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EPIGRAPH

You’re wealthy when you’re healthy.
Don’t trade gold for copper.

Go all the way, baby!

—Al

Don’t dream it, be it.

—No Fear
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ABSTRACT OF THE DISSERTATION

Noncommutative Plurisubharmonic Polynomials

by

Jeremy Michael Greene

Doctor of Philosophy in Mathematics

University of California, San Diego, 2011

Professor J. William Helton, Chair

Many optimization problems and engineering problems connected with lin-
ear systems lead to matrix inequalities. Matrix inequalities are constraints in which
a polynomial or a matrix of polynomials with matrix variables is required to take
a positive semidefinite value. Many of these problems have the property that they
are “dimension free” and, in this case, the form of the polynomials remains the
same for matrices of all size. In other words, we have noncommutative polyno-
mials. One very much desires these polynomials to be “convex” in the unknown
matrix variables, since if they are, then numerical calculations are reliable and
local optima are global optima.

In this dissertation, we classify all changes of variables (not containing trans-

poses) from noncommutative non-convex polynomials to noncommutative convex

xi



polynomials. This introduces notions of noncommutative complex Hessians and
plurisubharmonicity, classical notions from several complex variables. In addition,
we present a theory of noncommutative integration and we prove a “local implies
global” result in that we show noncommutative plurisubharmonicity on a noncom-

mutative open set implies noncommutative plurisubharmonicity everywhere.

x1i



Chapter 1
Introduction

Many optimization problems and engineering problems connected with lin-
ear systems lead to matrix inequalities. Matrix inequalities are constraints in which
a polynomial or a matrix of polynomials with matrix variables is required to take
a positive semidefinite value. Many of these problems have the property that they
are “dimension free” and, in this case, the form of the polynomials remains the
same for matrices of all size. In other words, we have noncommutative polyno-
mials. One very much desires these polynomials to be “convex” in the unknown
matrix variables, since if they are, then numerical calculations are reliable and
local optima are global optima.

Often, one is most interested in the Hessian of a polynomial and its positiv-
ity, as this determines convexity. However, in this dissertation, we are concerned
with the complex Hessian, since it turns out to be related to which problems can
be made convex by an nc analytic changes of variables.

In the classical study of complex variables, we have polynomials in z and
Z. We can then take derivatives with respect to z and z; i.e., %(z, z) and %(z, zZ).

We can also construct a matrix and fill it with mixed second partial derivatives;

9%p
821'823'

this matrix of mixed partial derivatives is called the complex Hessian and if this

i.e., the (i, 7)-th entry of the matrix is . In classical several complex variables,
complex Hessian is positive semidefinite, then the original polynomial is said to be
plurisubharmonic (plush).

In this dissertation, we present noncommutative directional derivatives, the



noncommutative analogue of the complex Hessian, and we define noncommutative
plurisubharmonicity. We classify all noncommutative changes of variables (not
containing transposes) from noncommutative non-convex polynomials to noncom-
mutative convex ones. This introduces notions of noncommutative complex Hes-
sians and noncommutative plurisubharmonicity, extending classical notions from
several complex variables. In addition, we prove a “local implies global” result in
that we show noncommutative plurisubharmonicity on an “nc open set” implies
noncommutative plurisubharmonicity everywhere (this is false in classical analy-
sis).

We also present a theory of noncommutative integration. We give necessary
and sufficient conditions as to when a given nc polynomial is an nc directional
derivative. We also give necessary and sufficient conditions as to when a given nc
polynomial is an nc complex Hessian. In addition, we prove a noncommutative
version of the Frobenius theorem where we determine when a given nc polynomial
is the “nc gradient of a potential”.

This introductory chapter gives the necessary basic definitions and sum-
marizes the main results in this dissertation. Chapter 2 contains the result that
classifies all nc plush polynomials and the theory of nc integration. Chapter 3

contains the “local implies global” result.

1.1 NC Polynomials

Many of the the definitions we shall need sit in the context of an elegant
theory of noncommutative analytic functions, such as is developed in the articles
[K-VV] and [Voil, Voi2]; see also [Pop6]. Also, related to the results presented
in this dissertation are those on various classes of noncommutative functions on
balls as in [AK, BGM]. Transformations on nc variables with analytic functions

are described in [HKM, Pop6].



1.1.1 NC Variables and Monomials

We consider the free semi-group on the 2¢g noncommuting formal variables
T1,...,2g, 1, ..., x}. The variables ] are the formal transposes of the variables
xj. The free semi-group in these 2g variables generates monomials in all of these
variables x1, ..., 24,27 ,..., 2}, often called monomials in z, z".

If m is a monomial, then m” denotes the transpose of the monomial m.

w

For example, given the monomial (in the x;’s) ¥ = xjzj, ...z;,, the involution

: w3 w\T _ . T T,T
applied to z* is (x*)" = zj ... 25,7 .

1.1.2 The Ring of NC Polynomials

Let R(zy,...,z4,27,...,2) denote the ring of noncommutative polynomi-
als over R in the noncommuting variables x1, ...,z 21, ... ,arg. We often abbre-
viate

R(xy,..., 24,77 ,... ,x§> by R{z,z").

Note that R(z,zT) maps to itself under the involution .

We call a polynomial nc analytic if it contains only the variables x; and
none of the transposed variables z!. Similarly, we call a polynomial nc antiana-
lytic if it contains only the variables x;f and none of the variables x;.

We call an nc polynomial, p, symmetric if p! = p. For example, p =
xlxlT + x2Tx2 is symmetric. The polynomial p = xyxox4 + x321 is nc analytic but

not symmetric. Finally, the polynomial p = zz? 4 421 is nc antianalytic but not

symmetric.

We call an nc polynomial hereditary if all 21,23, ...z} variables appear
to the left of every x1, x5, ..., x, variable. Similarly, we call an nc polynomial anti-
hereditary if all 27, 27 ... xg variables appear to the right of every x1, s, ..., 7,

variable. For example, when ¢ = 1, the nc polynomial p = 2727 z2 is hereditary,

T,T

p = zax’z? is antihereditary, and p = za’x + 2T za”

is neither hereditary nor

antihereditary.



