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DeepMonitoring: a deep
learning-based monitoring
system for assessing the quality of
cornea images captured by
smartphones

Zhongwen Li1,2*†, Lei Wang2†, Wei Qiang1†, Kuan Chen3†,
ZhouqianWang2, Yi Zhang4, He Xie2, ShanjunWu1, Jiewei Jiang4*
and Wei Chen1,2*
1Ningbo Key Laboratory of Medical Research on Blinding Eye Diseases, Ningbo Eye Institute, Ningbo Eye
Hospital, Wenzhou Medical University, Ningbo, China, 2National Clinical Research Center for Ocular
Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China, 3Cangnan Hospital, Wenzhou
Medical University, Wenzhou, China, 4School of Electronic Engineering, Xi’an University of Posts and
Telecommunications, Xi’an, China

Smartphone-based artificial intelligence (AI) diagnostic systems could assist high-
risk patients to self-screen for corneal diseases (e.g., keratitis) instead of detecting
them in traditional face-to-face medical practices, enabling the patients to
proactively identify their own corneal diseases at an early stage. However, AI
diagnostic systems have significantly diminished performance in low-quality
images which are unavoidable in real-world environments (especially
common in patient-recorded images) due to various factors, hindering the
implementation of these systems in clinical practice. Here, we construct a
deep learning-based image quality monitoring system (DeepMonitoring) not
only to discern low-quality cornea images created by smartphones but also to
identify the underlying factors contributing to the generation of such low-quality
images, which can guide operators to acquire high-quality images in a timely
manner. This system performswell across validation, internal, and external testing
sets, with AUCs ranging from0.984 to 0.999. DeepMonitoring holds the potential
to filter out low-quality cornea images produced by smartphones, facilitating the
application of smartphone-based AI diagnostic systems in real-world clinical
settings, especially in the context of self-screening for corneal diseases.
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Introduction

In recent years, the field of medicine has undergone a revolutionary transformation,
driven by the advancements in artificial intelligence (AI), specifically deep learning (DL)
which exhibits high accuracy in the automated classification of medical images, often at an
expert level (Esteva et al., 2017; Hannun et al., 2019; Li et al., 2024; Rajpurkar et al., 2022).
The application of DL in ophthalmology is very promising due to the fact that the diagnoses
of eye diseases are mainly based on image recognition (Jiang et al., 2023; Li et al., 2022; 2023;
Milea et al., 2020; Ting et al., 2019). Numerous studies have successfully developed DL
systems for detecting retinal diseases from fundus images, such as diabetic retinopathy
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(DR), glaucoma, and retinal detachment (Dai et al., 2021; Li et al.,
2021a; Li et al., 2020a; Pachade et al., 2021; Ting et al., 2017). Due to
robust performance in clinical trials, the DL-based devices for DR
screening and monitoring have been approved by the US and
Chinese Food and Drug Administration and deployed in a large
number of clinical institutions, particularly in primary care centers
(Abramoff et al., 2018; Lin et al., 2021; Ting et al., 2020).

Recently, the prospect of using DL for corneal disease screening
commands more attention because the report from the World
Health Organization shows that blindness caused by corneal
diseases is a major global ophthalmic public health concern
(Flaxman et al., 2017). To increase the scalability of a corneal
disease screening program while reducing its cost, several studies
have constructed DL systems that can accurately detect corneal
diseases from cornea images captured by smartphones (Li et al.,
2021c; Wang et al., 2021; Yoo et al., 2021). This approach potentially
brings corneal disease screening to high-risk patients rather than
relying on patients to come to eye care institutions to be screened,
enabling them to proactively identify their own corneal diseases at
an early stage.

