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ABSTRACT OF THE DISSERTATION

Noncommutative Plurisubharmonic Polynomials

by

Jeremy Michael Greene

Doctor of Philosophy in Mathematics

University of California, San Diego, 2011

Professor J. William Helton, Chair

Many optimization problems and engineering problems connected with lin-

ear systems lead to matrix inequalities. Matrix inequalities are constraints in which

a polynomial or a matrix of polynomials with matrix variables is required to take

a positive semidefinite value. Many of these problems have the property that they

are “dimension free” and, in this case, the form of the polynomials remains the

same for matrices of all size. In other words, we have noncommutative polyno-

mials. One very much desires these polynomials to be “convex” in the unknown

matrix variables, since if they are, then numerical calculations are reliable and

local optima are global optima.

In this dissertation, we classify all changes of variables (not containing trans-

poses) from noncommutative non-convex polynomials to noncommutative convex

xi



polynomials. This introduces notions of noncommutative complex Hessians and

plurisubharmonicity, classical notions from several complex variables. In addition,

we present a theory of noncommutative integration and we prove a “local implies

global” result in that we show noncommutative plurisubharmonicity on a noncom-

mutative open set implies noncommutative plurisubharmonicity everywhere.
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Chapter 1

Introduction

Many optimization problems and engineering problems connected with lin-

ear systems lead to matrix inequalities. Matrix inequalities are constraints in which

a polynomial or a matrix of polynomials with matrix variables is required to take

a positive semidefinite value. Many of these problems have the property that they

are “dimension free” and, in this case, the form of the polynomials remains the

same for matrices of all size. In other words, we have noncommutative polyno-

mials. One very much desires these polynomials to be “convex” in the unknown

matrix variables, since if they are, then numerical calculations are reliable and

local optima are global optima.

Often, one is most interested in the Hessian of a polynomial and its positiv-

ity, as this determines convexity. However, in this dissertation, we are concerned

with the complex Hessian, since it turns out to be related to which problems can

be made convex by an nc analytic changes of variables.

In the classical study of complex variables, we have polynomials in z and

z̄. We can then take derivatives with respect to z and z̄; i.e., ∂p
∂z

(z, z̄) and ∂p
∂z̄

(z, z̄).

We can also construct a matrix and fill it with mixed second partial derivatives;

i.e., the (i, j)-th entry of the matrix is ∂2p
∂zi∂z̄j

. In classical several complex variables,

this matrix of mixed partial derivatives is called the complex Hessian and if this

complex Hessian is positive semidefinite, then the original polynomial is said to be

plurisubharmonic (plush).

In this dissertation, we present noncommutative directional derivatives, the

1
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noncommutative analogue of the complex Hessian, and we define noncommutative

plurisubharmonicity. We classify all noncommutative changes of variables (not

containing transposes) from noncommutative non-convex polynomials to noncom-

mutative convex ones. This introduces notions of noncommutative complex Hes-

sians and noncommutative plurisubharmonicity, extending classical notions from

several complex variables. In addition, we prove a “local implies global” result in

that we show noncommutative plurisubharmonicity on an “nc open set” implies

noncommutative plurisubharmonicity everywhere (this is false in classical analy-

sis).

We also present a theory of noncommutative integration. We give necessary

and sufficient conditions as to when a given nc polynomial is an nc directional

derivative. We also give necessary and sufficient conditions as to when a given nc

polynomial is an nc complex Hessian. In addition, we prove a noncommutative

version of the Frobenius theorem where we determine when a given nc polynomial

is the “nc gradient of a potential”.

This introductory chapter gives the necessary basic definitions and sum-

marizes the main results in this dissertation. Chapter 2 contains the result that

classifies all nc plush polynomials and the theory of nc integration. Chapter 3

contains the “local implies global” result.

1.1 NC Polynomials

Many of the the definitions we shall need sit in the context of an elegant

theory of noncommutative analytic functions, such as is developed in the articles

[K-VV] and [Voi1, Voi2]; see also [Pop6]. Also, related to the results presented

in this dissertation are those on various classes of noncommutative functions on

balls as in [AK, BGM]. Transformations on nc variables with analytic functions

are described in [HKM, Pop6].



3

1.1.1 NC Variables and Monomials

We consider the free semi-group on the 2g noncommuting formal variables

x1, . . . , xg, x
T
1 , . . . , x

T
g . The variables xTj are the formal transposes of the variables

xj. The free semi-group in these 2g variables generates monomials in all of these

variables x1, . . . , xg, x
T
1 , . . . , x

T
g , often called monomials in x, xT .

If m is a monomial, then mT denotes the transpose of the monomial m.

For example, given the monomial (in the xj’s) x
w = xj1xj2 . . . xjn , the involution

applied to xw is (xw)T = xTjn . . . x
T
j2
xTj1 .

1.1.2 The Ring of NC Polynomials

Let R〈x1, . . . , xg, x
T
1 , . . . , x

T
g 〉 denote the ring of noncommutative polynomi-

als over R in the noncommuting variables x1, . . . , xg, x
T
1 , . . . , x

T
g . We often abbre-

viate

R〈x1, . . . , xg, x
T
1 , . . . , x

T
g 〉 by R〈x, xT 〉.

Note that R〈x, xT 〉 maps to itself under the involution T .

We call a polynomial nc analytic if it contains only the variables xj and

none of the transposed variables xTi . Similarly, we call a polynomial nc antiana-

lytic if it contains only the variables xTj and none of the variables xi.

We call an nc polynomial, p, symmetric if pT = p. For example, p =

x1x
T
1 + xT2 x2 is symmetric. The polynomial p̃ = x1x2x4 + x3x1 is nc analytic but

not symmetric. Finally, the polynomial p̂ = xT2 x
T
1 + 4xT3 is nc antianalytic but not

symmetric.

We call an nc polynomial hereditary if all xT1 , x
T
2 , . . . x

T
g variables appear

to the left of every x1, x2, . . . , xg variable. Similarly, we call an nc polynomial anti-

hereditary if all xT1 , x
T
2 , . . . x

T
g variables appear to the right of every x1, x2, . . . , xg

variable. For example, when g = 1, the nc polynomial p = xTxTxx is hereditary,

p = xxxTxT is antihereditary, and p = xxTx + xTxxT is neither hereditary nor

antihereditary.
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1.1.3 Substituting Matrices for NC Variables

If p is an nc polynomial in the variables x1, . . . , xg, x
T
1 , . . . , x

T
g and

X = (X1, X2, . . . , Xg) ∈ (Rn×n)g,

the evaluation p(X,XT ) is defined by replacing xj by Xj and xTj by XT
j . Note

that, for Zn = (0n, 0n, . . . , 0n) ∈ (Rn×n)2g where each 0n is the n× n zero matrix,

p(0n) = In ⊗ p(01). Because of this relationship, we often write p(0) with the size

n unspecified. The involution, T , is compatible with matrix transposition, i.e.,

pT (X,XT ) = p(X,XT )T .

Matrix Positivity

We say that an nc symmetric polynomial, p, in the 2g variables x1, . . . , xg,

xT1 , . . . , x
T
g , is matrix positive if p(X,XT ) is a positive semidefinite matrix when

evaluated on every X ∈ (Rn×n)g for every size n ≥ 1; i.e.,

p(X,XT ) � 0

for all X ∈ (Rn×n)g and all n ≥ 1.

In [H02], Helton classified all matrix positive nc symmetric polynomials as

sums of squares. We recall Theorem 1.1 from [H02]:

Theorem 1.1.1. Suppose p is a noncommutative symmetric polynomial. If p is a

sum of squares, then p is matrix positive. If p is matrix positive, then p is a sum

of squares.

Matrix Convexity

We say that an nc symmetric polynomial, p, is matrix convex if

tp(X,XT ) + (1− t)p(Y, Y T )− p(tX + (1− t)Y, tXT + (1− t)Y T ) � 0

for all 0 ≤ t ≤ 1 and for all X, Y ∈ (Rn×n)g for every n ≥ 1. This is the

usual convexity inequality known from classical analysis. In [HM04], Helton and

McCullough classified all nc matrix convex symmetric polynomials as having degree

two. More specifically, we now recall Corollary 7.1 in [HM04]:
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Theorem 1.1.2. A noncommutative symmetric matrix convex polynomial p can

be written as

p(x, xT ) = c0 + Λ0(x, xT ) +
N∑
j=1

Λj(x, x
T )TΛj(x, x

T )

where Λ0, . . . ,ΛN are linear in x, xT and c0 is a real constant.

1.2 NC Differentiation

Now we make some definitions and state some properties about nc differen-

tiation. In the classical study of complex variables, we have polynomials in z and

z̄. We can then take derivatives with respect to z and z̄; i.e., ∂p
∂z

(z, z̄) and ∂p
∂z̄

(z, z̄).

We can also make a matrix and fill it with mixed second partial derivatives; i.e.,

the (i, j)-th entry of the matrix is ∂2p
∂zi∂z̄j

. In classical several complex variables,

this matrix of mixed partial derivatives is called the complex Hessian.

The noncommutative differentiation of polynomials in x and xT defined in

this dissertation is analogous to classical differentiation of polynomials in z and z̄

from several complex variables.

Definition of Directional Derivative

Let p be an nc polynomial in the nc variables x = (x1, . . . , xg) and xT =

(xT1 , . . . , x
T
g ). In order to define a directional derivative, we first replace all xTi by

yi. Then the directional derivative of p with respect to xj in the direction

hj is

pxj [hj] :=
∂p

∂xj
(x, xT )[hj] =

dp

dt
(x1, . . . , xj + thj, . . . , xg, y1, . . . , yg)|t=0|yi=xTi . (1.1)

The directional derivative of p with respect to xTj in the direction kj is

pxTj [kj] :=
∂p

∂xTj
(x, xT )[kj] =

dp

dt
(x1, . . . , xg, y1, . . . , yj + tkj, . . . , yg)|t=0|yi=xTi . (1.2)
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Often, we take kj = hTj in Equation (1.2) and we define

px[h] :=
∂p

∂x
(x, xT )[h] =

dp

dt
(x+ th, y)|t=0|y=xT =

g∑
i=1

∂p

∂xi
(x, xT )[hi]

pxT [hT ] :=
∂p

∂xT
(x, xT )[hT ] =

dp

dt
(x, y + tk)|t=0|y=xT ,k=hT =

g∑
i=1

∂p

∂xTi
(x, xT )[hTi ].

Then, we (abusively1) define the `th directional derivative of p in the direction h

as

p(`)(x)[h] :=
d`p

dt`
(x+ th, y + tk)|t=0|y=xT ,k=hT

so the first directional derivative of p in the direction h is

p′(x)]h] =
∂p

∂x
(x, xT )[h] +

∂p

∂xT
(x, xT )[hT ] (1.3)

= px[h] + pxT [hT ]. (1.4)

It is important to note that the directional derivative is an nc polynomial that is

homogeneous degree 1 in h, hT . If p is symmetric, so is p′.

Examples of Differentiation

Here we provide some examples of how to compute directional derivatives.

Example 1.2.1. Let p = x1x
T
2 x1 + xT1 x2x

T
1 . Then we have

px1 [h1] =
∂p

∂x1

(x, xT )[h1] = h1x
T
2 x1 + x1x

T
2 h1

pxT2 [hT2 ] =
∂p

∂xT2
(x, xT )[hT2 ] = x1h

T
2 x1

px[h] =
∂p

∂x
(x, xT )[h] = h1x

T
2 x1 + x1x

T
2 h1 + xT1 h2x

T
1

and,

p′(x)[h] = h1x
T
2 x1 + x1h

T
2 x1 + x1x

T
2 h1 + hT1 x2x

T
1 + xT1 h2x

T
1 + xT1 x2h

T
1 .

1For more detail, see [HMV06]. The idea for computing p(`)(x)[h] is that we first noncom-
mutatively expand p(x + th). Then, p(`)(x)[h] is the coefficient of t` multiplied by `!; i.e.,
p(`)(x)[h] = (`!)(coefficient of t`).
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Example 1.2.2. Given a general monomial, with c ∈ R,

m = cxi1j1x
i2
j2
· · · xinjn

where each ik is either 1 or T , we get that

m′ = chi1j1x
i2
j2
· · ·xinjn + cxi1j1h

i2
j2
xi3j3 · · ·x

in
jn

+ · · ·+ cxi1j1 · · ·x
in−1

jn−1
hinjn .

1.2.1 NC Hessian and NC Complex Hessian

Often, one is most interested in the Hessian of a polynomial and its positiv-

ity; as this determines convexity. However, in this dissertation, we are concerned

with the complex Hessian since it turns out to be related to nc analytic changes

of variables.

We define the nc complex Hessian , q(x, xT )[h, hT ], of an nc polynomial

p as the nc polynomial in the 4g variables x = (x1, . . . , xg), x
T = (xT1 , . . . , x

T
g ),

h = (h1, . . . , hg), and hT = (hT1 , . . . , h
T
g )

q(x, xT )[h, hT ] :=
∂2p

∂s∂t
(x+ th, y + sk)|t,s=0|y=xT ,k=hT . (1.5)

The nc complex Hessian is an iterated nc directional derivative in the sense

that we compute it as follows. We first take the nc directional derivative of p with

respect to xT in the direction hT to get pxT [hT ]. Then, we take the nc directional

derivative of that with respect to x in the direction h to get (pxT [hT ])x[h]. We

will see later, in Lemma 2.2.12, that we can switch the order of differentiation to

(px[h])xT [hT ] and we still get the same polynomial. Sometimes we denote the nc

complex Hessian as pxT ,x[h
T , h]. Hence, we have the following equivalent notations

for the nc complex Hessian (and we will use each one when context is convenient):

q(x, xT )[h, hT ] = pxT ,x[h
T , h] = (pxT [hT ])x[h] = (px[h])xT [hT ]. (1.6)

An extremely important fact about q(x, xT )[h, hT ], which is restated in

Theorem 2.2.16 (P1), is that it is quadratic in h, hT and that each term contains

some hj and some hTk . The nc complex Hessian is actually a piece of the full nc
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Hessian which is

p′′ =
∂2p

∂t2
(x+ th, y)|t=0|y=xT +

∂2p

∂t∂s
(x+ th, y + sk)|t,s=0|y=xT ,k=hT

+
∂2p

∂s∂t
(x+ th, y + sk)|t,s=0|y=xT ,k=hT +

∂2p

∂s2
(x, y + sk)|s=0|y=xT ,k=hT

= 2q(x, xT )[h, hT ] +
∂2p

∂t2
(x+ th, y)|t=0|y=xT +

∂2p

∂s2
(x, y + sk)|s=0|y=xT ,k=hT .