1.1.3 Substituting Matrices for NC Variables

If p is an nc polynomial in the variables zy, ...,z 27, ... ,SBZ and

X == (Xl,XQ, e ,Xg) E (Rnxn)g,

the evaluation p(X, X”) is defined by replacing z; by X; and z] by X]. Note
that, for Z,, = (0,,0,,...,0,) € (R"*™)2 where each 0, is the n X n zero matrix,
p(0,,) = I, ® p(01). Because of this relationship, we often write p(0) with the size

T

n unspecified. The involution, *, is compatible with matrix transposition, i.e.,

P XT) = p(X, X"

Matrix Positivity

We say that an nc symmetric polynomial, p, in the 2¢g variables xq, ..., z,

2 ,:L'g, is matrix positive if p(X, X7) is a positive semidefinite matrix when

evaluated on every X € (R™*™)9 for every size n > 1; i.e.,
p(X, XT) =0

for all X € (R™™)9 and all n > 1.
In [HO2], Helton classified all matrix positive nc symmetric polynomials as

sums of squares. We recall Theorem 1.1 from [H02]:

Theorem 1.1.1. Suppose p is a noncommutative symmetric polynomial. If p is a
sum of squares, then p is matriz positive. If p is matriz positive, then p is a sum

of squares.
Matrix Convexity
We say that an nc symmetric polynomial, p, is matrix convex if
(X, X))+ (1 - t)pY, YD) —ptX + (1 - )Y, tXT + (1 —t)YT) =0

for all 0 < ¢ < 1 and for all XY € (R"*")9 for every n > 1. This is the
usual convexity inequality known from classical analysis. In [HMO04], Helton and
McCullough classified all nc matrix convex symmetric polynomials as having degree

two. More specifically, we now recall Corollary 7.1 in [HMO04]:



Theorem 1.1.2. A noncommutative symmetric matrix convex polynomial p can

be written as

N
p(x,2") = co + Ao(x, 27) + Z Aj(z, 2) A (z, 2T)
j=1
where A, ..., An are linear in x,z" and cy is a real constant.

1.2 NC Differentiation

Now we make some definitions and state some properties about nc differen-
tiation. In the classical study of complex variables, we have polynomials in z and
z. We can then take derivatives with respect to z and z; i.e., %(z, z) and %(2, zZ).
We can also make a matrix and fill it with mixed second partial derivatives; i.e.,

the (7,7)-th entry of the matrix is 82283’2]_. In classical several complex variables,
this matrix of mixed partial derivatives is called the complex Hessian.

The noncommutative differentiation of polynomials in 2 and z" defined in
this dissertation is analogous to classical differentiation of polynomials in z and z

from several complex variables.

Definition of Directional Derivative

Let p be an nc polynomial in the nc variables x = (z,...,7,) and 27 =
(z1,...,2,). In order to define a directional derivative, we first replace all z] by
y;- Then the directional derivative of p with respect to z; in the direction
h; is

dp

dp
p%. [h]] = aT(QI,xT)[h]] = g(xh e ,.Z’j —f-thj, e ,Ig,yl, . 7yg>|t:0
J

r. (L1)

Yi =T

The directional derivative of p with respect to xf in the direction £; is

dp dp
pxr[kj] = W(I,Z‘TW%] = —(Ila T Y1y Y Ry, ,yg)|t:0
J

et (12)

J dt



Often, we take k; = h] in Equation (1.2) and we define

Ip dp . 9p
= _ T = — _ _ T = ] T -
peh] = ax(x,x )[h] dt( + th, y)|i=oly=z 2 axi(x,x )[hi]
Op dp = Op
T . TN T] o TN T
per[h] = 9T (x,z")[h"] = g (2, y 4+ k) t=o|y—a? ponr = ;1 _&'EiT (x,27)[h; ].

Then, we (abusively!) define the ¢*" directional derivative of p in the direction h

as Z "
PO @)R] = = (@ o+ th,y + th) imoly—a ot
so the first directional derivative of p in the direction h is
Pl = g—i(x,ﬂ)[h] + %(x,xT)[hT] (1.3)
= po[h] + per[n']. (1.4)

It is important to note that the directional derivative is an nc polynomial that is

homogeneous degree 1 in h, h™. If p is symmetric, so is p'.

Examples of Differentiation

Here we provide some examples of how to compute directional derivatives.

Example 1.2.1. Let p = z12l 2, + 2T 2927, Then we have

Op

Pz [hl] = 07(.73, .IT)[hl] = hleTxl + xleThl
1
dp
prlhy] = W(% aT)[hy] = x1hs oy
2
dp T T T Ty T
pe|h] = %(x, z')[h] = hxy x1 + x125 by + 27 hoty

and,

P (2)[h] = hata, + xihd oy + ool by + T oox? + 2T hoa? + 2T 2yn .

'For more detail, see [HIMV06]. The idea for computing p()(z)[h] is that we first noncom-
mutatively expand p(z + th). Then, p)(z)[h] is the coefficient of t* multiplied by ¢!; i.e.,
pO(z)[h] = (£))(coefficient of t¢).



Example 1.2.2. Given a general monomial, with ¢ € R,

Zl 712 in
m=Cr;x; Ljn

where each 1, is either 1 or T', we get that

i1 22_ in i1 7,12 25___ in 11 lnl in
m' = Cth jo T +C$thjz J3 L + _'_ijl L 1th :

1.2.1 NC Hessian and NC Complex Hessian

Often, one is most interested in the Hessian of a polynomial and its positiv-
ity; as this determines convexity. However, in this dissertation, we are concerned
with the complex Hessian since it turns out to be related to nc analytic changes
of variables.

We define the nc complex Hessian , ¢(x, 27)[h, hT], of an nc polynomial

p as the nc polynomial in the 4g variables © = (z1,...,2,), " = (zf,...,2]),
h=(hy,...,h), and hT = (hT, ... KT)
T T p
q(z,z")[h,h"] == (& 4 th,y + sk)|t.s=0|y=aT g=n7- (1.5)

0sot

The nc complex Hessian is an iterated nc directional derivative in the sense
that we compute it as follows. We first take the nc directional derivative of p with
respect to 7 in the direction AT to get p,r[h?]. Then, we take the nc directional
derivative of that with respect to x in the direction h to get (p,r[h']).[h]. We
will see later, in Lemma 2.2.12, that we can switch the order of differentiation to
(pz[h]),r[hT] and we still get the same polynomial. Sometimes we denote the nc
complex Hessian as p,r ,[h", h]. Hence, we have the following equivalent notations

for the nc complex Hessian (and we will use each one when context is convenient):

q(z, ") [, BT] = pyr o[, B = (e [W7])a[P] = (pa[h])ur [AT]. (1.6)

An extremely important fact about g¢(z,zT)[h, hT], which is restated in
Theorem 2.2.16 (P1), is that it is quadratic in h, " and that each term contains

some h; and some h]. The nc complex Hessian is actually a piece of the full nc



Hessian which is

0*p 0*p
p// — W( + th,’ y)‘t=0|y=xT —’- %(‘T + th, y + Sk>|t,S:0’y=xT,k=hT
0%*p 0*p
+ st (ZZ' + th? Yy + 8k)‘t,s=0|y:zT,k=hT + @C& Yy + Sk)‘s=0’y=xT,k=hT
&*p 0%p
= 2q(x,2")[h, "] + == (2 + th, Y)lt=oly=ar + 775 (T, y + 5k)|s=0|y=aT =n-

ot? 0s2

1.2.2 NC Plurisubharmonicity

We call a symmetric nc polynomial, p, nc plurisubharmonic (or nc
plush) if the nc complex Hessian, ¢, of p is matrix positive. In other words,
we require that ¢ be positive semidefinite when evaluated on all tuples of real

n X n matrices for every size n; i.e.,
a(X, X")[H,H"] = 0

for all X, H € (R"*")9 for every n > 1.