Despite exhibiting excellent performance during the research
phase, the efficacy of smartphone-based AI systems in real-world
settings remained uncertain as the studies initially excluded all low-
quality images which was inevitable in real life and only high-quality
images were used for model training and testing (Li et al., 2021b;
Wang et al., 2021; Yoo et al., 2021). Several previous studies have
confirmed that AI systems have greatly diminished performance in
low-quality images (Li et al., 2020b; Li et al., 2021b; Maier et al.,
2022). Patient-recorded images are often taken at various locations
with different backgrounds and lighting, increasing the likelihood of
insufficient clarity, exposure, or overexposure. It poses a challenge to
those smartphone-based AI systems. Therefore, the adoption of an
approach capable of minimizing or even preventing the occurrence
of low-quality images is crucial to facilitate the implementation of
smartphone-based AI systems, especially in the scenario of corneal
disease self-screening. To date, the solution to this problem has not
been investigated in the published research.

In the current study, we endeavored to tackle this issue by
developing a DL-based image quality monitoring system, named
DeepMonitoring, to automatically detect low-quality cornea images
produced by smartphones. Meanwhile, this system could identify
the cause of low image quality, assisting an operator in adopting
targeted measures to obtain high-quality cornea images in a timely
manner. Besides, to verify the generalizability of our system, it was
tested on two independent datasets that were collected using
different brands of smartphones.

Methods

Datasets

The development of DeepMonitoring involved the use of
6,374 cornea images captured with smartphones, formatted in
JPG with dimensions of 4,680 × 3,456 pixels. These images were
taken utilizing the super macro mode feature of the HUAWEI
P30 camera at Zhejiang Eye Hospital (ZEH). Two additional
datasets, including 1,343 smartphone-based cornea images

obtained at Ningbo Eye Hospital (NEH), were used to externally
assess DeepMonitoring. One dataset, consisting of 769 images
(4,032 × 3,024 pixels in JPG format), was acquired using the
super macro mode of VIVO X80. The second dataset, containing
574 images (2,592 × 1,944 pixels in JPG format), was collected using
the super macro mode of XIAOMI 12S. All smartphone-based
cornea images were de-identified before being transferred to
researchers.

Ethics approval

Ethical approval for this study was obtained from the Ethics
Committees of Ningbo Eye Hospital (NEH) (identifier: 2022-
56 K-C1) and Zhejiang Eye Hospital (ZEH) (identifier: 2021-019-
K-16-03). The research adhered to the principles outlined in the
Declaration of Helsinki. Due to the retrospective nature of data
collection and the utilization of de-identified images, the
requirement for informed consent was waived.

Image quality classification and ground truth

The details of the criteria for image quality are shown in Table 1.
Three cornea specialists, each possessing over 5 years of clinical
experience, were engaged to independently annotate images
according to the specified criteria. All images were classified into
the following 6 categories: defocused images, overexposed images,
underexposed images, images of poor cornea position (PCP), images
of incompletely exposed cornea (IEC), and high-quality images.
Typical examples of images with varying quality are presented in
Figure 1. The ground truth of each image was established upon
consensus among the 3 cornea specialists. Discrepancies at any level
were resolved through the judgment of a senior cornea specialist
with 20 years of clinical experience. The performance of
DeepMonitoring (a multiclassification classifier) was evaluated on
the basis of the ground truth.

Development and evaluation of
DeepMonitoring

Before employing DL, image standardization was undertaken to
resize the images to a resolution of 224 × 224 pixels and normalize
pixel values within the range of 0–1. To enhance the diversity of the
training set and mitigate overfitting and bias during the training
process, data augmentation techniques were employed. All images in
the training set underwent random cropping, rotations, as well as
horizontal and vertical flipping, effectively increasing its size to six
times the original.

Images from the ZEH dataset were randomly allocated 70% to
the training set, 15% to the validation set, and the remaining 15% to
the internal testing set for the development and performance
evaluation of DeepMonitoring. To obtain the most optimal
model with robust performance, the study explored four state-of-
the-art DL architectures: Swin-Transformer, ConvNeXt, RepVGG,
and MobileNet. The details of the trained DL models, including the
size, trainable parameters, and running time of training and testing,
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are shown in Supplementary Table 1. Transfer learning was
employed due to its potential to enhance the performance of DL
models in image classification tasks (Kermany et al., 2018). The DL
architectures were initialized using weights pre-trained on the
ImageNet database, which consists of 1,000 object classes
(Russakovsky et al., 2015).