1.2.2 NC Plurisubharmonicity

We call a symmetric nc polynomial, p, nc plurisubharmonic (or nc

plush) if the nc complex Hessian, q, of p is matrix positive. In other words,

we require that q be positive semidefinite when evaluated on all tuples of real

n× n matrices for every size n; i.e.,

q(X,XT )[H,HT ] � 0

for all X,H ∈ (Rn×n)g for every n ≥ 1.

Examples of NC Complex Hessians and NC Plurisubharmonicity

Here we provide some examples of how to compute nc complex Hessians.

Example 1.2.3. Let p = x1x
T
2 x1 + xT1 x2x

T
1 as in Example 1.2.1. Then we have

q = h1h
T
2 x1 + x1h

T
2 h1 + hT1 h2x

T
1 + xT1 h2h

T
1 .

Example 1.2.4. Let p = xTxTxx. Then, we have

q(x, xT )[h, hT ] = hTxThx+ hTxTxh+ xThThx+ xThTxh

= (hTxT + xThT )(hx+ xh)

= (hx+ xh)T (hx+ xh).

We can see that, for any X,H ∈ Rn×n for any size n ≥ 1, we have that

q(X,XT )[H,HT ] = (HX +XH)T (HX +XH) � 0.

Hence, this nc polynomial, p = xTxTxx, is nc plush.

Example 1.2.5. The nc complex Hessian of any nc analytic polynomial is 0. The

nc complex Hessian of any nc antianalytic polynomial is 0. Hence, both nc analytic

and nc antianalytic polynomials are nc plush.



9

1.3 Main Results of Chapter 2

In Chapter 2 we classify all symmetric nc plush polynomials in g free vari-

ables.

Theorem 1.3.1. An nc symmetric polynomial p in free variables is nc plurisub-

harmonic if and only if p can be written in the form

p =
∑

fTj fj +
∑

kjk
T
j + F + F T (1.7)

where the sums are finite and each fj, kj, F is nc analytic.

Proof. The proof requires all of Chapter 2 and culminates in Section 2.4.

Chapter 3 strengthens the result of Theorem 1.3.1 by weakening the hy-

pothesis while keeping the same conclusion. Specifically, in Chapter 3, we assume

that the nc polynomial is nc plush on an “nc open set” and conclude that it is nc

plush everywhere and hence has the form in Equation (1.7). The proof, in Chap-

ter 3, draws on most of the theorems in Chapter 2 together with a very different

technique involving representations of noncommutative quadratic functions.

The representation in Equation (1.7) is unique up to the natural transfor-

mations.

Theorem 1.3.2. Let p be an nc symmetric polynomial in free variables that is nc

plurisubharmonic and let

Ñ := min{N : p =
N∑
j=1

fTj fj +
M∑
j=1

kjk
T
j + F + F T}

M̃ := min{M : p =
N∑
j=1

fTj fj +
M∑
j=1

kjk
T
j + F + F T}.

Then, we can represent p as

p =

eN∑
j=1

f̃Tj f̃j +

fM∑
j=1

k̃j k̃
T
j + F̃ + F̃ T

and if N and M are integers such that N ≥ Ñ , M ≥ M̃ and

p =
N∑
j=1

fTj fj +
M∑
j=1

kjk
T
j + F + F T ,
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then there exist isometries U1 : R eN −→ RN and U2 : RfM −→ RM such that
f1

...

fN

 = U1


f̃1

...

f̃ eN

+ ~c1 and


kT1
...

kTM

 = U2


k̃T1
...

k̃TfM

+ ~c2

where ~c1 ∈ RN and ~c2 ∈ RM .

Proof. Theorem 1.3.1 gives the desired form of p and nc integration will give the

uniqueness. We provide the details of the proof in Section 2.4.

A byproduct of the proof of Theorem 1.3.1 is noncommutative integration

theory of nc polynomials. This includes a Frobenius theorem for nc polynomials

and is discussed further in Section 2.2.

1.4 Direct Sums and NC Open Sets

Now we present the additional definitions needed for Chapter 3. We start

with direct sums and nc open sets. We then state the main results of Chapter 3.

1.4.1 Direct Sums

Our definition of the direct sum is the usual one, which for two matrices

X1 and X2, is given by

X1 ⊕X2 :=

(
X1 0

0 X2

)
.

Given a finite set of matrix tuples {X1, . . . , X t} with

Xj = {Xj1, Xj2, . . . , Xjg} ∈ (Rnj×nj)g

for j = 1, . . . , t, we define

t⊕
j=1

Xj :=

{
t⊕

j=1

Xj1,
t⊕

j=1

Xj2, . . . ,
t⊕

j=1

Xjg

}
.

For example, ifX1 = {X11, . . . , X1g}, X2 = {X21, . . . , X2g}, andX3 = {X31, . . . , X3g},
we get

X1 ⊕X2 ⊕X3 = {X11 ⊕X21 ⊕X31, . . . , X1g ⊕X2g ⊕X3g}.



11

Now let

B =
∞⋃
n=1

Bn

where Bn ⊆ (Rn×n)g for n ≥ 1 be given. The graded set B respects direct sums

if for each finite set

{X1, . . . , X t} with Xj ∈ Bnj and n =
t∑

j=1

nj ,

with repetitions allowed, ⊕tj=1X
j ∈ Bn.

1.4.2 NC Open Set

A set G ⊆ ∪n≥1(Rn×n)g is an nc open set if G satisfies the following two

conditions:

(i) G respects direct sums, and

(ii) there exists a positive integer n0 such that if n > n0, the set Gn := G∩(Rn×n)g

is an open set of matrix tuples.

We say that an nc polynomial, p, is nc plush on an nc open set, G, if

the nc complex Hessian, q, of p satisfies

q(X,XT )[H,HT ] � 0 (1.8)

for all X ∈ G and all H ∈ (Rn×n)g for all n ≥ 1.

1.5 Main Results of Chapter 3

As we will see, in Section 3.4, the nc complex Hessian, q, if matrix positive

on an nc open set, can be factored as

q = V (x, xT )[h, hT ]TL(x, xT )D(x, xT )L(x, xT )TV (x, xT )[h, hT ] (1.9)

where D(x, xT ) is a diagonal matrix, L(x, xT ) is a lower triangular matrix with ones

on the diagonal (we call this a unit lower triangular matrix), and V (x, xT )[h, hT ]

is a vector of monomials in x, xT , h, hT .



12

When we take the transpose of a matrix (or vector) with monomial or

polynomial entries (e.g., L(x, xT )T or V (x, xT )[h, hT ]T ), we get the matrix obtained

by taking the transpose (as a matrix) and applying the transpose (involution) to

every entry.

Example 1.5.1. If

v =


hxx

hx

h

 ,

then

vT =
(
xTxThT xThT hT

)
.

The next theorem shows the surprising result that the diagonal matrix,

D(x, xT ), in Equation (1.9) does not depend on x, xT and that L(x, xT ) has nc

polynomial entries.

Theorem 1.5.2. If p is an nc symmetric polynomial that is nc plurisubharmonic

on an nc open set, then q, the nc complex Hessian of p, can be written as

q = V (x, xT )[h, hT ]TL(x, xT )DL(x, xT )TV (x, xT )[h, hT ]

where V (x, xT )[h, hT ] is a vector of monomials in x, xT , h, hT ,

D = diag(d1, d2, . . . , dN )

is a positive semidefinite constant real matrix, and L(x, xT ) is a unit lower trian-

gular matrix with nc polynomial entries.

Proof. The proof of this theorem requires all of Chapter 3 and culminates in Sub-

section 3.4.4.

This gives rise to an extension of Theorem 1.3.1. In Chapter 2, it is shown

that an nc polynomial which is nc plush everywhere has the specific form given

in Equation (1.10) below (same as Equation (1.7) above). In Chapter 3, Theorem

1.5.3, below, is a stronger, “local implies global”, result in that an nc polynomial

that is nc plush just on an nc open set is actually nc plush everywhere (and has

the form in Equation (1.10)).



13

Theorem 1.5.3. If an nc symmetric polynomial, p, is nc plurisubharmonic on an

nc open set, then p is, in fact, nc plurisubharmonic everywhere and has the form

expressed in Equation (1.7) from Theorem 1.3.1

p =
∑

fTj fj +
∑

kjk
T
j + F + F T (1.10)

where the sums are finite and each fj, kj, and F is nc analytic.

Proof. That D = D(x, xT ), in Theorem 1.5.2, is a positive semidefinite constant

real matrix immediately implies

q(X,XT )[H,HT ] � 0

for all X,H ∈ ∪n≥1(Rn×n)g; that is, p is nc plush at all X ∈ ∪n≥1(Rn×n)g. Conse-

quently, Theorem 1.3.1 gives that p is of the desired form

p =
∑

fTj fj +
∑

kjk
T
j + F + F T

where the sums are finite and fj, kj, F are nc analytic.

Note that with an nc polynomial, p, as in Equation (1.10), the nc complex

Hessian, q, of p is

q =
∑

(fTj )xT [hT ](fj)x[h] +
∑

(kj)x[h](kTj )xT [hT ] , (1.11)

which is obviously matrix positive as it is a sum of squares. From Equation (1.11),

we see that the nc complex Hessian for an nc polynomial that is nc plush on an

nc open set has even degree.



Chapter 2

Noncommutative

Plurisubharmonic Polynomials,

Global Assumptions

In this chapter, we classify all symmetric nc plush polynomials as convex

polynomials with an nc analytic change of variables; i.e., an nc symmetric polyno-

mial p is nc plush if and only if it has the form

p =
∑

fTj fj +
∑

kjk
T
j + F + F T (2.1)

where the sums are finite and fj, kj, F are all nc analytic.

We also present a theory of noncommutative integration for nc polynomials

and we prove a noncommutative version of the Frobenius theorem.

The next chapter, Chapter 3, proves that if the nc complex Hessian, q,

of p takes positive semidefinite values on an “nc open set” then q takes positive

semidefinite values on all tuples X,H. Thus, p has the form in Equation (2.1).

The proof, in Chapter 3, draws on most of the theorems in Chapter 2 together with

a very different technique involving representations of noncommutative quadratic

functions.

Now, we recall the main theorems in this chapter.

14
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2.1 Main Results of Chapter 2

In this chapter we classify all symmetric nc plush polynomials in g free

variables.

Theorem 2.1.1. An nc symmetric polynomial p in free variables is nc plurisub-

harmonic if and only if p can be written in the form

p =
∑

fTj fj +
∑

kjk
T
j + F + F T (2.2)

where the sums are finite and each fj, kj, F is nc analytic.

Proof. The proof requires the rest of this chapter and culminates in Section 2.4.

Chapter 3 strengthens the result of Theorem 2.1.1 by weakening the hy-

pothesis while keeping the same conclusion. Specifically, in Chapter 3, we assume

that the nc polynomial is nc plush on an “nc open set” and conclude that it is nc

plush everywhere and hence has the form in Equation (2.2). The proof, in Chapter

3, draws on most of the theorems in this chapter together with a very different

technique involving representations of noncommutative quadratic functions.

The representation in Equation (2.2) is unique up to the natural transfor-

mations.

Theorem 2.1.2. Let p be an nc symmetric polynomial in free variables that is nc

plurisubharmonic and let

Ñ := min{N : p =
N∑
j=1

fTj fj +
M∑
j=1

kjk
T
j + F + F T}

M̃ := min{M : p =
N∑
j=1

fTj fj +
M∑
j=1

kjk
T
j + F + F T}.

Then, we can represent p as

p =

eN∑
j=1

f̃Tj f̃j +

fM∑
j=1

k̃j k̃
T
j + F̃ + F̃ T

and if N and M are integers such that N ≥ Ñ , M ≥ M̃ and

p =
N∑
j=1

fTj fj +
M∑
j=1

kjk
T
j + F + F T ,
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then there exist isometries U1 : R eN −→ RN and U2 : RfM −→ RM such that
f1

...

fN

 = U1


f̃1

...

f̃ eN

+ ~c1 and


kT1
...

kTM

 = U2


k̃T1
...

k̃TfM

+ ~c2

where ~c1 ∈ RN and ~c2 ∈ RM .

Proof. Theorem 2.1.1 gives the desired form of p and nc integration will give the

uniqueness. We provide the details of the proof in Section 2.4.

A byproduct of the proof of Theorem 2.1.1 is noncommutative integration

theory of nc polynomials. This includes a Frobenius theorem for nc polynomials

and is discussed further in Section 2.2.

2.1.1 Guide to Chapter 2

In Section 2.2, we provide a theory of noncommutative integration for nc

polynomials and in Section 2.2.4, we state and prove a noncommutative version

of the Frobenius theorem. In Section 2.3, we prove that the nc complex Hessian

for an nc plush polynomial is the sum of hereditary and antihereditary squares.

Finally, in Section 2.4, we prove the main results. We apply nc integration theory

to the sum of squares representation of the nc complex Hessian found in Section

2.3. We also settle the issue of uniqueness of this sum of squares representation.

2.2 NC Integration

In this section, we introduce a natural notion of noncommutative (nc) in-

tegration and then give some basic properties. We say that an nc polynomial p

in x = (x1, . . . , xg) and hj is integrable in xj if there exists an nc polynomial

f(x) such that fxj [hj] = p. We say that an nc polynomial p in x = (x1, . . . , xg)

and h = (h1, . . . , hg) is integrable if there exists an nc polynomial f(x) such that

f ′(x)[h] = p.
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2.2.1 Notation

Let m be a monomial containing only the variables x1, x2, . . ., xg. When

we write m|xi→hi , we mean the set of monomials that are degree one in hi where

one xi in m has been replaced by hi. For example, if m = x1x2x1x2, then

m|x1→h1 = {h1x2x1x2, x1x2h1x2}

and

m|x2→h2 = {x1h2x1x2, x1x2x1h2}.