Examples of NC Complex Hessians and NC Plurisubharmonicity

Here we provide some examples of how to compute nc complex Hessians.

Example 1.2.3. Let p = xy2l2; + 272927 as in Example 1.2.1. Then we have

q = hihdxy + x1hIhy + Wl hoat + 2T hohl.
Example 1.2.4. Let p = 272722, Then, we have
q(z, ") [h,h"] = h'xThx +hTaTxh + 2" R ha 4+ 2T R zh

= (b2 + 2"hT)(ha 4 zh)

= (hx + xh)"(hz + zh).
We can see that, for any X, H € R™" for any size n > 1, we have that

(X, X")[H,H") = (HX + XH)"(HX + XH) = 0.

Hence, this nc polynomial, p = 272 zx, is nc plush.

Example 1.2.5. The nc complex Hessian of any nc analytic polynomial is 0. The
nc complex Hessian of any nc antianalytic polynomial is 0. Hence, both nc analytic

and nc antianalytic polynomials are nc plush.



1.3 Main Results of Chapter 2

In Chapter 2 we classify all symmetric nc plush polynomials in g free vari-

ables.

Theorem 1.3.1. An nc symmetric polynomial p in free variables is nc plurisub-

harmonic if and only if p can be written in the form
p=> fIfi+> kikl + F+F" (1.7)
where the sums are finite and each f;, k;, F' is nc analytic.

Proof. The proof requires all of Chapter 2 and culminates in Section 2.4. O

Chapter 3 strengthens the result of Theorem 1.3.1 by weakening the hy-
pothesis while keeping the same conclusion. Specifically, in Chapter 3, we assume
that the nc polynomial is nc plush on an “nc open set” and conclude that it is nc
plush everywhere and hence has the form in Equation (1.7). The proof, in Chap-
ter 3, draws on most of the theorems in Chapter 2 together with a very different
technique involving representations of noncommutative quadratic functions.

The representation in Equation (1.7) is unique up to the natural transfor-

mations.

Theorem 1.3.2. Let p be an nc symmetric polynomaial in free variables that is nc

plurisubharmonic and let

N M
N = min{N:p:fofj+ijij+F+FT}
j=1 j=1

N M
M = min{M :p= ZfJ-Tfj+ijij+F+FT}.
3=1 Jj=1
Then, we can represent p as
N M o
p=> fIfi+> kikl +F+F"
j=1 j=1
and if N and M are integers such that N > Kf, M > M and

N M
p=> ff+> kkl +F+F"
j=1 j=1



10

then there exist isometries Uy : RY RN and Us : RM — RM gych that

fi fi KT kY
: =U; : +c  and : =U, : + Gy
In Iy ki KL

where &, € RN and &, € RM .

Proof. Theorem 1.3.1 gives the desired form of p and nc integration will give the
uniqueness. We provide the details of the proof in Section 2.4. O

A byproduct of the proof of Theorem 1.3.1 is noncommutative integration
theory of nc polynomials. This includes a Frobenius theorem for nc polynomials

and is discussed further in Section 2.2.

1.4 Direct Sums and NC Open Sets

Now we present the additional definitions needed for Chapter 3. We start

with direct sums and nc open sets. We then state the main results of Chapter 3.

1.4.1 Direct Sums

Our definition of the direct sum is the usual one, which for two matrices

X 0
Xl@XQ = .
0 X5

Given a finite set of matrix tuples {X*, ..., X'} with

X, and Xs, is given by

XJ — {le,XjQ, e ,ng} S (anxnj)g

for y =1,...,t, we define

t t t ¢
@Xj = {@le,@Xj27"'v@Xj9}'
j=1 j=1 j=1 j=1

For example, if X' = {X11,..., X1,}, X? = {Xo1,..., Xoy}, and X? = {Xz1,..., X3, },
we get
X'oX?® X ={X110 X1 D Xa1,...,X1g D Xog ® Xz}
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Now let -
B=|]JB.
n=1
where B,, C (R"*")9 for n > 1 be given. The graded set B respects direct sums

if for each finite set

t
{X',..., X"} with X/eB, and n:an,
=1

with repetitions allowed, ®5_, X7 € B,,.

1.4.2 NC Open Set

A set G C U,>1(R™™)9 is an nc open set if G satisfies the following two

conditions:
(i) G respects direct sums, and

(ii) there exists a positive integer ngy such that if n > ng, the set G,, := GN(R™*™)9

is an open set of matrix tuples.

We say that an nc polynomial, p, is nc plush on an nc open set, G, if

the nc complex Hessian, g, of p satisfies
a(X, XT)[H, HT] = 0 (1.8)

for all X € G and all H € (R™"™)¢ for all n > 1.

1.5 Main Results of Chapter 3

As we will see, in Section 3.4, the nc complex Hessian, ¢, if matrix positive

on an nc open set, can be factored as

q=V(z,z")[h, W) Lz, 2")D(x, 27 L(z, ") 'V (2, 27)[h, hT] (1.9)
where D(z, z7) )

is a diagonal matrix, L(z, x") is a lower triangular matrix with ones

on the diagonal (we call this a unit lower triangular matrix), and V (x, 27)[h, h7]

is a vector of monomials in z, 2", h, h'.
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When we take the transpose of a matrix (or vector) with monomial or
polynomial entries (e.g., L(z,z7)" or V (x, z7)[h, hT]T), we get the matrix obtained
by taking the transpose (as a matrix) and applying the transpose (involution) to

every entry.

Example 1.5.1. [f

then
vl = ( 2T2Th™ 2ThT AT > .
The next theorem shows the surprising result that the diagonal matrix,

D(z,27), in Equation (1.9) does not depend on x,z? and that L(x,z”) has nc

polynomial entries.

Theorem 1.5.2. If p is an nc symmetric polynomial that is nc plurisubharmonic

on an nc open set, then q, the nc complex Hessian of p, can be written as
q=V(z,z")[h, W) L(z,2")DL(x, 2"V (z,27)[h, BT]
where V (x, z7)[h, hT] is a vector of monomials in x, ™ h, hT,
D = diag(dy,ds, . .., dy)

is a positive semidefinite constant real matriz, and L(z,xT) is a unit lower trian-

gular matriz with nc polynomial entries.

Proof. The proof of this theorem requires all of Chapter 3 and culminates in Sub-
section 3.4.4. [

This gives rise to an extension of Theorem 1.3.1. In Chapter 2, it is shown
that an nc polynomial which is nc plush everywhere has the specific form given
in Equation (1.10) below (same as Equation (1.7) above). In Chapter 3, Theorem
1.5.3, below, is a stronger, “local implies global”, result in that an nc polynomial
that is nc plush just on an nc open set is actually nc plush everywhere (and has

the form in Equation (1.10)).
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Theorem 1.5.3. If an nc symmetric polynomial, p, is nc plurisubharmonic on an
nc open set, then p s, in fact, nc plurisubharmonic everywhere and has the form

expressed in Equation (1.7) from Theorem 1.3.1
p=> flfi+> kikl + F+F" (1.10)
where the sums are finite and each f;, k;, and F' is nc analytic.

