC 0:11 19 0.42 727 344 3,361

STATIC (FLEX) 6:56 + 0:03 19 0.53 641 353 3,997
FLEXIBLE 7:11 32 2.20 641 353 3,997

E
u

ro
p

e IGNORE
STATIC 0:28 21 0.35 659 336 2,346

STATIC (FLEX) 17:27 + 0:07 21 1.79 1,370 697 16,475
FLEXIBLE 18:10 30 6.01 1,419 745 16,786

REMOVE
STATIC 0:21 17 0.82 1,062 575 6,014

STATIC (FLEX) 17:27 + 0:04 17 0.94 819 456 7,008
FLEXIBLE 18:10 30 3.12 819 456 7,007

order, as using it only slightly increases the query time from 0.42 ms to 0.53 ms.

For the European graph, the gap between the static and our flexible algorithm

is a bit larger. The preprocessing is now 39 times slower, although there are only 15.6

different shortest paths on average (Table 4.5). The graph seems to significantly change

with restricted edges, indicated by the much higher number of edges carrying restrictions,

c.f. Table 4.1. One reason is possibly that, in Europe, many countries demand toll on

all their highways, whereas in North America only few highways require toll, mostly on

the east coast of the United States. The results of [105] suggest that restricting these
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Table 4.5: Average and maximum number of unique shortest paths for individual s-t

pairs in the North American and European graphs over all possible query constraint

parameters (when tested on 1000 s-t pairs).

Graph Average Path Count Max Path Count

North America 29.4 338

Europe 15.6 135

Table 4.6: Flexible contraction with restrictions, based on 2 static node orderings (from

above): IGNORE and REMOVE. The preprocessing time is split into the static node

ordering time + the flexible contraction time. We compare it to the flexible algorithm

MEPWC. Results are based on averages of fully restricted and unrestricted queries.

Preprocessing Queries
Time Space Time Settled Stalled Relaxed

Graph Node Order [H:M] [B/node] [ms] Nodes Nodes Edges

North

America

FLEXIBLE 7:11 32 3.27 855 470 6,881
IGNORE 0:17 + 4:04 48 5.84 977 544 6,780
REMOVE 0:11 + 48:00+ - - - - -

Europe
FLEXIBLE 18:10 30 4.52 1,119 601 11,897
IGNORE 0:28 + 39:21 45 22.09 1,426 930 20,215
REMOVE 0:21 + 48:00+ - - - - -

highways highly affects the efficiency of our algorithms. Therefore, the balancing act of

creating a node order suiting all restrictions is much harder, affecting the preprocessing

and query time. Still, our algorithm is reasonably fast for web services, and more

importantly, requires only about the space of two static contraction hierarchies.

4.6.6 Static Node Ordering

We are further interested in using statically computed node orders for our

flexible contraction. In practice, the node ordering is much slower than contraction given

a node order, as computing and updating the node priorities takes the majority of the
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time. Therefore, we hope that by performing a static node ordering, we can significantly

decrease the overall precomputation time. The results are summarized in Table 4.6. We

used the node orders IGNORE and REMOVE computed in the previous section. The

IGNORE node order improves the precomputation time, as it only takes about 4 hours

for the contraction plus an additional 17 minutes to compute the static node order,

instead of 7:11. However, the query time increases by 79%. We analyzed this in more

detail and found out that an unrestricted query takes now 2.53 ms and a fully restricted

query takes 9.14 ms. So the static node order is only good for unrestricted queries, and is

even faster than the flexible one for such queries. But restricted queries become slow, and

the space consumption also increases by 60%, as a lot more shortcuts are necessary, since

this static node order does not consider restrictions. We strongly see the blindness of a

static node order towards unconsidered restrictions for the REMOVE node order. There,

our contraction did not finish within two days. Therefore, we recommend the usage of

static node orders only for practitioners with profound knowledge of the algorithm and of

their most commonly-expected query constraint scenarios, as, otherwise, a lot of things

can go wrong with the use of static orders.

4.7 Conclusion

In this chapter, we extended the ideas from [53] and [94] to engineer an efficient

algorithm that takes different edge restrictions into account. For continental sized road

networks, the preprocessing takes several hours, with query times of only a few millisec-

onds. The speed-up over Dijkstra’s algorithm is more than three orders of magnitude.

We achieve this by incorporating goal-direction into our algorithm, and by using witness

restrictions, allowing to skip shortcuts that are only required for more restricted queries.
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Part III

Route Planning with Detour

Constraints
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Chapter 5

Generalized Shortest Paths

5.1 Introduction

Imagine you are traveling in a new city. On the way to your destination, you

wish to stop by a gas station to refuel your vehicle, stop at a post office to drop off a

postcard, and stop by one of your favorite fast-food restaurant chains to pick up dinner.

Naturally, you wish to do this with the least amount of overall detour on the way to

your final destination.

Furthermore, it is reasonable to assume that you do not particularly care ex-

actly which gas station, post office, or favorite fast-food chain location you visit, since

each will ultimately provide the same type of intended service1. Since each location type

is primarily accessible via the road network, the goal then is to find a path through the

network that visits one location from each of these location types, in the least amount

of overall time (or distance, or monetary cost, etc.). Such scenarios are common for

personal navigation needs.

Additional applications of this problem type exist in the logistics industry

1Note that the location types are user-defined and may therefore be made more specific, if desired;
e.g., only consider gas stations of a certain brand.
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as well. For example, for long-haul trucking, the route may require multiple days of

traveling long distances, necessitating the recurrent need for refueling, lodging, eating,

etc. throughout the trip. Selecting the optimal location(s) amongst all of these options

to minimize travel time and cost is an important part of the route planning process.

This basic problem is more commonly known as the Generalized Traveling

Salesman Path Problem (GTSPP) [96], and it is known to be NP-hard, as the solution

must determine not only which location from each location type to visit, but also the op-

timal order in which to visit them. However, for many scenarios, the order in which each

location type is visited during the trip can often be very important (or even required).

For example, in the previous personal navigation scenario, you might wish to refuel first

if your vehicle is low on gas, and to get dinner last so that it is still fresh when you arrive

at your destination. Additional scenarios from logistics in which the visit order of each

location type is crucial include deliveries which require specialized equipment, such as

moving equipment or regulated containers (e.g., for storing temperature-sensitive ma-

terials). In many cases, the vehicle must first pick up the equipment along the way at

any one of several pickup (or rental) locations, then pick up the package and make the

delivery. Only after the delivery can the equipment then be returned at any one of the

other pickup (or rental) locations. Problems such as these, for which the visit order of

each location type is fixed, are called here Generalized Shortest Path (GSP) queries.

In the remainder of the chapter, we propose an efficient algorithmic approach

for solving GSP queries in real-world road networks. In Section 5.2, we formalize the

GSP query, and give a discussion of related work and our contributions. In Section 5.3,

we show how GSP queries may additionally be used to find approximate solutions for

the (NP-hard) GTSPP. Section 5.4 details our approach towards engineering a scalable

algorithm for solving large-scale GSP queries. Section 5.5 presents our experimental
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results of this approach for GSP queries on the continent-wide road network of North

America. Section 5.6 concludes the chapter.

5.2 Generalized Shortest Path Queries

Generalized Shortest Paths (GSP) are shortest paths that must visit at least

one node from each of a set of node categories, in a specified order. We define this

concept more formally as follows.

Definition 12 (Graph) Let G = (V,E,w) be a directed graph, where V is the set of

vertices in G, E ⊆ V × V is the set of edges in G, and w : E → R+ is a function

mapping edges in G to a positive, real-valued weight. Let |V | = n and |E| = m.

Definition 13 (Path) Let Ps,t = 〈v1, v2, . . . , vq〉 be any path in G from some vertex

s = v1 ∈ V to some vertex t = vq ∈ V , such that, for 1 ≤ i < q, (vi, vi+1) ∈ E. Let

w(Ps,t) =
∑

1≤i<q w(vi, vi+1) be the weight, or cost, of Ps,t.

Definition 14 (Shortest Path) Given any s, t ∈ V , a least-cost (or “shortest”) path is a

path P ′s,t in G such that, ∀ Ps,t in G, w(P ′s,t) ≤ w(Ps,t). The shortest path cost, w(P ′s,t),

is most often formally referred to as d(s, t).

For each GSP problem instance, we represent the set of possible locations for

each requested category, as well as their intended sequence of traversal for the query,

through a category sequence, as defined below.

Definition 15 (Category Sequence) A category sequence defines a fixed sequence of

node sets C = 〈C1, C2, . . . , Ck〉, where, for 1 ≤ i ≤ k, Ci = {ci,1, ci,2, . . . , ci,|Ci|} ⊆ V

represents a unique category of available locations. The sequence determines the order

in which each category must be visited.
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Definition 16 (GSP Query) A GSP query may be represented as a three-tuple 〈s, t, C〉,

such that s, t ∈ V and C = 〈C1, C2, . . . , Ck〉 represents a category sequence. The query

is said to have category count k and category density g = max
1≤i≤k

{|Ci|}. See Figure 5.1

for an example query.

Definition 17 (Satisfying Path) For any category sequence, C, a path, Ps,t, is said to

satisfy the category sequence if there exists a subsequence of nodes 〈vi1 , vi2 , . . . , vik〉 from

Ps,t, such that 1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ q and for 1 ≤ j ≤ k, vij ∈ Cj. This is formally

written as Ps,t |= C.

Definition 18 (GSP Solution) Given any GSP query 〈s, t, C〉, a GSP is a path P ′s,t in

G such that P ′s,t |= C and ∀ Ps,t in G where Ps,t |= C, w(P ′s,t) ≤ w(Ps,t). This optimal

solution path is more formally referred to as PCs,t.

s

t
c1,1

C1
C2
C3

c1,2

c1,3

c2,1

c2,2

c2,3

c3,1

c3,2

Figure 5.1: GSP Example Query 〈s, t, 〈C1, C2, C3〉〉. The edges have unit-cost weight.

An optimal path is shaded in grey.

A variant of GSP query, which has important theoretical implications (dis-

cussed in Section 5.3), is the following.
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Definition 19 (RTO-GSP) Return-to-Origin (RTO) GSP queries are a special variant

of GSP in which the destination is the same as the origin; i.e., s = t.

For simplicity in the remainder of this discussion, we shall focus solely on

retrieving only the optimal solution cost, w(PCs,t), for each query, rather than construct-

ing the resulting path. Maintaining parent pointers for subsequent path retrieval is a

straightforward extension to this model.

To further simplify our later formulations, given a category sequence C =

〈C1, C2, . . . , Ck〉, we shall also assume two implicit “dummy” categories, C0 = {s} and

Ck+1 = {t}, such that C = 〈C0, C1, . . . , Ck, Ck+1〉.

5.2.1 Related Work

GSP queries have been established using various formulations in prior research.

The first work to address this type of query was in [106], in which two specific algo-

rithms were proposed for this query type: LORD and PNE. The LORD algorithm was

designed primarily to work with point sets in Euclidean space. The PNE algorithm was

proposed for work within graphs, such as road networks. However, the PNE algorithm

requires issuing multiple nearest-neighbor queries in the graph, and this approach can

demonstrably result in overlapping search effort throughout the graph.

The GSP query may also be seen as a special class of language constrained

shortest path queries [18], in which the solution paths are constrained by formal language

requirements on labels associated with the edges/nodes of the graph. Such constraints

require a valid solution path to contain edge/node labels in a fixed pattern or sequence.

In this context, the GSP query requires that the labels apply to the nodes instead of

the edges, and the node labels of the paths must match a regular expression of the

form (C0 ∗ C1 ∗ ... ∗ Ck ∗ Ck+1), where ∗ represents the Kleene closure of the wildcard,
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matching any sequence of possible node labels. An extension to the classical Dijkstra

shortest path algorithm [39] has been given in [18] for solving similar regular expression

constrained queries. The algorithm relies on searching a product graph constructed from

the original road network graph and from the finite automaton graph used to represent

the regular language constraint. As this approach requires only a single graph search,

it avoids the unnecessary search overlap of the PNE algorithm. However, this approach

may still require searching many (or even all) nodes in the product graph.

The first (and, until now, only) pre-processing technique designed to support

GSP queries was proposed in [107], in which the pre-processing constructs a series of

additively weighted voronoi diagrams (AWVD) for a given category sequence. While ef-

ficient, this approach requires a priori knowledge of the set(s) of possible node categories

and their fixed sequence(s), thus limiting its applicability for real-world GSP query sce-

narios. For example, no two travelers are likely to consider the exact same (sub)set

of restaurants (or grocery stores, etc.) as desirable (e.g., based on brand preferences),

nor are they likely to consider them in the exact same fixed sequence amongst other

categories for each distinct trip. In order for the AWVD approach to account for all

possible subsets and all possible sequences of category locations would require Ω(2|V |)

preprocessing time and storage overhead, which is intractable in practice. Therefore, a

more flexible approach is needed.

Pre-processing techniques have recently shown great success in speeding up var-

ious other shortest path related queries as well. The most prominent of these techniques

to-date is known as the Contraction Hierarchies (CH) technique [53].

CH pre-processing establishes an ordering of the nodes in the graph, φ : V →

{1, . . . , |V |}, and then contracts the nodes in this order. To contract a node, v, means

to remove it from the graph by adding new edges, called shortcut edges, as necessary,

101



to preserve shortest paths in the remaining subgraph. Specifically, for each pair of

incoming and outgoing edges, (u, v) and (v, x), respectively, if the path 〈u, v, x〉 is a

unique shortest path, then a new shortcut edge (u, x), with weight w(u, v) + w(v, x),

is added to bypass v in the remaining subgraph. The pre-processing results in a new

graph G′ = (V,E ∪ E′, w), where E′ represents the shortcut edges.

Point-to-Point (PTP) shortest path queries from s ∈ V to t ∈ V may then

be carried out in the resulting graph as follows. A forward Dijkstra [39] search from

s in the graph G↑ = (V,E↑), where E↑ = {(u, v) ∈ E ∪ E′ | φ(u) < φ(v)} is run

simultaneously with a backward Dijkstra search from t in the graph G↓ = (V,E↓), where

E↓ = {(u, v) ∈ E ∪ E′ | φ(u) > φ(v)}. A tentative shortest path cost is maintained and

is updated only when the two search frontiers meet to form a shorter path. The search

in a given direction may be stopped once the minimum key for the priority queue in

that direction exceeds the cost of the best path seen thus far.

In addition to PTP queries, since our problem definition can have multiple

nodes per category, we further consider Many-to-Many (MTM) shortest path query

scenarios involving multiple sources, S ⊆ V , and multiple targets, T ⊆ V . An efficient

query technique for MTM queries using CH has also been proposed in [53]. Rather than

carrying out |S| · |T | unique PTP CH queries, the query first computes |T | backward

Dijkstra searches in G↓, one for each target t ∈ T . For each node, v, reached by the

backward search from some t ∈ T , the value d↓t (v), representing the cost of the best path

found from v to t, is stored along with the identifier t in a bucket at v. Then the query

performs |S| forward Dijkstra searches in G↑, one for each source s ∈ S. For each node,

v, reached by the forward search from some s ∈ S, the value d↑s(v), representing the cost

of the best path found from s to v, is also maintained. For each pair s ∈ S and t ∈ T ,
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the cost of the shortest s-t path may then be computed as d(s, t) = min
∀v∈V
{d↑s(v)+d↓t (v)}2.

This process requires only |S| + |T | CH graph searches, plus the overhead to intersect

the forward and backward searches.

Note that d↑s(v) ≥ d(s, v) and d↓t (v) ≥ d(v, t), in general, as these costs are

only guaranteed to be equivalent for the highest ranking node on a shortest s-t path

(however, this property is still sufficient for the correctness of CH queries).

Lemma 20 For the highest-ranking node, v, on any shortest s-t path, d↑s(v) = d(s, v)

and d↓t (v) = d(v, t) [53].

As mentioned previously, a closely related problem to the GSP is the Gener-

alized Traveling Salesman Path Problem (GTSPP). Unlike GSP, in which the category

sequence is fixed a priori, GTSPP solutions must additionally optimize the sequence of

the selected category locations. As the well-known Traveling Salesman Path Problem

(TSPP), with fixed source s and destination t, is merely a special instance of GTSPP in

which each node defines its own unique location category, then it is clear that GTSPP is

also NP-hard. As we shall demonstrate later in this chapter, our polynomial-time GSP

solutions can also serve as a good approximation for the more-complex GTSPP queries

as well. Additional approximation algorithms for GTSPP on undirected graphs are

presented in [79]. Among these, the Minimum-Distance (MD) algorithm was proposed,

which selects the node, zi, from each category, Ci, that satisfies the following:

zi = argmin
∀ci,j∈Ci

{d(s, ci,j) + d(ci,j , t)} (5.1)

The authors prove (in the full version of [79]) that the path formed by any permutation

of these nodes is a (k + 1)-approximation for GTSPP on undirected graphs.

2It is not required to iterate over every node, v ∈ V , in practice; only those (few) nodes reached by
both search directions are needed. See [53].
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5.2.2 Our Contributions

The following outlines our contributions towards establishing an efficient algo-

rithm for supporting GSP queries:

1. To the best of our knowledge, this is the first work to formalize a dynamic pro-

gramming formulation for this particular constrained shortest path query variant.

Furthermore, this is also the first work to utilize the concepts of the CH approach

for this query variant. Using concepts from this model, and building from our

proposed dynamic programming formulation, we engineer a very fast and scalable

GSP query algorithm.

2. Unlike the AWVD pre-processing approach from [107], which requires a priori

knowledge of the set(s) of categories as well as their expected sequence(s), our

associated pre-processing approach requires neither. Our supported queries are

fully-dynamic, in that the client issuing the query can construct any possible set

of node categories and specify any possible sequence of such categories. Such

flexibility is considered necessary for practical, real-world applications.

3. We demonstrate that, regardless of the chosen category sequence, GSP queries

closely approximate GTSPP queries on the same set of categories to within a

factor of O(k), for most well-formed graphs. This suggests that we may also

apply our proposed (polynomial-time) algorithm for solving GSP queries to find

O(k)-approximate solutions for the NP-hard GTSPP queries.

4. We present a detailed experimental analysis of our proposed solution on GSP and

RTO-GSP queries applied to the continent-wide road network of North America

(with over 50 million edges). We further examine the results of our solution when
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solved on queries with varying category counts and densities. As a baseline, we

compare our solution against an adaptation of the regular expression constrained

Dijkstra’s algorithm variant presented in [18]. Our proposed algorithm results in

speedups of up to several orders of magnitude over the Dijkstra variant, depending

on the overall number and densities of the categories.

5.3 GSP Approximates GTSPP

Given any GSP query 〈s, t, C〉, let π be any permutation on the (original)

input sequence C = 〈C1, C2, . . . , Ck〉, such that Cπ = 〈Cπ1 , Cπ2 , . . . , Cπk〉. By definition,

solving the GTSPP requires determining the best overall permutation, π′, such that,

for all permutations, π, w(P
Cπ′
s,t ) ≤ w(PCπs,t ). P

Cπ′
s,t thus represents an optimal GTSPP

solution on C.