We also define a double substitution as follows. When we write

m|xi→hi,xj→hj := (m|xi→hi)|xj→hj ,

we mean the set of monomials that are degree one in hi and degree one in hj where

one xi in m has been replaced by hi and one xj in m has been replaced by hj.

Note that we have

m|xi→hi,xj→hj = m|xj→hj ,xi→hi . (2.3)

Using m = x1x2x1x2, we have that

m|x1→h1,x2→h2 = m|x2→h2,x1→h1

= {h1h2x1x2, h1x2x1h2, x1h2h1x2, x1x2h1h2}.

Sometimes we will start with a monomial m that is degree 1 in hi and we

wish to replace this hi by xi. When we write m|hi→xi , the set we get contains

just one monomial so we abuse notation and use m|hi→xi to represent the actual

monomial in this set.

2.2.2 Differentially Wed Monomials

For γ either 1 or T , two monomials m and m̃ are called 1-differentially

wed with respect to xγj if both m and m̃ have degree one in hγj and if m has an

xγj where m̃ has an hγj and if m̃ has an xγj where m has an hγj . Thus, interchanging

hγj and this xγj in m produces m̃; i.e.,

m|hγj→xγj = m̃|hγj→xγj
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More generally, two monomials m and m̃ are called 1-differentially wed

if both are degree one in h or hT and if

m|hαi →xαi = m̃|hβj→xβj

for some α, β either 1 or T and some i, j.

From these definitions, if m and m̃ are 1-differentially wed with respect to

a particular variable then m and m̃ are 1-differentially wed but not the other way

around (which we demonstrate below).

Example 2.2.1. The monomials m = h1x
T
2 x1 and m̃ = x1x

T
2 h1 are 1-differentially

wed with respect to x1.

Example 2.2.2. The monomials m = h1x
T
2 x1 and m̃ = x1h

T
2 x1 are 1-differentially

wed (but not with respect to a particular variable).

Example 2.2.3. The monomials m = x2h2x2 and m̃ = x1x2h2 are not

1-differentially wed (and, therefore, also not 1-differentially wed with respect to

any variable).

Theorem 2.2.4. An nc polynomial p in x = (x1, . . . , xg), h = (h1, . . . , hg) is

integrable if and only if each monomial in p has degree one in h (i.e., contains

exactly one hj for some j) and whenever a monomial m occurs in p, each monomial

which is 1-differentially wed to m also occurs in p and has the same coefficient.

Proof. First suppose the nc polynomial p in x, h is integrable. Then, there exists

an nc polynomial, f(x), such that f ′(x)[h] = p. Write f as

f =
N∑
i=1

cimi

where each ci ∈ R and each mi is a monomial in x. Then, by applying Example

1.2.2 to each term cimi, if a monomial m̃ occurs in p = f ′, then every 1-differentially

wed monomial to m̃ also occurs in p = f ′ with the same coefficient.

Now suppose each monomial in p has degree 1 in h (i.e., contains some hj)

and if m is a monomial in p, then each monomial which is 1-differentially wed also

occurs in p with the same coefficient. We will show that p is integrable.
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Write

p =
N∑
i=1

cimi

where each ci ∈ R and each mi is a monomial in x and degree 1 in h. Now we

will change the order of summation of these terms so that we group together all

monomials with the same coefficient that are 1-differentially wed. We do this in

the following way.

Let w1 be the polynomial that contains c1m1 and all 1-differentially wed

monomials to m1 with the same coefficient c1.

Let 1 ≤ α2 be the smallest integer such that cα2mα2 is not a term in w1.

Then let w2 be the polynomial that contains cα2mα2 and all 1-differentially wed

monomials to mα2 with the same coefficient cα2 .

Let 1 ≤ α3 be the smallest integer such that cα3mα3 is not a term in w1

and not a term in w2. Then let w3 be the polynomial that contains cα3mα3 and all

1-differentially wed monomials to mα3 with the same coefficient cα3 .

We continue this process until it stops (it stops since p is a finite sum of

monomials). Then we have written p as

p =
∑̀
i=1

wi.

It is important to note that with this construction, each wi is a homogeneous

polynomial of some fixed degree where each term in wi is degree 1 in h.

Now define α1 = 1 and

fi(x) := cαi(mαi|h→x), 1 ≤ i ≤ `.

Then, by properties of differentiation and construction of wi, we have that

f ′i = wi. Finally, define

f(x) :=
∑̀
i=1

fi(x)

and notice that f ′ = p.
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Corollary 2.2.5. An nc polynomial p in x, hj is integrable in xj if and only if

each monomial in p has degree one in hj and whenever a monomial m occurs in

p, each monomial which is 1-differentially wed with respect to xj also occurs in p

and has the same coefficient.

2.2.3 Uniqueness of Noncommutative Integration

In this subsection, we explore the uniqueness of noncommutative integra-

tion. In classical calculus, integrating produces constants of integration. Here, we

provide the noncommutative analogue.

Proposition 2.2.6. Suppose m and m̃ are distinct monomials in the variables

x = (x1, . . . , xg). Then, we have that

1. (m)xi [hi] and (m̃)xi [hi] have no terms in common and hence

(m)xi [hi] 6= (m̃)xi [hi]

provided xi is contained in either m or m̃; and

2. we have that

m′ = (m)x[h] 6= (m̃)x[h] = m̃′.

Moreover, If m and m̃ are distinct monomials in the variables x = (x1, . . . , xg) and

y = (y1, . . . , ys), then

mx[h] 6= m̃x[h].

Proof. If m and m̃ have different degree, then so do their nc directional derivatives

and we are done. Suppose m and m̃ have the same degree. If m contains xi and

m̃ does not, then (m̃)xi [hi] = 0 while (m)xi [hi] is a nonzero nc polynomial.

Suppose both m and m̃ contain xi and are the same degree. Then, write

m = xj1xj2 · · · xjs and m̃ = xk1xk2 · · · xks

where the tuple of integers (j1, j2, . . . , js) is not the same as the tuple of integers

(k1, k2, . . . , ks). This forces (m)xi [hi] and (m̃)xi [hi] to have no terms in common.

This completes the proof of (1).
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To prove (2), note that

m′ = (m)x[h] =

g∑
i=1

(m)xi [hi] and m̃′ = (m̃)x[h] =

g∑
i=1

(m̃)xi [hi]

and if m′ = m̃′, then we must have (m)xi [hi] = m̃xi [hi] for each i. However, (1)

implies that this is impossible.

If m and m̃ are distinct monomials in the variables x = (x1, . . . , xg) and

y = (y1, . . . , yg), the proof follows exactly the way the proof of (2) does.

Lemma 2.2.7. Suppose p is an nc polynomial in the variables x = (x1, . . . , xg)

such that pxi [hi] = 0. Then, p(x1, . . . , xg) = f(x1, . . . , xi−1, xi+1, . . . , xg) is an nc

polynomial in the variables x1, . . . , xi−1, xi+1, . . . , xg.

Proof. First, if m is a monomial in the variables x = (x1, . . . , xg) that contains

xi, then mxi [hi] is a sum of terms where each instance of xi is replaced by hi (see

Example 1.2.1). Note that each term in mxi [hi] has a different number of variables

to the left of hi; hence, the terms can not cancel. Thus, mxi [hi] 6= 0.

Now suppose p is an nc polynomial in the variables x = (x1, . . . , xg) such

that pxi [hi] = 0. We write the nc polynomial p as

p =
N∑
j=1

αjmj (2.4)

where the αj are nonzero real constants and the mj are distinct monomials. Then,

we have that

0 = pxi [hi] =
N∑
j=1

αj (mj)xi [hi]. (2.5)

Since the mj are distinct monomials, Proposition 2.2.6 implies that no cancellation

can occur in Equation (2.5). This implies that

(mj)xi [hi] = 0

for all j = 1, . . . , N . Then, by the first paragraph in this proof, we get that each

mj is a monomial in the variables x1, . . . , xi−1, xi+1, . . . , xg. This implies that p, as

in Equation (2.4), is a polynomial in the variables x1, . . . , xi−1, xi+1, . . . , xg.
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Proposition 2.2.8. Suppose p is an nc polynomial in the g + s variables x =

(x1, . . . , xg) and y = (y1, . . . , ys). If px[h] = 0, then

p(x, y) = p(x1, . . . , xg, y1, . . . , ys) = f(y1, . . . , ys)

is an nc polynomial in the variables y = (y1, . . . , ys).

Proof. If p is an nc polynomial in the g + s variables x = (x1, . . . , xg) and y =

(y1, . . . , ys), then

px[h] =

g∑
i=1

pxi [hi].

It is important to note that pxi [hi] is an nc polynomial in x, y, and linear in hi.

Since

px[h] =

g∑
i=1

pxi [hi] = 0

and since each pxi [hi] is an nc polynomial that is linear in hi, it follows that

pxi [hi] = 0 for all 1 ≤ i ≤ g.

Then, Lemma 2.2.7 implies that p is an nc polynomial in the variables

x1, . . . , xi−1, xi+1, . . . , xg, y1, . . . , ys for all 1 ≤ i ≤ g

This can only happen if p is an nc polynomial in the variables y = (y1, . . . , ys).

Corollary 2.2.9. Suppose p is an nc polynomial in x = (x1, . . . , xg). Then, we

have that

1. if

p′(x)[h] = px[h] =

g∑
i=1

pxi [hi] = 0,

then p is constant, and

2. if p̃ is another nc polynomial in the variables x = (x1, . . . , xg) such that

p′ = p̃′ then p = p̃+ α where α is a real constant.

Proof. Property (1) directly follows from Proposition 2.2.8.

If p′ = p̃′, then, since nc differentiation is linear, we get that

0 = p′ − p̃′ = (p− p̃)′

which, by property (1), implies that p− p̃ is constant.
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Noncommutative Complex Differentiation

Here, we specialize from the variables x = (x1, . . . , xg) and y = (y1, . . . , ys)

to the variables x = (x1, . . . , xg) and xT = (xT1 , . . . , x
T
g ). The first corollary below,

Corollary 2.2.10, follows directly from Proposition 2.2.8 above.

Corollary 2.2.10. Suppose p is an nc polynomial in the variables x = (x1, . . . , xg)

and xT = (xT1 , . . . , x
T
g ). Then, we have that

1. if px[h] = 0, then p is an nc antianalytic polynomial, and

2. if pxT [hT ] = 0, then p is an nc analytic polynomial.

Lemma 2.2.11. Let p be an nc polynomial in the nc variables x = (x1, . . . , xg),

xT = (xT1 , . . . , x
T
g ) and let q be the nc complex Hessian of p. Then q = 0 if and

only if p = F +GT where F and G are nc analytic polynomials.

If, in addition, p is symmetric, then q = 0 if and only if p = F +F T where

F is an nc analytic polynomial.

Proof. Lemma 2.2.12, in Section 2.2.4 below, allows us to switch the order of

differentiation to get

q = pxT ,x[h
T , h] = (pxT [hT ])x[h] = (px[h])xT [hT ].

Then, we have that the nc complex Hessian of p = F +GT is

q = (FxT [hT ])x[h] + (GT
x [h])xT [hT ] = 0.

Now suppose p contains a term with both x and xT . Write p as

p =
N∑
j=1

αjmj

where αj are nonzero real constants and mj are distinct monomials in x and/or

xT . Then, the nc complex Hessian of p is

q =
N∑
j=1

αj(mj)xT ,x[h
T , h].



24

Since the mj are distinct, Proposition 2.2.6 implies that the nc polynomials

(mi)xT [hT ] and (mj)xT [hT ]

have no terms in common for all i 6= j. Then, we apply Proposition 2.2.6 again

to get that the nc polynomials (mi)xT ,x[h
T , h] and (mj)xT ,x[h

T , h] have no terms

in common for all i 6= j. This implies that no cancellation occurs in q so that

q 6= 0.

2.2.4 NC “Gradient” of a Potential

In this subsection, we give a noncommutative Frobenius Theorem and

present some equivalent tests to determine if a list of nc polynomials is simul-

taneously integrable.

Lemma 2.2.12. Suppose p(x1, . . . , xg) is an nc polynomial in x1, . . . , xg. Then

(pxi [hi])xj [hj] = (pxj [hj])xi [hi].

Proof. Write

p =
t∑

α=1

cαmα

where each cα ∈ R and each mα is a monomial in x1, . . . , xg. Then we have

(pxi [hi])xj [hj] =
t∑

α=1

cα((mα)xi [hi])xj [hj]

and

(pxj [hj])xi [hi] =
t∑

α=1

cα((mα)xj [hj])xi [hi].

Note that the nc directional derivative (mα)xi [hi] is the sum of all monomials in

the set mα|xi→hi and the nc directional derivative ((mα)xi [hi])xj [hj] is the sum of

all monomials in the set mα|xi→hi,xj→hj . Equation (2.3) implies that

mα|xi→hi,xj→hj = mα|xj→hj ,xi→hi

which implies that

cα((mα)xi [hi])xj [hj] = cα((mα)xj [hj])xi [hi].
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Hence, (pxi [hi])xj [hj] = (pxj [hj])xi [hi].

The following theorem is the noncommutative analogue of the Frobenius

Theorem in that the classical specialization of (a) ⇔ (b) to x ∈ Rg in Theorem

2.2.13 below says that (
f1, f2, . . . , fg

)
is the gradient of a function if and only if

∂fi
∂xj

=
∂fj
∂xi

.

Theorem 2.2.13. Suppose δ is an nc polynomial such that

δ(x1, . . . , xg, h1, . . . , hg) =

g∑
i=1

fi(x1, . . . , xg, hi)

where each fi(x1, . . . , xg, hi) is homogeneous of degree 1 in hi. Then, the following

are equivalent:

(a) δ is integrable.

(b) Each fi(x1, . . . , xg, hi) is integrable in xi and (fi)xj [hj] = (fj)xi [hi] for any

i, j.

(c) For each monomial, m, in δ, every 1-differentially wed monomial to m also

occurs in δ with the same coefficient.

Proof. Theorem 2.2.4 gives the equivalence of (a) and (c).

Now we show (a) and (b) are equivalent. First, suppose (a) holds. Then

there exists an nc polynomial P(x1, . . . , xg) such that

P ′ = δ =⇒
g∑
i=1

Pxi [hi] =

g∑
i=1

fi(x1, . . . , xg, hi).