The models were trained using the PyTorch backend based on
an Ubuntu 18.04 computer equipped with four Nvidia 2080TI
graphics processing units. The model underwent optimization
utilizing the Adaptive Moment Estimation (ADAM) optimizer,
with an initial learning rate set to 0.001 and a weight decay set
to 5e-05. Throughout the training process, the monitoring of
validation accuracy and loss was implemented as a precautionary

measure to avoid model overfitting. Following each training epoch,
the validation set was utilized to assess what the model had learned.
Whenever the validation accuracy improved or the loss function
decreased, a checkpoint was generated to preserve both the model
architecture and its corresponding weight matrix. The maximum
iteration was established at 80 steps, with a batch size set to 64. The
model with the highest validation accuracy and the lowest validation
loss was selected for application on the testing set.

The effectiveness of this six-category classification model was
subsequently appraised on two external testing sets. The process of
establishing and assessing DeepMonitoring is introduced in
Figure 2. The t-distributed stochastic neighbor embedding
(t-SNE) was employed as a nonlinear dimensionality reduction
technique to showcase the embedding features learned by the DL
model for each category in a two-dimensional space.

Heatmap generation

To gain the trust of human experts in clinical practice,
DeepMonitoring requires an understandable decision-making
process. The Gradient-weighted Class Activation Mapping (Grad-
CAM) technique (Selvaraju et al., 2020), as a generalization to CAM,
was used to highlight the particular image regions that were most
responsible for predicting a certain class by DeepMonitoring. Grad-
CAM can be applied to a broader spectrum of DL model families
without necessitating architectural changes or retraining. It
generates heatmaps from the final convolutional layer in test
images, assisting human experts in comprehending the rationale
behind the DL system. The redder regions in the heatmaps indicate a
higher influence on DeepMonitoring’s classification.

TABLE 1 The classification of the quality of smartphone-based cornea
images.

Classification Presence of features

High-quality images Four-fifths or more of the cornea is clear

Low-quality images Meet any of the following criteria

Defocused images Focus is not on the cornea

Overexposed images Over one-fifth of the cornea is unclear due to
overexposure

Underexposed images Over one-fifth of the cornea is unclear due to
underexposure

Images of poor cornea position Over one-fifth of the cornea is indistinct because
the cornea position is not straight ahead

Images of incompletely
exposed cornea

Over one-fifth of the cornea is covered by eyelids

FIGURE 1
Typical examples of low-quality and high-quality cornea images taken by smartphones. Low-quality images include the following 5 types: (A),
Defocused image; (B), Overexposed image; (C), Underexposed image; (D), Image of poor cornea position; and (E), Image of incompletely exposed
cornea. (F), High-quality image.
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Evaluation of an AI diagnostic system in low-
quality and high-quality cornea images

We previously developed an AI diagnostic system for
discriminating among keratitis, other corneal abnormalities, and
normal cornea utilizing cornea images, which aimed to
automatically detect corneal diseases at an early stage and decline
the incidence of corneal blindness (Li et al., 2021b). Typical examples
of keratitis images are shown in Supplementary Figure 1. To
demonstrate the importance of the image quality assessment
process (DeepMonitoring) for this AI diagnostic system, we
conducted separate evaluations of the system’s performance using
low-quality and high-quality cornea images. A set of 300 high-quality
images was randomly sampled from the ZEH dataset, with each
category (keratitis, other corneal abnormalities, and normal cornea)
comprising 100 images. Using the same strategy, we selected 300 low-
quality images and each category consisted of 20 defocused images,
20 overexposed images, 20 underexposed images, 20 PCP images, and
20 IEC images. The performance of the AI diagnostic system in low-
quality images was contrasted with its performance in high-quality
images. To determine which type of low-quality images (defocused
images, overexposed images, underexposed images, PCP images, and
IEC images) had the biggest negative impact on the AI diagnostic
system, we evaluated this system using the low-quality images
randomly selected above.