Theorem 21 For any GSP query 〈s, t, C〉 on an undirected (symmetric) graph, w(PCs,t) ≤

(k + 1) · w(P
Cπ′
s,t ).

Proof. The proof follows implicitly from the results of the MD approximation algorithm

proposed in [79]. Since the path formed by any permutation π of the nodes selected

by the MD algorithm is a (k + 1)-approximation for GTSPP, the MD algorithm must

produce a (k+ 1)-approximation when using our given input sequence 〈C1, C2, . . . , Ck〉.

It follows then that w(PCs,t) is also a (k + 1)-approximation, as it is an optimal solution

for this sequence.

Unfortunately, however, the proof of approximation of the MD algorithm from

[79] does not hold under asymmetry (i.e., cases where d(u, v) 6= d(v, u)). Nevertheless,

we can prove the following bound for directed, asymmetric graphs.
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Theorem 22 For any GSP query 〈s, t, C〉 on a directed (asymmetric) graph, w(PCs,t) ≤

k · w(P
Cπ′
s,t ) + (k − 1) · d(t, s), and this bound is tight.

Proof. Consider the set of nodes {z1, z2, . . . , zk} selected by the MD algorithm (using

equation (5.1)) for the original input sequence C. Since w(PCs,t) is optimal for this

sequence, we have the following inequality:

w(PCs,t) ≤ d(s, z1) +
k−1∑
i=1

d(zi, zi+1) + d(zk, t) (5.2)

≤ d(s, z1) +
k−1∑
i=1

(d(zi, t) + d(t, s) + d(s, zi+1))

+ d(zk, t) (5.3)

=
k∑
i=1

(d(s, zi) + d(zi, t)) +
k−1∑
i=1

d(t, s) (5.4)

≤ k · w(P
Cπ′
s,t ) + (k − 1) · d(t, s) (5.5)

The right-hand side of inequality (5.2) represents the cost of the MD solution for this se-

quence. Inequality (5.3) (and by equivalence, (5.4)) follows from the triangle inequality.

Inequality (5.5) holds by the MD selection logic for each node zi, since, for 1 ≤ i ≤ k,

(d(s, zi) + d(zi, t)) ≤ (d(s, z′i) + d(z′i, t)) ≤ w(P
Cπ′
s,t ), where z′i is the node chosen from

category Ci in the optimal GTSPP path P
Cπ′
s,t (this inequality holds regardless of the

chosen permutation of categories).

s tc2,1 c1,1ck,1 ck-1,1

Figure 5.2: Directed Cycle Graph
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To prove that this bound is tight (in the worst case), consider the simple

directed cycle graph in Figure 5.2. For this graph, suppose we have an input GSP query

sequence C = 〈C1, C2, . . . , Ck〉, but the optimal sequence for the GTSPP query on the

same categories is Cπ′ = 〈Ck, Ck−1, . . . , C1〉 (i.e., the reverse of the input sequence).

Since the GTSPP solution path is the shortest path between s and t and the GSP

solution path must loop back on itself (k−1) times to achieve the desired sequence, this

gives us w(PCs,t) = k · d(s, t) + (k − 1) · d(t, s) = k · w(P
Cπ′
s,t ) + (k − 1) · d(t, s).

This suggests that the complexity of approximation in the asymmetric graph

scenario can depend quite heavily on the degree of asymmetry found within the graph

of interest. For example, if the graph is asymmetric, but with bounded asymmetry (i.e.,

for all s, t ∈ V , d(t, s) ≤ c · d(s, t) for some constant c), then the above approximation

is still an O(k)-approximation (because d(t, s) ≤ c · d(s, t) ≤ c · w(P
Cπ′
s,t )). We note

that most road networks tend to have bounded-asymmetry for sufficiently long-distance

paths as well, but this bound degrades for closely-located node pairs (e.g., due to one-

way streets). However, inherent in this theorem is also the implication that, the closer

the distance from target to source in any asymmetric graph, the closer the solution is to

being a truly O(k)-approximate solution. This leads directly to the following corollary.

Corollary 23 For any RTO-GSP query 〈s, s, C〉 on a directed (asymmetric) graph,

w(PCs,s) ≤ k · w(P
Cπ′
s,s ).

Note that these proofs do not suggest that we cannot further improve upon

these bounds by somehow more intelligently selecting our chosen sequence. Rather, this

suggests only that these are the best possible bounds we can hope to achieve, given any

arbitrary input category sequence. A more detailed look into designing algorithms for

better overall approximations are beyond the scope of this chapter.
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We have shown that, by fixing any arbitrary sequence of categories and solving

a GSP instance on these categories, this generally provides a very good approximation,

typically within a factor of O(k), of the GTSPP solution for the same set of categories.

Therefore, any algorithm designed for optimally solving GSP queries (such as the one

presented in the following sections) may additionally be utilized to approximately solve

the NP-hard GTSPP queries. In our experimental results (Section 5.5), we further

examine how well our GSP solutions approximate GTSPP solutions in practice.

5.4 Engineering a Scalable GSP Algorithm

5.4.1 Dynamic Programming Formulation

In this section, we formulate a new dynamic programming solution to the GSP

problem. We construct a real-valued matrix, X, with (k+ 2) rows3 and g columns4. We

populate the matrix as follows:

X[i, j] =


0 if i = 0

min
1≤`≤|Ci−1|

{X[i− 1, `] + d(ci−1,`, ci,j)} if i > 0

Lemma 24 The value X[i, j] represents the optimal solution cost for the GSP query

〈s, ci,j , 〈C0, C1, . . . , Ci〉〉.

Proof. We prove this by induction on the category sequence 0 ≤ i ≤ k+1. For the base

case, where i = 0, then this claim is trivially true, since 〈s, c0,1, 〈C0〉〉 = 〈s, s, 〈{s}〉〉, and

d(s, s) = 0. For the induction step, when i > 0, our induction hypothesis assumes that

this claim holds true for all values X[i−1, •]. Since each ci,j is itself a member of category

Ci, then it suffices to find the least-cost path which visits categories 〈C0, C1, . . . , Ci−1〉
3The two additional rows account for the dummy categories C0 = {s} and Ck+1 = {t}.
4W.l.o.g., we may assume |Ci| = g, for all 1 ≤ i ≤ k.
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and ends at ci,j . It follows from our induction hypothesis that this is exactly the value

computed by min
1≤`≤|Ci−1|

{X[i− 1, `] + d(ci−1,`, ci,j)}.

Corollary 25 The value X[k + 1, 0] represents the optimal solution cost for the query

〈s, t, C〉; i.e., X[k + 1, 0] = w(PCs,t).

Quadratic Impact of Category Density. Constructing the above matrix requires

O(kg2) steps, not accounting for the runtime of establishing the shortest path costs

between pairs of nodes from adjacent categories (this will be addressed in the following

subsections). In most real-world navigation scenarios, k � g is expected to be true.

Therefore, the primary inefficiency in this formulation comes from the quadratic impact

of the density, g, in deriving this matrix. The goal of the following optimizations is

then to effectively minimize the overall impact of category density on the efficiency of

constructing the matrix as well as its effect on the shortest path query overhead.

Incorporating Contraction Hierarchies. In order to minimize the overhead from

the construction of the X matrix, we must also minimize the overhead for computing

the shortest path costs, d(ci−1,`, ci,j), between each pair of nodes in adjacent categories.

One possibility would be to preprocess all-pairs-shortest-path costs. However, this is

impractical as it requires O(|V |2) space overhead. A logical next consideration would

then be to utilize the very fast point-to-point (PTP) CH shortest path queries. Un-

fortunately, however, even this approach has its limitations, as computing individual

pairwise shortest paths still requires O(kg2) individual CH queries overall. Instead we

may rely upon the previously-established many-to-many (MTM) CH shortest path query

approach, whereby we compute MTM costs from source nodes, Ci, to target nodes, Ci+1,

for each adjacent category pair. Using the MTM CH search approach then requires us to
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perform only 2 ·(kg+1) unique CH graph searches (i.e., g forward searches per category,

g backward searches per category, and 1 forward and 1 backward search for s and t, re-

spectively). This straightforward approach already helps to minimize the strong impact

of category density on our problem, resulting in O(kg) CH searches overall. However, as

we will demonstrate later, this approach also has its scalability and performance limits.

5.4.2 Optimizing for the Problem Structure

In order to engineer an alternative approach for more efficiently solving this

problem, we first look at the structure of the initial solution. We start by examining the

nature of the computation required to construct our proposed X matrix entries using

the MTM CH algorithm previously suggested. For i > 0:

X[i, j] = min
1≤`≤|Ci−1|

{X[i− 1, `] + d(ci−1,`, ci,j)}

= min
1≤`≤|Ci−1|

{X[i− 1, `] + min
∀v∈V
{d↑ci−1,`

(v) + d↓ci,j (v)}︸ ︷︷ ︸
CH Formulation

}

As is highlighted in the horizontally-bracketed area of the formulation above,

the MTM CH algorithm requires to perform exactly one forward search from each origin

node and one backward search from each destination node. The cost between any pair

of origin/destination nodes is then simply taken as the minimum sum of forward and

backward search costs over all (reached) nodes.

Using this new CH-specific matrix formulation, we may re-arrange the terms

of the equation to come up with an alternative, yet equivalent, formulation as follows:

X[i, j] = min
1≤`≤|Ci−1|

{X[i− 1, `] + min
∀v∈V
{d↑ci−1,`

(v) + d↓ci,j (v)}}

= min
∀v∈V
{ min

1≤`≤|Ci−1|
{X[i− 1, `] + d↑ci−1,`

(v)}+ d↓ci,j (v)}

= min
∀v∈V
{ρ↑i−1(v) + d↓ci,j (v)}
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where, for all 0 ≤ i ≤ k:

ρ↑i (v) = min
1≤`≤|Ci|

{X[i, `] + d↑ci,`(v)}

Next, we establish an efficient method for computing the values of ρ↑i . We

show how to construct these values using only a single forward CH search per category,

instead of the previous g unique forward CH searches per category.

To calculate the values ρ↑i for category Ci, we first create a temporary super-

source node, s′i, which we add to the CH search graph, along with temporary edges

(s′i, ci,j) of cost X[i, j], for all ci,j ∈ Ci. We then perform a single forward Dijkstra

search in the (sparse) CH search graph, starting from the super-source node s′i.

Lemma 26 For any node, v, reached during the forward search from s′i, d
↑
s′i

(v) = ρ↑i (v).

Proof. By construction, for each node ci,j ∈ Ci where there exists a path from ci,j to

v in G↑, there must also exist a path from node s′i to v of cost w(s′i, ci,j) + d↑ci,j (v) =

X[i, j] + d↑ci,j (v) in our (temporarily) modified G↑. Since the Dijkstra search will find

the minimum over all of these paths from s′i to node v, this gives us:

d↑
s′i

(v) = min
1≤`≤|Ci|

{X[i, `] + d↑ci,`(v)} = ρ↑i (v)

Note that we do not actually have to explicitly manipulate the structure of

the graph with these temporary super-source nodes and related edges to achieve this

computation. Instead, we simply first insert each node, ci,j ∈ Ci, into the priority

queue with initial cost equal to X[i, j] before beginning our forward Dijkstra search.

One can easily verify that this is implicitly equivalent to the previously-suggested graph

manipulation, but is much faster in practice. The pseudocode for this optimized forward
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search algorithm is presented in Algorithm 7 (including an additional optimization in

line 4, discussed later on in Section 5.4.4).

Using this first optimization to the MTM CH approach, the number of unique

CH graph searches is reduced from 2 · (kg + 1) = kg + kg + 2 down to k + kg + 2 (due

to only one forward search per category), effectively cutting the number of unique CH

graph searches roughly in half (for k � g).

5.4.3 Optimizing for the Graph Structure

While it is tempting to try and apply a similar approach as before to reduce the

number of backward searches from each category as well, the problem structure utilized

by our previous optimization is unfortunately not quite the same for the backward CH

graph searches. However, performing a unique backward search for each node in a given

category still results in much redundant search effort. This is because much of the search

space from each individual node is likely shared by many other nodes from that category.

Therefore, we wish to further account for this potential redundancy and allow for only a

single backward search approach, (somewhat) similar to our previous optimization. The

pseudocode is presented in Algorithm 8 (including an additional optimization in line 7,

discussed in Section 5.4.4).

As it turns out, there is a very nice property of CH search graphs that we may

readily take advantage of for our purposes. Specifically, every CH search graph is acyclic,

by definition (i.e., searches are only allowed to move upward in node rankings, and can

thus never return back to any previously visited nodes). Using a straightforward vari-

ant of depth-first search (DFS; see Algorithm 9), we first establish a reverse topological

ordering of the nodes belonging to the unioned backward search spaces for each node in

the current category, Ci (see Algorithm 8, lines 6-10). This requires only linear-time in
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total, as it avoids repetition from previously searched nodes in the same category (ef-

fectively, a single DFS). After establishing a reverse topological ordering of the unioned

backward search space, we process each reached node, v, in reverse topological order,

computing the value ρ↓i (v) as follows (see Algorithm 8, lines 11-20):

ρ↓i (v) = min{ρ↑i−1(v), min
∀(u,v)∈E∪E′:
φ(u)>φ(v)

{ρ↓i (u) + w(u, v)}} (5.6)

Lemma 27 For any node, v, reached during the reverse-topological backward search,

ρ↓i (v) represents the optimal cost for the query 〈s, v, 〈C0, C1, ..., Ci−1〉〉.

Proof. Let {v1, v2, . . . , vz} be the nodes reached by our backward DFS in reverse

topological order. We prove this lemma by induction on the reverse topological ordering

sequence 1 ≤ j ≤ z. For the base case, where j = 1 (i.e., vj = v1 is the first node

in this ordering), there cannot exist any higher-ranking nodes with a path to v1 in

our search graph, by definition. Evaluating equation (5.6) for node v1 then gives us

ρ↓i (v1) = ρ↑i−1(v1) = d↑
s′i−1

(v1) = min
1≤`≤|Ci−1|

{X[i− 1, `] + d↑ci−1,`(v1)} by Lemma 26. As v1

is the highest ranking node on the shortest path from the super-source s′i−1 (introduced

in the previous section), then it follows from Lemma 20 that ρ↓i (v1) = d(s′i−1, v1) =

min
1≤`≤|Ci−1|

{X[i − 1, `] + d(ci−1,`, v1)}. Therefore, as ρ↓i (v1) is the cost of the minimum

cost path to v1 which visits all categories 〈C0, C1, ..., Ci−1〉 in this order, then it is the

optimal cost for query 〈s, v1, 〈C0, C1, ..., Ci−1〉〉. For the induction step, where j > 1, our

induction hypothesis assumes that this claim is correct for all nodes that come before vj

in reverse topological order. If vj is the highest ranking node on the shortest path from

s′i−1, then its correctness again follows via the same logic as above. Therefore, assume

vj is not the highest ranking node on the shortest path from s′i−1, and let node uj be

the node such that φ(uj) > φ(vj) and (uj , vj) is the last edge along the shortest path

from s′i−1 to vj (such a node must exist, by properties of the CH preprocessing). As
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we have already processed any higher ranking nodes leading to vj along this shortest

path (based on the reverse topological ordering), then by our induction hypothesis,

ρ↓i (uj) = d(s′i−1, uj) is optimal for the category sequence 〈C0, C1, . . . , Ci−1〉 and thus

the evaluation of (the right half of) equation (5.6) for node vj will result in ρ↓i (vj) =

d(s′i−1, vj) = min
1≤`≤|Ci−1|

{X[i− 1, `] + d(ci−1,`, vj)}, proving our claim as before.

Since each ci,j is a member of Ci, this further implies that the value ρ↓i (ci,j) must

also be optimal for the query 〈s, ci,j , 〈C0, C1, ..., Ci〉〉. We therefore need only perform a

post-processing step after the above relaxation steps to iterate over each node, ci,j ∈ Ci,

and assign the matrix value X[i, j] = ρ↓i (ci,j) (see Algorithm 8, lines 21-24).

This second optimization allows us to further reduce the number of unique

CH graph searches from k + kg + 2 down to 3 · (k + 1) (i.e., one forward super-source

search, one backward depth-first search coverage, and one reverse topological search per

adjacent category pair). We have now engineered a solution whose algorithmic approach

requires only O(k) total CH-related graph searches and O(kg) matrix construction steps.

As a result, we have effectively eliminated the category density’s impact on the number

of unique graph searches required to construct a solution.

5.4.4 Density Reduction via Pruning

Despite the algorithmic improvements presented thus far to reduce the impact

of category density on our approach, we still have not fully eliminated the category

density’s effect on the overall runtime of our algorithm. This is because our O(k) graph

searches will still run in time proportional to the unioned CH search spaces of each in-

dividual category node. That is to say, the larger the density of any given category, the

larger the unioned CH-graph search space will be. Therefore, one additional optimiza-

tion to further reduce the runtime of our algorithm is to employ an aggressive pruning
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strategy to help minimize the possible sizes of each category’s unioned search space.

To facilitate this approach, we require a method for quickly establishing a valid

upper bound on the optimal solution cost. To achieve this, we propose to incorporate the

use of a constant-time heuristic function, h : V ×V → R≥0, which quickly estimates the

shortest-path cost between any pair of nodes. We say that h is an admissible heuristic

function if h(s, t) ≤ d(s, t) for all s, t ∈ V (i.e., it always underestimates the shortest-path

cost between any given pair of nodes).

Given an admissible heuristic function, h, we may establish a valid upper

bound, µ, using a fast, greedy nearest-neighbor strategy (see pseudocode in Algo-

rithm 6). Starting at node x0 = s, for 1 ≤ i ≤ k + 1, we select the node xi =

argmin
∀ci,j∈Ci

{h(xi−1, ci,j)}, giving us the greedy node sequence 〈x0, . . . , xk+1〉. We then com-

pute the true shortest-path costs d(xi−1, xi) for 1 ≤ i ≤ k+1 using a series of successive

(and very fast) PTP CH queries, computing µ =
∑

1≤i≤k+1 d(xi−1, xi). As the path

formed by node sequence 〈x0, . . . , xk+1〉 is, by definition, a satisfying path for C, the

cost µ is also thus a valid upper bound on w(PCs,t).

After establishing µ, we progressively prune each category using a user-provided

input weighting parameter, α ≥ 1, intended to adjust the desired level of pruning. For

each category, we prune the search as follows.

Before beginning the forward search from each category, Ci, we prune any

node, ci,j ∈ Ci, if α · (X[i, j] + h(ci,j , t)) > µ, as X[i, j] + h(ci,j , t) is a lower bound

on any solution path containing ci,j . Similarly, we wish to prune the nodes before

beginning the backward search from each category, Ci, as well. However, unlike the

forward search scenario, when performing a backward search from Ci, we do not yet

know the matrix values X[i, j] for any nodes ci,j ∈ Ci (as these values are not set until

after the backward search). Therefore, we must instead rely on a lower bound value
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for X[i, j] using the established matrix values from the previous category. We define

this value as β = min
1≤`≤|Ci−1|

{X[i− 1, `]}, as this is clearly a lower bound on any X[i, j].