Proof. That D = D(z,zT), in Theorem 1.5.2, is a positive semidefinite constant

real matrix immediately implies
a(X, XT)[H, H"] = 0

for all X, H € U,>1(R™™)9; that is, p is nc plush at all X € U,>1(R™™)9. Conse-
quently, Theorem 1.3.1 gives that p is of the desired form

p=> flfi+> kikl + F+F"

where the sums are finite and f;, k;, [ are nc analytic. O]
Note that with an nc polynomial, p, as in Equation (1.10), the nc complex

Hessian, ¢, of p is

q=>_ (fD)ar W1 f)alB] + D (K kD),r (BT, (1.11)

which is obviously matrix positive as it is a sum of squares. From Equation (1.11),
we see that the nc complex Hessian for an nc polynomial that is nc plush on an

nc open set has even degree.



Chapter 2

Noncommutative
Plurisubharmonic Polynomials,

Global Assumptions

In this chapter, we classify all symmetric nc plush polynomials as convex
polynomials with an nc analytic change of variables; i.e., an nc symmetric polyno-

mial p is nc plush if and only if it has the form

p=> flfi+> kikj + F+F" (2.1)

where the sums are finite and f;, k;, F' are all nc analytic.

We also present a theory of noncommutative integration for nc polynomials
and we prove a noncommutative version of the Frobenius theorem.

The next chapter, Chapter 3, proves that if the nc complex Hessian, ¢,
of p takes positive semidefinite values on an “nc open set” then ¢ takes positive
semidefinite values on all tuples X, H. Thus, p has the form in Equation (2.1).
The proof, in Chapter 3, draws on most of the theorems in Chapter 2 together with
a very different technique involving representations of noncommutative quadratic
functions.

Now, we recall the main theorems in this chapter.

14
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2.1 Main Results of Chapter 2

In this chapter we classify all symmetric nc plush polynomials in g free

variables.

Theorem 2.1.1. An nc symmetric polynomial p in free variables is nc plurisub-

harmonic if and only if p can be written in the form

p=) S+ kk + F+ F" (2.2)
where the sums are finite and each f;, k;, F' is nc analytic.

Proof. The proof requires the rest of this chapter and culminates in Section 2.4. []

Chapter 3 strengthens the result of Theorem 2.1.1 by weakening the hy-
pothesis while keeping the same conclusion. Specifically, in Chapter 3, we assume
that the nc polynomial is nc plush on an “nc open set” and conclude that it is nc
plush everywhere and hence has the form in Equation (2.2). The proof, in Chapter
3, draws on most of the theorems in this chapter together with a very different
technique involving representations of noncommutative quadratic functions.

The representation in Equation (2.2) is unique up to the natural transfor-

mations.

Theorem 2.1.2. Let p be an nc symmetric polynomial in free variables that is nc

plurisubharmonic and let

N M
N = min{N:p:Zf]Tfj-I—ijij—f—F-i—FT}
7j=1 7=1

—~

N M
M = min{]\/[:p:ZfJ-Tfj+ijij+F+FT}.
j=1 j=1

Then, we can represent p as

N M
p=Y_flfi+> Kkl +F+F"
j=1 j=1

and if N and M are integers such that N > N, M > M and

N M
p=> ff+> kkl +F+F"
j=1 j=1
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then there exist isometries Uy : RY RN and Us : RM — RM gych that

Ji i ki ki
: =U; : +¢c  and : = U, : + ¢y
I is KL R

where & € RN and &, € RM .

Proof. Theorem 2.1.1 gives the desired form of p and nc integration will give the
uniqueness. We provide the details of the proof in Section 2.4. O

A byproduct of the proof of Theorem 2.1.1 is noncommutative integration
theory of nc polynomials. This includes a Frobenius theorem for nc polynomials

and is discussed further in Section 2.2.

2.1.1 Guide to Chapter 2

In Section 2.2, we provide a theory of noncommutative integration for nc
polynomials and in Section 2.2.4, we state and prove a noncommutative version
of the Frobenius theorem. In Section 2.3, we prove that the nc complex Hessian
for an nc plush polynomial is the sum of hereditary and antihereditary squares.
Finally, in Section 2.4, we prove the main results. We apply nc integration theory
to the sum of squares representation of the nc complex Hessian found in Section

2.3. We also settle the issue of uniqueness of this sum of squares representation.

2.2 NC Integration

In this section, we introduce a natural notion of noncommutative (nc) in-
tegration and then give some basic properties. We say that an nc polynomial p
in z = (z1,...,7,) and h; is integrable in xz; if there exists an nc polynomial
f(z) such that f, [h;] = p. We say that an nc polynomial p in x = (21,...,7)
and h = (hy,..., hy) is integrable if there exists an nc polynomial f(z) such that
f'(@)[h] = p.
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2.2.1 Notation

Let m be a monomial containing only the variables z1, z3, ..., ;. When

we write m/|,,—p,, we mean the set of monomials that are degree one in h; where

one z; in m has been replaced by h;. For example, if m = x;z92122, then
m|x1eh1 = {h1I2$1$2, $1$2h1$2}

and

m’xzﬂhZ = {xlhlel‘z, $1$2$1h2}-

We also define a double substitution as follows. When we write

m

Ii_’hiyxj_’hj = (m CEZ—>hZ) IEj—>]’Lj7

we mean the set of monomials that are degree one in h; and degree one in h; where
one z; in m has been replaced by h; and one x; in m has been replaced by h;.
Note that we have

M2y sy —h; = Moy —h;zi—h;- (2.3)

Using m = x 1291129, we have that

m|:c1—>h1,:r:2—>h2 = m’$2—>h2,x1—>h1

= {h1h2931$27 h1$2$1h2, x1hohi 29, 931552h1h2}-

Sometimes we will start with a monomial m that is degree 1 in h; and we
wish to replace this h; by z;. When we write m|p, ., the set we get contains
just one monomial so we abuse notation and use m|,_.,, to represent the actual

monomial in this set.

2.2.2 Differentially Wed Monomials

For ~ either 1 or T, two monomials m and m are called 1-differentially
wed with respect to z] if both m and m have degree one in A} and if m has an
x] where 1 has an h} and if 7 has an x] where m has an hj. Thus, interchanging

hj and this ] in m produces m; i.e.,

m w_,w:m T pY
hj—w] hj—w]
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More generally, two monomials m and m are called 1-differentially wed

if both are degree one in h or A” and if

Mlhg—ap = 1pe 0

for some «, 3 either 1 or T" and some i, j.
From these definitions, if m and m are 1-differentially wed with respect to
a particular variable then m and m are 1-differentially wed but not the other way

around (which we demonstrate below).