This forces Pxi [hi] = fi(x1, . . . , xg, hi) and then Lemma 2.2.12 gives that

(fi)xj [hj] = (Pxi [hi])xj [hj] =
(
Pxj [hj]

)
xi

[hi] = (fj)xi [hi].

Now suppose (a) is false; i.e., δ is not integrable. Then, there exists some

term αm (α ∈ R) in δ such that not all 1-differentially wed monomials to m with
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the same coefficient α occur in δ. Without loss of generality, suppose αm is a term

in f1(x, h1). Recall, this implies m is degree one in h1.

If δ does not contain a monomial that is 1-differentially wed to m with

respect to x1 with the same coefficient α, then f1(x, h1) is not integrable in x1.

Suppose αm contains the variable xk and that δ (more specifically, fk(x, hk))

does not contain the term αm̃, where m̃ is a specific monomial in the set

(m|h1→x1)|xk→hk = (m|xk→hk)|h1→x1 .

Note that m̃ is 1-differentially wed to m and this implies that the sets m|xk→hk
and m̃|x1→h1 are equal. If (f1)xk [hk] = (fk)x1 [h1], then α ˆ̃m, where ˆ̃m is a specific

monomial in the set m|xk→hk = m̃|x1→h1 , is a term in (f1)xk [hk] = (fk)x1 [h1]. This

implies that αm̃, where m̃ = ˆ̃m|h1→x1 , is a term in fk(x, hk) which is contained in

δ.

Thus, we have shown that if δ is not integrable then either some fi(x, hi) is

not integrable with respect to xi or (fi)xj [hj] 6= (fj)xi [hi] for some i 6= j.

2.2.5 Levi-differentially Wed Monomials

Now we turn to properties of the nc complex Hessian q, as q is just a second

nc directional derivative.

Two monomials m and m̃ are called Levi-differentially wed if m and m̃

are both degree 2 in h, hT , m contains some hi, h
T
j , m̃ contains some hk, h

T
s and

m|hi→xi,hTj →xTj = m̃|hk→xk,hTs→xTs

Indeed, Levi-differentially wed is an equivalence relation on the monomials

in the nc complex Hessian, q, with the coefficients of all Levi-differentially wed

monomials in q being the same.

Example 2.2.14. The monomials hThxTx, hTxxTh, xThhTx, and xTxhTh are all

Levi-differentially wed to each other.

Example 2.2.15. None of the monomials hThxTx, hTxhTx, xThxTh are Levi-

differentially wed to each other.
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The next theorem provides necessary and sufficient conditions as to when

a given nc polynomial is actually an nc complex Hessian.

Theorem 2.2.16. An nc polynomial q in x, xT , h, hT is an nc complex Hessian if

and only if the following two conditions hold:

(P1) Each monomial in q contains exactly one hj and one hTk for some j, k.

(P2) If a certain monomial m is contained in q, any monomial m̃ that is Levi-

differentially wed to m is also contained in q with the same coefficient.

Proof. First, suppose q is an nc complex Hessian. Equation (1.5) shows that q is

an nc directional derivative of an nc directional derivative. Then, properties of nc

directional derivatives imply that (P1) and (P2) hold.

Now suppose (P1) and (P2) hold. Write q as

q =
N∑
i=1

cimi

where each ci ∈ R and each mi is a monomial that contains some hj and hTk . Now

we will change the order of summation of these terms so that we group together all

monomials with the same coefficient that are Levi-differentially wed to each other.

We do this in the following way.

Let w1 be the nc polynomial that contains c1m1 and all Levi-differentially

wed monomials to m1 with the same coefficient c1.

Let 1 ≤ α2 be the smallest integer such that cα2mα2 is not a term in w1.

Then let w2 be the nc polynomial that contains cα2mα2 and all Levi-differentially

wed monomials to mα2 with the same coefficient cα2 .

Let 1 ≤ α3 be the smallest integer such that cα3mα3 is not a term in w1 and

not a term in w2. Then let w3 be the nc polynomial that contains cα3mα3 and all

Levi-differentially wed monomials to mα3 with the same coefficient cα3 .

We continue this process until it stops (it stops since q is a finite sum of

monomials). Then we have written q as

q =
∑̀
i=1

wi.
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It is important to note that with this construction, each wi is a homogeneous

polynomial of some fixed degree where each term in wi contains some hj and some

hTk .

Now define α1 = 1 and

fi(x, x
T ) := cαi(mαi |h→x,hT→xT ), 1 ≤ i ≤ `.

Then we have, by properties of differentiation and construction of wi, that the nc

complex Hessian of each fi is wi. Finally, define

f(x, xT ) :=
∑̀
i=1

fi(x, x
T )

and notice that the nc complex Hessian of f is q.

Lemma 2.2.17. Let m,m′, n, n′ be nc analytic monomials with degree 1 in h (or all

nc antianalytic monomials with degree 1 in hT ). Then m, m′ are 1-differentially

wed and n, n′ are 1-differentially wed if and only if nTm and n′Tm′ are Levi

differentially wed.

Proof. Without loss of generality, supposem,m′, n, n′ are all nc analytic monomials

with degree 1 in h.

m,m′ are 1-differentially wed and n, n′ are 1-differentially wed if and only

if

m|hi→xi = m′|hj→xj
n|hk→xk = n′|hs→xs .

This happens if and only if

(nTm)|hTk→xTk ,hi→xi = (n|hk→xk)
T (m|hi→xi)

= (n′|hs→xs)
T (
m′|hj→xj

)
= (n′Tm′)|hTs→xTs ,hj→xj

since m,m′, n, n′ are all nc analytic and each is degree 1 in h.
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2.3 Complex Hessian as a Sum of Squares

Assuming nc plurisubharmonicity means we have a matrix positive nc com-

plex Hessian. By Theorem 1.1.1, this leads to a sum of squares representation for

the nc complex Hessian.

The next lemma follows the proof of Proposition 4.1 in [HM04] with the nc

Hessian now replaced by the nc complex Hessian.

Lemma 2.3.1. If p is an nc symmetric plush polynomial then the nc complex

Hessian, q, of p can be written as

q(x, xT )[h, hT ] =
m∑
j=1

rTj rj

where each rj is an nc polynomial that is homogeneous of degree 1 in h (or hT ).

Proof. Since p is nc plush, q(X,XT )[H,HT ] � 0 for all X,H ∈ (Rn×n)g for all

n ≥ 1. By Theorem 1.1.1, q(x, xT )[h, hT ] is a sum of squares. Hence, we can write

q as

q(x, xT )[h, hT ] =
m∑
j=1

rTj rj

where each rj is a polynomial in x, xT , h, and hT . Write

rj =
∑

w∈Mon(x,xT ,h,hT )

rj(w)w

where Mon(x, xT , h, hT ) is the set of monomials in the given variables and where

all but finitely many of the rj(w) ∈ R are 0. Let degh(r) denote the degree of r in

h (and hT ) and let degx(r) denote the degree of r in x (and xT ). Let

dh = max{degh(rj) : j}

dx = max{degx(w) : ∃j s.t. rj contains w and degh(w) = dh}

Sdx,dh = {w : rj contains w for some j, degh(w) = dh, degx(w) = dx}.

The portion of q homogeneous of degree 2dh in h and 2dx in x is

Q =
∑

{j=1,...,m,v,w∈Sdx,dh}

rj(v)rj(w)vTw.
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Since for vj, wj ∈ Sdx,dh , vT1 w1 = vT2 w2 can occur if and only if v1 = v2 and w1 = w2,

we see that Q 6= 0 and thus degh(q) = 2dh. Since q has degree 2 in h and hT , we

obtain 2dh = 2 which implies dh = 1.

Since we know q is positive, Theorem 1.1.1 allows us to represent q as a sum

of squares, q =
∑
rTj rj. We now wish to show that these rj are either nc analytic

or nc antianalytic.

Theorem 2.3.2. If p is an nc symmetric plush polynomial, then the nc complex

Hessian, q, of p can be written as in Lemma 2.3.1,

q(x, xT )[h, hT ] =
m∑
j=1

rTj rj

where each rj is either nc analytic or nc antianalytic.

Proof. Since p is assumed nc plush we get that q(X,XT )[H,HT ] � 0 for all X,H ∈
(Rn×n)g for all n ≥ 1. Again, by Theorem 1.1.1, we get that q is a finite sum of

squares,

q =
m∑
j=1

rTj rj.

By Lemma 2.3.1, each rj is homogeneous of degree 1 in h or hT . We wish to show

that each rj is either nc analytic or nc antianalytic. Consider all monomials in the

ri’s of the form

LhTjMxkN (2.6)

or of the form

LxTjMhkN (2.7)

LxkMhTj N (2.8)

or of the form

LhkMxTj N. (2.9)

Here, L,M,N are monomials in x and xT . The theorem being false is

equivalent to some such monomial existing and we say these are monomials of the

offending form. This is easy to check just by comparing the form of each offending

monomial to rj being nc analytic or nc antianalytic.
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We now focus on offending monomials of the highest degree (over all of-

fending monomials).

Case 1: Suppose that the offending monomial of highest degree is of the

form LhTjMxkN . Without loss of generality, say this monomial occurs in r1. Then

rT1 r1 contains the monomial

m := NTxTkM
ThjL

TLhTjMxkN.

We claim that this monomial, m, appears in q. To be cancelled, L̃hTjMxkN must

appear in some r` where L̃ factors L or L factors L̃. This implies that either rT` r`

contains a monomial of the form wTw, where w is of the offending form and w has

higher degree than m, or we must have L̃ = L. The first option would contradict

the highest degree assumption of m so we must have L̃ = L. In this case, the

coefficient of m arising from rT` r` is positive so no cancellation occurs.

Observe that q contains many Levi-differentially wed monomials to m. For

example,

NTxTkM
TxjL

TLhTjMhkN

is contained in q, so it appears in some square, say rTk rk. Thus, rTk contains

NTxTkM
TxjL

TLhTj (or NTxTkM
TxjL

TLhTjM ) which is of the offending form (2.8).

But this monomial is longer than the longest offending monomial we selected;

namely, m. This is a contradiction.

Case 2: Suppose that the offending monomial of highest degree is of the

form LxkMhTj N . Without loss of generality, say this monomial occurs in r1. Then

rT1 r1 contains the monomial

m := NThjM
TxTkL

TLxkMhTj N.

We claim that this monomial, m, appears in q. To be cancelled, K̃hTj N must

appear in some r` where K̃ factors LxkM or LxkM factors K̃. This implies that

either rT` r` contains a monomial of the form wTw, where w is of the offending form

and w has higher degree than m, or we must have K̃ = LxkM . The first option

would contradict the highest degree assumption of m so we must have K̃ = LxkM .
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In this case, the coefficient of m arising from rT` r` is positive so no cancellation

occurs.

Observe that q contains many Levi-differentially wed monomials to m. For

example,

NTxjM
TxTkL

TLhkMhTj N

is contained in q, so it appears in some square, say rTk rk. Thus, rTk contains

NTxjM
TxTkL

TLhk (or NTxjM
TxTkL

TLhkM ) which is of the offending form (2.7).

But this monomial is longer than the longest offending monomial we selected;

namely, m. This is a contradiction.

Case 3: This case concerns LhkMxTj N and the argument is parallel to that

in Case 1.

Case 4: This case concerns LxTjMhkN and the argument is parallel to that

in Case 2.

2.4 Proof of Main Results of Chapter 2

We now prove the main theorem which we now recall from Section 2.1.

Theorem 2.4.1. An nc symmetric polynomial p in free variables is nc plurisub-

harmonic if and only if p can be written in the form

p =
∑

fTj fj +
∑

kjk
T
j + F + F T (2.10)

where the sums are finite and each fj, kj, F is nc analytic.

Proof. If p has the form given in Equation (2.10) then q(x, xT )[h, hT ], the nc com-

plex Hessian of p, is

q =
∑

(fTj )xT [hT ](fj)x[h] +
∑

(kj)x[h](kTj )xT [hT ]

=
∑

(fj)x[h]T (fj)x[h] +
∑

(kj)x[h](kj)x[h]T ,

which is a finite sum of squares. Hence, q(X,XT )[H,HT ] � 0 for all X,H ∈
(Rn×n)g for all n ≥ 1 and thus p is nc plush.
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Now, suppose p is nc plush. By Theorem 2.3.2, write

q =
∑

rTj rj

where each rj is nc analytic or nc antianalytic and homogeneous of degree one in h

or hT . In view of Theorem 2.2.4, we now show that each rj is integrable. Suppose

m is a monomial in rj and that m′ is any monomial 1-differentially wed to m (other

than m). We shall now show that m′ occurs in rj with the same coefficient as m.

To do this, suppose rj contains Cjm+C ′jm
′ for some j’s. Note that C ′j may

certainly be 0. Then rTj rj must contain the terms C2
jm

Tm, C ′2j m
′Tm′, CjC

′
jm

Tm′,

C ′jCjm
′Tm. By summing over all j such that rj contains Cjm+C ′jm

′ we get that

q must have the terms

(
∑
j

C2
j )mTm, (

∑
j

CjC
′
j)m

Tm′, (
∑
j

C ′
2

j )m′Tm′.

By Lemma 2.2.17, the monomials mTm, mTm′, and m′Tm′ are Levi-differentially

wed. Thus, all 3 coefficients are equal. This means we have∑
j

C2
j =

∑
j

CjC
′
j =

∑
j

C ′
2

j . (2.11)

The Cauchy Schwartz inequality gives

(
∑
j

CjC
′
j)

2 ≤ (
∑
j

C2
j )(
∑
j

C ′
2

j ) (2.12)

and Equation (2.11) implies we have equality in Equation (2.12). This means we

have Cj = αC ′j for all j. Then we get∑
j

CjC
′
j =

∑
j

αC ′
2

j = α
∑
j

C ′
2

j

and by Equation (2.11), we get α = 1. Hence Cj = C ′j for all j. This means

that rj contains Cjm if and only if it contains Cjm
′ where m and m′ are any two

1-differentially wed monomials.

Since m and m′ are arbitrary 1-differentially wed monomials, we get that,

by Theorem 2.2.4, rj is integrable. We integrate it to get fj in Equation (2.10) if

rj is nc analytic and kTj in Equation (2.10) if rj is nc antianalytic. We note that
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there are other antiderivatives for the rj (for example, fj + xT ) but when rj is

nc analytic (resp. nc antianalytic) we only care about the nc analytic (resp. nc

antianalytic) ones.