Statistical analyses

DeepMonitoring’s performance in discriminating among
defocused images, overexposed images, underexposed images,
PCP images, IEC images, and high-quality images was assessed
using the one-versus-rest strategy. The evaluation involved

calculating accuracy, sensitivity, and specificity, along with 95%
confidence intervals (CIs). Receiver operating characteristic (ROC)
curves were generated to illustrate DeepMonitoring’s capability in
evaluating image quality. The greater area under the curve (AUC)
signified superior performance. Unweighted Cohen’s kappa
coefficients were applied to assess the concordance between
DeepMonitoring’s outcomes and the ground truth established by
cornea specialists. The interpretation of Kappa agreement scores
followed a predefined scale from a previously published source
(0–0.20: none; 0.21–0.39: minimal; 0.40–0.59: weak; 0.60–0.79:
moderate; 0.80–0.90: strong; > 0.90: almost perfect) (McHugh,
2012). Proportion comparisons were conducted utilizing the
McNemar test. All statistical analyses were two-sided and
performed using Python version 3.7.8 (Wilmington, Delaware,
United States), with a significance level set at 0.05.

Results

Characteristics of the datasets

A total of 7,717 smartphone-based cornea images
(1,290 defocused images, 556 overexposed images,
752 underexposed images, 606 PCP images, 930 IEC images, and
3,583 high-quality images) were utilized to develop and evaluate
DeepMonitoring. Comprehensive details about the development
and external testing datasets are presented in Table 2.

Performance of DLmodels in a validation set

This study utilized four DL algorithms (Swin-Transformer,
ConvNeXt, RepVGG, and MobileNet) to train models designed

FIGURE 2
Flow diagram of the development and evaluation of the deep learning system. NEH, Ningbo Eye Hospital. ZEH, Zhejiang Eye Hospital.
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for the discrimination of defocused images, overexposed images,
underexposed images, PCP images, IEC images, and high-quality
images. The t-SNE analysis revealed that ConvNeXt exhibited a
superior capability to distinguish the embedding features of each
class compared to Swin-Transformer, RepVGG, and
MobileNet (Figure 3A).

In Figures 3B, C, the performance of the four algorithms on a
validation set is depicted, highlighting ConvNeXt as the top-
performing algorithm. The details, including sensitivities,
specificities, and accuracies of the algorithms, are presented in
Supplementary Table 2.

The best algorithm, ConvNeXt, attained an AUC of 0.997 (95%
CI, 0.993–1.000), with a sensitivity of 94.9% (95% CI, 91.3–98.6) and
a specificity of 99.5% (95% CI, 99.0–100) in the identification of
defocused images. For discriminating overexposed images from the
other categories, the ConvNeXt achieved an AUC of 0.998 (95% CI,
0.996–1.000), with a sensitivity of 96.7% (95% CI, 92.1–100) and a
specificity of 99.8% (95% CI, 99.5–100). For distinguishing
underexposed images from the other categories, the ConvNeXt
achieved an AUC of 0.999 (95% CI, 0.998–1.000), with a
sensitivity of 96.0% (95% CI, 92.1–99.8) and a specificity of
99.5% (95% CI, 99.1–100). For identifying PCP images, the
ConvNeXt attained an AUC of 0.999 (95% CI, 0.998–1.000), with
a sensitivity of 92.6% (95% CI, 86.4–98.9) and a specificity of 99.9%
(95% CI, 99.7–100). For detecting ICE images, the ConvNeXt
achieved an AUC of 0.995 (95% CI, 0.992–0.998), with a
sensitivity of 89.9% (95% CI, 84.0–95.8) and a specificity of
98.9% (95% CI, 98.3–99.6). For distinguishing high-quality
images from the other categories, the ConvNeXt attained an
AUC of 0.995 (95% CI, 0.991–0.998), with a sensitivity of 97.8%
(95% CI, 96.4–99.1) and a specificity of 96.8% (95% CI, 95.2–98.4).