Now, before beginning the backward search from each category, Ci, we prune any node,

ci,j ∈ Ci, if α · (β + h(ci,j , t)) > µ.

The proposed α-pruning strategy helps to significantly reduce the sizes of the

resulting search spaces for both the forward and backward graph searches, further reduc-

ing the overall runtime. After completing the search process for each (pruned) adjacent

category pair to construct the resulting X matrix, we now return the solution cost

min{µ,X[k + 1, 0]}.

Theorem 28 For query 〈s, t, C〉, the α-pruning technique guarantees that min{µ,X[k+

1, 0]} ≤ α · w(PCs,t).

Proof. If µ ≤ α ·w(PCs,t), then the proof is complete since we return min{µ,X[k+1, 0]}.

Therefore, suppose that µ > α·w(PCs,t). In this case, we prove an even stronger claim that

the solution cost returned is optimal (i.e., X[k+1, 0] = w(PCs,t)). It suffices to show that

the algorithm will never prune any nodes, ci,j ∈ Ci, belonging to any optimal solution

path. This is because, for the forward search, α · (X[i, j] + h(ci,j , t)) ≤ α · w(PCs,t) < µ

for any node ci,j ∈ PCs,t by the admissibility condition of our heuristic function, h, and

our initial assumption above. Similarly, for the backward search, α · (β + h(ci,j , t)) ≤

α · (X[i, j] + h(ci,j , t)) ≤ α · w(PCs,t) < µ for any node ci,j ∈ PCs,t, because X[i, j] ≥

β = min
1≤`≤|Ci−1|

{X[i − 1, `]}. The optimality of X[k + 1, 0] follows from this, and thus

min{µ,X[k + 1, 0]} ≤ α · w(PCs,t), for α ≥ 1.

Note that any admissible heuristic function will work in this algorithm. How-

ever, the accuracy and estimation time of the chosen function will impact the overall

pruning capability and runtime of our algorithm, respectively. We discuss the heuris-
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tic function used in the experimental results section. Starting from Algorithm 5, the

pseudocode for our fully-optimized algorithm is presented in Algorithms 5-9.

We have presented a GSP solution based on Contraction Hierarchies which we

have progressively engineered to eliminate (as much as possible) the negative impacts of

the category density (as discussed in Section 5.4.1) on deriving our solution. Specifically,

we have shown how to go from a relatively-straightforward solution requiring O(kg2)

graph searches to an optimized solution requiring only O(k) graph searches.

Algorithm 5 GSP-Query(s, t, C, α)

Input: s, t ∈ V , C = 〈C1, C2, . . . , Ck〉, α ∈ R≥1

Output: min{µ,X[k + 1, 0]} ≤ α · w(PCs,t)

Global Variables: G′ = (V,E ∪ E′, w), arrays ρ↑/ρ↓, h

Invariant: ∀ v ∈ V , ∀ i ∈ [0, k+1], ρ↑i (v) = ρ↓i (v) =∞

1: µ← EstablishUpperBound(s, t, C)

2: C0 ← {s}

3: Ck+1 ← {t}

4: X[0, 0]← 0

5: for i = 1→ k + 1 do

6: ForwardSearch(C,X, i− 1, t, α, µ)

7: BackwardSearch(C,X, i, t, α, µ)

8: end for

9: return min{µ,X[k + 1, 0]}

117



Algorithm 6 EstablishUpperBound(s, t, C)

Input: s, t ∈ V , C = 〈C1, C2, . . . , Ck〉

Output: µ ≥ w(PCs,t)

Global Variables: G′ = (V,E ∪ E′, w), arrays ρ↑/ρ↓, h

Invariant: N/A

1: µ← 0

2: x0 ← s

3: for i = 1→ k do

4: xi = argmin
∀ci,j∈Ci

{h(xi−1, ci,j)}

5: µ← µ+ PTP-CH-Query(xi−1, xi)

6: end for

7: xk+1 ← t

8: µ← µ+ PTP-CH-Query(xk, xk+1)

9: return µ

5.5 Experiments

We present experimental results examining the overall performance charac-

teristics of our proposed algorithms under various query scenarios. Sections 5.5.1 and

5.5.2 summarize our testing environment and the dataset used for our experiments,

respectively. Section 5.5.3 briefly recaps the many different algorithm variants tested

throughout our experiments. In Section 5.5.4, we present an experimental analysis of

the impact of category density on the performance of these algorithms for both GSP

queries and RTO-GSP queries. We consider both query variants to cover a range of

different query localities, with GSP queries representing non-local queries (where the

paths may cover long distances) and RTO-GSP queries representing very local queries
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(where the paths are generally very short). Section 5.5.5 similarly examines the impact

of the number of chosen categories on performance. Finally, in Section 5.5.6, we explore

approximate solution results for both GSP and GTSPP queries.

5.5.1 Test Environment

All experiments were run on a 64-bit server machine running Linux CentOS 5.3

with 2 quad-core CPUs clocked at 2.53 GHz with 18 GB RAM (only one core was used

per experiment). All programs were written in C++ and compiled using gcc version

4.1.2 with optimization level 3.

5.5.2 Test Dataset

All experiments were performed on a graph of the continent-wide road network

of North America5, having a total of 21, 133, 774 nodes and 52, 523, 592 edges. The edge

weight function, w, is based on the travel time (in minutes) required to cross each edge.

This dataset was derived from NAVTEQ transportation data products, under their

permission. For our experiments on this dataset, we have chosen the Pre-Computed

Cluster Distances (PCD) heuristic function from [82] as our α-pruning function, h. PCD

partitions the graph into r partitions and computes an r× r matrix of the shortest path

costs between the closest nodes from each pair of partitions. The heuristic function

h(u, v) returns the matrix value between u’s partition and v’s partition, which is a

lower bound on the true shortest path cost from u to v. Given enough partitions, this

approach generally provides very good lower bound estimates. For our experiments, we

have chosen r = 10, 000. Table 5.1 summarizes the times and storage overhead from both

CH and PCD processing on this dataset (CH was used to speedup PCD computation).

5This includes only the US and Canada.
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Table 5.1: Preprocessing results on the North American graph

Preprocessing Time Space
Technique [H:M] [B/node]

CH [53] 0:18 35

PCD [82] 0:07 23

5.5.3 Algorithms Tested

In the following sections, we present the results of our discussed algorithms

and optimizations for both GSP and RTO-GSP queries, respectively. Specifically, we

compare results for the following algorithms (as labeled in each of the associated figures):

• U. Dijkstra: the regular expression constrained unidirectional Dijkstra variant

adapted from [18].

• B. Dijkstra: the regular expression constrained bidirectional Dijkstra variant

adapted from [18].

• PTP-CH: our algorithm which constructs the dynamic programming matrix by

computing pairwise distances using point-to-point CH queries (Section 5.4.1).

• MTM-CH: our algorithm which constructs the dynamic programming matrix

by computing all distances between adjacent categories using many-to-many CH

queries (Section 5.4.1).

• SSFS: our MTM-CH algorithm (above) enhanced with the super-source forward

search optimization (Section 5.4.2).

• SSFS + RTBS: our SSFS algorithm (above) enhanced with the reverse-topological

backward search optimization (Section 5.4.3).

• Alpha Pruning: our SSFS + RTBS algorithm (above) enhanced with α-pruning
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(Section 5.4.4). Unless otherwise stated, α = 1 for all experiments (for optimal

solution results).

5.5.4 Category Density Experiments

We first examine the impact of the category density for a given query on the

performance of our discussed algorithms. In Figure 5.3(a) and Figure 5.3(b) we present

the results of our algorithms for both GSP and RTO-GSP queries, respectively. Note

the logarithmic scale for both axes.

For each set of experiments in this section, we fixed the category count at

k = 5. For every 0 ≤ i ≤ 6, we constructed 100 random query instances in which each

of the 5 categories were populated with g = 10i nodes selected uniformly at random.

All source and target nodes, s and t, were additionally selected uniformly at random.

The numbers presented in the figures represent the average query times across these 100

queries for each density value tested.

Starting with the GSP query experiments of Figure 5.3(a), we first examine

the results of the regular expression constrained Dijkstra variants: U. Dijkstra and B.

Dijkstra. As can be seen, both algorithms are fairly consistent across varying densities

at the national scale. Except for the case where g = 1, the bidirectional variant is also

consistently faster than the unidirectional variant by an average factor of 1.4. However,

B. Dijkstra still requires 40 seconds runtime on average and nearly 30 seconds, even in

the best case.

Among our proposed algorithms, we start with the more straightforward adap-

tations of PTP-CH and MTM-CH. The PTP-CH algorithm is by far the fastest approach

for the scenario where g = 1 (since this is equivalent to solving a multi-point shortest
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Figure 5.3: Category density experiments for (a) GSP queries and (b) RTO-GSP queries
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path), but, as it requires a quadratic number of CH searches in the density of the query,

it quickly grows beyond practicality and does not scale to problems with g ≥ 1, 000.

MTM-CH begins to outperform PTP-CH for cases with g > 10, but only scales up to

g ≤ 10, 000. This is because computing an MTM cost matrix for larger cases where, e.g.,

g ≥ 100, 000, would require approximately up to and over 40GB of storage overhead per

adjacent category pair.

This is where we start to see our proposed optimizations show improvements.

For example, incorporating the SSFS optimization (from Section 5.4.2), while performing

the typical MTM backward search, allows us to outperform the MTM-CH approach by

a factor of 2.8, on average, and this further increases our scalability to cases of size

g ≤ 100, 000. This is because we no longer have to compute and maintain a g × g cost

matrix for each adjacent category pair, but instead require only to compute a 1 × g

matrix for each pair.

Further incorporating the RTBS improvement (from Section 5.4.3), gives us

the SSFS + RTBS algorithm which now starts to show significantly better performance

and overall scalability (a factor of 34 times speed improvement over SSFS, on average),

since we have now effectively eliminated the previous negative impacts of the category

density. By incorporating the final α-pruning optimization (from Section 5.4.4), we

are able to achieve yet another factor of 2 improvement, on average, over the SSFS

+ RTBS algorithm, due to the decrease in overall category density via our pruning

strategies. Note that, in the best case (for relatively low-density queries), our fully-

optimized algorithm gives up to nearly 4 orders of magnitude speed improvement over

the fastest Dijkstra variant. Additionally, it scales quite nicely for extremely high-

density problems with up to 1 million nodes per category, for random queries at the

national scale.
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For the return-to-origin query scenarios in Figure 5.3(b), we see much the

same behavior for each algorithm as before, except for two notable differences. The

first is that, as the density increases, we begin to see significant improvements in the

performance of both Dijkstra variants. This is due primarily to the fact that the RTO-

GSP queries are highly-localized queries by their very definition (i.e., s = t), and thus,

for sufficiently-dense categories, any optimal path should not have to travel very far to

satisfy the requested category sequence. For low-density scenarios (e.g., g < 10, 000), the

Dijkstra variants must search relatively longer distances in the graph before finding valid

nodes from each successive category. As the density begins to increase (e.g., for high-

density scenarios with g ≥ 10, 000), the probability of finding a nearby node belonging to

the next required category also increases, and thus runtimes begin to improve drastically

for these extreme local cases.

The second notable difference for these RTO-GSP queries is the significant

improvement of the α-pruning algorithm, compared to the regular GSP query scenarios

from earlier. Specifically, we notice that the improvements compared to the SSFS +

RTBS algorithm have now increased from a factor of 2 (for the GSP queries) up to a

factor of 36, on average, for the return-to-origin scenarios. Again, this is because, as

the queries become more localized and the categories become denser, then the average

path length of any valid solution is significantly reduced. As a result, this leads to

reduced upper bounds for the greedy path cost µ, which in turn increases the potential

for pruning outlier nodes that are relatively far away from these short, local paths.

While both Dijkstra algorithms start to outperform the α-pruning algorithm

for the local RTO-GSP queries with very high densities (e.g., g ≥ 100, 000), our op-

timized approach is still best overall, as it is the only algorithm presented here which

has sub-second query times across all RTO-GSP queries, regardless of the density. This
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suggests that the fully-optimized α-pruning algorithm is the most consistently efficient

and scalable of all of the tested algorithms.

Finally, we note that we have designed these experiments (both for GSP and

RTO-GSP) such that each category contains exactly the same maximum number of

nodes, g, per query. This was done intentionally as an adversarial approach to our

own proposed methods, as we have previously shown that any CH-based methods are

uniquely sensitive to the overall density of each category (i.e., higher density per category

implies larger CH search spaces, as discussed in Section 5.4.4). More realistic query

scenarios would likely have varying densities per category (i.e., better than the worst-

case, maximum density scenarios tested here), thus suggesting that the performance of

the α-pruning algorithm should not degrade in practice. In contrast, given the results

above, the Dijkstra algorithms would be expected to further degrade without as many

realistic category options.

As evidence of this expected behavior, consider the RTO-GSP test case from

the previous results in which both the bidirectional Dijkstra algorithm and the α-pruning

algorithm were closest in performance: g = 10, 000. In Figure 5.4, we compare these two

algorithms as follows. For every 0 ≤ i ≤ 4, we constructed 100 random query instances

in which each of the k = 5 categories were populated with a number of nodes selected

uniformly at random from the range [ gf , g] where f = 10i represents the reduction factor

on the possible category sizes (i.e., as f increases, the variability of the possible category

sizes from the maximum density g also increases; f = 100 = 1 represents the previously

tested scenarios). All nodes were selected uniformly at random. From these results, we

can see that, as the variability in category sizes increases (allowing for category sizes

increasingly smaller than g), the Dijkstra algorithm query times degrade by up to an
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Figure 5.4: Density reduction factor experiments for RTO-GSP queries with k = 5 and

g = 10, 000

order of magnitude, whereas the α-pruning algorithm runtimes are quite stable (±25%).

5.5.5 Category Count Experiments

We proceed by exploring the effect of the overall number of categories per query

on the performance of the tested algorithms. The results for both GSP and RTO-GSP

queries are presented in Figure 5.5(a) and Figure 5.5(b), respectively.

For each set of experiments in this section, we fixed the category density at

g = 10, 000. For every 1 ≤ i ≤ 10, we constructed 100 random query instances, each with

i unique categories of density g, populated with nodes selected uniformly at random.

All source and target nodes, s and t, were additionally selected uniformly at random.
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The numbers presented in the figures represent the average query times across these

100 queries for each category count value tested. Since the PTP-CH and MTM-CH

algorithms do not scale well for problem sizes of this density, we have omitted these

results from this section.

In general, for both figures we see that each tested algorithm variant scales quite

well, with regard to category count. This (along with the previous section’s results) con-

firms our expectation that the presented algorithms are significantly more sensitive to

the overall density of the categories than they are to the overall category count. Further-

more, we see similar progressive improvements for our successively-applied optimizations

as before.

For the GSP queries in Figure 5.5(a), the α-pruning technique significantly

outperforms all other approaches and is a factor of 50 times faster than the fastest

Dijkstra variant, on average, making it a clear winner for such queries. For the RTO-GSP

scenarios in Figure 5.5(b), the Dijkstra algorithms again show significant improvement

due to the locality of the queries, especially for such high-density scenarios (as indicated

in the previous section). For these tests, the bidirectional Dijkstra variant slightly

outperforms the α-pruning algorithm (by an average factor of 1.5). Nevertheless, the

α-pruning algorithm again shows significantly more consistent efficiency and scalability

when considered across all problem sizes and at all levels of locality.

5.5.6 Approximation Results

Thus far, we have examined the proposed α-pruning algorithm only for queries

in which α = 1 (i.e., our solution results were guaranteed to be optimal). However,

as seen in Figure 5.3(a), for extremely high-density, nationwide GSP queries with g =
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1, 000, 000, the α-pruning algorithm still requires 14 seconds to complete for k = 5

categories (less than 3 seconds per category, on average). While this is a significant

improvement over the other algorithms tested for this problem, we may improve upon

these results even further for such high-density cases, if we are willing to accept some

approximation of the optimal solution.

Table 5.2: GSP approximation results with α-Pruning for GSP queries with k = 5 and

g = 1, 000, 000

Time Average Relative
α (seconds) Error (%)

1.00 14.40 0.00 %

1.25 4.02 5.73 %

1.50 3.11 9.26 %

1.75 2.66 10.96 %

2.00 2.85 11.43 %

2.25 2.79 11.43 %

2.50 2.51 11.43 %

2.75 2.23 11.43 %

3.00 2.80 11.43 %

Table 5.3: GTSPP approximation results with α-Pruning (α = 1) for both RTO-GSP

and GSP queries with k = 5

GSP Queries RTO-GSP Queries
Avg. Rel. Max Rel. Avg. Rel. Max Rel.

g Error (%) Error (%) Error (%) Error (%)

100 39.01 % 154.63 % 28.72 % 95.12 %

101 29.36 % 123.68 % 18.91 % 64.24 %

102 8.21 % 56.29 % 14.77 % 49.65 %

103 2.72 % 111.03 % 13.96 % 56.86 %

104 0.60 % 13.18 % 16.58 % 58.28 %

105 0.02 % 0.55 % 15.71 % 61.58 %

106 0.00 % 0.00 % 18.30 % 95.27 %

As discussed in Theorem 28, the α-pruning strategy guarantees to produce an

α-approximate solution to the queries, for any α ≥ 1. In Table 5.2, we explore the effect
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of using different α values on the previously-tested GSP queries from Figure 5.3(a) with

g = 1, 000, 000 and k = 5. We present results on both the average runtimes of our

queries, as well as their approximations.

As indicated by these results, we begin to see significant improvements in query

times even for only modest increases in the α parameter. However, we additionally start

to see a ‘plateau’ effect in the improvements once α gets sufficiently large. Specifically,

for any α values greater than 2, the query times become relatively stable and the average

relative errors become bounded, as we are unable to find any alternate solutions once

the pruning becomes strong enough (i.e., the µ value quickly becomes the best value for

each query, once we begin to aggressively prune entire categories of nodes).

In addition to approximating GSP solutions for fixed sequences of categories,

we have also shown in Section 5.3 that we may further apply our GSP algorithm to

closely approximate the more complex GTSPP queries, typically to within a bounded

factor of O(k). Experimental results examining the approximations achieved by our

GSP algorithm when applied to GTSPP queries are presented in Table 5.3, where we

present both the average and maximum relative errors of both GSP and RTO-GSP query

solutions across 100 random query instances where k = 5 for several different density

values. To obtain the optimal GTSPP solution results for comparison, we ran the exact

GTSPP algorithm from [96]. We then applied a GSP query for a random, fixed sequence

of categories to obtain the resulting GSP solution for comparison. The findings suggest

that the relative errors are well within the expected approximation ranges, and for most

cases achieve around or better than 30% relative error, on average. Interestingly, for the

relatively longer-distance GSP query scenarios (where s 6= t), as the density continues

to increase, the error achieved by our GSP solution decreases. At d = 106, the density

is so extremely high that we achieve optimal results for the GTSPP queries using this
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approach, as any arbitrary sequence of categories is now relatively more likely to appear

along these longer s-t paths.