Example 2.2.1. The monomials m = hyzlz, and m = z127h; are 1-differentially

wed with respect to x;.

Example 2.2.2. The monomials m = hyzlz; and m = x1hlx, are 1-differentially

wed (but not with respect to a particular variable).

Example 2.2.3. The monomials m = xyhoxs and m = x1x9hs are not
1-differentially wed (and, therefore, also not 1-differentially wed with respect to

any variable).

Theorem 2.2.4. An nc polynomial p in v = (z1,...,24),h = (h1,...,hy) is
integrable if and only if each monomial in p has degree one in h (i.e., contains
exactly one h; for some j) and whenever a monomial m occurs in p, each monomial

which is 1-differentially wed to m also occurs in p and has the same coefficient.

Proof. First suppose the nc polynomial p in x, h is integrable. Then, there exists

an nc polynomial, f(z), such that f'(x)[h] = p. Write f as

N
f= Z CiTn;
i=1

where each ¢; € R and each m; is a monomial in x. Then, by applying Example
1.2.2 to each term ¢;m;, if a monomial m occurs in p = f’, then every 1-differentially
wed monomial to m also occurs in p = f’ with the same coefficient.

Now suppose each monomial in p has degree 1 in h (i.e., contains some h;)
and if m is a monomial in p, then each monomial which is 1-differentially wed also

occurs in p with the same coefficient. We will show that p is integrable.



19

Write
N
P = Z C;imy;
i=1

where each ¢; € R and each m; is a monomial in z and degree 1 in h. Now we
will change the order of summation of these terms so that we group together all
monomials with the same coefficient that are 1-differentially wed. We do this in
the following way.

Let w; be the polynomial that contains c;m; and all 1-differentially wed
monomials to m; with the same coefficient ¢;.

Let 1 < ay be the smallest integer such that c,,m,, is not a term in wy.
Then let wy be the polynomial that contains c,,m,, and all 1-differentially wed
monomials to m,, with the same coefficient c,,.

Let 1 < a3 be the smallest integer such that c,,m,, is not a term in w,
and not a term in wy. Then let w3 be the polynomial that contains c,,ma, and all
1-differentially wed monomials to m,, with the same coefficient c,,.

We continue this process until it stops (it stops since p is a finite sum of

monomials). Then we have written p as

l
i=1

It is important to note that with this construction, each w; is a homogeneous
polynomial of some fixed degree where each term in w; is degree 1 in h.

Now define a; = 1 and

fi(z) == ca;(Ma,|noz), 1 <0 <L

Then, by properties of differentiation and construction of w;, we have that

f! = w;. Finally, define

and notice that " = p. ]
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Corollary 2.2.5. An nc polynomial p in x,h; is integrable in x; if and only if
each monomial in p has degree one in h; and whenever a monomial m occurs in
p, each monomial which is 1-differentially wed with respect to x; also occurs in p

and has the same coefficient.

2.2.3 Uniqueness of Noncommutative Integration

In this subsection, we explore the uniqueness of noncommutative integra-
tion. In classical calculus, integrating produces constants of integration. Here, we

provide the noncommutative analogue.

Proposition 2.2.6. Suppose m and m are distinct monomials in the variables

x = (x1,...,24). Then, we have that

1. (m)g, [hi] and (m)g,[hi] have no terms in common and hence

provided x; is contained in either m or m; and

2. we have that

Moreover, If m and m are distinct monomials in the variables x = (x1,...,x,) and

y=(y1,-..,Ys), then

Proof. If m and m have different degree, then so do their nc directional derivatives
and we are done. Suppose m and m have the same degree. If m contains x; and
m does not, then ()., [h;] = 0 while (m),,[h;] is a nonzero nc polynomial.

Suppose both m and m contain z; and are the same degree. Then, write

m=T;Tj, - T, and 1M =Ty Tp, - T,
where the tuple of integers (ji, j2,. .., Js) is not the same as the tuple of integers
(k1,ka, ..., ks). This forces (m),,[h;] and (m),,[h;] to have no terms in common.

This completes the proof of (1).
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To prove (2), note that

m’ = (m).[h] = Z (m)a [hi]  and — m' = (m).[h] = Z () [ 1]

=1 =1

and if m’ = m/, then we must have (m),,[h;] = my,[h;] for each i. However, (1)
implies that this is impossible.
If m and m are distinct monomials in the variables x = (z1,...,2,) and

y = (y1,...,Yq,), the proof follows exactly the way the proof of (2) does. O

Lemma 2.2.7. Suppose p is an nc polynomial in the variables x = (xy,...,x,)
such that py,[hi] = 0. Then, p(z1,...,24) = f(z1,...,@Tic1,Tiz1, ..., Ty) 1S an nc

polynomial in the variables x1,...,xi_1,Tit1, ..., Z,.

Proof. First, if m is a monomial in the variables * = (x1,...,,) that contains
x;, then my [h;] is a sum of terms where each instance of z; is replaced by h; (see
Example 1.2.1). Note that each term in m,,[h;] has a different number of variables
to the left of h;; hence, the terms can not cancel. Thus, my,[h;] # 0.

Now suppose p is an nc polynomial in the variables x = (z1,...,2,) such

that p,,[h;] = 0. We write the nc polynomial p as

N
p=Y am, (2.4)
=1

where the «; are nonzero real constants and the m; are distinct monomials. Then,

we have that
N

0 =pahi] =D aj (m)a,[hil. (2.5)

j=1
Since the m; are distinct monomials, Proposition 2.2.6 implies that no cancellation

can occur in Equation (2.5). This implies that
(), ] = 0

for all y = 1,..., N. Then, by the first paragraph in this proof, we get that each
m; is a monomial in the variables xi, ..., 2;_1, it1, ..., 2, This implies that p, as

in Equation (2.4), is a polynomial in the variables x1, ..., z;_1, %1, ..., 2, ]
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Proposition 2.2.8. Suppose p is an nc polynomial in the g + s variables x =

(T1,...,xy) and y = (y1,...,Ys). If p[h] =0, then
p<x7y):p(xlu"'axg7y17"'7y8):f<y17"'7y8)

is an nc polynomial in the variables y = (y1,...,Ys)-

Proof. If p is an nc polynomial in the g + s variables x = (x1,...,2,) and y =

(yla s 7y5), then
g
i=1

It is important to note that p,,[h;] is an nc polynomial in z, y, and linear in h;.

Since .
pelb] =Y pu[hi] =0

i=1

and since each p,,[h;] is an nc polynomial that is linear in h;, it follows that
Pz [hi] =0 forall 1<i<y.
Then, Lemma 2.2.7 implies that p is an nc polynomial in the variables
Tl eo oy Tic1, Tig1, - -, Tg, Y1, ...,Ys forall 1<i<yg

This can only happen if p is an nc polynomial in the variables y = (y1,...,y). O

Corollary 2.2.9. Suppose p is an nc polynomial in x = (x1,...,2,). Then, we

have that
1. if
g
P (@)[h] = pa[h] = D ps,[hi] =0,
i=1
then p s constant, and

2. if p is another nc polynomial in the variables © = (x1,...,x,) such that

p' =7p then p = p+ o where « is a real constant.