In comparison to the ground truth of the validation set, the
unweighted Cohen’s kappa coefficient for ConvNeXt was 0.940
(95% CI, 0.922–0.958).

Performance of DL models in an internal
testing set

In an internal testing set, the t-SNE technique also revealed that
ConvNeXt exhibited more distinguishable features for each category
compared to Swin-Transformer, RepVGG, and MobileNet
(Figure 4A). Correspondingly, the confusion matrices (Figure 4B)
and ROC curves (Figure 4C) of these four algorithms showed that
ConvNeXt had the best performance. Additional details regarding
the discriminative performance of the algorithms in the internal
testing set are outlined in Supplementary Table 3.

For the classification of defocused images, overexposed images,
underexposed images, PCP images, IEC images, and high-quality
images, the optimal algorithm, ConvNeXt, attained AUCs of 0.996
(95% CI, 0.992–0.999), 0.999 (95% CI, 0.997–1.000), 0.993 (95% CI,
0.979–1.000), 0.999 (95% CI, 0.997–1.000), 0.993 (95% CI,
0.987–0.997), and 0.996 (95% CI, 0.993–0.998), respectively. The
corresponding sensitivities were 92.9% (95% CI, 88.6–97.1), 96.8%
(95% CI, 92.4–100), 97.0% (95% CI, 93.7–100), 91.4% (95% CI,
84.9–98.0), 90.0% (95% CI, 84.1–95.9), and 96.3% (95% CI,
94.7–98.0), and the corresponding specificities were 99.5% (95%
CI, 99.0–100), 99.7% (95% CI, 99.3–100), 99.7% (95% CI, 99.3–100),
99.7% (95% CI, 99.3–100), 98.1% (95% CI, 97.2–99.0), and 96.4%
(95% CI, 94.7–98.1). In comparison to the ground truth of the
internal testing set, the unweighted Cohen’s kappa coefficient for
ConvNeXt was 0.926 (95% CI, 0.906–0.946).

TABLE 2 Summary of datasets.

Item Development
dataset

External testing dataset

Total no. of images 6,374 1,343

Institution ZEH NEH

Location of institution Wenzhou Ningbo

Smartphone model HUAWEI P30 VIVO X80 XIAOMI 12S

Image format JPG JPG JPG

Image size (pixels) 4,680 × 3,456 4,032 × 3,024 2,592 × 1944

Training set Validation set Internal testing set VIVO external
testing set

XIAOMI external
testing set

Defocused imagesa 648/4,459 (14.5) 138/953 (14.5) 140/962 (14.6) 212/769 (27.6) 152/574 (26.5)

Overexposed imagesa 283/4,459 (6.3) 60/953 (6.3) 62/962 (6.4) 81/769 (10.5) 70/574 (12.2)

Underexposed imagesa 462/4,459 (10.4) 99/953 (10.4) 100/962 (10.4) 48/769 (6.3) 43/574 (7.5)

Images of poor cornea positiona 319/4,459 (7.2) 68/953 (7.1) 70/962 (7.3) 71/769 (9.2) 78/574 (13.6)

Images of incompletely exposed
corneaa

463/4,459 (10.4) 99/953 (10.4) 100/962 (10.4) 131/769 (17.0) 137/574 (23.8)

High-quality imagesa 2,284/
4,459 (51.2)

489/953 (51.3) 490/962 (50.9) 226/769 (29.4) 94/574 (16.4)

aData are no. of images/total no. (%) unless otherwise indicated. ZEH, Zhejiang Eye Hospital; NEH, Ningbo Eye Hospital; JPG, joint picture group.
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Performance of DL models in external
testing sets