5.6 Conclusion

We have presented a new algorithmic approach towards efficiently solving GSP

queries on real-world road networks. Experimental results support the claim that this

approach generally outperforms the previous-best algorithm for this query type across

many different scales of problem sizes, and often by a significant margin of improvement.

Our approach may also be used to efficiently compute approximate solutions for the NP-

hard GTSPP queries, where the category sequence is not fixed.

However, there is still room for further additional improvement on this ap-

proach. Specifically, results suggest that our proposed approach is currently weakest

when solving for extremely high-density GSP queries. We could likely see improvements

for such cases by investigating alternative pruning strategies in the hopes of achieving

even sparser search spaces than what we currently have. However, for such extreme,

high-density cases, another model altogether may also be warranted.
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Algorithm 7 ForwardSearch(C,X, i, t, α, µ)

Input: C = 〈C0, . . . , Ck+1〉, matrix X, i ∈ [0, k], t ∈ V , α ∈ R≥1, µ ∈ R+

Global Variables: G′ = (V,E ∪ E′, w), arrays ρ↑/ρ↓, h

Invariant: ∀ v ∈ V , ρ↑i (v) =∞

1: PQ← ∅ /* Priority Queue */

2: /* Insert unpruned nodes into the priority queue */

3: for j = 1→ |Ci| do

4: if α · (X[i, j] + h(ci,j , t)) ≤ µ then

5: ρ↑i (ci,j)← X[i, j]

6: PQ.Insert(ci,j , X[i, j])

7: end if

8: end for

9: /* Perform the forward Dijkstra search */

10: while ¬PQ.Empty() do

11: u← PQ.ExtractMin()

12: for all e = (u, v) ∈ E ∪ E′ : φ(u) < φ(v) do

13: if ρ↑i (v) > ρ↑i (u) + w(e) then

14: ρ↑i (v)← ρ↑i (u) + w(e)

15: if v /∈ PQ then

16: PQ.Insert(v, ρ↑i (v))

17: else

18: PQ.DecreaseKey(v, ρ↑i (v))

19: end if

20: end if

21: end for

22: end while
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Algorithm 8 BackwardSearch(C,X, i, t, α, µ)

Input: C = 〈C0, . . . , Ck+1〉, matrix X, i ∈ [1, k + 1], t ∈ V , α ∈ R≥1, µ ∈ R+

Global Variables: G′ = (V,E ∪ E′, w), arrays ρ↑/ρ↓, h

Invariant: ∀ v ∈ V , ρ↓i (v) =∞

1: Q← ∅ /* Queue to store nodes in reverse topological order */

2: R← ∅ /* Set of nodes reached by backward DFS */

3: /* Perform backward DFS from unpruned nodes,

4: avoiding any previously-reached nodes in R */

5: β ← min
1≤`≤|Ci−1|

{X[i− 1, `]}

6: for j = 1→ |Ci| do

7: if α · (β + h(ci,j , t)) ≤ µ then

8: 〈Q,R〉 ← BackwardDFS(ci,j , Q,R)

9: end if

10: end for

11: /* Process nodes in reverse topological order */

12: while ¬Q.Empty() do

13: v ← Q.Pop()

14: ρ↓i (v)← ρ↑i−1(v)

15: for all e = (u, v) ∈ E ∪ E′ : φ(u) > φ(v) do

16: if ρ↓i (v) > ρ↓i (u) + w(e) then

17: ρ↓i (v)← ρ↓i (u) + w(e)

18: end if

19: end for

20: end while

21: /* Set the resulting matrix values */

22: for j = 1→ |Ci| do

23: X[i, j]← ρ↓i (ci,j)

24: end for
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Algorithm 9 BackwardDFS(v,Q,R)

Input: v ∈ V , queue Q, R ⊆ V

Output: Q, R

Global Variables: G′ = (V,E ∪ E′, w), arrays ρ↑/ρ↓, h

Invariant: N/A

1: if v /∈ R then

2: for all e = (u, v) ∈ E ∪ E′ : φ(u) > φ(v) do

3: 〈Q,R〉 ← BackwardDFS(u,Q,R)

4: end for

5: Q.Push(v)

6: R← R ∪ {v}

7: end if

8: return 〈Q,R〉
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Chapter 6

Generalized Traveling Salesman

Paths

6.1 Introduction

Within the last decade, the growing online presence of geospatial information

systems has made possible many novel applications in the fields of transportation and

location-based services. Many massive, online location databases are now being made

publicly available for mining spatial locations based on categorical points of interest,

thus paving the way for highly-advanced navigation solutions.

As an example, consider a traveler in a new city for the first time. On their

way to do some sightseeing at a local attraction, they wish to visit a coffee house, a

gas station, and an ATM (in no particular order). However, there may be many such

locations to choose from for each of these location types. As the traveler likely does not

care exactly which gas station, ATM, or coffee house they visit (since each provides the

same general type of service1), a desirable solution is then any path which visits one of

1The locations are user-defined and may be made more specific, as necessary; e.g., only consider gas
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each of these location types with the least overall detour on the way to the destination.

Such a scenario is a common occurrence for everyday personal navigation needs, and

also has many additional applications in transportation, in general.

In this chapter, we establish an algorithmic framework for efficiently solving

such problem types on large-scale, real-world road networks. In Section 6.2, we formalize

this problem as the Generalized Traveling Salesman Path Problem (GTSPP), and we

discuss related work and our contributions. Section 6.3 presents the foundation for our

work by formulating GTSPP as a unique graph search problem, including a standard

search algorithm for this approach. Section 6.4 extends these ideas into a more advanced

search algorithm, based around the Contraction Hierarchies preprocessing technique.

We present an experimental analysis of these algorithms on the road network of North

America in Section 6.5. We conclude the chapter in Section 6.6.

6.2 Generalized Traveling Salesman Path Problems

Let G = (V,E,w) be a weighted directed graph, with n = |V |, m = |E|, and

edge weight function w : E → R+. Let Ps,t = 〈v1, v2, . . . , vq〉 be a path in G from

s = v1 ∈ V to t = vq ∈ V . Let w(Ps,t) =
∑

1≤i<q w(vi, vi+1) be the total weight, or cost,

of Ps,t. The minimum-weight, or “shortest”, path cost from s to t is d(s, t).

A category set, C = {C1, C2, . . . , Ck}, defines a set of node subsets where, for

1 ≤ i ≤ k, Ci = {ci,1, ci,2, . . . , ci,|Ci|} ⊆ V represents a distinct category of locations.

A path, Ps,t, satisfies a category set C if, for 1 ≤ i ≤ k, Ps,t ∩ Ci 6= ∅ (i.e., Ps,t

contains at least one node from each category). This is formally written as Ps,t |= C.

For any GTSPP instance 〈s, t, C〉, having category count k = |C| and category density

stations of a certain brand.
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g = max
1≤i≤k

{|Ci|}, an optimal solution is a path P ′s,t in G such that P ′s,t |= C and, ∀Ps,t in

G where Ps,t |= C, w(P ′s,t) ≤ w(Ps,t). This optimal solution path is referred to as PCs,t.

6.2.1 Related Work

The Generalized Traveling Salesman Problem (GTSP), also known as Errand

Scheduling, Group TSP, Set TSP, One-of-a-Set TSP, Multiple-Choice TSP, and TSP

with Neighborhoods, was originally introduced in the late 1960s [63, 110] as a general-

ization of the well-known TSP formulation. Given a set of nodes partitioned into groups,

or categories, the goal is to find a minimum-cost tour that visits exactly one node from

each category. As TSP is a special case of GTSP in which each node defines its own

category, then GTSP is also NP-hard. A review of many original applications of this

problem type is presented in [72].

Initial solutions for this problem were based on exact dynamic programming

formulations [63, 100, 110]. Other exact algorithms based on integer- and linear-programming

techniques are presented in [46, 73, 74, 87]. Much research has also been focused on

transforming GTSP instances into standard TSP instances with roughly the same num-

ber of total nodes [24, 40, 80]. Under these transformations, an optimal solution to the

transformed TSP instance is optimal for the original GTSP instance. However, exact

algorithms for standard TSP remain exponential in the total number of nodes.

TSP problem variants having a fixed source node, s, and a fixed target node,

t, are more commonly known as Traveling Salesman Path Problems. Therefore, in the

remainder of our discussion we will be focused on the more specific Generalized Traveling

Salesman Path Problem (GTSPP).
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6.2.2 Our Contributions

Unfortunately, nearly all of the previous exact algorithms assume a pre-existing,

complete graph on the set of category nodes (represented as a cost matrix). Such an

assumption is invalid for most real-world navigation scenarios involving road networks,

as these cost matrices must be computed explicitly from the underlying road network,

and we often do not know the category locations until query time (as they are likely to

change from one use case to the next). Furthermore, computing such matrices requires

O(kg) graph searches, and can thus be quite time consuming, and potentially even

prohibitive, in practice, especially for very large numbers of locations. For example,

road networks can have categories with potentially millions of locations, and a complete

matrix on such locations would require up to several terabytes of storage space.

To avoid these difficulties, we reformulate GTSPP as a unique graph search

problem which does not require the construction of a complete matrix between cate-

gory locations. Using this as our foundation for a general algorithmic framework, we

present two exact graph search algorithms (one with pre-processing, and one without)

for efficiently solving GTSPP instances on real-world road networks.

Additionally, while the number of locations to consider may be quite large in

practice for many real-world GTSPP transportation and personal-navigation applica-

tions (e.g., g = 100, 000), the number of categories is typically very small (e.g., k = 3).

For such real-world problems in which k � g (and often even 2k � g) is typically

true, our proposed approach proves highly-advantageous because, unlike many of the

other algorithms discussed previously, our exact algorithms are exponential only in the

number of categories, k.
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6.3 GTSPP Product Graphs

Given any category set C = {C1, C2, . . . , Ck}, let Bk = (P(C),⊂) be the

partially-ordered set (poset) defined by the power set of C when ordered by inclusion.

Such a poset, Bk, is called a Boolean lattice. The covering graph of a Boolean lattice

poset Bk = (P(C),⊂) on a category set C is a graph G(Bk) = (P(C), E(Bk)), where

E(Bk) = {(c, c′) | c, c′ ∈ P(C)∧ c ⊂ c′ ∧ @ c′′ ∈ P(C) : c ⊂ c′′ ⊂ c′}. The covering graph

defines a directed acyclic graph (DAG) on Bk. We present examples of the covering

graphs for several Boolean lattices in Fig. 6.1. Note that any path in the covering graph

from the empty set to the full set represents a specific sequence of categories along the

path, based on their order of accumulation (see Fig. 6.1). All k! category sequences

are thusly represented as paths in this graph. Also note that the Boolean lattice and

its covering graph are exactly the same for any set of size k, as we can map the set

members into the natural numbers {1, 2, . . . , k} (hence the subscript k, not C, in Bk).

{∅}

{C1}

(a) G(B1)

{∅}

{C1, C2}

{C1} {C2}

(b) G(B2)

{∅}

{C1, C2, C3}

{C1} {C2} {C3}

{C1, C2} {C1, C3} {C2, C3}

(c) G(B3)

Figure 6.1: Covering graphs for Boolean lattice posets B1, B2, and B3 (from left to right),

respectively. The path highlighted in grey for G(B3) represents the category traversal

sequence 〈C2, C1, C3〉, based on the order of category accumulation along the path.

Given any graph G = (V,E,w) and Boolean lattice Bk for a category set C of

size k, we define the GTSPP product graph as GC = G×G(Bk) = (V ×P(C), E1∪E2),
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where product nodes are represented as 〈u, c〉 such that u ∈ V and c ∈ P(C), E1 =

{(〈u, c〉, 〈v, c′〉) | c = c′∧ (u, v) ∈ E}, and E2 = {(〈u, c〉, 〈v, c′〉) | u = v∧ (c, c′) ∈ E(Bk)∧

v ∈ c′ \ c}. The E1 edges represent a copy of each original edge from G for every subset

of C. For all (〈u, c〉, 〈v, c′〉) ∈ E1, we define w(〈u, c〉, 〈v, c′〉) = w(u, v). The E2 edges

represent the accumulation of a new category (based on a corresponding covering graph

edge) by inclusion of a specific node within that category. For all (〈u, c〉, 〈v, c′〉) ∈ E2,

we define w(〈u, c〉, 〈v, c′〉) = 0. Any path from 〈s, ∅〉 to 〈t, C〉 in GC therefore represents

a satisfying path in the original graph, based on a specific accumulation sequence of

category nodes from each category.

We present a simple example of a GTSPP product graph in Fig. 6.2. For

this problem instance, we have two unique categories (each with two unique nodes),

and we must find the minimum-cost path from s to t which traverses one node from

each category (as shown in green in the original graph). The resulting product graph

is shown on the right of the figure. Edges from the set E1 are shown as solid edges,

whereas edges from the set E2 are shown as dashed edges. The shortest path from 〈s, ∅〉

to 〈t, C〉 in the product graph is highlighted in grey, and its cost is equivalent to the

optimal solution cost for this GTSPP instance.

{∅}

{C1, C2}

{C1} {C2} × =

s t

c1,1

c1,2

c2,1

c2,2

〈s, ∅〉

〈t, C〉

G(B2) G

∅

C1 C2

C

Figure 6.2: Example product graph of graph G (with unit-cost edge weights) for category

set C = {C1, C2}.
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Theorem 29 Given any graph G and category set C = {C1, C2, . . . , Ck} (defined on G),

the shortest path from 〈s, ∅〉 to 〈t, C〉 in the product graph GC represents an equivalent-

cost, optimal solution for the GTSPP instance 〈s, t, C〉 in the original graph G; i.e.,

d(〈s, ∅〉, 〈t, C〉) = w(PCs,t).

Proof. The proof relies on showing that there exists a one-to-one correspondence be-

tween the set of all paths from 〈s, ∅〉 to 〈t, C〉 in GC and the set of all uniquely-satisfying

paths from s to t in G, and that the corresponding paths between each graph are of

equivalent cost. It follows that a shortest path from 〈s, ∅〉 to 〈t, C〉 in GC represents a

minimum-cost satisfying path from s to t in G, and is thus optimal for GTSPP.

s tc1,1 c1,2c2,1 c2,2c3,1

Ps,t = 〈v1, v2, v3, v4, v5, v6, v7〉

Figure 6.3: Satisfying path for category set C = {C1, C2, C3} with multiple satisfying

subsequences.

To establish this correspondence, we must first define what is meant by the

term uniquely-satisfying path (USP). Any satisfying path (as defined in Section 6.2)

may actually contain multiple “satisfying subsequences”, informally defined as a sub-

sequence of nodes along the path which satisfies, or “covers”, all categories of interest

(i.e., there is at least one node from each category; a more formal definition is pre-

sented later below). For example, consider the path Ps,t in Fig. 6.3. For the given

category set C = {C1, C2, C3} there are multiple selections and sequences of category

nodes which satisfy this particular category set, even though there is only one path.

Specifically, the subsequence 〈c1,1, c3,1, c2,2〉 is a satisfying subsequence, but so too are

〈c2,1, c3,1, c1,2〉, 〈c1,1, c2,1, c3,1〉, and 〈c3,1, c2,2, c1,2〉. In order to properly demonstrate the

correspondence, we require a more explicit method for distinguishing exactly which sat-
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isfying subsequence is intended to be associated with a specific satisfying path. We may

therefore think of a USP as any combination of a satisfying path, plus a unique satisfying

subsequence of nodes belonging to that path. Note also, however, that we cannot simply

represent a satisfying subsequence as merely a subsequence of nodes (as done informally

above), because some nodes may in fact belong to multiple categories (in which case,

the associated visit order of the categories may be ambiguous). For such cases, we need

an even more explicit approach to further distinguish not only the subsequence of nodes,

but also the intended permutation of categories visited by the subsequence.

A USP instance is thus formally defined as a pair (Ps,t, Z), where Ps,t =

〈v1, v2, . . . , vq〉 represents a satisfying path from s to t in the original graph, G, and

Z = 〈(x1, y1), (x2, y2), . . . , (xk, yk)〉 represents a satisfying subsequence. Specifically, Z

is defined such that 〈vx1 , . . . , vxk〉 is a (possibly-stuttering2) subsequence of nodes be-

longing to Ps,t where 1 ≤ x1 ≤ x2 ≤ . . . ≤ xk ≤ q, and 〈Cy1 , . . . , Cyk〉 is a permutation

of the categories as they are intended to be visited along the path, where, for 1 ≤ i ≤ k,

vxi ∈ Cyi . Continuing from our earlier example, for the first subsequence of nodes

discussed, 〈c1,1, c3,1, c2,2〉 = 〈v2, v4, v5〉, we would thus represent the associated USP as

(Ps,t, 〈(2, 1), (4, 3), (5, 2)〉). The cost of a USP instance (Ps,t, Z) is defined as w(Ps,t).

Given this definition of a USP, we may now establish the intended one-to-one

correspondence. We start by providing a function (Algorithm 10) that maps any path

from 〈s, ∅〉 to 〈t, C〉 in the product graph GC to a USP instance. For any such path

P〈s,∅〉,〈t,C〉 = 〈〈v1, c1〉, 〈v2, c2〉, . . . , 〈vq′ , cq′〉〉, we construct its associated USP as follows.

First, we must establish the satisfying path Ps,t in the original graph (Algo-

rithm 10: lines 1-6). The function strips each product node in the path of all but the

2Where vxi = vxi+1 may be true; e.g., if a node belongs to multiple categories visited consecutively
at that node.
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Algorithm 10 MappingFromProductPathToUSP(P〈s,∅〉,〈t,C〉)

Input: Product-graph path P〈s,∅〉,〈t,C〉 = 〈〈v1, c1〉, 〈v2, c2〉, . . . , 〈vq′ , cq′〉〉

Output: USP (Ps,t, Z)

1: Ps,t ← 〈v1〉

2: for i← 2 to q′ do

3: if vi 6= vi−1 then

4: Ps,t ← Ps,t · 〈vi〉 /* Append vi to Ps,t */

5: end if

6: end for

7: i← 1

8: for j ← 1 to q′ − 1 do

9: if (〈vj , cj〉, 〈vj+1, cj+1〉) ∈ E2 then

10: xi ← j + (1− i)

11: C` ← cj+1 \ cj

12: yi ← `

13: i← i+ 1

14: end if

15: end for

16: Z ← 〈(x1, y1), (x2, y2), . . . , (xk, yk)〉

17: return (Ps,t, Z)

node identifier (i.e., each 〈vi, ci〉 becomes simply vi), and then eliminates any consec-

utive identical node identifiers (i.e., for any vi = vi+1, it removes the duplicate vi+1;

note that such duplicates can only occur where the product-graph path crosses an E2

edge). For example, in Fig. 6.2, the shortest path from 〈s, ∅〉 to 〈t, C〉 in the resulting
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product graph GC is 〈〈s, ∅〉, 〈c2,1, ∅〉, 〈c2,1, C2〉, 〈t, C2〉, 〈c1,2, C2〉, 〈c1,2, C〉, 〈t, C〉〉, and the

obtained path in the original graph is therefore 〈s, c2,1, t, c1,2, t〉. This process is effec-

tively equivalent to removing all but the E1 edges along the product-graph path, and

taking only the original node identifiers. Thus, the USP must also have the same cost as

the product-graph path, since the resulting path Ps,t has omitted only E2 edges, which

have zero cost, and all (〈u, c〉, 〈v, c′〉) ∈ E1 have w(〈u, c〉, 〈v, c′〉) = w(u, v), by definition.