Proof. Property (1) directly follows from Proposition 2.2.8.

If p’ = ¢/, then, since nc differentiation is linear, we get that
O=p' —p' =(@-p)

which, by property (1), implies that p — p is constant. O
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Noncommutative Complex Differentiation

Here, we specialize from the variables x = (x1,...,2,) and y = (y1,-..,Ys)
to the variables z = (z1,...,,) and 2" = (z], ..., z]). The first corollary below,

Corollary 2.2.10, follows directly from Proposition 2.2.8 above.

Corollary 2.2.10. Suppose p is an nc polynomial in the variables x = (z1,...,x,)
and 27 = (2T, ... ,ng). Then, we have that
1. if pg[h] = 0, then p is an nc antianalytic polynomial, and

2. if pyr[hT] =0, then p is an nc analytic polynomial.

Lemma 2.2.11. Let p be an nc polynomial in the nc variables x = (x1,...,x,),

at = (zf,...,xl) and let q be the nc complex Hessian of p. Then q = 0 if and

only if p=F + GT where F and G are nc analytic polynomials.
If, in addition, p is symmetric, then ¢ = 0 if and only if p = F + FT where

F'is an nc analytic polynomial.

Proof. Lemma 2.2.12, in Section 2.2.4 below, allows us to switch the order of

differentiation to get
q = per o [W" B) = (par [P ])a[h] = (pa[h])or (1],
Then, we have that the nc complex Hessian of p = F + G7 is
¢ = (Fyr [l ])z[h] + (G [R])r [07] = 0.

Now suppose p contains a term with both x and z¥. Write p as

N
b= E :O‘jmj
J=1

where o are nonzero real constants and m; are distinct monomials in z and/or

2T. Then, the nc complex Hessian of p is

q= Z Q; (mj)xT,x[h’T’ h]

j=1
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Since the m; are distinct, Proposition 2.2.6 implies that the nc polynomials
(mi)er k'] and  (my),r[h']

have no terms in common for all i # 7. Then, we apply Proposition 2.2.6 again
to get that the nc polynomials (m;),r ,[h", k] and (m;),r [T, h] have no terms
in common for all ¢ # j. This implies that no cancellation occurs in ¢ so that

q#0. O

2.2.4 NC “Gradient” of a Potential

In this subsection, we give a noncommutative Frobenius Theorem and
present some equivalent tests to determine if a list of nc polynomials is simul-

taneously integrable.

Lemma 2.2.12. Suppose p(x1,...,x,) is an nc polynomial in x1,...,z,. Then

(Pe. [hi])a; [hi] = (pa,[hs])e [hal.
Proof. Write

t
b= § CaMyg
a=1

where each ¢, € R and each m, is a monomial in z1,...,2,. Then we have

t

(Pz, [i))a; [hs] = Z ca((ma)z, [hil)a; (]

a=1

and
t

(pacj [hj])l’i [hi] = Z Ca((ma)xj [hj])l'z ().

a=1

Note that the nc directional derivative (my)s,;[h;] is the sum of all monomials in

the set mq|s,—n, and the nc directional derivative ((ma )z, [hi])e, [P] is the sum of

all monomials in the set Mg |z, —h,o;—n,. Equation (2.3) implies that

me z;—hi,x;—h; = ma|mj~>hj,xi~>hi

which implies that

Cal(Ma)z, [hlij [h]] = Ca((ma):cj [hj])% [hi].
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Hence, (p, [hi])a,[hj] = (Do, [15])z, [i]- o
The following theorem is the noncommutative analogue of the Frobenius
Theorem in that the classical specialization of (a) < (b) to € RY in Theorem

2.2.13 below says that

( fla f27 ceey fg )
is the gradient of a function if and only if
of _ of,
aill'j 8951 '

Theorem 2.2.13. Suppose § is an nc polynomial such that

xr, ... xg by, by Zfle,.. ,Tg, hy)

where each fi(x1,..., x4, h;) is homogeneous of degree 1 in h;. Then, the following

are equivalent:
(a) § is integrable.

(b) Each fi(w1,...,24,h) is integrable in x; and (fi)e;[h;] = (fj)a;[hi] for any
1,].
(c) For each monomial, m, in 0, every 1-differentially wed monomial to m also

occurs in & with the same coefficient.

Proof. Theorem 2.2.4 gives the equivalence of (a) and (c).
Now we show (a) and (b) are equivalent. First, suppose (a) holds. Then

there exists an nc polynomial P(zy, ..., z,) such that

g
P =4 — Z'le[ i Zf’ 1}1,.. , Tg, )
i=1
This forces Py, [hi] = fi(z1,..., 24, h;) and then Lemma 2.2.12 gives that

(fi)a, i = (Pu, il [hs] = (Pay[Ry]),, TRl = (), [Ri]-

J

Now suppose (a) is false; i.e., 0 is not integrable. Then, there exists some

term am (a € R) in 0 such that not all 1-differentially wed monomials to m with
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the same coefficient o occur in 6. Without loss of generality, suppose am is a term
in fi(x,hy). Recall, this implies m is degree one in h;.
If 9 does not contain a monomial that is 1-differentially wed to m with
respect to x; with the same coefficient a, then fi(x, hy) is not integrable in z;.
Suppose am contains the variable z;, and that § (more specifically, fi(x, hy))

does not contain the term am, where m is a specific monomial in the set

(m|h1—>x1 ) |1'k_’hk = (m|$k—>hk) |h1—>z1

Note that m is 1-differentially wed to m and this implies that the sets m|,, —n,
and 17y, _p, are equal. If (f1)s, [he] = (fi)e, [P1], then am, where m is a specific
monomial in the set m|,, —n, = M|z, —n,, i & term in (f1)g, [Pe] = (fk)z, [R1]. This
implies that arm, where M = m|h, —s,, is & term in fi(z, hy,) which is contained in
J.

Thus, we have shown that if ¢ is not integrable then either some f;(x, h;) is

not integrable with respect to z; or (f)a;[h;] # (f})a,[hs] for some i # j. O

2.2.5 Levi-differentially Wed Monomials

Now we turn to properties of the nc complex Hessian ¢, as ¢ is just a second
nc directional derivative.
Two monomials m and m are called Levi-differentially wed if m and m

are both degree 2 in h, h*, m contains some h;, h7, m contains some hy, b and

m T = M py gy hT 0T

T
) BT,
hzaxz,h] z;

Indeed, Levi-differentially wed is an equivalence relation on the monomials
in the nc complex Hessian, ¢, with the coefficients of all Levi-differentially wed

monomials in ¢ being the same.

Example 2.2.14. The monomials h" haTz, hTza"h, " hh”z, and 27zh"h are all

Levi-differentially wed to each other.