Similarly, in VIVO and XIAOMI external testing sets, the t-SNE
maps, confusion matrices, and ROC curves denoted that ConvNeXt
performs better than other algorithms (Figures 5, 6). The details
regarding the performance of these four algorithms in the external
testing sets are presented in Supplementary Tables 4, 5. In the VIVO

external testing set, the best algorithm, ConvNeXt, attained AUCs of
0.987 (95% CI, 0.975–0.997), 0.994 (95% CI, 0.989–0.998), 0.999
(95% CI, 0.997–1.000), 0.992 (95% CI, 0.984–0.997), 0.984 (95% CI,
0.969–0.995), and 0.997 (95% CI, 0.991–1.000) for the identification
of defocused images, overexposed images, underexposed images,
PCP images, IEC images, and high-quality images, respectively. In
the XIAOMI external testing sets, ConvNeXt achieved AUCs of
0.986 (95% CI, 0.969–0.996), 0.998 (95% CI, 0.993–1.000), 0.995

FIGURE 3
Performance of four different types of deep learning algorithms in a validation set. (A), t-distributed stochastic neighbor embedding (t-SNE) maps.
(B), Confusionmatrices. (C), Receiver operating characteristic (ROC) curves; AUC, area under the curve; DI, defocused image; OI, overexposed image; UI,
underexposed image; IPCP, image of poor cornea position; IIEC, image of incompletely exposed cornea; HQI, high-quality image.
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(95% CI, 0.986–1.000), 0.987 (95% CI, 0.973–0.996), 0.987 (95% CI,
0.970–0.997), and 0.993 (95% CI, 0.985–0.999) for the
discrimination among defocused images, overexposed images,
underexposed images, PCP images, IEC images, and high-quality
images, respectively. In comparison to the ground truth of the VIVO
and XIAOMI external testing sets, the unweighted Cohen’s kappa
coefficients for ConvNeXt were 0.936 (95% CI, 0.916–0.955) and
0.937 (95% CI, 0.915–0.960), respectively.

Visualization heatmap

To illustrate the image regions that play a significant role in
influencing DeepMonitoring’s decision, we generated heatmaps by
superimposing a visualization layer at the end of the convolutional
neural networks. For defocused images, the heatmaps highlighted regions
with blurriness. For overexposed images, the heatmaps displayed
highlighted visualization on regions with excessive brightness. For

FIGURE 4
Performance of four different types of deep learning algorithms in an internal testing set. (A), t-distributed stochastic neighbor embedding (t-SNE)
maps. (B), Confusion matrices. (C), Receiver operating characteristic (ROC) curves; AUC, area under the curve; DI, defocused image; OI, overexposed
image; UI, underexposed image; IPCP, image of poor cornea position; IIEC, image of incompletely exposed cornea; HQI, high-quality image.
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underexposed images, the heatmaps displayed highlighted visualization
on regions with insufficient brightness. For PCP images, the heatmaps
highlighted the regions of the exposed conjunctiva. For IEC images, the
heatmaps emphasized the regions of the eyelid that obscured the cornea.
For high-quality images, the heatmaps showcased emphasized
visualizations on the entire cornea. Examples of heatmaps for
defocused images, overexposed images, underexposed images, PCP
images, IEC images, and high-quality images are shown in Figure 7.