Define

p̃ :=
∑

fTj fj +
∑

kjk
T
j .

By construction, p̃ is a sum of hereditary and antihereditary squares. Also note

that the nc complex Hessian of p̃ is equal to the nc complex Hessian of p. Apply

Lemma 2.2.11 to finish the proof.

Now we prove the uniqueness of the representation of an nc symmetric plush

polynomial. We recall Theorem 2.1.2 from Section 2.1:

Theorem 2.4.2. Let p be an nc symmetric polynomial in free variables that is nc

plurisubharmonic and let

Ñ := min{N : p =
N∑
j=1

fTj fj +
M∑
j=1

kjk
T
j + F + F T}

M̃ := min{M : p =
N∑
j=1

fTj fj +
M∑
j=1

kjk
T
j + F + F T}.

Then, we can represent p as

p =

eN∑
j=1

f̃Tj f̃j +

fM∑
j=1

k̃j k̃
T
j + F̃ + F̃ T

and if N and M are integers such that N ≥ Ñ , M ≥ M̃ and

p =
N∑
j=1

fTj fj +
M∑
j=1

kjk
T
j + F + F T ,

then there exist isometries U1 : R eN −→ RN and U2 : RfM −→ RM such that
f1

...

fN

 = U1


f̃1

...

f̃ eN

+ ~c1 and


kT1
...

kTM

 = U2


k̃T1
...

k̃TfM

+ ~c2

where ~c1 ∈ RN and ~c2 ∈ RM .
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Proof. Suppose N and M are integers such that N ≥ Ñ ,M ≥ M̃ where p can be

written as

p =
N∑
j=1

fTj fj +
M∑
j=1

kjk
T
j + F + F T (2.13)

and suppose M̂ ≥ M̃ is such that we have

p =

eN∑
j=1

f̃Tj f̃j +

cM∑
j=1

k̂j k̂
T
j + F + F T . (2.14)

Then, the nc complex Hessian, q, of p based on the representations in

Equations (2.14) and (2.13) is

q =

eN∑
j=1

(f̃j)x[h]T (f̃j)x[h] +

cM∑
j=1

(k̂j)x[h](k̂j)x[h]T (2.15)

=
N∑
j=1

(fj)x[h]T (fj)x[h] +
M∑
j=1

(kj)x[h](kj)x[h]T .

We define Hhered(q) as the purely hereditary part of q to be all of the terms that

contain hT to the left of h and we define Hantihered(q) as the purely antiheredi-

tary part of q to be all of the terms that contain h to the left of hT .

First, from Equation (2.15), consider the purely hereditary part of the nc

complex Hessian,

Hhered(q) =

eN∑
j=1

(f̃j)x[h]T (f̃j)x[h] =
N∑
j=1

(fj)x[h]T (fj)x[h].

Since Hhered(q) is a sum of squares, it is matrix positive. Hence, the Gram rep-

resentations1 for this purely hereditary part of q contain ` × ` unique positive

semidefinite matrices, G̃ and G, that are both of rank Ñ such that

eN∑
j=1

(f̃j)x[h]T (f̃j)x[h] = yT G̃y and
N∑
j=1

(fj)x[h]T (fj)x[h] = yTGy ,

where y is an `× 1 vector of monomials in x and h. The purely hereditary nature

of Hhered(q) forces G̃ and G to be unique (so, in fact, G̃ = G).

1See [PW] as a reference for the Gram representation.
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Since G̃ is positive semidefinite, we can write G̃ as G̃ = W̃ T W̃ , where

W̃ : R` −→ R eN is an Ñ × ` matrix with rank(W̃ ) = Ñ such that

W̃y =


(f̃1)x[h]

...

(f̃ eN)x[h]

 .

Similarly, we can write G as G = W TW , where W : R` −→ RN is an N × `
matrix with rank(W ) = Ñ such that

Wy =


(f1)x[h]

...

(fN)x[h]

 .

Note that the range of W is an Ñ -dimensional subspace sitting inside of RN .

Let R eN denote the subspace of RN spanned by the first Ñ coordinates of

RN ; i.e.,

R eN = span{e1, e2, . . . , e eN}
where ei is the ith standard basis vector in RN . Then define the N × Ñ matrix

E : R eN −→ RN as E =

(
I eN
0

)
so that EW̃y =

(
W̃y

0

)
∈ RN . We note that if

N = Ñ , then E = I eN .

Let V : RN −→ RN be an N × N unitary matrix that maps R eN onto the

range of W such that

V

(
W̃y

0

)
= Wy.

This implies that Wy = V EW̃y and note that the N × Ñ matrix U1 =

V E : R eN −→ RN is an isometry and that
(f1)x[h]

...

(fN)x[h]

 = U1


(f̃1)x[h]

...

(f̃ eN)x[h]

 . (2.16)
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Now, we perform nc integration to each nc polynomial in the vectors on both sides

of Equation (2.16). We do this according to Corollary 2.2.9 to get
f1

...

fN

 = U1


f̃1

...

f̃ eN

+ ~c1 (2.17)

where ~c1 ∈ RN .

Similarly, if, at the start of the proof, we assumed N̂ ≥ Ñ is such that we

have

p =

bN∑
j=1

f̂Tj f̂j +

fM∑
j=1

k̃j k̃
T
j + F + F T ,

then, we would have constructed an isometry U2 : RfM −→ RM such that
k1

...

kM

 = U2


k̃1

...

k̃fM

+ ~c2 (2.18)

where ~c2 ∈ RM and M is as in Equation (2.13).

Combining Equation (2.17) and Equation (2.18), we can then write p with

the minimal number of hereditary and antihereditary squares as

p =

eN∑
j=1

f̃Tj f̃j +

fM∑
j=1

k̃j k̃
T
j + F̃ + F̃ T .

Chapter 2 of this dissertation is taken from [GHV] that has been submitted

for publication with coauthors J. William Helton and Victor Vinnikov as

J. M. Greene, J. W. Helton and V. Vinnikov, Noncommutative Plurisubharmonic

Polynomials, Part I: Global Assumptions, preprint, http: // arxiv. org/ abs/

1101. 0107 .



Chapter 3

Noncommutative

Plurisubharmonic Polynomials,

Local Assumptions

In this chapter, we show that if an nc polynomial is nc plurisubharmonic

on an nc open set then the polynomial is actually nc plurisubharmonic everywhere

and has the form

p =
∑

fTj fj +
∑

kjk
T
j + F + F T (3.1)

where the sums are finite and fj, kj, F are all nc analytic.

In Chapter 2, it was shown that if p is nc plurisubharmonic everywhere

then p has the form in Equation (3.1). In other words, Chapter 2 makes a global

assumption while the current chapter makes a local assumption, but both reach

the same conclusion.

This chapter requires a technique that is not used in Chapter 2. We use a

Gram-like vector and matrix representation (called the border vector and middle

matrix) for homogeneous degree 2 nc polynomials. We then analyze this represen-

tation for the nc complex Hessian on an nc open set and positive semidefiniteness

forces a very rigid structure on the border vector and middle matrix. This rigid

structure plus the theorems in Chapter 2 ultimately force the form in Equation

(3.1).

38
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Now, we recall the main theorems of Chapter 3.

3.1 Main Results of Chapter 3

As we will see, in Section 3.4, the nc complex Hessian, q, if matrix positive

on an nc open set, can be factored as

q = V (x, xT )[h, hT ]TL(x, xT )D(x, xT )L(x, xT )TV (x, xT )[h, hT ] (3.2)

where D(x, xT ) is a diagonal matrix, L(x, xT ) is a lower triangular matrix with ones

on the diagonal (we call this a unit lower triangular matrix), and V (x, xT )[h, hT ]

is a vector of monomials in x, xT , h, hT .

When we take the transpose of a matrix with monomial or polynomial

entries (e.g., L(x, xT )T or V (x, xT )[h, hT ]T ), we get the matrix obtained by taking

the transpose (as a matrix) and applying the transpose (involution) to every entry.

Example 3.1.1. If

v =


hxx

hx

h

 ,

then

vT =
(
xTxThT xThT hT

)
.

The next theorem shows the surprising result that the diagonal matrix,

D(x, xT ) in Equation (3.2), does not depend on x, xT and that L(x, xT ) has nc

polynomial entries.

Theorem 3.1.2. If p is an nc symmetric polynomial that is nc plurisubharmonic

on an nc open set, then q, the nc complex Hessian of p, can be written as

q = V (x, xT )[h, hT ]TL(x, xT )DL(x, xT )TV (x, xT )[h, hT ]

where V (x, xT )[h, hT ] is a vector of monomials in x, xT , h, hT ,

D = diag(d1, d2, . . . , dN )

is a positive semidefinite constant real matrix, and L(x, xT ) is a unit lower trian-

gular matrix with nc polynomial entries.
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Proof. The proof of this theorem requires the rest of this chapter and culminates

in Subsection 3.4.4.

This gives rise to an extension of the main theorem from Chapter 2. In

Chapter 2, it is shown that an nc polynomial which is nc plush everywhere has

the specific form given in Equation (3.3) below. In this chapter, Theorem 3.1.3,

below, is a stronger, “local implies global”, result in that an nc polynomial that is

nc plush just on an nc open set is actually nc plush everywhere (and has the form

in Equation (3.3)).

Theorem 3.1.3. If an nc symmetric polynomial, p, is nc plurisubharmonic on an

nc open set, then p is, in fact, nc plurisubharmonic everywhere and has the form

expressed in Chapter 2

p =
∑

fTj fj +
∑

kjk
T
j + F + F T (3.3)

where the sums are finite and each fj, kj, and F is nc analytic.

Proof. That D = D(x, xT ), in Theorem 3.1.2, is a positive semidefinite constant

real matrix immediately implies

q(X,XT )[H,HT ] � 0

for all X,H ∈ ∪n≥1(Rn×n)g; that is, p is nc plush at all X ∈ ∪n≥1(Rn×n)g. Conse-

quently, Theorem 2.1.1 in Chapter 2 gives that p is of the desired form

p =
∑

fTj fj +
∑

kjk
T
j + F + F T

where the sums are finite and fj, kj, F are nc analytic.

Note that with an nc polynomial, p, as in Equation (3.3), the nc complex

Hessian, q, of p is

q =
∑

(fTj )xT [hT ](fj)x[h] +
∑

(kj)x[h](kTj )xT [hT ] , (3.4)

which is matrix positive since it is a sum of squares. From Equation (3.4), we see

that the nc complex Hessian for an nc polynomial that is nc plush on an nc open

set has even degree.
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3.1.1 Guide to Chapter 3

In Section 3.2, we introduce a Gram-like representation of nc quadratics.

In Section 3.3, we study this Gram-like representation for the nc complex Hessian

and prove some properties for this representation. In Section 3.4, we introduce the

LDLT decomposition of the nc complex Hessian and conclude that D is constant.

3.2 Middle Matrix Representation For A Gen-

eral NC Quadratic

In this section, we turn to a special representation for nc symmetric quadratic

polynomials called the middle matrix representation (MMR). We represent nc

quadratics in a factored form, vTMv. This representation greatly facilitates the

study of the positivity of nc quadratics by letting us study the positivity of M .

Now we give details.

Any noncommutative symmetric polynomial, f(x, xT , h, hT ), in the vari-

ables x = (x1, . . . , xg), x
T = (xT1 , . . . , x

T
g ), h = (h1, . . . , hg), and hT = (hT1 , . . . , h

T
g )

that is degree s in x, xT and homogeneous of degree two in h, hT admits a repre-

sentation of the form

f(x, xT , h, hT ) = V (x, xT )[h, hT ]TM(x, xT )V (x, xT )[h, hT ] (3.5)

where M(x, xT ), called the middle matrix, is a symmetric matrix of nc polyno-

mials in x, xT and V (x, xT )[h, hT ], called the border vector, is given by

V (x, xT )[h, hT ] =



Vs(x, x
T )[h]

...

V0(x, xT )[h]

Vs(x, x
T )[hT ]

...

V0(x, xT )[hT ]


. (3.6)

The Vk(x, x
T )[h] (resp. Vk(x, x

T )[hT ]) are vectors of nc monomials of the form

hjm(x, xT ) (resp. hTj m(x, xT )) where m(x, xT ) runs through the set of (2g)k mono-
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mials in x, xT of length k for j = 1, . . . , g. Note that the degree of the monomials

in Vk is k + 1.

We note that the vector of monomials, V (x, xT )[h, hT ], might contain mono-

mials that are not required in the representation of the nc quadratic, f . Therefore,

we can omit all monomials from the border vector that are not required. This gives

us a minimal length border vector and prevents extraneous zeros from occurring

in the middle matrix. The next lemma, Lemma 3.2.1, says that a minimal length

border vector contains distinct monomials.

Lemma 3.2.1. If f(x, xT , h, hT ) is an nc symmetric polynomial that has a middle

matrix representation, then there is a middle matrix representation for f such

that the border vector contains distinct monomials. Here, distinct precludes one

monomial being a scalar multiple of another.

Proof. Suppose we have f with the representation

f(x, xT , h, hT ) =


m

αm

n


T 

p11 p12 p13

p21 p22 p23

p31 p32 p33




m

αm

n


with α a real number and m and n distinct monomials. Write f as

f = mT (p11 + α2p22 + αp21 + αp12)m

+ mT (p13 + αp23)n+ nT (p31 + αp32)m+ nTp33n

which leads to the representation

f(x, xT , h, hT ) =

(
m

n

)(
p11 + α2p22 + αp21 + αp12 p13 + αp23

p31 + αp32 p33

)(
m

n

)
that has distinct monomials in the border vector.

To aid us in the following sections, we cite a theorem (Theorem 8.3 in

[CHSY03] and Theorem 6.1 in [HM04]). Note that in [CHSY03], the following

theorem is stated for a positivity domain but the proof only uses the fact that

positivity domains are nc open sets (satisfy the two conditions in Subsection 1.4.2).