Next, we must establish the satisfying subsequence associated with this path

for our USP (Algorithm 10: lines 7-16). For any path from 〈s, ∅〉 to 〈t, C〉 in the product

graph GC , there must exist exactly k unique E2 edges, 〈e1, . . . , ek〉, along this path, by

definition of our product graph. This edge sequence defines the composition of our USP’s

satisfying subsequence. Specifically, for 1 ≤ i ≤ k, where ei = (〈vj , cj〉, 〈vj+1, cj+1〉) for

some j ∈ [1, q′), let xi = j+(1−i) and let yi = ` for ` ∈ [1, k], such that cj+1\cj = C` ∈ C.

Note that we must offset each xi above by (1 − i) to account for the fact that each xi

indexes into the associated path Ps,t which has k fewer nodes than the original product-

graph path (i.e., q = q′− k), due to the removal of the duplicate node identifiers related

to the E2 edges of the product path.

It remains to show that our function is a bijective function (i.e., a one-to-

one correspondence, which is both injective and surjective). A full verification of this

requires significant detail, so we offer only a brief argument here. One can verify that

the function is injective (i.e., no two paths in the product graph map to the same USP)

by observing the following. If any pair of distinct paths in the product graph is claimed

to map to the same USP, consider the first edge at which these two distinct product

graph paths differ. If these differing edges are both from E1, then the satisfying path

Ps,t in their USP must differ. If one of these differing edges is from E1 and the other

is from E2, then the sequence 〈x1, . . . , xk〉 in their USP must differ. If these differing
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edges are both from E2, then the sequence 〈y1, . . . , yk〉 in their USP must differ. Each

case leads to a different USP (a contradiction of the supposed claim). Additionally, one

can verify that the function is surjective (i.e., there is a path in the product graph which

maps to each USP) by reversing the process of the function above (obtaining an inverse

function). The pseudocode for an inverse function to reverse this process (i.e., mapping

from a USP back to its associated product-graph path) is presented in Algorithm 11

(further discussion is omitted for brevity). Under such bijection, we have demonstrated

the intended one-to-one correspondence.

Algorithm 11 MappingFromUSPToProductPath(Ps,t, Z)

Input: USP (Ps,t, Z): Ps,t = 〈v1, . . . , vq〉 and Z = 〈(x1, y1), . . . , (xk, yk)〉

Output: Product-graph path P〈s,∅〉,〈t,C〉 = 〈〈v1, c1〉, 〈v2, c2〉, . . . , 〈vq′ , cq′〉〉

1: C ′ ← ∅

2: P〈s,∅〉,〈t,C〉 ← 〈〉

3: j ← 1

4: for i← 1 to q do

5: P〈s,∅〉,〈t,C〉 ← P〈s,∅〉,〈t,C〉 · 〈vi, C ′〉 /* Append 〈vi, C ′〉 to P〈s,∅〉,〈t,C〉 */

6: while j ≤ k ∧ i = xj do

7: C ′ ← C ′ ∪ Cyj

8: P〈s,∅〉,〈t,C〉 ← P〈s,∅〉,〈t,C〉 · 〈vi, C ′〉 /* Append 〈vi, C ′〉 to P〈s,∅〉,〈t,C〉 */

9: j ← j + 1

10: end while

11: end for

12: return P〈s,∅〉,〈t,C〉
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We may now conclude the proof as follows. Since all satisfying paths from s to

t in the original graph must belong to at least one USP in the set of all USPs, and the

set of all product-graph paths from 〈s, ∅〉 to 〈t, C〉 is in one-to-one correspondence with

the set of USPs (and have equivalent cost), it follows that a shortest path from 〈s, ∅〉 to

〈t, C〉 in GC must also represent a minimum-cost satisfying path from s to t in G.

It follows from Theorem 29 that any shortest path algorithm will suffice to

search the resulting product graph (e.g., Dijkstra’s algorithm [39]).

Theorem 30 Given any graph G and category set C = {C1, C2, . . . , Ck} (defined on

G), a Dijkstra search from 〈s, ∅〉 to 〈t, C〉 in the product graph GC runs in O(2k(m +

nk + nlogn)) time.

Proof. A Dijkstra search on a graph with n nodes and m edges takes O(m + nlogn)

time (using Fibonacci heaps). The product graph has exactly 2kn nodes and at most

2k(m + kg
2 ) edges (i.e., we have exactly 2km E1 edges and at most

∑
1≤i≤k (gi

(
k
i

)
) =

2k−1kg E2 edges). This gives a running time of O(2k(m + kg) + 2knlog(2kn)). Since

log(2kn) ∈ O(k + logn) and g ≤ n, this simplifies to O(2k(m+ nk + nlogn)).

Note that we do not need to explicitly construct the entire product graph to

carry out the proposed search. We may instead perform an equivalent search in this

product graph by materializing the nodes of the graph only as they are encountered

implicitly during the search. This results in the potential for significant space savings

for cases in which a solution path is found before most of the nodes are explored.

6.4 Product Graph Search Using Contraction Hierarchies

In this section, we further improve upon our proposed product-graph search

approach by incorporating the graph preprocessing technique known as Contraction
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Hierarchies (CH) [53], originally designed for solving point-to-point (PTP) shortest path

queries. We start with a brief overview of CH, followed by a discussion of how to integrate

CH for efficiently solving GTSPP queries.

6.4.1 Contraction Hierarchies Overview

Preprocessing. CH preprocessing orders the nodes in the graph, φ : V → {1, . . . , |V |},

and then contracts the nodes in this order. Contracting a node, v, removes it (temporar-

ily) from the graph and adds so-called shortcut edges (if needed) to preserve shortest

path costs in the remaining subgraph. For each pair of incoming and outgoing edges,

(u, v) and (v, x), respectively, if the path 〈u, v, x〉 is a unique shortest path, then a new

shortcut edge (u, x) is added with weight w(u, v) + w(v, x) to bypass v in the remain-

ing subgraph. The result is a new graph G′ = (V,E ∪ E′, w), where E′ represents the

newly-added shortcut edges.

Query. The traditional CH shortest path query involves performing a forward Dijkstra

search from s in the “upward” graph G↑ = (V,E↑) where E↑ = {(u, v) ∈ E∪E′ | φ(u) <

φ(v)} along with a simultaneous backward Dijkstra search from t in the “downward”

graph G↓ = (V,E↓) where E↓ = {(u, v) ∈ E ∪ E′ | φ(u) > φ(v)}. Let R↑s = {v ∈ V |

∃Ps,v ⊆ G↑} be the set of all nodes reachable from s in the upward graph. Similarly,

let R↓t = {v ∈ V | ∃Pv,t ⊆ G↓} be the set of all nodes from which t is reachable

in the downward graph. Let d↑s(v) and d↓t (v) represent the shortest path cost from s

to v in G↑ and from v to t in G↓, respectively. The shortest path cost is taken as

d(s, t) = min
∀v∈R↑s∩R↓t

{d↑s(v) + d↓t (v)}.
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6.4.2 Contraction Hierarchies for GTSPP

Sweeping Search. We preface this discussion by first establishing an alternative PTP

query approach, which does not require bidirectional Dijkstra search, but instead takes

advantage of a nice structural property of the resulting CH search graphs.3 Specifically,

each search graph is acyclic by definition (i.e., each search can only increase in node

rank order φ), thus allowing us to compute shortest path costs using only linear scans of

the search graphs in topological order. Since the shortest path cost can be determined

by considering only the reachable search spaces of s and t in G↑ and G↓ respectively,

it suffices to consider only the union of these two search spaces R = R↑s ∪ R↓t . Let

Rφ = 〈v1, v2, . . . , vz〉 be the nodes of R arranged in increasing rank order, φ, establishing

a valid topological order. For any v ∈ R, let the value d(v) represent the cost of the

shortest path from s found so far during the search.

The search begins by initializing d(s) = 0 and d(v) = ∞ for all v 6= s ∈ R.

The search progresses in two phases: an upsweep and a downsweep phase. The upsweep

phase processes each node vi in increasing order of φ. For each outgoing edge (vi, x),

such that x ∈ R and φ(vi) < φ(x), we set d(x) = min{d(x), d(vi) + w(vi, x)}. The

downsweep phase then processes each node vi in the opposite (decreasing) order of φ.

For each incoming edge (u, vi), such that u ∈ R and φ(u) > φ(vi), we set d(vi) =

min{d(vi), d(u) + w(u, vi)}.

Lemma 31 Upon completion of the upsweep and downsweep phases, d(v) = d(s, v) for

all v ∈ R such that R↓v ⊆ R.

Proof. Consider any v ∈ R such that R↓v ⊆ R (e.g., v = t), for which we must show

that d(v) = d(s, v) after completing the sweeping search. Assume there exists a path

3A similar approach has been discussed independently in [34].

148



from s to v (we examine the alternate case later below). For any such path Ps,v = 〈s =

v1, . . . , vi, . . . , vq = v〉, let MPs,v = {vi ∈ Ps,v | 1 < i < q, φ(vi−1) > φ(vi) < φ(vi+1)}

(i.e., the set of all local minima in Ps,v with respect to φ). We can classify all paths,

Ps,v, into one of two basic forms: (1) those with MPs,v = ∅ and (2) those with MPs,v 6= ∅.

From [53], we have that, if there exists a path from s to v in the original graph,

there must exist a shortest s-v path of the form (1) in the resulting CH graph search

space R. For x ∈ [1, q], let vx ∈ R be the highest-ranking node on any such shortest

path P ′s,v = 〈v1, . . . , vx, . . . , vq〉. That is, for 1 ≤ i < x, we have φ(vi) < φ(vi+1) (i.e.,

the rank is strictly increasing from node s = v1 to node vx), and for x ≤ i < q, we have

φ(vi) > φ(vi+1) (i.e., the rank is strictly decreasing from node vx to node vq = v).

As the rank strictly increases along this path up to node vx, we correctly

compute the values for the nodes along the subpath 〈v1, v2, . . . , vx〉 during the upsweep

phase, since, starting with d(s) = d(v1) = 0, we process the nodes of R↑s ⊆ R in

increasing rank order (and thus, in shortest-path order). Similarly, as the rank strictly

decreases along this path from node vx, we correctly compute the values for the nodes

along the subpath 〈vx+1, . . . , vq−1, vq〉 during the downsweep phase, since we process

the nodes of R↓v ⊆ R in decreasing rank order (and thus, also in shortest-path order).

Therefore, upon completion of the sweeping phases, d(vq) = d(v) = d(s, v).

In the event there is no path from s to v, then we have that d(s, v) = ∞. If

there is no path in the original graph, there will be no path in the CH search space R

(as the added shortcut edges represent only existing paths in the original graph), and

thus d(v) =∞ remains after initialization, and is also correct.

This approach may be further extended to support many-to-many scenar-

ios with multiple source nodes S = {s1, s2, . . . , s|S|} ⊆ V and target nodes T =

{t1, t2, . . . , t|T |} ⊆ V by maintaining |S| separate cost values for each node in the unioned
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search space R = {
⋃|S|
i=1R

↑
si}∪{

⋃|T |
i=1R

↓
ti
}. Only, now, when relaxing the edges of a node

during both the upsweep and downsweep phases on Rφ, we relax all |S| costs before pro-

gressing to the next node. A similar proof of correctness (like that of Lemma 31) follows.

LEvel Sweeping Search (LESS). We incorporate this alternative CH-based search

algorithm into our GTSPP product-graph framework as follows. For the remainder of

the chapter, we shall assume that our product graph incorporates the preprocessed CH

graph. By construction, each product graph is comprised of exactly (k+1) unique levels

(as shown in Fig. 6.4). For 0 ≤ i ≤ k, level Gi = GC [{〈u, c〉 ∈ V (GC) | i = |c|}] is the

subgraph induced by product nodes whose associated category subset has cardinality i.

Each level is further comprised of smaller subgraphs Gx = G|x|[{〈u, c〉 ∈ V (G|x|) | c =

x}], which we shall call here set-equivalent (SE) subgraphs (also shown in Fig. 6.4).

Within each level Gi, by definition of our product graph, there cannot exist any path

between two distinct SE subgraphs (since the E1 edges only connect nodes within the

same SE subgraph and the E2 edges only connect nodes between consecutive levels). For

i > 0, this suggests that the costs within each SE subgraph of level Gi must therefore

depend solely on the costs established in the previous level Gi−1.

G{∅}

G{C1,C2,C3}

G{C1} G{C2} G{C3}

G{C1,C2} G{C1,C3} G{C2,C3}

G0

G1

G2

G3

A
b

st
ra

ct
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u
ct

G
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p
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Figure 6.4: An abstraction of the product graph GC for C = {C1, C2, C3}, illustrating

levels (shown in dark grey) and SE subgraphs (shown in light blue).
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We wish to take advantage of this useful property in our GTSPP search. Specif-

ically, this allows us to process our product graph search one level at a time. Further-

more, for each level, we may process the costs for each SE subgraph independently, as

these costs cannot influence one another. One solution would be to separately search

each SE subgraph (using separate upsweep/downsweep phases), in any given order, for

a given level. However, this would require 2k separate upsweep and downsweep phases,

one for each SE subgraph, and could be largely redundant as the separate sweeps may

re-explore many of the same nodes and edges. An equivalent and more cache-efficient

formulation is to instead perform only (k+ 1) upsweep/downsweep phases (one for each

level), maintaining a separate cost value per node for each SE subgraph within a given

level. That is, when we process a node during a sweeping phase, we process all SE

subgraph costs at the current level for that node before proceeding to the next node.

Since we only need to consider shortest paths that begin at s, travel through

some nodes in C, and end at t, we may represent this search space as R = {R↑s} ∪

{
⋃k
i=1

⋃|Ci|
j=1{R

↓
ci,j ∪ R

↑
ci,j}} ∪ {R

↓
t }. We begin by initializing d(〈s, ∅〉) = 0, and for all

other product nodes 〈u, c〉 6= 〈s, ∅〉 ∈ R × P(C), we initialize d(〈u, c〉) = ∞. For

0 ≤ i ≤ k, we process each level Gi by keeping track of exactly
(
k
i

)
costs for each node

in R: one for each SE subgraph in level Gi. Before beginning each sweeping phase on

a given level Gi, if i > 0 we must transfer costs from the previous search level Gi−1 via

the established E2 edges, according to our product graph definition. Specifically, for all

(〈u, c〉, 〈v, c′〉) ∈ E2 : |c′| = i, we set d(〈v, c′〉) = min{d(〈v, c′〉), d(〈u, c〉)} to transfer the

costs. We then proceed to perform an upsweep and then downsweep of Rφ (similar to

before) taking care to relax all
(
k
i

)
costs for each node in each sweeping phase.

Lemma 32 Upon completion of the upsweep and downsweep phases for level Gi, d(〈v, c〉) =
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d(〈s, ∅〉, 〈v, c〉) for all 〈v, c〉 ∈ R × Pi(C) such that R↓v ⊆ R, where Pi(C) is the power

set of C containing only subsets of at most cardinality i.

Proof. We prove this by induction on the level sequence 0 ≤ i ≤ k. For the base

case (where i = 0), we have that P0(C) = {∅} and thus we only need to show that

d(〈v, ∅〉) = d(〈s, ∅〉, 〈v, ∅〉) for all 〈v, ∅〉 ∈ R×{∅} such that R↓v ⊆ R. This follows directly

from Lemma 31, as this is equivalent to a single graph search on R, since we consider

only product nodes within the same SE subgraph G{∅} ' G′ (i.e., G{∅} is isomorphic to

G′). For the induction step (where i > 0), our induction hypothesis assumes that this

claim holds true for level i− 1. Therefore, it remains to show that the values d(〈v, c′〉)

are correct for all 〈v, c′〉 ∈ R × {Pi(C) \ Pi−1(C)} (i.e., only for the product nodes in

level Gi) such that R↓v ⊆ R. Since each level Gi combines one or more independent SE

subgraphs such that no path exists between them, and (consequently) we process the

costs for each SE subgraph independently per level, then it suffices to consider only the

costs within a single SE subgraph (i.e., the same logic holds for the rest, independently).

For any c′ ∈ {Pi(C)\Pi−1(C)}, let Gc
′
be the SE subgraph under consideration.

Let X = {〈v, c′〉 | ∃ (〈u, c〉, 〈v, c′〉) ∈ E2} be the set of product nodes in Gc
′

which are

the target of some E2 edge. By definition of our product graph, any path (including

a shortest path) from 〈s, ∅〉 to any node in Gc
′

must pass through some product node

in the set X. Therefore, if we can guarantee that d(〈v, c′〉) = d(〈s, ∅〉, 〈v, c′〉) is correct

for all 〈v, c′〉 ∈ X before we begin the sweeping search on Gc
′
, then it follows from logic

similar to that presented in Lemma 31 that the sweeping search will correctly set the

costs for all remaining product nodes 〈v, c′〉 ∈ R× c′ such that R↓v ⊆ R.

Before sweeping Gc
′
, the LESS algorithm transfers costs along E2 edges such

that, for all (〈u, c〉, 〈v, c′〉) ∈ E2, d(〈v, c′〉) = min{d(〈v, c′〉), d(〈u, c〉)}. Since |c| = i − 1
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for all such edges, by definition, then it follows from our induction hypothesis that the

values d(〈u, c〉) = d(〈s, ∅〉, 〈u, c〉) (by definition of E2, u = c`,j for some ` ∈ [1, k], j ∈

[1, |C`|], and R↓c`,j ⊆ R). Then upon transfer completion, we must have that d(〈v, c′〉) =

d(〈s, ∅〉, 〈v, c′〉) is correct for these nodes as well (since we have taken the minimum over

all adjacent 〈u, c〉 costs, and any path from 〈s, ∅〉 must pass through one such node).

Corollary 33 Upon completion of the upsweep and downsweep phases for level Gk,

d(〈t, C〉) = d(〈s, ∅〉, 〈t, C〉) represents the optimal GTSPP solution cost.

Theorem 34 The LESS algorithm runs in O(2k(m′ + nk)) time, where m′ = |E ∪E′|.

Proof. Establishing the search space R and its topological ordering Rφ can be done

in time O(m′ + n) using a variant of depth-first search (which only searches upward in

node ranking). The product graph has exactly 2kn nodes and at most 2k(m′ + kg
2 ) ∈

O(2k(m′ + nk)) edges. In the worst case, R = V and we must sweep the entire product

graph. As the sweep is linear in the size of the product graph, this gives a total of

O(2k(m′ + nk)) time.