Evaluation of the AI diagnostic system in
low-quality and high-quality images

The AI diagnostic system attained AUCs of 0.849 (95% CI,
0.805–0.890), 0.806 (95% CI, 0.746–0.859), and 0.644 (95% CI,
0.581–0.701) for identifying keratitis, other corneal abnormalities,
and normal cornea in low-quality images, respectively. In contrast,
the system achieved corresponding AUCs of 0.973 (95% CI,

FIGURE 5
Performance of four different types of deep learning algorithms in a VIVO external testing set. (A), t-distributed stochastic neighbor embedding (t-SNE)
maps. (B), Confusionmatrices. (C), Receiver operating characteristic (ROC) curves; AUC, area under the curve; DI, defocused image; OI, overexposed image;
UI, underexposed image; IPCP, image of poor cornea position; IIEC, image of incompletely exposed cornea; HQI, high-quality image.
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0.945–0.992), 0.979 (95% CI, 0.963–0.992), and 0.975 (95% CI,
0.957–0.991) in high-quality images. The ROC curves, confusion
matrices, and t-SNE maps of the system in low-quality and high-
quality images are presented in Supplementary Figure 2. The overall
performance of the system in low-quality images was significantly
worse than that in high-quality images (Supplementary Table 6).
The accuracies of the AI diagnostic system in defocused images,

overexposed images, underexposed images, PCP images, and IEC
images were 56.7% (95% CI, 44.1–69.2), 68.3% (95% CI, 56.6–80.1),
60.0% (95% CI, 47.6–72.4), 48.3% (95% CI, 35.7–61.0), and 40.0%
(95% CI, 27.6–52.4), respectively, indicating that the IEC images had
the most significant negative impact on the system’s ability to detect
keratitis, other corneal abnormalities, and normal cornea (average
AUC = 0.642) (Supplementary Figure 3).

FIGURE 6
Performance of four different types of deep learning algorithms in a XIAOMI external testing set. (A), t-distributed stochastic neighbor embedding
(t-SNE) maps. (B), Confusion matrices. (C), Receiver operating characteristic (ROC) curves; AUC, area under the curve; DI, defocused image; OI,
overexposed image; UI, underexposed image; IPCP, image of poor cornea position; IIEC, image of incompletely exposed cornea; HQI, high-
quality image.
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Discussion

A smartphone-based AI diagnostic system for self-detecting and
monitoring corneal diseases in high-risk individuals is a valuable
clinical tool that can help reduce the incidence of corneal blindness.
This is because smartphones are now affordable and widely
accessible. However, the generation of low-quality cornea images
through smartphones is often unavoidable in real-world settings,
particularly for non-professionals. This limitation decreases the
accuracy of an AI diagnostic system, thereby hindering the
widespread adoption and promotion of this system. Therefore, an
image quality assessment process prior to the smartphone-based AI
diagnostic system is indispensable. In this study, we established a DL
system, DeepMonitoring (Figure 8), for detecting and filtering out
low-quality cornea images produced by smartphones, and evaluated
it on three image datasets derived from varying brands of
smartphones. DeepMonitoring showed good performance across
the validation, internal, and external testing sets (all AUCs over
0.98), demonstrating its robustness and broad generalizability.
Additionally, the unweighted Cohen’s kappa coefficients revealed
substantial agreement between the outputs of DeepMonitoring and
the ground truth across all datasets (all over 0.92), further affirming
the effectiveness of our DeepMonitoring.

Apart from detecting low-quality images, our DeepMonitoring
can identify the causes (e.g., defocus, overexposure, and
underexposure) of low-quality images with high accuracy. When
a smartphone produces a low-quality image, our DeepMonitoring

would provide targeted guidance to assist an operator in recapturing
a high-quality image in a timely and effective manner. This process
ensures that only high-quality images are transferred to a
subsequent AI diagnostic system, enhancing the system’s
performance in real-world settings. Besides, our DeepMonitoring
can also be used to educate novice operators to improve their skills in
obtaining high-quality cornea images via smartphones. These
characteristics of DeepMonitoring would help the spread of
smartphone-based AI diagnostic systems in clinical practice,
empowering high-risk individuals to proactively identify their
own corneal diseases at an early stage.