Example 2.2.15. None of the monomials h"ha’z, hTxhTz, z7ha”h are Levi-

differentially wed to each other.
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The next theorem provides necessary and sufficient conditions as to when

a given nc polynomial is actually an nc complex Hessian.

Theorem 2.2.16. An nc polynomial q in z,z*, h, h' is an nc complex Hessian if

and only if the following two conditions hold:
(P1) Each monomial in q contains exactly one h; and one h} for some j, k.

(P2) If a certain monomial m is contained in q, any monomial m that is Levi-

differentially wed to m is also contained in q with the same coefficient.

Proof. First, suppose ¢ is an nc complex Hessian. Equation (1.5) shows that ¢ is
an nc directional derivative of an nc directional derivative. Then, properties of nc
directional derivatives imply that (P1) and (P2) hold.

Now suppose (P1) and (P2) hold. Write ¢ as

N
q = E C;imy;
i=1

where each ¢; € R and each m; is a monomial that contains some h; and hf. Now
we will change the order of summation of these terms so that we group together all
monomials with the same coefficient that are Levi-differentially wed to each other.
We do this in the following way.

Let w; be the nc polynomial that contains ¢;m; and all Levi-differentially
wed monomials to m; with the same coefficient c;.

Let 1 < a9 be the smallest integer such that c,,mq, is not a term in wy.
Then let wy be the nc polynomial that contains c,,m,, and all Levi-differentially
wed monomials to m,, with the same coefficient c,,, .

Let 1 < a3 be the smallest integer such that c,,mq, 1s not a term in w; and
not a term in wy. Then let w3 be the nc polynomial that contains c,,m,, and all
Levi-differentially wed monomials to m,, with the same coefficient c,,.

We continue this process until it stops (it stops since ¢ is a finite sum of

monomials). Then we have written ¢ as

14
=1
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It is important to note that with this construction, each w; is a homogeneous

polynomial of some fixed degree where each term in w; contains some h; and some
T

hy, .

Now define a; = 1 and
fi(z,2") = oy (Mo lhsapr—ar), 1 <0 <L

Then we have, by properties of differentiation and construction of w;, that the nc

complex Hessian of each f; is w;. Finally, define

14

f(x7$T) = Zfz(x7xT)

i=1
and notice that the nc complex Hessian of f is q. O

Lemma 2.2.17. Let m,m’,n,n’ be nc analytic monomials with degree 1 in h (or all
nc antianalytic monomials with degree 1 in h'). Then m, m' are 1-differentially
wed and n, n' are 1-differentially wed if and only if n'm and n'Tm’ are Levi

differentially wed.

Proof. Without loss of generality, suppose m, m’, n, n’ are all nc analytic monomials
with degree 1 in h.

m,m’ are 1-differentially wed and n,n’ are 1-differentially wed if and only
if

/
Mmih—z;, = m‘hjﬂxj

!/

n‘hk—n’vk =n

hs—xs

This happens if and only if

- (nlhk—mk)T (m hi—>$i)

= (n/

(nTm> |h£~>:p{,hiaxi

T
— (m/|hj*%') - <n/Tm,)|h?H$?7thwj

since m, m’,n,n’ are all nc analytic and each is degree 1 in h. O
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2.3 Complex Hessian as a Sum of Squares

Assuming nc plurisubharmonicity means we have a matrix positive nc com-
plex Hessian. By Theorem 1.1.1, this leads to a sum of squares representation for
the nc complex Hessian.

The next lemma follows the proof of Proposition 4.1 in [HMO04] with the nc

Hessian now replaced by the nc complex Hessian.

Lemma 2.3.1. If p is an nc symmetric plush polynomial then the nc complex

Hessian, q, of p can be written as

T
Ty

hE

g(a,2")[h,hT] =

Ty
1

<.
I

where each r; is an nc polynomial that is homogeneous of degree 1 in h (or h').

Proof. Since p is nc plush, ¢(X, XT)[H, HT] = 0 for all X, H € (R™")9 for all
n > 1. By Theorem 1.1.1, g(z,27)[h, hT] is a sum of squares. Hence, we can write

q as

T
3T

Q(xw xT) [h7 hT] =

r

11M:

where each r; is a polynomial in x, 27, h, and h”. Write
rj = > rj(w)w
weMon(x,zT h,hT)

where Mon(x, 2T, h,hT) is the set of monomials in the given variables and where
all but finitely many of the r;(w) € R are 0. Let degy,(r) denote the degree of 7 in
h (and k') and let deg,(r) denote the degree of 7 in x (and z7). Let

d, = max{degy(r;):J}
d, = max{deg,(w) :3j s.t. r; contains w and deg,(w) = dp}
Sd,a, = {w:r; contains w for some j, degy(w) = dp, deg,(w) = d, }.

The portion of ¢ homogeneous of degree 2d; in h and 2d, in z is

Q= Z 7 (v)r(w)v w.

{jzlv""mavvwesdg;,dh}
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Since for vj, w; € S, 4,, v w1 = V3w, can occur if and only if v; = vy and wy = wo,
we see that Q # 0 and thus degy(q) = 2d,. Since ¢ has degree 2 in h and hT, we
obtain 2d; = 2 which implies dj, = 1. O

Since we know ¢ is positive, Theorem 1.1.1 allows us to represent ¢ as a sum
of squares, ¢ = > rorj. We now wish to show that these r; are either nc analytic

or nc antianalytic.

Theorem 2.3.2. If p is an nc symmetric plush polynomial, then the nc complex

Hessian, q, of p can be written as in Lemma 2.3.1,

g(a, ") [h, BT =" vl

J=1

where each r; is either nc analytic or nc antianalytic.

Proof. Since p is assumed nc plush we get that ¢(X, X7)[H, H'] = 0 for all X, H €
(R™™)9 for all n > 1. Again, by Theorem 1.1.1, we get that ¢ is a finite sum of
squares, -
q= Z rorj.
j=1
By Lemma 2.3.1, each r; is homogeneous of degree 1 in h or h'. We wish to show
that each r; is either nc analytic or nc antianalytic. Consider all monomials in the

r;’s of the form

Lhl My N (2.6)
or of the form

Lzl MhN (2.7)

Lz Mhi N (2.8)
or of the form

LhyMzN. (2.9)

Here, L, M, N are monomials in  and z7. The theorem being false is
equivalent to some such monomial existing and we say these are monomials of the
offending form. This is easy to check just by comparing the form of each offending

monomial to 7; being nc analytic or nc antianalytic.
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We now focus on offending monomials of the highest degree (over all of-

fending monomials).

Case 1: Suppose that the offending monomial of highest degree is of the
form Lh]TM 2, N. Without loss of generality, say this monomial occurs in ;. Then

rTry contains the monomial

m = NTaf M"h; LT Lh] MxyN.

We claim that this monomial, m, appears in ¢q. To be cancelled, EhJTM N must
appear in some r, where L factors L or L factors L. This implies that either riry
contains a monomial of the form w’w, where w is of the offending form and w has
higher degree than m, or we must have L = L. The first option would contradict
the highest degree assumption of m so we must have L = L. In this case, the
coefficient of m arising from r{r, is positive so no cancellation occurs.