Hence, we slightly generalize the statement of the theorem to work on a general

nc open set as defined in Subsection 1.4.2.
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Theorem 3.2.2. Consider a noncommutative polynomial Q(x, xT )[h, hT ] which

is quadratic in the variables h, hT that is defined on G ⊆ ∪n≥1(Rn×n)g. Write

Q(x, xT )[h, hT ] in the form

Q(x, xT )[h, hT ] = V (x, xT )[h, hT ]TM(x, xT )V (x, xT )[h, hT ]

and suppose that the following two conditions hold:

(i) the set G is an nc open set as defined in Subsection 1.4.2;

(ii) the border vector V (x, xT )[h, hT ] of the quadratic function Q(x, xT )[h, hT ] has

distinct monomials.

Then, the following statements are equivalent:

(a) Q(X,XT )[H,HT ] is a positive semidefinite matrix for each pair of tuples of

matrices X and H for which X ∈ G;

(b) M(X,XT ) � 0 for all X ∈ G.

We will also need the following well known lemma (c.f. [HM04]). Just for

notational purposes of stating the lemma, let B(H)g denote all g-tuples of operators

on H, where H is a Hilbert space.

Lemma 3.2.3. Given d, there exists a Hilbert space K of dimension
∑2d

0 (2g)j such

that if G is an open subset of B(K)g, if p has degree at most d, and if p(X,XT ) = 0

for all X ∈ G, then p = 0.

Next, we proceed to study this middle matrix representation for the nc

complex Hessian.

3.3 Middle Matrix Representation For The NC

Complex Hessian

In Section 3.2, we introduced the middle matrix representation for a general

nc quadratic polynomial, and this section specializes it to the nc complex Hessian.

The requirement that the nc complex Hessian be positive on an nc open set forces

rigid structure to the border vector and middle matrix.
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3.3.1 Border Vector for a Complex Hessian: Choosing an

Order for Monomials

Let p be an nc symmetric polynomial in g free variables such that the degree

of its nc complex Hessian is d. Then the complex Hessian will be homogeneous of

degree two in h, hT .

For a fixed degree k, there are gk nc analytic monomials and gk nc antian-

alytic monomials in x, xT . That means there are (2g)k − gk − gk = (2g)k − 2gk

‘mixed’ monomials of degree k (i.e., monomials that are not nc analytic nor nc

antianalytic).

Analytic Border Vector

For 0 ≤ k ≤ d−2, let Ak = Ak(x)[h] be the vector of nc analytic monomials

with entries hjm(x) where m(x) runs through the set of gk nc analytic monomials

of length k for j = 1, . . . , g. The order we impose on the monomials in this vector

is lexicographic order. Thus, the length of Ak = Ak(x)[h] is gk+1 and the vector

A(x)[h] = col(Ad−2, . . . , A1, A0) (3.7)

has length gd−1 + · · ·+ g2 + g = gν where ν = gd−2 + · · ·+ g2 + g + 1.

Antianalytic Border Vector

Let Atk = Ak(x
T )[hT ] be the same as Ak = Ak(x)[h] except replace each hj

with hTj and replace each xi by xTi . So Atk is the vector of nc antianalytic monomials

with entries hTj m(xT ) where m(xT ) runs through the set of gk nc antianalytic

monomials of length k for j = 1, . . . , g (again, the order is lexicographic). Thus,

the length of Atk = Ak(x
T )[hT ] is gk+1 and the vector

A(xT )[hT ] = col(Atd−2, . . . , A
t
1, A

t
0) (3.8)

also has length gν.
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Mixed Term Border Vector

Next, we define notation to handle all nonanalytic and nonantianalytic

monomials. Let B1 = B1(x, xT )[h] be the vector of monomials with entries hjx
T
i

for i = 1, . . . , g and j = 1, . . . , g. The length of B1 is g2. For 2 ≤ k ≤ d − 2,

let Bk = Bk(x, x
T )[h] be the vector of monomials with entries hjm(x, xT ) where

m(x, xT ) runs through the set of (2g)k−2gk monomials of length k that are not nc

analytic nor nc antianalytic for j = 1, . . . , g. Again, we put the same lexicographic

order on the monomials. Thus, the length of Bk = Bk(x, x
T )[h] is g((2g)k − 2gk)

and the vector

B(x, xT )[h] = col(Bd−2, . . . , B2, B1)

has length g2+
∑d−2

k=2 g((2g)k − 2gk). Then we can also define Bt
1 = Bt

1(x, xT )[hT ] to

be the vector of monomials with entries hTj xi for i = 1, . . . , g and j = 1, . . . , g. This

also has length g2. Then we define, for 2 ≤ k ≤ d−2, the vector Bt
k = Bk(x, x

T )[hT ]

to be the same as Bk except hj is replaced by hTj . In other words, each entry looks

like hTj m(x, xT ). Then the vector

B(x, xT )[hT ] = col(Bt
d−2, . . . , B

t
2, B

t
1)

has the same length as B(x, xT )[h].

Note that the degree of the monomials in Ak, A
t
k, Bk, B

t
k is k + 1.

3.3.2 The Middle Matrix of a Complex Hessian

Now we can represent the nc complex Hessian, q, of a symmetric nc poly-

nomial p as

q(x, xT )[h, hT ] =


A(x)[h]

B(x, xT )[h]

A(xT )[hT ]

B(x, xT )[hT ]


T 

Q1 Q2 0 0

QT
2 Q4 0 0

0 0 Q5 Q6

0 0 QT
6 Q8




A(x)[h]

B(x, xT )[h]

A(xT )[hT ]

B(x, xT )[hT ]


(3.9)

where Qi = Qi(x, x
T ) are matrices with nc polynomial entries in the variables

x1, . . . , xg, x
T
1 , . . . , x

T
g .
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Again, we wish to stress that the vectors A(x)[h], A(xT )[hT ], B(x, xT )[h],

and B(x, xT )[hT ] may contain monomials that are not required in the represen-

tation of the nc complex Hessian, q. Therefore, we omit all monomials from the

border vector that are not required. This gives us a minimal length border vector

and prevents extraneous zeros from occurring in the middle matrix. Lemma 3.2.1

says that a minimal length border vector contains only distinct monomials.

We also note that Theorem 2.2.16 (P1) shows that every term in the nc

complex Hessian, q, contains exactly one hj and one hTk for some j and k. This

structure forces the zeros in the middle matrix in Equation (3.9) above.

3.3.3 Structure of the Middle Matrix

In this subsection, we prove some properties about the structure of the

middle matrix in the MMR for a matrix positive nc complex Hessian.

Lemma 3.3.1. Let p be an nc symmetric polynomial that is nc plush on an nc

open set, G. Then, the MMR in Equation (3.9) for its nc complex Hessian, q, of

p has Q2 = Q4 = Q6 = Q8 = 0. Thus,

q =

(
A(x)[h]

A(xT )[hT ]

)T (
Q1(x, xT ) 0

0 Q5(x, xT )

)(
A(x)[h]

A(xT )[hT ]

)
. (3.10)

Proof. We consider the upper left block of the middle matrix in Equation (3.9)(
A(x)[h]

B(x, xT )[h]

)T (
Q1(x, xT ) Q2(x, xT )

Q2(x, xT )T Q4(x, xT )

)(
A(x)[h]

B(x, xT )[h]

)

with the goal of showing Q2 = 0 and Q4 = 0. Thus, suppose the border vector

contains a nonzero monomial which is an entry in the vector of mixed monomials,

B(x, xT )[h]; i.e., the border vector contains a term

hkm1(x, xT )xTj m2(x, xT ) (3.11)

for some monomials m1 and m2 in the variables x1, . . . , xg, x
T
1 , . . . , x

T
g .

Soon we shall look at the diagonal entry, P(0), in the middle matrix corre-

sponding to this border vector monomial in (3.11) and show it is 0. By Theorem
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3.2.2, we have the middle matrix positive semidefinite for every X in the nc open

set, G. By Lemma 3.2.3, if an nc polynomial is zero on an open set of matrix

tuples with sufficiently large dimension, then the nc polynomial is identically zero.

Hence, if there is ever a diagonal entry in the middle matrix that is zero on an

open set of matrix tuples of large enough dimension, then that diagonal entry is

identically zero. Hence, to force matrix positivity, the corresponding row and col-

umn in the middle matrix must be zero. This implies that the particular monomial

in the border vector is not needed in the representation, thereby contradicting the

border vector being of minimal length. Thus, showing P(0) is 0, a contradiction.

The term(s) in the nc complex Hessian corresponding to the diagonal entry

P(0) of the middle matrix and monomial (3.11) in the border vector are

mT
2 xjm

T
1 h

T
kP(0)hkm1x

T
j m2

where P(0) is some matrix positive polynomial in x1, . . . , xg, x
T
1 , . . . , x

T
g . By Theo-

rem 2.2.16 (P2), q must also contain the Levi-differentially wed term(s)

mT
2 hjm

T
1 h

T
kP(0)xkm1x

T
j m2.

This means the border vector must contain the monomial(s)

{hTkP(0)xkm1x
T
j m2}mon (3.12)

where {hTkP(0)xkm1x
T
j m2}mon is the list of the monomials that appear as terms in

the nc polynomial hTkP(0)xkm1x
T
j m2.

Again, we shall look at the term(s) in q corresponding to the diagonal in

the middle matrix corresponding to any one of the border vector monomial(s) in

(3.12). Pick hTk P̂(0)xkm1x
T
j m2 as a specific border vector monomial in the list in

(3.12). Then, the term(s) in q look like

mT
2 xjm

T
1 x

T
k (P̂(0))ThkP(1)hTk P̂(0)xkm1x

T
j m2

where P(1) is a matrix positive polynomial in x1, . . . , xg, x
T
1 , . . . , x

T
g , which is a

diagonal entry of the middle matrix. Theorem 2.2.16 (P2) implies q must also

contain the Levi-differentially wed term(s)

mT
2 hjm

T
1 h

T
k (P̂(0))TxkP(1)xTk P̂(0)xkm1x

T
j m2
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which means the border vector must contain the monomial(s)

{hTk (P̂(0))TxkP(1)xTk P̂(0)xkm1x
T
j m2}mon (3.13)

where {hTk (P̂(0))TxkP(1)xTk P̂(0)xkm1x
T
j m2}mon is the list of the monomials that

appear as terms in the nc polynomial hTk (P̂(0))TxkP(1)xTk P̂(0)xkm1x
T
j m2.

Note that the border vector monomial in (3.13) has degree at least 2 more

than the degree of the border vector monomial in (3.12) which has degree at least

2 more than the degree of the border vector monomial in (3.11). We can continue

this process and the degree of the successive border vector monomials will keep

increasing by at least 2 at each step. At some step, the degree of the border

vector monomial will exceed d − 1. This contradicts the fact that the border

vector monomials must have degree at most d − 1. Thus, we have shown that

Q4 = 0. A similar argument shows that Q8 = 0. Since the middle matrix is

positive semidefinite, by the argument at the beginning of this proof, we also get

that Q2 = 0 and Q6 = 0. Hence, the nc complex Hessian has the representation in

Equation (3.10), as claimed by the theorem.

Theorem 3.3.2. The nc complex Hessian, q, of an nc symmetric polynomial that

is nc plush on an nc open set can be written as in Equation (3.10)

q(x, xT )[h, hT ] =

(
A(x)[h]

A(xT )[hT ]

)T (
Q1(x, xT ) 0

0 Q5(x, xT )

)(
A(x)[h]

A(xT )[hT ]

)

where every nc polynomial entry in Q1(x, xT ) is hereditary and every nc polynomial

entry in Q5(x, xT ) is antihereditary.

Proof. Suppose, for the sake of contradiction, Q1 contains an nc polynomial entry

which is not hereditary. Without loss of generality, this nc polynomial contains a

term of the form

m1(xT )xjx
T
km2(x, xT ) (3.14)

where m1 is a monomial in xT and m2 is a monomial in x and xT . Since this is

part of an entry in the middle matrix, this means that the nc complex Hessian

must contain a term of the form

m3(xT )hT` m1(xT )xjx
T
km2(x, xT )hsm4(x)
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where m3(xT )hT` is a specific monomial entry from the vector A(x)[h]T and hsm4(x)

is a specific monomial entry from the vector A(x)[h]. Then, Theorem 2.2.16 (P2)

implies that the nc complex Hessian must also contain the Levi-differentially wed

term

m3(xT )hT` m1(xT )hjx
T
km2(x, xT )xsm4(x).

This implies that the border vector must contain the monomial

hjx
T
km2(x, xT )xsm4(x)

which contradicts having an nc analytic or nc antianalytic border vector, as re-

quired by Lemma 3.3.1. The proof that Q5 contains antihereditary nc polynomial

entries is similar.

For a real number, r, we define brc as the largest integer less than or equal

to r and we define dre as the smallest integer greater than or equal to r. The next

theorem puts an upper bound on the degree of the monomials in the border vector

for q.

Lemma 3.3.3. Suppose p is an nc symmetric polynomial that is nc plush on an

nc open set. If the degree of its nc complex Hessian, q, is d, then the degree of the

border vector monomials is at most
⌊
d
2

⌋
.

Proof. Write the MMR for q(x, xT )[h, hT ] as

q = V TMV =
(
V T

1 V T
2

)( M1 M2

MT
2 M4

)(
V1

V2

)

with the following property. If d is odd, V1 contains monomials of degree 1, . . . ,
⌊
d
2

⌋
and V2 contains monomials of degree

⌈
d
2

⌉
, . . . , d − 1. If d is even, V1 contains

monomials of degree 1, . . . , d
2

and V2 contains monomials of degree d
2

+ 1, . . . , d−1.

In either case, polynomials in M4 correspond to terms in q having degree strictly

greater than d. Hence M4 = 0. By Theorem 3.2.2, M(X,XT ) � 0 for all X in an

nc open set. This forces M2(X,XT ) = 0 for all X in an nc open set. Then, by

taking X to have large enough size, Lemma 3.2.3 implies M2 = 0.
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Consequences of Positivity of the Complex Hessian

Now we turn from a description of the middle matrix to describing the

structure of the nc complex Hessian of an nc polynomial that is nc plush on an nc

open set.

Proposition 3.3.4. The nc complex Hessian, q, of an nc symmetric polynomial

that is nc plush on an nc open set is a sum of hereditary and antihereditary poly-

nomials.

Proof. This follows immediately from Lemma 3.3.1 and Theorem 3.3.2.