The interpretability of AI systems needs to be elucidated prior to
they are applied in real-world clinical settings (Keel et al., 2019;
Rudin, 2019). To elucidate the decision-making process of
DeepMonitoring, heatmaps were created to highlight the crucial
areas that the system employed to distinguish defocused images,
overexposed images, underexposed images, PCP images, IEC
images, and high-quality images. Our results indicated that the
heatmaps showcased highlighted visualization on regions with
blurriness in defocused images, on regions with excessive
brightness in overexposed images, on regions with insufficient
brightness in underexposed images, on regions of exposed
conjunctiva in PCP images, on eyelid regions in IEC images, and
on regions of the clear cornea in high-quality images. This
interpretability feature of DeepMonitoring would enhance its
applicability in real-world settings, as operators can comprehend
how DeepMonitoring arrives at its final output.

FIGURE 7
Typical heatmap examples of a defocused image, overexposed image, underexposed image, image of poor cornea position, image of incompletely
exposed cornea, and high-quality image. The original image (left) and its corresponding heatmap (right) of each class are presented in pairs. (A),
defocused image. (B), overexposed image. (C), underexposed image. (D), image of poor cornea position. (E), image of incompletely exposed cornea. (F),
high-quality image.
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The performance of our previously established AI diagnostic system
in classifying keratitis, other corneal abnormalities, and normal cornea
showed a significant decline in low-quality cornea images compared to
high-quality images (Supplementary Table 6). This result proves the
importance and indispensability of our DeepMonitoring for the
smartphone-based AI diagnostic system. In addition, we found that
theAI diagnostic system’s performance showed varying degrees of decline
on defocused images, overexposed images, underexposed images, PCP
images, and IEC images, among which, the most significant decline was
observed on IEC images (Supplementary Figure 3). This result indicates
that the patient’s eyes should be kept as wide open as possible while taking
images of the cornea with a smartphone.

Our work has several crucial features. First of all, to the best of our
knowledge, we constructed the first intelligent image quality
monitoring system, DeepMonitoring, for automatically discerning
and filtering out low-quality cornea images produced by
smartphones. Second, our DeepMonitoring can identify the cause
of a low-quality image and guide an operator to adopt a precise
solution to obtain a high-quality image in a timely manner. In
addition, the visual analysis of DeepMonitoring’s decision-making
process was conducted using a Grad-CAM approach to gain the trust
of human experts, which may promote the clinical implementation of
this system. Fourth, to enhance the performance in distinguishing
among different types of low-quality images, this study utilized

FIGURE 8
Diagram of DeepMonitoring. (A) Framwork of the ConvNeXt Network. (B) Structure of the ConvNeXt block. (C) Structure of the downsample layer;
DI, defocused image; OI, overexposed image; UI, underexposed image; IPCP, image of poor cornea position; IIEC, image of incompletely exposed
cornea; HQI, high-quality image.
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substantial datasets for training and validating DeepMonitoring,
consisting of 7,717 smartphone-based cornea images. Finally, our
datasets were derived from two distinct clinical settings employing
different smartphone brands and thus representingmultiple scenarios
in the real world.

Despite these impressive outcomes, our DeepMonitoring
presents several limitations. First, DeepMonitoring is limited to
classifying low-quality images and providing guidance for
recapture, with no inherent capability to enhance the image
quality. Further investigation is warranted to explore effective
methods for improving the quality of cornea images captured by
smartphones. In addition, as our DeepMonitoring was exclusively
trained and tested on a Chinese population from various geographic
regions, additional validation may be required to assess its
applicability to other racial groups. In the near future, we expect
to assess the performance of DeepMonitoring in various countries.

In conclusion, our DeepMonitoring showed reliable
performance in discriminating among defocused images,
overexposed images, underexposed images, PCP images, IEC
images, and high-quality images. DeepMonitoring would
promptly alert operators if an image’s quality is too low to rule
out keratitis and other corneal abnormalities and assist them in
retaking the image until it meets the quality requirements. We
believe that DeepMonitoring holds great potential to facilitate the
implementation of smartphone-based AI diagnostic systems in real-
world settings, particularly for self-screening of corneal diseases.
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