Pruning. While our current solution is correct, its relative performance is expected to

be highly sensitive to the density of a given GTSPP query. This is because our runtimes

for this algorithm are directly proportional to the size of our search space, R, which

typically grows in size proportional to the density, g, of the GTSPP instance under

consideration (i.e., more distinct locations make for larger unioned search spaces). This

expected behavior suggests that, before the search, it could be beneficial for us to try and

prune any locations which we determine cannot possibly belong to any optimal GTSPP

solution, in order to minimize the overall search space size and resulting runtime.

To achieve this, we require a method for estimating the cost of a solution
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which contains a given category node. A straightforward and fast approach is to utilize

a constant-time heuristic function, h : V × V → R≥0, which returns a non-negative

estimate on the shortest-path cost between any two nodes. We only require that the

heuristic function be admissible, such that h(s, t) ≤ d(s, t) for all s, t ∈ V (i.e., it must

always underestimate the shortest-path cost).

Given any admissible heuristic function, h, we must first establish an upper

bound, µ, on the optimal GTSPP solution cost w(PCs,t). Starting at node x0 = s and

ending at node xk+1 = t, for 1 ≤ i ≤ k, we apply a greedy nearest-neighbor strat-

egy to select a node xi = argmin
∀ci,j∈Ci

{h(xi−1, ci,j)}, giving us the resulting node sequence

〈x0, x1, . . . , xk, xk+1〉. We then compute the value µ =
∑

0≤i≤k d(xi, xi+1) by performing

(k+ 1) fast, point-to-point shortest path queries in the CH search graph (using the tra-

ditional bidirectional Dijkstra search). Since, by definition, the path established by the

node sequence 〈x0, x1, . . . , xk, xk+1〉 is a satisfying path for the instance 〈s, t, C〉, then

µ is also therefore a valid upper bound on w(PCs,t).

We now prune each category, Ci, as follows. For each ci,j ∈ Ci, if h(s, ci,j) +

h(ci,j , t) > µ, we remove node ci,j from Ci. This is because the value h(s, v) + h(v, t) is

a valid lower bound on any GTSPP solution which contains node v. After pruning, we

may then carry out the proposed LESS algorithm, as before.

6.5 Experiments

In this section, we present experiments highlighting the performance charac-

teristics of our proposed GTSPP algorithms. Specifically, we examine the performance

impacts of our two primary measures of interest regarding GTSPP complexity: category

density (g) and the number of categories (k). For each experiment, we consider four
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product-graph search algorithms for comparison: unidirectional Dijkstra search (U. Di-

jkstra), bidirectional Dijkstra search (B. Dijkstra), CH-based Level-Sweeping Search

(LESS), and LESS with Pruning (P-LESS).

For each experiment, we further consider two variants of GTSPP queries to

model two possible extremes of locality: non-local queries in which s 6= t are examined

to model relatively long-distance routes and local queries in which s = t are examined

to model relatively short-distance routes.

6.5.1 Test Environment

All experiments were carried out on a 64-bit server machine running Linux

CentOS 5.3 with 2 quad-core CPUs clocked at 2.53 GHz with 18 GB RAM (only one

core was used per experiment). All programs were written in C++ and compiled using

gcc version 4.1.2 with optimization level 3.

6.5.2 Test Dataset

All experiments were performed on the road network of North America4, with

21, 133, 774 nodes and 52, 523, 592 edges. The weight function, w, is based on travel time

(in minutes). This dataset was derived from NAVTEQ data products, under their per-

mission. We have chosen the Pre-Computed Cluster Distances (PCD) heuristic function

from [82] as our pruning function, h. In brief, PCD partitions the graph into r parti-

tions and computes an r × r cost matrix of the shortest path costs between the closest

nodes from each pair of partitions. The heuristic function h(u, v) returns the matrix

value between the partitions of u and v, which is a lower bound on d(u, v). For our

experiments, we have chosen r = 10, 000. PCD preprocessing required 7 minutes using

4This includes only the US and Canada.
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the CH search graph, resulting in an overhead of 23 bytes per node. CH preprocessing

required 18 minutes, resulting in an overhead of 35 bytes per node.

6.5.3 Category Density Experiments

We begin by examining the impact of category density, g, on the performance

of our proposed algorithms. In Fig. 6.5(a) and Fig. 6.5(b) we present the results of our

four algorithms for both non-local and local queries, respectively.

For all experiments in this section, we fixed the category count at k = 5. For

every 0 ≤ i ≤ 6, we constructed 100 random query instances in which each of the 5

categories were populated with g = 10i nodes selected uniformly at random. All source

and target nodes, s and t, were additionally selected uniformly at random. The numbers

presented in the figures represent average query times.

Starting with the non-local experiments of Fig. 6.5(a), we see that both Di-

jkstra variants have very high runtimes across all densities, but tend to improve as the

density increases. B. Dijkstra is consistently faster than U. Dijkstra by a factor of 1.8,

on average. However, it requires over 130 seconds, even in the best case.

In contrast, our advanced LESS algorithm can be seen to perform extremely

well for low-density scenarios, but (as expected), begins to degrade as the density in-

creases. Despite this degradation, it still outperforms the best Dijkstra algorithm by a

factor of over two orders of magnitude, on average. The P-LESS approach reduces the

runtimes even further, showing an additional 41% improvement, on average, over the

unpruned LESS algorithm for these non-local queries, and requiring no more than 16

seconds in the worst case (for g = 1, 000, 000).

The story is slightly different, however, for the local query cases in Fig. 6.5(b).
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Figure 6.5: Category Density Experiments for (a) non-local queries and (b) local queries.
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Here we see the Dijkstra algorithms show a much more significant overall improvement

as the density increases (B. Dijkstra is less than 1 second for cases in which g ≥ 1, 000).

This is due primarily to the fact that, as the density grows, so do the number of available

zero-cost E2 edges in the product graph. For such extremely-local cases (e.g., where

s = t), this greatly benefits greedy search algorithms such as the Dijkstra variants which

can then quickly transition along these increasingly-available E2 edges to arrive at the

nearby target in the final level. Alternatively, this scenario presents a slight disadvantage

for both LESS-based strategies, which are not greedy by nature, but are instead forced

to progress through the product graph search one level at a time, regardless of locality

or density. Despite this, P-LESS is still the only algorithm which requires no more than

7 seconds across all of the densities tested here for such cases.

Furthermore, for such extremely local cases, we also see a marked improvement

in our P-LESS approach over the unpruned LESS algorithm (e.g., pruning gives nearly

an order of magnitude speed improvement for the highest-density scenario). This is

anticipated from the fact that local cases are expected to have much smaller µ values,

especially for high densities, leading to greater pruning.

6.5.4 Category Count Experiments

Next we examine the impact of the number of categories, k, on the performance

of our algorithms. In Fig. 6.6(a) and Fig. 6.6(b) we present the results for both non-local

and local queries, respectively (showing average query times, as before).

For all experiments in this section, we fixed the category density at g = 10, 000.

For every 1 ≤ i ≤ 7, we constructed 100 random query instances, each with i categories

populated with g nodes selected uniformly at random. All source and target nodes, s
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Figure 6.6: Category Count Experiments for (a) non-local queries and (b) local queries.
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and t, were additionally selected uniformly at random.

Again, we start by reviewing the non-local query results in Fig. 6.6(a). As

before, for non-local queries, the Dijkstra algorithms perform the worst overall, reaching

nearly 300-second query times. Additionally, they are unable to even complete for cases

with k ≥ 6, due to memory exhaustion from such increasingly-large search spaces. Our

LESS-based algorithms show similar improvements as before for such non-local queries,

and appear to scale quite well across these experiments, with the P-LESS algorithm

requiring no more than 6 seconds for even the largest number of categories at k = 7.

For the local query results in Fig. 6.6(b), we see similar improvements for the

Dijkstra search algorithms as before, with the B. Dijkstra algorithm requiring only up

to 0.2 seconds in the worst case. This gives over an order of magnitude improvement, on

average, compared to the U. Dijkstra search. Comparatively, our LESS-based algorithms

perform the worst overall for these local scenarios, suggesting a similar pattern to that

from the previous experiments, in which the greedy algorithms perform best for local

queries, but worst for non-local queries.

Across both sets of experiments, the P-LESS algorithm again provides signif-

icant improvements over LESS, although its relative speedups appear to degrade with

increasing category counts (going from a speedup of over 7 for k = 1 down to just over

2 for k = 7 for non-local queries, and over 20 down to just over 3 for local queries). As

our current heuristic estimates for pruning are most accurate for fewer categories, this

suggests that a more accurate heuristic may lead to further improvements over queries

with larger numbers of categories.
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6.6 Conclusion

We have demonstrated a new algorithmic framework based on a unique product-

graph formulation, which allows us to solve real-world, large-scale GTSPP instances

using various graph search algorithms. Our proposed algorithms are able to efficiently

solve such problem instances to optimality, typically in a matter of seconds. These

algorithms may also be used interchangeably, as needed, based on their respective per-

formance advantages across various problem sizes and scales of locality. Specifically,

our results suggest that, for highly-local, very-dense queries, a greedy Dijkstra search

in our proposed product graph may be sufficient and effective in practice (and does not

require preprocessing). However, for more consistently-efficient performance over longer

distances and for various problem sizes, our proposed LESS algorithm (with pruning) is

justifiably better.

Several promising areas of further research include pursuing more-aggressive

pruning strategies and incorporating goal-directed search techniques (e.g., A∗ search).

We address these particular possibilities in the following chapter. Additionally, since

each SE subgraph cost in a given level may be processed independently, this suggests

that our level-sweeping search algorithm may further lend itself to strong parallelization,

similar to that achieved in [34].
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Chapter 7

Generalized Traveling Salesman

Paths with Preprocessing

7.1 Introduction

For many travelers, running errands while “on the go” is a common occurrence

for everyday trip planning. For example, a traveler sightseeing in a new city might

wish to visit an ATM, a gift shop, and a coffee shop along the way to their destination.

Other common errands include, e.g., getting groceries, refueling the car, dropping off

mail, picking up dinner, etc. However, for most of these activities there may also be many

valid options to choose from on a given trip (e.g., according to U.S. Census numbers,

there are over 500,000 food-service locations and over 100,000 gas stations in the U.S.

alone). Because the traveler often wishes to complete these errands in the least amount

of overall travel distance or time on the way to their destination, determining which

of each of these possible errand locations to visit and the order in which to visit them

is a fundamental part of the trip planning process. Such trip planning problems arise

frequently within the logistics industry as well. For example, many long-haul trucking
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scenarios require multiple days of traveling long distances, presenting a recurrent need

for efficiently-planned stops for refueling, lodging, dining, etc. throughout the trip (each

of which presents many options).

We formalize such problems as a variant of the Generalized Traveling Salesman

Problem (GTSP), also commonly known as Errand Scheduling, Group TSP, Set TSP,

One-of-a-Set TSP, Multiple-Choice TSP, and TSP with Neighborhoods. GTSP is a

generalization of the well-known Traveling Salesman Problem (TSP) whereby a set of

nodes (e.g., errand locations) are partitioned into groups, or categories (e.g., based on

the type of service provided at each location), and the goal is to find a minimum-cost

tour that visits exactly one node from each category. In general, GTSP is known to be

NP-hard, by reduction from the standard TSP, in which each node merely defines its own

category. GTSP variants having a fixed source location, s, and a fixed target location, t,

such as the navigation problems we are interested in here, are referred to as Generalized

Traveling Salesman Path Problems (GTSPP)[96]. As the more-general GTSP (with no

fixed source or target) may be solved using any algorithm for the more-specific GTSPP1,

we will focus only on the GTSPP in the remainder of our discussion.

In this chapter, we present advanced algorithms for solving large-scale GTSPP

queries on real-world road networks. In Section 7.2, we formalize GTSPP, including a

brief discussion of related work. Section 7.3 details an O(r)-approximation algorithm

for GTSPP, for r ∈ N. Section 7.4 presents an alternative, and generally more-practical,

(1+ε)-approximation algorithm for GTSPP, ∀ε ∈ R≥0. Section 7.5 presents experimental

results for our (1 + ε)-approximation algorithm on the road network of North America.

Section 7.6 concludes the chapter with further possible extensions to this problem.

1For each node x in the category with the fewest nodes, solve the GTSPP with s = t = x, and choose
the minimum-cost solution over all x as the GTSP solution.
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7.2 Generalized Traveling Salesman Path Problems

Let G = (V,E,w) be a weighted, directed graph, with node set V , edge set

E ⊆ V × V , and edge weight function w : E → R>0, such that n = |V | and m = |E|.

Let Ps,t = 〈v1, v2, . . . , vq〉 be any path in G from s = v1 ∈ V to t = vq ∈ V , such

that, for 1 ≤ i < q, (vi, vi+1) ∈ E. The total weight, or cost, of any Ps,t is w(Ps,t) =∑
1≤i<q w(vi, vi+1). Let P ∗s,t be any minimum-weight, or “shortest”, path from s to t.

The shortest path “distance” is referenced as d(s, t) = w(P ∗s,t).

A category set, C = {C1, C2, . . . , Ck}, defines a set of generalized node subsets

within the graph where, for 1 ≤ i ≤ k, Ci = {ci,1, ci,2, . . . , ci,|Ci|} ⊆ V represents a

distinct category of locations, each of which provides the same general type of service

(e.g., the set of gas station locations). Note that V \ (C1 ∪C2 ∪ . . .∪Ck) 6= ∅, in general

(i.e., not every graph node has to belong to a category). The primary structural measures

of a category set are the category count, k = |C|, representing the total number of

distinct categories, and the category density, g = max
1≤i≤k

{|Ci|}, representing the maximum

number of optional locations per category. Thus, the total number of category locations

||C|| =
∑

1≤i≤k |Ci| is upper-bounded by O(kg).

A path, Ps,t, is said to be a satisfying path for a category set C iff, for 1 ≤ i ≤ k,

Ps,t ∩ Ci 6= ∅ (i.e., Ps,t contains at least one node from each category). Therefore, for

any GTSPP instance I = 〈G, s, t, C〉, for some s, t ∈ V (G) and category set C (defined

on G), we seek to compute a minimum-weight satisfying path, referenced as PCs,t (see

Fig. 7.1 for an example).

For a given category set, C, the GTSPP product graph, introduced in [96], is

defined as GC = (V × P(C), E1 ∪ E2), with product nodes 〈u, c〉 such that u ∈ V and

164



s t

c1,1

c1,2

c2,1

c2,2

G

Figure 7.1: Example GTSPP instance (taken from [96]) for a graph G (with unit-cost

edge weights), s, t ∈ V , and category set C = {C1, C2}. The minimum-weight satisfying

path is shown in green.

c ∈ P(C)2, where E1 = {(〈u, c〉, 〈v, c′〉) | c = c′ ∧ (u, v) ∈ E} and E2 = {(〈u, c〉, 〈v, c′〉) |

u = v ∧ c′ \ c = Ci ∈ C ∧ v ∈ Ci}.

The E1 edges are structured to represent a unique copy of each original edge

from G for every subset of C. For all (〈u, c〉, 〈v, c′〉) ∈ E1, we define w(〈u, c〉, 〈v, c′〉) =

w(u, v). The E2 edges are structured to represent the accumulation of a new category

by inclusion of a specific node from within that category. For all (〈u, c〉, 〈v, c′〉) ∈ E2,

we define w(〈u, c〉, 〈v, c′〉) = 0. Any path from 〈s, ∅〉 to 〈t, C〉 in GC therefore represents

a valid satisfying path in the original graph, based on a specific accumulation sequence

of category nodes from each category. As shown in [96], the shortest path from 〈s, ∅〉 to

〈t, C〉 in GC thus represents an equivalent-cost, optimal solution for the GTSPP query in

the original graph G. See Fig. 7.2 for an example product graph, based on the GTSPP

instance from Fig. 7.1.

As noted in [96], the full product graph need not be explicitly constructed to

perform any related GTSPP searches, but may instead be implicitly constructed, as

needed, during the search. We further denote the product subgraph induced by any

subset of nodes V ′ ⊆ V as G[V ′]C ≡ GC [V ′ × P(C)].

2P(C) represents the power set of C.
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〈s, ∅〉

〈t, C〉

∅

C1 C2

C

Figure 7.2: Example product graph of graph G (from Fig. 7.1) for category set C =

{C1, C2}. E1 edges are shown as solid edges whereas E2 edges are shown as dashed

edges. The shortest path from 〈s, ∅〉 to 〈t, C〉 is shown in grey.

7.2.1 Related Work

GTSP was initially examined in [63, 110] and has since been approached via

various algorithmic strategies. Dynamic programming formulations for GTSP have been

explored in [63, 100, 110]. Integer- and linear-programming techniques for GTSP are

presented in [46, 73, 74, 87]. Algorithms for transforming GTSP instances into standard

TSP instances with O(kg) nodes are given in [24, 40, 80]. Heuristics have been proposed

for this problem type in [30, 109]. Approximation algorithms for GTSP have also been

considered in [11, 44, 58, 79, 81, 97, 108]. In general, however, (even metric) GTSP

cannot be approximated to within any constant factor in polynomial time unless P =

NP [99].

In the field of parameterized complexity theory [41, 48], a problem is said to be

fixed parameter tractable (FPT) if there exists an algorithm for solving the problem in

time f(k)nO(1) for some arbitrary function f (independent of the problem size, n) with

respect to some problem-specific parameter k (e.g., solution size, structural properties

such as treewidth, or, as in our case, the number of distinct categories). Such algorithms

help confine the true combinatorial explosion of the problem to the parameter k, which
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is hopefully small (and thus, manageable) in practice (even if n is very large).

GTSPP may be solved to optimality using FPT algorithms with f(k) ∈ O∗(k!)3

[92, 97], requiring only polynomial space. Exact FPT algorithms with f(k) ∈ O∗(2k)

have also been considered in [96], by way of using the GTSPP product graph introduced

earlier. Such algorithmic approaches turn out to be quite practical for many real-world

GTSPP scenarios in personal navigation, as the number of optional locations to consider

may be quite large (e.g., g = 100, 000), but the number of “errands” (categories) for a

given trip are typically quite small (e.g., k = 3).

7.2.2 Our Contributions

In the following sections, we examine new approximation algorithms which

allow us to circumvent the constant-factor inapproximability barrier of GTSP [99] by

considering efficient FPT algorithms. We additionally improve upon the previous exact

algorithms from [96] to achieve optimal GTSPP solutions on real-world road networks

in near real-time (i.e., sub-second times).

7.3 An O(r)-Approximation Algorithm for GTSPP

Our first approximation algorithm is a simple “divide-and-approximate” strat-

egy for obtaining constant-factor approximations. Specifically, for any user-defined in-

teger parameter 1 ≤ r ≤ k, we show how to compute an O(r)-approximate solution in

time O∗(2k/r). The approximation algorithm workflow is outlined below (including an

example given in Fig. 7.3, for illustration):

1. Given an integer r ∈ [1, k], partition C into r disjoint category subsets

3The O∗-notation omits any polynomial factors. Only small polynomials (e.g., similar to those in
[96]) are omitted here.
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C(1), . . . , C(r) such that each subset has at most dk/re categories each (some sub-

sets may have fewer categories than others, due to uneven partitioning).