Finally, we show that the degree of q must be even when p is nc plush on

an nc open set. This fact is obvious if p is assumed nc plush everywhere because

then the nc complex Hessian is a sum of squares, as provided by Theorem 1.1.1.

Theorem 3.3.5. Suppose p is an nc symmetric polynomial that is nc plush on an

nc open set. Then, the degree of its nc complex Hessian, q, is even.

Proof. Suppose the degree of q is 2N + 1. Without loss of generality, Proposi-

tion 3.3.4 and Theorem 2.2.16, requiring the presence of Levi-differentially wed

monomials, imply that q must contain a hereditary term of the form

xTi1x
T
i2
· · ·hTishj1xj2 · · ·xj`

where s, ` > 0, s + ` = 2N + 1, and i1, . . . , is, j1, . . . , j` ∈ {1, . . . , g}. This means

that in the middle matrix representation for q, the border vector must contain

hj1xj2 · · ·xj` and hisxis−1 · · ·xi1 which have degree ` and s, respectively. But since

s+` = 2N+1 and s, ` > 0, one of either s or ` is at least
⌈

2N+1
2

⌉
. This contradicts

Lemma 3.3.3.

3.4 LDLT Decomposition Has Constant D

This section concerns the “algebraic Cholesky” factorization, LDLT , of the

middle matrix. We will show that for an nc polynomial that is nc plush on an

nc open set, this D is a positive semidefinite matrix whose diagonal entries are
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all nonnegative real constants, and L is unit lower triangular with entries which

are nc polynomials. This is a stronger conclusion than one would expect because,

typically, such factorizations have nc rational entries, see [CHSY03, HMV06]. In

our approach, the LDLT factorization of a symmetric matrix with noncommutative

entries will be the key tool for the determination of the matrix positivity of an nc

quadratic function.

3.4.1 The LDLT Decomposition

Begin by considering the block 2× 2 matrix

M =

(
A BT

B C

)

where A is a constant real symmetric invertible matrix and B and C are matri-

ces with nc polynomial entries with C symmetric. Then, M has the following

decomposition

M =

(
I 0

BA−1 I

)(
A 0

0 C −BA−1BT

)(
I A−1BT

0 I

)
, (3.15)

where all matrices in this decomposition contain nc polynomial entries. If C −
BA−1BT contains a constant real symmetric invertible matrix somewhere on the

diagonal, then we can apply a permutation, Π, on the left of M and its transpose,

ΠT , on the right of M to move this constant real symmetric invertible matrix to

the first (block) diagonal position of C−BA−1BT . We then pivot off this constant

real symmetric invertible matrix, factor C −BA−1BT as L̂D̂L̂T , and we get

ΠMΠT =

(
I 0

BA−1 L̂

)(
A 0

0 D̂

)(
I A−1BT

0 L̂T

)
.

This can be continued, provided at each step, a constant real symmetric invertible

matrix appears somewhere on the diagonal to obtain ΠMΠT = LDLT where L

is a unit lower triangular matrix with nc polynomial entries and D is a (block)

diagonal matrix with real constant blocks. This special situation is the one which

turns out to hold in the derivation which follows.
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Indeed, we shall only care about the case where A is a constant real sym-

metric invertible matrix. For the case where A contains nc polynomial entries and

is considered to be “noncommutative invertible”, see [CHSY03]. In this case, we

also have the notion of “noncommutative rational” functions (see [HMV06]). How-

ever, as we soon shall see, while nc rationals are mentioned, they never actually

appear in any calculations in this dissertation.

We recall an immediate consequence of Theorem 3.3 in [CHSY03]:

Theorem 3.4.1. Suppose M(x, xT ) is a symmetric r× r matrix with noncommu-

tative rational function entries and that M(X,XT ) � 0 for all X in some nc open

set. Then, there exists a permutation matrix, Π, a diagonal matrix, D(x, xT ), with

nc rational entries, and a unit lower triangular matrix, L(x, xT ), with nc rational

entries such that

ΠM(x, xT )ΠT = L(x, xT )D(x, xT )L(x, xT )T .

Remark 3.4.2. In this chapter, we care about the positivity of the middle matrix,

M(x, xT ). If Π is a permutation matrix, it is clear that

ΠM(X,XT )ΠT � 0 ⇐⇒ M(X,XT ) � 0

for any X ∈ Rn×n and any n ≥ 1. As a result, for ease of exposition, we will often,

without loss of generality, omit the permutation matrix, Π.

Also, there will be some instances where we will, without loss of generality,

assume a specific order in the border vector, V (x, xT )[h, hT ]. For example, we may

assume a given monomial, say, hm(x, xT ), is the first monomial in V (x, xT )[h, hT ].

This assumption also amounts to a permutation of V (x, xT )[h, hT ] which, again,

does not affect positivity of M(x, xT ) so we omit it from the discussion.

We now proceed to apply the LDLT factorization to the middle matrix of

the nc complex Hessian. Let p be an nc symmetric polynomial and let q denote

the nc complex Hessian of p. Since q is homogeneous of degree 2 in h, hT , q admits

the MMR

q = V (x, xT )[h, hT ]TM(x, xT )V (x, xT )[h, hT ]. (3.16)
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If p is nc plush on an nc open set, then M(x, xT ) is symmetric and matrix positive

on an nc open set and we can factor M(x, xT ) following the process underlying

Equation (3.15) and Theorem 3.4.1, thus converting Equation (3.16) to

q = V (x, xT )[h, hT ]TL(x, xT )D(x, xT )L(x, xT )TV (x, xT )[h, hT ] (3.17)

up to a harmless rearrangement of the border vector.

In Section 3.4.4, we prove one of the main theorems of this dissertation,

Theorem 3.4.9, which was stated in Section 3.1 as Theorem 3.1.2. We recall that

this theorem says that D(x, xT ) in Equation (3.17) does not depend on x, xT and

is a positive semidefinite constant real diagonal matrix for an nc polynomial that

is nc plush on an nc open set. In addition, we will prove that L(x, xT ) contains nc

polynomials instead of nc rationals. Now we start the build up to Section 3.4.4.

3.4.2 Properties of LDLT for NC Polynomials that are NC

Plush on an NC Open Set

In this subsection, we present properties of the LDLT factorization of the

nc complex Hessian for an nc polynomial that is nc plush on an nc open set.

Recall from Section 1.4.2 that a set G ⊆ ∪n≥1(Rn×n)g is an nc open set if:

(i) G respects direct sums, and

(ii) there exists a positive integer n0 such that if n > n0, the set Gn := G∩(Rn×n)g

is an open set of matrix tuples;

and an nc symmetric polynomial, p, is nc plush on an nc open set, G, if p has an

nc complex Hessian, q, such that q(X,XT )[H,HT ] is positive semidefinite for all

X ∈ G and for all H ∈ (Rn×n)g for every n ≥ 1.

For an nc symmetric polynomial that is nc plush on an nc open set, Theorem

3.3.5 shows that the nc complex Hessian has even degree; denote it 2N . We will

use this fact throughout the duration of the chapter. The next lemma is a stepping

stone for Lemma 3.4.4.
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Lemma 3.4.3. Suppose p is an nc symmetric polynomial that is nc plush on an

nc open set, G. Let 2N denote the degree of its nc complex Hessian, q. Then, q

must contain a term of the form

αmThThm (or αmhhTmT )

where m is an nc analytic monomial of degree N − 1 and α is a positive real

constant.

Proof. Proposition 3.3.4 implies q is a sum of hereditary and antihereditary poly-

nomials. Let w be a term of degree 2N in q. Without loss of generality, suppose

w is hereditary; i.e., w has the form

w = αmT
1 h

TmT
2m3hm4

where α ∈ R, m1,m2,m3,m4 are nc analytic monomials in x, and

deg(m1) + deg(m2) + deg(m3) + deg(m4) = 2N − 2.

By Theorem 2.2.16 (P2), q must contain the Levi-differentially wed term

w̃ = αm̃T
1 h

Thm̃2

where m̃1, m̃2 are nc analytic monomials in x and deg(m̃1) = deg(m̃2) = N − 1.

If m̃1 = m̃2, we are done (except for showing α > 0). If the conclusion of

the lemma is false, so that q contains no term of the form αmThThm, then this

implies m̃1 6= m̃2. Since q is symmetric, q must also contain the term

w̃T = αm̃T
2 h

Thm̃1.

If we partition the border vector so that eT1 V = hm̃1 and eT2 V = hm̃2, then we get

that

q =


hm̃1

hm̃2

...


T 

0 α · · ·
α 0 · · ·
...

...
. . .




hm̃1

hm̃2

...

 .

This middle matrix is not positive semidefinite for any X ∈ G. Hence, Theorem

3.2.2 implies that q is not positive semidefinite for all X ∈ G. This contradicts the
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positivity of q on the nc open set, G. Hence, q must contain some term of the form

αmThThm.

We now show α > 0. Since we know that q contains a term of the form

αmThThm with m an nc analytic or nc antianalytic monomial of degree N−1, the

real constant α will appear on the diagonal in the middle matrix. Then, Theorem

3.2.2 implies that this α must be positive.

When we write ei, we mean the vector whose ith entry is 1 and every other

entry is 0. From Equation (3.17), we can write q as a sum of outer products

q = V (x, xT )[h, hT ]T

(
N∑
i=1

(Lei)di(Lei)
T

)
V (x, xT )[h, hT ]

=
N∑
i=1

V (x, xT )[h, hT ]T (Lei)di(Lei)
TV (x, xT )[h, hT ]. (3.18)

We stress that in Equation (3.18), each Lei and di depend on x and xT . However,

the next lemma shows that one element of D is constant and one column of L

contains nc polynomials rather than nc rationals.

Lemma 3.4.4. Let p be an nc symmetric polynomial that is nc plush on an nc

open set. Let 2N denote the degree of its nc complex Hessian, q. Then, we can

write the nc complex Hessian, q, as in Equations (3.17) and (3.18) where L(x, xT )

is unit lower triangular and D(x, xT ) = diag(d1, . . . , dN ) with d1 a positive real

constant.

Hence, each entry in Le1, the first column of L(x, xT ), is an nc polynomial

rather than an nc rational.

Proof. Theorem 3.4.1 implies D(x, xT ) is a diagonal matrix. Without loss of gen-

erality, Lemma 3.4.3 implies that q contains a term of the form

αmThThm

where α > 0 is a positive real constant and m is an nc analytic monomial of degree

N − 1. The MMR of q can be written as

q =

(
hm

V̂

)T (
α `T

` M̂

)(
hm

V̂

)
.
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Since α > 0, we can first pivot off α in computing the LDLT factorization of the

middle matrix to get

q =

(
hm

V̂

)T (
1 0

1
α
` I

)(
α 0

0 M̂ − 1
α
``T

)(
1 1

α
`T

0 I

)(
hm

V̂

)
.

Now we see that d1 = eT1De1 = α > 0 and that

Le1 =

(
1

1
α
`

)
and M̂ − 1

α
``T

contain only nc polynomials as entries.

The next lemma provides even more specific structure to Le1 and maintains

the nc polynomial structure.

Lemma 3.4.5. Under the same hypotheses of Lemma 3.4.4, either:

(i) every entry of Le1 (the 1st column of L(x, xT )) is an nc antianalytic polyno-

mial, d1 (the 1st diagonal entry of D(x, xT )) is a positive real constant, and

the corresponding monomials in V (x, xT )[h, hT ] are nc analytic; or

(ii) every entry of Le1 (the 1st column of L(x, xT )) is an nc analytic polynomial,

d1 (the 1st diagonal entry of D(x, xT )) is a positive real constant, and the

corresponding monomials in V (x, xT )[h, hT ] are nc antianalytic.

Proof. Lemma 3.3.1 implies that q can be written as

q = A(x)[h]TQ1(x, xT )A(x)[h] + A(xT )[hT ]TQ5(x, xT )A(xT )[hT ]

where each entry of A(x)[h] is an nc analytic monomial and each entry of A(xT )[hT ]

is an nc antianalytic monomial. Also, Q1 contains hereditary nc polynomials and

Q5 contains antihereditary nc polynomials. Then, we have that

q = A(x)[h]TL1D1L
T
1A(x)[h] + A(xT )[hT ]TL2D2L

T
2A(xT )[hT ]

=

(
A(x)[h]

A(xT )[hT ]

)T

︸ ︷︷ ︸
V (x,xT )[h,hT ]T

(
L1 0

0 L2

)
︸ ︷︷ ︸

L

(
D1 0

0 D2

)
︸ ︷︷ ︸

D

(
L1 0

0 L2

)T

︸ ︷︷ ︸
LT

(
A(x)[h]

A(xT )[hT ]

)
︸ ︷︷ ︸

V (x,xT )[h,hT ]

.

(3.19)
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Without loss of generality, Lemma 3.4.3 allows us to assume that q contains

a term of the form

d1m
ThThm

where m is an nc analytic monomial in x (so that hm is an entry in A(x)[h])

of degree N − 1 and d1 is a positive real constant. Lemma 3.4.4 implies that

eT1D1e1 = d1 and that each entry of Le1 is an nc polynomial. From Equation

(3.19), we have that

Le1 =

(
L1e1

0

)
and (Le1)TV = (L1e1)TA(x)[h].

Next, write q as in Equation (3.18) and see that the first term in this sum

becomes

V T (Le1)d1(Le1)TV = d1((L1e1)TA(x)[h])T ((L1e1)TA(x)[h])

Proposition 3.3.4 implies that q is a sum of hereditary and antihereditary polyno-

mials. Therefore, since A(x)[h] contains only nc analytic monomials, this forces

(L1e1)T to contain only nc analytic polynomials (which means that L1e1 contains

only nc antianalytic polynomials). This completes the proof of Case (i).

The proof of Case (ii) works the same way, from Lemma 3.4.3, whenever

we assume that q contains a term of the form

d1mhh
TmT

where m is an nc analytic monomial in x of degree N − 1 and d1 is a positive real

constant.

The next lemma is a technical lemma that is used as a stepping stone to

help prove Proposition 3.4.7.