2. Solve each sub-problem using an exact GTSPP algorithm (e.g., [96]).

3. Combine the resulting paths by chaining the sub-solutions together as follows.

Let ciα and ciω be the first and last category nodes visited along the solution for sub-

problem C(i), respectively. For 1 ≤ i < r, remove the subpath P ′ = 〈ciω, . . . , t〉 from

the solution for C(i), remove the subpath P ′′ = 〈s, . . . , ci+1
α 〉 from the solution for

C(i+1), and replace them with the shortest path from ciω to ci+1
α . This “connecting”

process leads to a single, satisfying-path solution for the original problem instance

(e.g., see Fig. 7.3).

C = {C1, C2︸ ︷︷ ︸
C(1)

, C3, C4︸ ︷︷ ︸
C(2)

} s t

⇑ ⇑ ⇑ ⇑

c1
α c1

ω

c2
α c2

ω

Figure 7.3: An example (Euclidean) GTSPP instance with k = 4 and r = 2. The C(1)

sub-problem solution is shown in green, the C(2) sub-problem solution is shown in blue,

and the final connected solution path is shown in grey.

Theorem 35 On undirected graphs (or directed graphs with bounded asymmetry4), the

above algorithm computes an O(r)-approximate solution in time O∗(2k/r).

Proof. Steps 1 and 3 require polynomial time in the size of the category sets and the

underlying graph, respectively. Step 2 requires that we solve r smaller GTSPP instances

4Graphs G = (V,E) such that ∀s, t ∈ V , d(s, t) ≤ c · d(t, s), for some constant c.
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with ≤ dk/re categories each, requiring a total of r ·O∗(2k/r) time in total (e.g., if using

the FPT algorithms from [96]), thus proving our suggested total time bound of O∗(2k/r).

To prove the O(r)-approximation bound requires that we first examine an alter-

nate, more primitive form of concatenation of the sub-problem solution paths. Namely,

suppose instead of the chaining rule presented in Step 3, that we combine all r sub-

problem solution paths by simply inserting between each consecutive path the shortest

path from t (i.e., the end of one sub-solution) back to s (i.e., the beginning of the next

sub-solution) to connect them. This gives a satisfying path, P̃Cs,t, for the original (full)

problem, and gives the following bounds (the inequalities below are only valid for undi-

rected graphs but may easily be modified for directed graphs of bounded asymmetry):

w(P̃Cs,t) = w(PC
(1)

s,t ) + d(t, s) + w(PC
(2)

s,t ) + . . .+

d(t, s) + w(PC
(r)

s,t )

=
∑

1≤i≤r
w(PC

(i)

s,t ) + (r − 1) · d(t, s)

≤ r · w(PCs,t) + (r − 1) · d(s, t)

≤ (2r − 1) · w(PCs,t)

Since the solution path formed by the original chaining rule (in Step 3) is

merely an appropriately-shortcutted instance of P̃Cs,t, then by the triangle-inequality,

the approximation bounds of O(r) · w(PCs,t) are maintained.

Note that this allows for a very nice and highly-flexible tradeoff between com-

putation time and approximation. For example, using this approach, we can derive

several useful high-level approximation forms:

1. It is known that metric GTSPP cannot be efficiently approximated to within a

constant factor unless P = NP [99]. However, using this reduction scheme allows us
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to compute constant-factor approximate solutions in only moderately-exponential

FPT time; e.g., r = 2 gives an O(1)-approximation in time O∗(1.415k), r = 3 in

time O∗(1.260k), r = 4 in time O∗(1.190k), etc.

2. For additional parameters α > 0 and β ≥ 0, we can also compute Θ( k
αlogβn

)-

approximate solutions in either quasi-polynomial time (for β > 1), or in poly-

nomial time (for β ≤ 1), improving upon the previous polynomial-time, O(k)-

approximation algorithms from [79, 97] by up to a logarithmic factor. Additionally,

this approach can be shown to subsume the Minimum-Distance (MD) approxima-

tion algorithm from [79], as MD can be seen as a worst-case special instance of

our proposed approximation strategy for α = 1, β = 0, and thus, r = k.

While theoretically interesting due to its asymptotic runtime improvements,

this approach unfortunately can still be quite poor in practice, given the nature of its

construction. Specifically, for long-distance queries (where s and t are far apart), the

“connecting” paths needed to connect sub-solutions into one valid solution for the orig-

inal problem may result in too much detour for practical cases (since we keep having to

“go back and forth” to connect each sub-problem solution). This can result in solutions

whose total path costs become quite close to the worst-case O(r)-approximation bound

in practice (a bound which is also provably tight). Likewise, the approximation bounds

only hold for either undirected graphs or for graphs with bounded asymmetry, so at

least some level of symmetry is required in the graph. Therefore, we wish to find a more

practically-relevant approximation algorithm for this problem. In the remainder of this

chapter, we focus our efforts on establishing such a practical approximation algorithm.
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7.4 A (1 + ε)-Approximation Algorithm for GTSPP

In this section, we extend the previous work from [96] to produce a more

efficient, and adjustable, (1+ε)-approximation algorithm for GTSPP (for all ε ≥ 0). The

work from [96] incorporates concepts from the graph pre-processing technique known as

Contraction Hierarchies (CH) [53]. CH pre-processing ranks the graph nodes, φ : V →

{1, . . . , n}, according to some (heuristic) measure of importance and then shortcuts the

nodes in increasing rank order. Shortcutting a node, v, considers each pair of incoming

and outgoing edges, (u, v) and (v, x), from and to higher-ranking nodes, respectively

(i.e., φ(v) < min{φ(u), φ(x)}). If the path 〈u, v, x〉 is a unique shortest path, then a

shortcut edge (u, x) is added with weight w(u, v)+w(v, x) to preserve shortest path costs

in the higher-ranking subgraph G[{z ∈ V | φ(z) > φ(v)}]. The result is a new graph

G′ = (V,E∪E′, w), where E′ represents the newly-constructed shortcut edges. We define

the “upward” graph as G↑ = (V,E↑, w) where E↑ = {(u, v) ∈ E ∪E′ | φ(u) < φ(v)} and

the “downward” graph as G↓ = (V,E↓, w) where E↓ = {(u, v) ∈ E ∪ E′ | φ(u) > φ(v)}.

Let R↑s = {v ∈ V | ∃Ps,v ⊆ G↑} be the set of all nodes reachable from s in the upward

graph and R↓t = {v ∈ V | ∃Pv,t ⊆ G↓} be the set of all nodes from which t is reachable

in the downward graph.

As shown in [96], hierarchical GTSPP search algorithms using a pre-processed

CH graph need only focus their search on the set of all “upward-reachable” nodes from

s, t, and C. More specifically, according to the structural properties of the CH graph,

between any pair of nodes for which there is a path, after pre-processing there must exist

a weakly-bitonic shortest path P = 〈v1, . . . , vq〉, such that ∃ vi ∈ P , where φ(v1) < . . . <

φ(vi−1) < φ(vi) (i.e., node rank strictly increases up to node vi) and φ(vi) > φ(vi+1) >

. . . > φ(vq) (i.e., node rank strictly decreases after node vi). Note that vi = v1 or vi = vq
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may be true, hence the term weakly bitonic. Any such weakly-bitonic paths between s,

t, and members of C are, by definition, confined to the set R = R↑s ∪ RC ∪ R↓t , where

RC =
⋃k
i=1

⋃|Ci|
j=1{R

↓
ci,j ∪ R

↑
ci,j} (see Fig. 7.4). Therefore, it suffices to explore only the

induced product subgraph G[R]C for correctness. The proposed Level-Sweeping Search

(LESS) algorithm from [96] was thus designed around a non-greedy, iterative “sweeping”

process, intended to exploit this and other structural properties of the product graph.

6

1

4 2 5

3

87
s t

R2

2

2

Figure 7.4: Example graph (based on Fig. 7.1) after CH processing. Each node, v, is

labeled with φ(v). Shortcut edges are shown as dashed edges, labeled with their weight.

The set R is shown in green.

We introduce here several improvements to the hierarchical GTSPP search

algorithm from [96]:

1. The non-greedy approach of the hierarchical algorithm from [96] forces the search

to examine every node in G[R]C , regardless of query locality. To further reduce

the overhead of the search algorithm, we instead consider a greedy, goal-directed

A∗ search [62] in G[R]C so that we may (ideally) explore only those nodes which

are necessary to ensure correctness (see Section 7.4.1).

2. For many GTSPP applications, the set of optional categories may be fixed for the

lifetime of the application (e.g., many common category definitions for navigation,
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such as gas station locations, are fairly static and may thus be pre-defined5).

Assuming a fixed category set C (in which queries may only utilize subsets of

categories from C), we propose to offload the computation of the set RC , as well

as data required for enhancing our A∗ search, into a separate pre-processing phase

to speedup subsequent queries (see Section 7.4.2).

3. For high-density problems, G[R]C may still be too large for practical search algo-

rithms to explore in real-time. To alleviate this issue, we present an adjustable

search-space pruning strategy which allows us to efficiently approximate the opti-

mal solution to within any arbitrary constant factor (see Section 7.4.3).

7.4.1 A∗ Search in the Product Graph

A∗ search [62] is a well-known graph search algorithm which assigns each

reached node, v, a value f(v) = d(v) + h(v), where d(v) represents the best-known

path cost from s to v, and h(v), called the heuristic function, represents an estimate on

the shortest-path cost from v to t. Initially, for all v ∈ V , d(v) =∞. A∗ begins by assign-

ing d(s) = 0 and inserting s into a set F (the “fringe” of the search). At each iteration,

the search removes from F a node, u, with minimum f -value and expands u as follows.

For all e = (u, v) ∈ E, if d(v) > d(u) + w(e), the algorithm sets d(v) = d(u) + w(e) and

F = F ∪{v}. When node t is removed from F , the value d(t) is returned. A∗ will return

the correct shortest-path cost if the function h is admissible: ∀v ∈ V , h(v) ≤ d(v, t) (i.e.,

h never overestimates the true shortest-path cost). A∗ will expand each node at most

once in the search if the function h is consistent : ∀(u, v) ∈ E, h(u) ≤ w(u, v) + h(v).

Bidirectional A∗ search [91] extends this approach by performing two simultaneous A∗

5Categories may be made more specific, as necessary; e.g., consider only gas stations of a certain
brand.
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searches: one forward search from s (towards goal node t) and one backward6 search

from t (towards goal node s). We shall distinguish all f , d, h, and F values by the source

node for each respective search (e.g., hs for the search from s and ht for the search from

t). The bidirectional search alternates expanding each search direction, keeping track of

γ = min{ds(v) + dt(v)} for any node v expanded by both search directions. The search

may terminate once γ ≤ max{min{fs(v) | v ∈ Fs},min{ft(v) | v ∈ Ft}}, ensuring

γ = d(s, t) [91].

To apply A∗ search within our GTSPP product graph, we must therefore es-

tablish heuristic functions h〈s,∅〉 and h〈t,C〉 for the forward and backward search, re-

spectively. For each node v ∈ V and each category Ci ∈ C, we first define the values

πi(v) = min{d(v, ci,j) | ci,j ∈ Ci} (i.e., the cost to reach the nearest member of Ci) and

π′i(v) = min{d(ci,j , v) | ci,j ∈ Ci} (i.e., for the reverse case). We demonstrate how to

efficiently pre-compute the values for each function πi and π′i in Section 7.4.2. Using

these definitions, we establish our heuristic functions as:

• h〈s,∅〉(〈v, c〉) = max{d(v, t),max{πi(v) + π′i(t) | Ci ∈ C \ c}}

• h〈t,C〉(〈v, c〉) = max{d(s, v),max{πi(s) + π′i(v) | Ci ∈ c}}

We discuss how to efficiently obtain the shortest path costs d(v, t) and d(s, v)

for each reached node v, as used in our heuristic function definitions above, later in

Section 7.4.3.

Theorem 36 Heuristic functions h〈s,∅〉 and h〈t,C〉 are admissible and consistent.

Proof. For brevity, we shall prove this claim only for the forward search heuristic h〈s,∅〉.

A symmetric argument can be made for the backward search heuristic h〈t,C〉.

6A backward search is a standard (i.e., forward) search in the reverse graph Ḡ = (V, Ē), where
Ē = {(v, u) | (u, v) ∈ E}.
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First, we address admissibility. For a product node 〈v, c〉, any optimal solution

which contains node v must travel a cost of at least the shortest path cost between v

and the target node t. Therefore, the value d(v, t) is trivially admissible. Additionally,

for any remaining path in the product graph from the product node 〈v, c〉 to the target

product node 〈t, C〉, the set C \ c represents the set of categories left to be visited along

the path. For each category Ci ∈ C \c, this means that such a path (when re-interpreted

within the original graph) must eventually visit some node ci,j ∈ Ci and later terminate

at node t, incurring a cost of at least d(v, ci,j) + d(ci,j , t) ≥ πi(v) + π′i(t), by definition.

Since the maximum between multiple admissible heuristic values is itself also admissible,

the proof of admissibility is complete.

Regarding the consistency of the function, we must consider each individual

edge (〈u, c〉, 〈v, c′〉) in the product graph. Each edge belongs to either the set of E1 edges

or E2 edges (as defined in Section 7.2). If (〈u, c〉, 〈v, c′〉) ∈ E1, then (u, v) ∈ E ∪E′ and

we have that d(u, t) ≤ w(u, v) + d(v, t) by the triangle inequality (and thus the left-half

of the heuristic is consistent). Additionally, we have that c = c′, and thus only need to

ensure that πi(u) ≤ w(u, v) + πi(v) for each Ci ∈ C \ c, which can easily be proven by

contradiction: if πi(u) > w(u, v) + πi(v), then πi(u) is incorrect (a contradiction), since

this would indicate we can reach a member of Ci more quickly than πi(u) suggests by

going through node v. Therefore, both halves of the heuristic function are consistent.

Since taking the maximum of multiple consistent function values is also consistent, then

this case is complete.

Alternatively, if (〈u, c〉, 〈v, c′〉) ∈ E2, then u = v, so d(u, t) = d(v, t) is trivially

consistent and πi(u) = πi(v) is also consistent for all Ci ∈ C\c′. Note that c′\c = Cj ∈ C

(i.e., c′ contains one additional category), but since u ∈ Cj , then πj(u) = 0 and thus
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πj(u) + π′j(t) ≤ d(u, t) = d(v, t) ≤ h〈s,∅〉(〈v, c′〉), by definition, so this additional value

cannot increase the heuristic estimate for 〈u, c〉 over 〈v, c′〉. This completes the proof of

consistency.

7.4.2 Pre-Processing the Category Set

We present here several simple, but effective category-related pre-processing

approaches, under the assumption that the category set of interest is fixed.

Since computing the set RC ⊆ R per query can be relatively time-consuming

(especially for very dense categories), we instead pre-compute the set RC to help speedup

subsequent queries in G[R]C . Note that this does not require the pre-computation of

R↑s and R↓t to fully complete the set R (as defined in Section 7.4), as these depend on

source and target locations for each query and can be quickly computed at query time

(in sub-millisecond time). We can pre-compute the set RC in linear time by adding

all category nodes in C to a queue, and performing a breadth-first search (BFS) in G′,

exploring only edges leading to or coming from higher-ranking nodes (effectively, an

undirected BFS leading to higher nodes). The set of all nodes reached by this “upward”

BFS is equivalent to RC , by definition.

To supplement our A∗ search, we additionally pre-compute, for each node v ∈ V

and each category Ci ∈ C, the values πi(v) and π′i(v) (as defined in Section 7.4.1), as

well as the values ρi(v) such that d(v, ρi(v)) = πi(v) (i.e., ρi(v) is the closest member

of Ci from v). Computing the values πi and ρi for each category Ci can be done via

a simple Voronoi-like variant of a Dijkstra [39] search in G′: insert all category nodes

from Ci into a priority queue with a cost of zero, and carry out a backward Dijkstra

[39] search from the initialized priority queue. The shortest-path cost to each node v

represents the value πi(v) and the source category node along the shortest path to v
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represents the value ρi(v). Values for π′i may be similarly computed using a forward

Voronoi Dijkstra search from Ci. This approach takes O(k(m + nlogn)) time in total

and requires O(kn) storage space.

7.4.3 ∆-Corridors

As discussed previously, hierarchical algorithms need only search in the product

subgraph G[R]C . However, for high-density problems (expected in practice), G[R]C may

still be too large for practical search algorithms to explore in real-time (as evidenced

by experiments in [96]). To further alleviate this issue, we present here the concept of

∆-Corridors, based on the following intuitive notion.

For most well-defined queries in road networks, it is unlikely that a good solu-

tion path will deviate too far from the most direct, shortest path between the source and

destination (e.g., if looking to refuel between LA and San Diego, it makes little sense to

consider detours to gas stations in New York). One practical approach is therefore to

focus the search effort instead only along some narrow corridor of interest surrounding

the shortest path between the source and target locations.

This area is not only the most likely to yield an optimal detour path, but also

helps significantly limit the search space for much faster queries. For any fixed s, t ∈ V ,

we define this so-called ∆-Corridor as V∆ = {v ∈ V | d(s, v) + d(v, t) ≤ ∆} (i.e., the set

of all nodes, v, such that the cost of the shortest detour path from s to t via v is bounded

by ∆). Utilizing this concept for solving GTSPP thus involves limiting the search only

to the induced subgraph G[R ∩ V∆]C ⊆ G[R]C , for some appropriately-defined value of

∆ (see Fig. 7.5 and 7.6). We discuss how to efficiently compute V∆ below and how to

effectively select the ∆ value itself in Section 7.4.4.

Lemma 37 ∀ v ∈ V∆, {P ∗s,v ∪ P ∗v,t} ⊆ V∆.
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Proof. Consider any node v′ 6= v ∈ P ∗s,v (a similar argument holds for the shortest path

P ∗v,t). This gives us ∆ ≥ d(s, v) + d(v, t) = d(s, v′) + d(v′, v) + d(v, t) ≥ d(s, v′) + d(v′, t),

by the triangle-inequality, and thus v′ ∈ V∆.

s t

R ∩

s t

V4

=

s t

R ∩ V4

Figure 7.5: Example graph showing R∩ V∆ for ∆ = 4 (based on Fig. 7.1 and Fig. 7.4).

〈s, ∅〉

〈t, C〉

∅

C1 C2

C

Figure 7.6: Example product graph G[R ∩ V4]C (based on Fig. 7.2 and Fig. 7.5).

Efficiently Computing V∆. To compute V∆ we begin by carrying out two ∆-bounded

Dijkstra [39] searches in the CH graph: one forward search from s in G↑ and one

backward search from t in G↓. Let ds(v) and dt(v) represent the best path costs found

for any reached node, v, by the forward and backward search, respectively. Nodes

unreached by the forward (backward) search have ds(v) = ∞ (dt(v) = ∞). After this

initial upward search phase, we begin a downward search phase by setting Q = {v ∈

R↑s ∩R↓t | ds(v) + dt(v) ≤ ∆} and V∆ = ∅. While Q 6= ∅, we remove the highest-ranking

node v from Q, set V∆ = V∆ ∪ {v}, and “expand downward” from v as follows. For all
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(v, x) ∈ E ∪ E′ such that φ(v) > φ(x), set ds(x) = min{ds(x), ds(v) + w(v, x)}, and,

if x /∈ Q and ds(x) + dt(x) ≤ ∆, set Q = Q ∪ {x}. For all (u, v) ∈ E ∪ E′ such that

φ(u) < φ(v), set dt(u) = min{dt(u), w(u, v)+dt(v)} and, if u /∈ Q and ds(u)+dt(u) ≤ ∆,

set Q = Q ∪ {u}.

Theorem 38 Upon completion of the above algorithm, we have V∆ = {v ∈ V | d(s, v)+

d(v, t) ≤ ∆} (i.e., V∆ is correct), and ∀ v ∈ V∆, ds(v) = d(s, v) and dt(v) = d(v, t).

Proof. Consider the set of all nodes which must belong to the ∆-Corridor, by definition,

arranged in sequence as {v1, v2, . . . , vz}, such that, for 1 ≤ i < z, φ(vi) > φ(vi+1) (i.e.,

arranged in decreasing-rank order). We must establish that all, and only, those nodes

from this sequence will belong to the set V∆ upon completion of the algorithm.

To establish that only nodes belonging to the ∆-Corridor are properly included

in V∆, it suffices to observe that the values ds and dt maintain valid upper bounds on the

shortest-path costs from s and to t, respectively, throughout the search. Since a node v

will only be added to Q (and thus, later to V∆) once ∆ ≥ ds(v)+dt(v) ≥ d(s, v)+d(v, t),

then it is clear that only nodes truly belonging to the ∆-Corridor will be included.

To establish that all nodes belonging to the ∆-Corridor are properly included

in V∆, we shall prove this by induction on the decreasing-rank sequence 1 ≤ i ≤ z.

First, consider the base case, where i = 1 (i.e., vi = v1 is the highest-ranking node

which belongs in the ∆-Corridor).

We claim that v1 must also be the highest-ranking node on the shortest paths

from s to v1 and from v1 to t. For otherwise, if there were a higher-ranking node x on

either the shortest s-v1 or v1-t paths, then, by Lemma 37, x must also belong to the

corridor, contradicting the fact that v1 is the highest-ranking corridor node.
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According to the structural principles of CH graphs, if a node, v, is the highest-

ranking node on a shortest s-v (or v-t) path, then ds(v) = d(s, v) (or dt(v) = d(v, t))

is correct after performing a Dijkstra search in G↑ (or G↓) [53]. Thus, we have that

ds(v1) = d(s, v1) and dt(v1) = d(v1, t) must also be correct after the first (upward)

search phase. This ensures that v1 ∈ Q = {v ∈ R↑s ∩ R↓t | ds(v) + dt(v) ≤ ∆} and thus,

v1 will be the first to be removed from Q and added to V∆ in the second (downward)

search phase, at which point its shortest-path costs are already correctly established.

For the induction step, where i > 1, our induction hypothesis assumes that, for

all 1 ≤ j < i, vj ∈ V∆, and both ds(vj) = d(s, vj) and dt(vj) = d(vj , t) are correct by the

time vj is added to V∆. If vi is the highest-ranking node on both the shortest path from

s to vi and the shortest path from vi to t, then its cost-correctness and inclusion in Q

(and later, V∆) again follow via the same logic as above. If this is not the case, consider

the scenario in which vi is not the highest-ranking node on the shortest path from s. By

our earlier definition of weakly-bitonic paths (see Section 7.4), there must exist a node ui

such that φ(ui) > φ(vi) and (ui, vi) is the last edge along a weakly-bitonic shortest path

from s to vi (see Fig. 7.7). By Lemma 37, and our induction hypothesis, we have that

ui ∈ V∆ and ds(ui) = d(s, ui) by the time ui is added to V∆. Thus, when ui gets added to

V∆, edge (ui, vi) is relaxed, correctly establishing ds(vi) = d(s, ui) +w(ui, vi) = d(s, vi).

A symmetric argument holds to ensure that dt(vi) = d(vi, t) is correctly established if vi

is not the highest-ranking node on the shortest path from vi to t. Thus, vi will eventually

be added to Q, and later to V∆, at which point ds(vi) = d(s, vi) and dt(vi) = d(vi, t)

must be correct, as we will have already processed all higher-ranking corridor nodes by

this time.
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Figure 7.7: Conceptual diagram of the weakly-bitonic shortest paths computed forward

from s to vi and backward from t to vi for some vi ∈ V∆ during the 2-Phased ∆-Corridor

Search. Phase 1 represents the portions of the weakly-bitonic paths computed during

the first (upward) search phase. Phase 2 represents the portions of the weakly-bitonic

paths computed during the second (downward) search phase.

As a corollary, since our A∗ search will only be exploring a product subgraph

G[R ∩ V∆]C induced by a subset of corridor nodes, then we may use the values ds(v)

and dt(v) in place of the values d(s, v) and d(v, t), respectively, as required by our

heuristic function definitions from Section 7.4.1. Note that we may further augment

this algorithm to explore only nodes in R, as we require only R ∩ V∆.

7.4.4 Putting It All Together

We may now outline the complete (1 + ε)-approximation algorithm workflow,

as shown below:

1. Establish an upper bound, µ, on the optimal solution cost (discussed below).

2. Establish V∆ for ∆ = µ/(1 + ε) (see Section 7.4.3).

3. Perform Bidirectional A∗ Search in G[R ∩ Vµ/(1+ε)]C (see Section 7.4.1).

4. Return min{µ,w(P ∗)}, where P ∗ is the path found in Step 3 (above).
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Theorem 39 The above algorithm computes a (1 + ε)-approximate solution in time

O∗(2k).

Proof. The time bound holds from the fact that we are using consistent heuristic func-

tions to search a subgraph of GC , whose full size is bounded by O∗(2k)[96]. Regarding

the approximation bound, if µ ≤ (1 + ε) · w(PCs,t), then the proof is trivially complete,

since we return min{µ,w(P ∗)}. Therefore, assume instead that µ > (1 + ε) · w(PCs,t).

For this case, we shall prove an even stronger claim that w(P ∗) = w(PCs,t) (i.e., we find

an optimal solution). Consider any node v ∈ PCs,t on an optimal solution path. We have

d(s, v) + d(v, t) ≤ w(PCs,t) < µ/(1 + ε) (this last inequality, by the assumption above),

and thus v ∈ Vµ/(1+ε), by definition. Therefore, PCs,t ⊆ Vµ/(1+ε) and (PCs,t ∩ R) will be

fully explored by the A∗ search (Step 3). Since only nodes in (PCs,t ∩ R) need be explored

for correctness when using a CH graph [96], and our heuristic functions are admissible,

then the search will find an optimal solution path P ∗ such that w(P ∗) = w(PCs,t).

Efficiently Computing µ. While any strategy for computing the upper bound µ

will suffice for correctness of our algorithm, we present here a greedy, nearest-neighbor

heuristic for computing µ which takes advantage of the pre-processing from Section

7.4.2. Let C̃ = C represent the remaining categories left to visit. Starting at node

x0 = s, for 1 ≤ i ≤ k, we select a category Cj ∈ C̃ such that πj(xi−1) ≤ π`(xi−1) for

all C` ∈ C̃ and set xi = ρj(xi−1), µi = πj(xi−1), and C̃ = C̃ \ Cj . We thus obtain

µ = (
∑

1≤i≤k µi) + d(xk, t) as a valid upper bound, requiring only a single (fast) point-

to-point shortest path computation in the CH graph (see [53]) to evaluate d(xk, t) (all

µi values are simple lookups of pre-processed values).
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7.5 Experiments

In this section, we present experiments examining the impact of density (g)

and category count (k) on the performance of our (1 + ε)-approximation algorithm.

7.5.1 Test Environment

All experiments were carried out on a 64-bit server machine running Linux

CentOS 5.3 with 2 quad-core CPUs clocked at 2.53 GHz with 18 GB RAM (only one

core was used per experiment). All programs were written in C++ and compiled using

gcc version 4.1.2 with optimization level 3.

7.5.2 Test Dataset

All experiments were performed on the road network of North America7, with

21, 133, 774 nodes and 52, 523, 592 edges using travel time (in minutes) as the weight

function, w. This dataset was derived from NAVTEQ data, under their permission.

7.5.3 Category Density Experiments

We first examine how our algorithm scales across various category densities.

For all experiments discussed here, we fixed the category count at k = 5 and selected

nodes s 6= t independently at random.

For every 0 ≤ i ≤ 6, we constructed 100 random query instances in which each

of the k = 5 categories were populated with g = 10i nodes selected uniformly at random.

For each density value tested, we additionally tested the impact of the ε value on our

solutions. For 0 ≤ j ≤ 4, we ran each query with ε = 0.25j. Results are presented

in Fig. 7.8, showing average query times on the top (note the logarithmic y-axis) and

7This includes only the US and Canada.
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relative errors (w.r.t. optimal) on the bottom.

Overall, we see the total query times decrease from 1 second down to just

milliseconds (ms) as both the densities and ε values increase. We note that even modest

increases in ε begin to result in generally more-significant speed improvements as the

overall density increases (higher densities lead to smaller µ bounds, which, combined

with higher ε, significantly helps the pruning process). The query times are further

broken down based on the time contributed by each of the 3 main steps of our algorithm

from Section 7.4.4. The upper bound construction phase is consistently the fastest (< 1

ms), whereas the A∗ search overhead quickly diminishes and becomes dominated by the

corridor search for increasing density and ε (note that corridor search times for optimal

solutions generally increase with density, as we only search nodes in R, and |R| also

increases with density). For all approximate solutions, our algorithm achieves < 25%

relative error (though typically much better), on average.

To get a sense of how this new algorithm’s performance compares to the

previous-best runtimes achieved by the non-greedy LESS algorithm from [96], we present

the relative speedups over the LESS algorithm for each density value tested here in Table

7.1. Note that, since the LESS algorithm is optimal, we present the comparison against

only our own optimal solutions from these experiments (i.e., cases where ε = 0). For

extremely low densities of, e.g., 1-10 locations per category, we see that our new hybrid

algorithm is actually slower, but still achieves satisfactory runtimes of around 1 second

(while the LESS algorithm runs in sub-second time for these instances). However, as the

density increases, our relative performance begins to show drastic improvements, result-

ing in speedups of up to 2 orders of magnitude faster than LESS for the highest-density

problems tested (for which LESS was previously taking up to 16 seconds to solve).
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Figure 7.8: Density experiments showing average runtimes (top) and average relative

errors (bottom).
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Table 7.1: Speedup of our new algorithm with respect to category density, when com-

pared to the previous-best GTSPP algorithm from [96].

Category Speedup over
Density (g) LESS[96]

100 0.562

101 0.624

102 1.359

103 1.915

104 10.557

105 25.293

106 178.603

7.5.4 Category Count Experiments

We similarly examine how our algorithm scales for various category counts.

For all experiments discussed here, we fixed the category density at g = 10, 000 and

selected s 6= t independently at random.

For every 1 ≤ i ≤ 7, we constructed 100 random query instances of k = i

categories, populated uniformly at random. To further examine the impact of ε on our

solutions, for 0 ≤ j ≤ 3, we ran each query with ε = 0.05j (a sufficiently-smaller range

than before). Results are presented in Fig. 7.9, with average query times on the top

(again note the logarithmic y-axis) and relative errors on the bottom.

For our query times, we are able to achieve optimal solutions (i.e., ε = 0) in

times ranging from tens of milliseconds (for k = 1) up to only less than half of a second

(for k = 7). However, even for our most-approximate solutions (ε = 0.15), we achieve

solutions with < 5% error in only < 65 ms, on average, for all category counts tested.

Of the three separate stages of this algorithm, the A∗ search phase shows the

most overall relative degradation with respect to increasing category counts. However,

this is expected, as this is the only stage of the algorithm which is exponentially-impacted
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Figure 7.9: Count experiments showing average runtimes (top) and average relative

errors (bottom).
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Table 7.2: Speedup of our new algorithm with respect to category count, when compared

to the previous-best GTSPP algorithm from [96].

Category Speedup over
Count (k) LESS[96]

1 3.539

2 6.131

3 6.285

4 7.569

5 8.382

6 17.345

7 12.758

by the increasing value of k (the other two stages require only polynomial time).

Our speedups relative to the LESS algorithm from [96] are also presented for

these experiments in Table 7.2 (again, only optimal solutions with ε = 0 were compared).

Similar to our previous comparisons with LESS, we see nearly an order of magnitude

speed improvement, on average, across all of the various category counts tested.

7.6 Conclusion

We have presented both exact and approximate solutions for solving large-

scale GTSPP instances in real-world road networks. Our results achieve near real-time

solutions for nationwide queries, using only modest pre-processing effort, and result in

orders of magnitude speed improvements over the previous-best algorithm from [96] for

solving GTSPP queries in road networks. As future work, we conclude with 2 possible

extensions to the ideas presented here.
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7.6.1 Category Subset Selection

The pre-processing of category sets (proposed in Section 7.4.2) currently as-

sumes that every location within a given category is valid for consideration within a

given GTSPP query which includes that category. However, this formulation may still

be considered somewhat inflexible by some practitioners. For example, if we have a single

category to represent all gas station locations (regardless of brand, etc.), a traveler may

still have specific preferences and/or requirements as to which gas stations they would

like to consider as valid for a solution; e.g., they might wish to visit only gas stations of a

certain brand, only gas stations which also have a car wash or sell diesel, etc. One could

easily utilize our existing solution by simply establishing a separate category for each of

these possible distinct subsets. However, this may result in an arbitrarily-large number

of highly-specific categories during pre-processing, and there is also risk that we simply

can not know in advance how users might actually specify their unique preferences for

certain category subsets (as their needs are likely to change on a trip-by-trip basis).

Despite all of this, we may still utilize our currently proposed solution frame-

work, in which we pre-process only broadly-defined, high-level categories (such as the

set of all gas stations), while still allowing users to arbitrarily select from within each

category at query time as they see fit. It is easy to prove8 that the general algorithm

proposed in Section 7.4.4 remains correct under such category subset selection, as long

as (i) the implicitly searched product graph is properly established only for the valid

category subsets (which is straightforward to achieve) and (ii) the calculation of the

upper bound, µ, properly honors the specific subset selection for each involved category

(i.e., remains a valid upper bound). Therefore, one may simply augment Step 1 from

8The proof relies on the fact that RC and our previously-established heuristic functions remain
valid/admissible (although weaker) even under subset selection and can therefore be used exactly as
before.
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our proposed algorithm (Section 7.4.4) to construct a new upper bound honoring the

specific subset definitions chosen from each category at query time, allowing for an even

more flexible approach in practice.

7.6.2 Generalized Orienteering Problems

The Generalized Orienteering Problem (GOP) is a variation on the previous

idea of GTSPP in which we seek to maximize the number of unique categories visited

along some path from source s to target t within a given cost budget B (i.e., the resulting

path cannot cost more than B). This problem has similar applications to GTSPP in

the domain of personalized location-based services as well. For example, when shopping

to buy a new home, a typical consideration is the type of categorical locations (e.g.,

grocery stores, banks) that can be reached from each home location within some bounded

time (e.g., 15 minutes). This helps the buyer to rate each home location based on its

overall utility for running common errands. However, classical versions of this problem

only consider the travel time to each individual category separately from one another.

This could in fact result in much higher travel times than originally anticipated, if,

for example, we wish to visit two categorical locations in one trip, but one category is

located 15 minutes to the east of the home and one 15 minutes to the west (making for

a round trip ≥ 60 minutes). A more appropriate approach might be to instead consider

the types of categories that can be reached within only a single round trip from each

home, in the given budget. This is exactly what GOP will compute.

In keeping with the approach of computing shortest paths within the estab-

lished GTSPP product graph, a straightforward enhancement for solving GOP would

therefore be to simply choose the largest-cardinality subset C ′ ⊆ C, such that we have

d(〈s, ∅〉, 〈t, C ′〉) ≤ B (cardinality ties could be broken by preferring those paths with
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minimum cost). Many of the techniques presented here and in [96] used to solve GT-

SPP can thus be easily extended to solve the GOP as well.

Using this new problem formulation, we can effectively view the high-level

problem of Generalized Route Planning as having dual versions: a quota-driven version

(GTSPP) in which we must minimize the cost of a path visiting some fixed quota of

categories and a budget-driven version (GOP) in which we must maximize the number

of categories visited according to some fixed budget on the path cost.
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Part IV

Conclusion
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Chapter 8

Conclusion

In this dissertation, we have considered various constraint scenarios for route

planning in road networks in order to effectively and efficiently support a more personal-

ized overall navigation experience for the individual traveler. Thus far, we have focused

separately on two primary types of personalized constraints, including avoidance con-

straints enforced by so-called edge restrictions, as discussed in Part II, and detour (or

preference) constraints based on categorical points of interest, as discussed in Part III.

Within each of these parts, we progressively engineered various combinations of

both hierarchical and goal-directed search techniques. Overall, our hybrid combinations

of these two general approaches achieved the best performance by effectively combining

the most useful aspects of each approach. Such hybrid algorithms allowed us to achieve

optimal (or near-optimal) solutions for each of our various constraint scenarios across

continent-wide problem instances, typically in only a matter of milliseconds, on average.

Future Work. While each particular topic has been addressed separately, both for

simplicity as well as self-containment, we should note that there is also a natural syn-

ergy between our results for these two separate constraint types, as they may be easily
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integrated to work together as a single, all-in-one route-planning solution. This should

be readily apparent, as the engineered results of Part III work so well in large part due

to some general structural properties of the CH index, which are also maintained by our

own extended CH preprocessing techniques from Part II, as well. Combining our results

from these two respective sections into a single, integrated approach would therefore

ultimately allow us to solve even more practical combinations of such constraint scenar-

ios for personalized navigation (e.g., find the best detour through a given category set,

which also avoids undesirable roads).

Aside from the prospect of more tightly integrating the various parts of this

dissertation, there are many additional interesting directions to consider for future work.

The most obvious and straightforward of these would be to further extend the results of

this work to also incorporate more of the various other practical concepts currently being

explored for route planning functionality, including (but not limited to): incorporating

turn restrictions, time-dependent route planning, multi-criteria route planning, finding

multiple alternative routes, multi-modal route planning (with transit schedules), etc.

However, apart from these extensions, perhaps the most promising (but least-

straightforward) of these new directions would be to consider further research into the

discovery of new and efficient, fixed-parameter tractable algorithms for other complex

(i.e., NP-hard) route planning problems within the context of road networks (such as

was discovered for our own GTSP problem instances). For example, are there other

parameterizations (e.g., highway dimension [8], etc.) for NP-hard problems within the

context of road networks that can similarly make such a surprisingly-practical impact?

Applying such concepts of parameterized complexity within the broad domain of route

planning could potentially result in some of the most significant achievements thus far.
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