Lemma 3.4.6. Let p be an nc symmetric polynomial that is nc plush on an nc

open set. Let 2N denote the degree of its nc complex Hessian, q. Then, we can

write q as in Equation (3.18)

q =
N∑
i=1

V (x, xT )[h, hT ]T (Lei)di(Lei)
TV (x, xT )[h, hT ]
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with

V (x, xT )[h, hT ]T e1 = xTiN · · · x
T
i2
hTi1 (resp. V (x, xT )[h, hT ]T e1 = xiN · · ·xi2hi1)

in which case, any term in q that has the form

d1γx
T
iN
· · ·xTi2h

T
i1
m(x, h) (resp. d1γxiN · · ·xi2hi1m(xT , hT ))

where γ is a real constant and m(x, h) is some nc analytic monomial in x, h of

degree 1 in h (resp. m(xT , hT ) is some nc antianalytic monomial in xT , hT of

degree 1 in hT ), is a term in the nc polynomial

d1V (x, xT )[h, hT ]T (Le1)(Le1)TV (x, xT )[h, hT ].

Moreover, γm(x, h) (resp. γm(xT , hT )) is a term in the nc analytic (resp. nc

antianalytic) polynomial

(Le1)TV (x, xT )[h, hT ].

Proof. Proposition 3.3.4 implies q is a sum of hereditary and antihereditary poly-

nomials. Since the degree of q is 2N , there exists a term, w, in q of degree 2N .

Without loss of generality, Lemma 3.4.3 allows us to assume that w looks like

w = d1x
T
iN
· · ·xTi2h

T
i1
hi1xi2 · · ·xiN .

with d1 ∈ R+. We partition the border vector V (x, xT )[h, hT ] as

V (x, xT )[h, hT ] =

(
hi1xi2 · · ·xiN

V̂

)

where hi1xi2 · · ·xiN is not a monomial entry in the vector V̂ . Then, q becomes

q =

(
hi1xi2 · · ·xiN

V̂

)T (
1 0

` L̂

)(
d1 0

0 D̂

)(
1 `T

0 L̂T

)(
hi1xi2 · · ·xiN

V̂

)

= d1(

V (x,xT )[h,hT ]T (Le1)(Le1)TV (x,xT )[h,hT ]=(xTiN
···xTi2h

T
i1

+bV T `)(hi1xi2 ···xiN+`T bV )︷ ︸︸ ︷
xTiN · · ·x

T
i2
hTi1hi1xi2 · · ·xiN + xTiN · · ·x

T
i2
hTi1`

T V̂ + V̂ T `hi1xi2 · · ·xiN + V̂ ``T V̂ )

(3.20)
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+V̂ T L̂D̂L̂T V̂ .

Since xTiN · · ·x
T
i2
hTi1 is not a monomial entry in the vector V̂ T , this shows that

any term in q of the form d1γx
T
iN
· · ·xTi2h

T
i1
m(x, h), where γ is a real constant and

m(x, h) is an nc analytic monomial of degree 1 in h, is a term in the nc polynomial

d1V (x, xT )[h, hT ]T (Le1)(Le1)TV (x, xT )[h, hT ].

Equation (3.20) implies that either

d1γx
T
iN
· · ·xTi2h

T
i1
m(x, h) = d1x

T
iN
· · ·xTi2h

T
i1
hi1xi2 · · ·xiN

or that d1γx
T
iN
· · ·xTi2h

T
i1
m(x, h) is a term in the nc polynomial

d1x
T
iN
· · ·xTi2h

T
i1
`T V̂ .

This implies that either γ = 1 and m(x, h) = hi1xi2 · · ·xiN or that γm(x, h) is a

term in the nc polynomial `T V̂ . Hence, γm(x, h) is a term in the nc polynomial

hi1xi2 · · · xiN + `T V̂ = (Le1)TV (x, xT )[h, hT ]

and Lemma 3.4.5 implies that (Le1)TV (x, xT )[h, hT ] is nc analytic.

3.4.3 Part of the NC Complex Hessian is an NC Complex

Hessian

In this subsection, we focus on writing the nc complex Hessian, q, as in

Equation (3.18)

q =
N∑
i=1

V (x, xT )[h, hT ]T (Lei)di(Lei)
TV (x, xT )[h, hT ].

This subsection culminates with the result that the nc polynomial

d1V (x, xT )[h, hT ]T (Le1)(Le1)TV (x, xT )[h, hT ],

is the nc complex Hessian for some nc polynomial that is nc plush on an nc open

set. In order to do this, we first show that the nc polynomial

(Le1)TV (x, xT )[h, hT ]

is the nc directional derivative of some nc analytic or nc antianalytic polynomial.
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Proposition 3.4.7. Let p be an nc symmetric polynomial that is nc plush on an

nc open set, G. Let 2N denote the degree of its nc complex Hessian, q. If we write

q as in Equation (3.18) and d1 is constant, then the nc polynomial

(Le1)TV (x, xT )[h, hT ]

is the nc directional derivative of an nc analytic polynomial or an nc antianalytic

polynomial.

In addition, the nc polynomial

d1V (x, xT )[h, hT ]T (Le1)(Le1)TV (x, xT )[h, hT ]

is the nc complex Hessian of some nc polynomial that is nc plush on G.

Proof. Without loss of generality, we can assume, by Lemma 3.4.5, that

(Le1)TV (x, xT )[h, hT ]

is an nc analytic polynomial where V (x, xT )[h, hT ] and Le1 are partitioned as

V (x, xT )[h, hT ] =


VN

VN−1

...

V1

 , Le1 =


`0

`1

...

`N−1

 , `0 =


1

?
...

?

 , (3.21)

where ? is any nc polynomial and Vj is a vector that contains only nc analytic

monomials of the form hi1xi2 · · ·xij having total degree j. Each `j is a vector

with the same length as Vj and, by Lemma 3.4.5, `j contains only nc antianalytic

polynomials (`Tj contains only nc analytic polynomials). With this setup, we have

that

F(x, h) := (Le1)TV (x, xT )[h, hT ] =
N−1∑
j=0

`Tj VN−j

is an nc analytic polynomial in x and h. We define this as F(x, h) for convenience.

Lemma 3.4.4 implies d1 ∈ R+ is a constant and Equation (3.18) implies

that q contains the terms

d1V (x, xT )[h, hT ]T (Le1)(Le1)TV (x, xT )[h, hT ] = d1

(
N−1∑
j=0

`Tj VN−j

)T (N−1∑
j=0

`Tj VN−j

)
(3.22)
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Then, since the degree of q is 2N and the degree of each border vector monomial

in VN−j is N − j, it follows that the degree of each nc analytic polynomial in `Tj is

at most j.

Lemma 3.4.3 implies that q contains some term of the form

α2xTiN · · ·x
T
i2
hTi1hi1xi2 · · ·xiN (3.23)

with α a nonzero real constant. This implies that the vector VN contains the mono-

mial hi1xi2 · · ·xiN as an entry. Without loss of generality, assume this monomial

is first in lexicographic order. Then,

eT1 V (x, xT )[h, hT ] = eT1 VN = hi1xi2 · · · xiN .

As in the proof of Lemma 3.4.4, if M represents the middle matrix of q, then

eT1Me1 = α2 and, after one step in the LDLT algorithm, we see that α2 = d1.

Then, by Theorem 2.2.16 (P2), q also contains the Levi-differentially wed terms

d1x
T
iN
· · ·xTi2h

T
i1
xi1hi2xi3 · · ·xiN

d1x
T
iN
· · ·xTi2h

T
i1
xi1xi2hi3 · · ·xiN
...

d1x
T
iN
· · · xTi2h

T
i1
xi1xi2 · · ·xiN−1

hiN .

Since q contains these terms and the term in (3.23), Lemma 3.4.6 implies that

F(x, h) contains the term

hi1xi2xi3 · · ·xiN (3.24)

and the terms

xi1hi2xi3 · · ·xiN
xi1xi2hi3 · · ·xiN

...

xi1xi2 · · ·xiN−1
hiN .

Hence, F(x, h) contains all 1-differentially wed monomials to hi1xi2xi3 · · ·xiN as

terms. Theorem 2.2.4 implies that F(x, h) contains the nc directional derivative

of xi1xi2xi3 · · ·xiN .



62

Now we pick any other term in F(x, h) and show that F(x, h) contains all

other 1-differentially wed monomials to it and that they all occur with the same

coefficient. Suppose F(x, h) contains the term

γxs1 · · ·xskhβ1xβ2 · · ·xβN−j .

We already showed that F(x, h) contains the monomial in (3.24), hi1xi2 · · ·xiN ,

as a term so F(x, h)T must contain the monomial xTiN · · ·x
T
i2
hTi1 as a term. This

implies that d1F(x, h)TF(x, h) contains the terms

d1x
T
iN
· · ·xTi2h

T
i1

(hi1xi2 · · ·xiN + γxs1 · · ·xskhβ1xβ2 · · ·xβN−j).

Hence, q contains the term

d1γx
T
iN
· · ·xTi2h

T
i1
xs1 · · ·xskhβ1xβ2 · · ·xβN−j

and Theorem 2.2.16 (P2) implies that q contains the Levi-differentially wed terms

d1γx
T
iN
· · ·xTi2h

T
i1
hs1xs2 · · ·xskxβ1xβ2 · · ·xβN−j

d1γx
T
iN
· · ·xTi2h

T
i1
xs1hs2 · · ·xskxβ1xβ2 · · · xβN−j

...

d1γx
T
iN
· · ·xTi2h

T
i1
xs1xs2 · · ·hskxβ1xβ2 · · · xβN−j

d1γx
T
iN
· · ·xTi2h

T
i1
xs1xs2 · · ·xskxβ1hβ2 · · ·xβN−j

...

d1γx
T
iN
· · ·xTi2h

T
i1
xs1xs2 · · ·xskxβ1xβ2 · · ·hβN−j .

Since q contains all of these terms with xTiN · · ·x
T
i2
hTi1 on the left, Lemma 3.4.6
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implies F(x, h) must contain the terms

γhs1xs2 · · ·xskxβ1xβ2 · · ·xβN−j
γxs1hs2 · · ·xskxβ1xβ2 · · ·xβN−j

...

γxs1xs2 · · ·hskxβ1xβ2 · · ·xβN−j
γxs1xs2 · · · xskhβ1xβ2 · · ·xβN−j
γxs1xs2 · · ·xskxβ1hβ2 · · ·xβN−j

...

γxs1xs2 · · ·xskxβ1xβ2 · · ·hβN−j .

All of these terms in F(x, h) have the same coefficient, γ, and the monomials are

1-differentially wed to each other. Thus, Theorem 2.2.4 implies that they sum to

the nc directional derivative of

γxs1xs2 · · ·xskxβ1xβ2 · · ·xβN−j .

Hence, we have shown that F(x, h) = (Le1)TV (x, xT )[h, hT ] is an nc directional

derivative, where, without loss of generality, we assumed that F(x, h) was nc an-

alytic.

Now we have that

F(x, h) := (Le1)TV (x, xT )[h, hT ]

is the nc directional derivative of some nc analytic or nc antianalytic polynomial.

Suppose, without loss of generality, that F(x, h) is the nc directional derivative of

some nc analytic polynomial, F(x). Then, F(x, h) is nc analytic and

d1F(x, h)TF(x, h) = d1V (x, xT )[h, hT ]T (Le1)(Le1)TV (x, xT )[h, hT ]

is the nc complex Hessian of the nc polynomial

d1F(x)TF(x).

Hence, for any n ≥ 1, any X ∈ G, and any H ∈ (Rn×n)g, we have

d1F(X,H)TF(X,H) � 0.
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3.4.4 Constant D Result

In this subsection, we show that for an nc symmetric polynomial, p, that

is nc plush on an nc open set, the matrix D(x, xT ) in Equation (3.17) has no

dependence on x or xT and is actually a positive semidefinite constant real matrix.

First, we require a helpful lemma.

Lemma 3.4.8. If p is an nc symmetric polynomial that is nc plush on an nc open

set, G, then its nc complex Hessian, q, can be written as in Equation (3.17)

q = V (x, xT )[h, hT ]TL(x, xT )D(x, xT )L(x, xT )TV (x, xT )[h, hT ]

where D(x, xT ) is a diagonal matrix of nc rationals and D(X,XT ) � 0 for all

X ∈ G.

Proof. This follows immediately from Theorem 3.4.1.

Theorem 3.4.9. Suppose p is an nc symmetric polynomial that is nc plush on an

nc open set, G. Let 2N denote the degree of its nc complex Hessian, q. Then q

can be written as in Equation (3.17)

q = V (x, xT )[h, hT ]TL(x, xT )D(x, xT )L(x, xT )TV (x, xT )[h, hT ]

where D(x, xT ) = diag(d1, d2, . . . , dN ) is a positive semidefinite constant real ma-

trix (i.e., di ∈ R≥0 for all i = 1, . . . ,N ) and L(x, xT ) is a unit lower triangular

matrix of nc polynomials.

Proof. Lemma 3.4.8 implies D(X,XT ) � 0 for every X ∈ G. This means

di(X,X
T ) � 0

for every X ∈ G and every i = 1, . . . ,N . It remains to show that each di is a

nonnegative constant real number.

First, write the nc complex Hessian, q, as in Equation (3.18)

q =
N∑
i=1

V (x, xT )[h, hT ]T (Lei)di(x, x
T )(Lei)

TV (x, xT )[h, hT ].
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Lemma 3.4.4 shows d1 ∈ R+ is a constant, Le1 contains nc polynomial entries, and

Proposition 3.4.7 shows that

d1V (x, xT )[h, hT ]T (Le1)(Le1)TV (x, xT )[h, hT ]

is the nc complex Hessian for some nc polynomial that is nc plush on G. Since nc

differentiation is linear, we know that the difference of two nc complex Hessians is

an nc complex Hessian. This implies that

q̃ := q − d1V (x, xT )[h, hT ]T (Le1)(Le1)TV (x, xT )[h, hT ]

=
N∑
i=2

V (x, xT )[h, hT ]T (Lei)di(x, x
T )(Lei)

TV (x, xT )[h, hT ]

is an nc complex Hessian. Since di(X,X
T ) � 0 for all X ∈ G and for all i, we have

that q̃ is the nc complex Hessian for an nc symmetric polynomial that is nc plush

on G.

Chapter 3 of this dissertation is taken from [G10] that has been submitted

for publication as

J. M. Greene, Noncommutative Plurisubharmonic Polynomials, Part II: Local As-

sumptions, preprint, http: // arxiv. org/ abs/ 1101. 0111 .
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