Observe that ¢ contains many Levi-differentially wed monomials to m. For
example,

Nz M a; LT Lh} MhpN

is contained in ¢, so it appears in some square, say rgfrk. Thus, 'rf contains
NTai M x; L" Lh] (or NTaf M"x; L" Lh] M ) which is of the offending form (2.8).
But this monomial is longer than the longest offending monomial we selected;
namely, m. This is a contradiction.

Case 2: Suppose that the offending monomial of highest degree is of the
form Lz M h;rN . Without loss of generality, say this monomial occurs in r;. Then

rTry contains the monomial
m = N"h;M"x}_ L" Lty Mh] N.

We claim that this monomial, m, appears in ¢. To be cancelled, K h;-FN must
appear in some r, where K factors LzyM or Lz, M factors K. This implies that

either r]r, contains a monomial of the form w”

w, where w is of the offending form
and w has higher degree than m, or we must have K = La;M. The first option

would contradict the highest degree assumption of m so we must have K = La, M.
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In this case, the coefficient of m arising from r/r, is positive so no cancellation
occurs.

Observe that ¢ contains many Levi-differentially wed monomials to m. For
example,

NTaw; Mo L" Lh,Mh] N

is contained in ¢, so it appears in some square, say rirg. Thus, r] contains
NPz, MTxl LT Lhy, (or NTx; M 2] LT Lhy,M ) which is of the offending form (2.7).
But this monomial is longer than the longest offending monomial we selected;
namely, m. This is a contradiction.

Case 3: This case concerns Lhy M x;pN and the argument is parallel to that
in Case 1.

Case 4: This case concerns LJ:;‘FM hr N and the argument is parallel to that

in Case 2. O

2.4 Proof of Main Results of Chapter 2

We now prove the main theorem which we now recall from Section 2.1.

Theorem 2.4.1. An nc symmetric polynomial p in free variables is nc plurisub-

harmonic if and only if p can be written in the form

p=> flfi+> kikl +F+F" (2.10)
where the sums are finite and each f;, k;, F' is nc analytic.

Proof. If p has the form given in Equation (2.10) then ¢(z, z”)[h, k], the nc com-

plex Hessian of p, is
¢ = Y (D [P1)elB] + D (ky)aPI(K] ) [B7]
= > ()alM"(Fall] + D ()alB)(ky)alR]T

which is a finite sum of squares. Hence, ¢(X, XT)[H, HT] = 0 for all X,H €
(R™*™)9 for all n > 1 and thus p is nc plush.
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Now, suppose p is nc plush. By Theorem 2.3.2, write

_ T
q= T

where each 7; is nc analytic or nc antianalytic and homogeneous of degree one in A
or h'. In view of Theorem 2.2.4, we now show that each r; is integrable. Suppose
m is a monomial in 7; and that m’ is any monomial 1-differentially wed to m (other
than m). We shall now show that m’ occurs in r; with the same coefficient as m.

To do this, suppose r; contains Cym + Cim’ for some j’s. Note that C may
certainly be 0. Then r] r; must contain the terms C7m”m, CPm/"m/, C;Cim™m/,
CiCym™m. By summing over all j such that r; contains C;ym + Cjm/ we get that
¢ must have the terms

(Z C3ym"m, (Z C;Cm m/, (Z C;Q)m'Tm’
J j J

By Lemma 2.2.17, the monomials m”m, m”m’, and m"m’ are Levi-differentially

wed. Thus, all 3 coefficients are equal. This means we have
d o= ZCC’ 20'2 (2.11)
J
The Cauchy Schwartz inequality gives
ZC Ch)? < ZCQ S cp) (2.12)

J

and Equation (2.11) implies we have equality in Equation (2.12). This means we
have C; = aCj for all j. Then we get

00 = Yac —a X
J J J

and by Equation (2.11), we get a = 1. Hence Cj = C7 for all j. This means
that r; contains C;ym if and only if it contains C;m’ where m and m’ are any two
1-differentially wed monomials.

Since m and m’ are arbitrary 1-differentially wed monomials, we get that,
by Theorem 2.2.4, r; is integrable. We integrate it to get f; in Equation (2.10) if

r; is nc analytic and k] in Equation (2.10) if r; is nc antianalytic. We note that
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there are other antiderivatives for the r; (for example, f; + 27) but when r; is
nc analytic (resp. nc antianalytic) we only care about the nc analytic (resp. nc
antianalytic) ones.

Define
P=> Il f+ ) kik].

By construction, p is a sum of hereditary and antihereditary squares. Also note
that the nc complex Hessian of p is equal to the nc complex Hessian of p. Apply
Lemma 2.2.11 to finish the proof. O

Now we prove the uniqueness of the representation of an nc symmetric plush

polynomial. We recall Theorem 2.1.2 from Section 2.1:

Theorem 2.4.2. Let p be an nc symmetric polynomaial in free variables that is nc

plurisubharmonic and let

N M
N = min{N:p:fofijijkf—l—F%-FT}
j=1 j=1

N M
M = min{M:p:ZfJ-Tfj+ijij+F+FT}.
s =1

Then, we can represent p as

and if N and M are integers such that N > N, M > M and
N M
p=> ff+Y Kkl +F+F",
j=1 J=1

then there exist isometries Uy : RY — RN and Uy : RM — RM such, that

f fi KT K
: =U, : +¢c  and : =U, : + C2
I I i i

where & € RN and ¢, € RM .
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Proof. Suppose N and M are integers such that N > N, M > M where p can be

written as

N M
p=> ffi+> kik] + F+F" (2.13)
j=1 J=1
and suppose M > M is such that we have
N M
p=> fTf+> kT + F+FT. (2.14)
j=1 j=1

Then, the nc complex Hessian, ¢, of p based on the representations in

Equations (2.14) and (2.13) is

q= Z (F)alP)" (fi)alh] + Z (ko[ (k) [R)" (2.15)

= D (el (f5)alh] + 3 (K al ) y)a )"

Jj=1 j=1

We define Hjereq(q) as the purely hereditary part of ¢ to be all of the terms that

contain h' to the left of h and we define Hunsinerea(q) as the purely antiheredi-
tary part of ¢ to be all of the terms that contain h to the left of h”.

First, from Equation (2.15), consider the purely hereditary part of the nc

complex Hessian,

Hherea(q) = Z (F)alh) (f3)alh) = Z (f)alP)" (f5)alP]-

Jj=1 J=1

Since Hperea(q) is a sum of squares, it is matrix positive. Hence, the Gram rep-
resentations! for this purely hereditary part of ¢ contain ¢ x ¢ unique positive
semidefinite matrices, G and G, that are both of rank N such that

N B N

Y Falhl"(F)alh] = 4" Gy and D~ (fi)alh]" (f)ulh] = y" Gy ,

j=1 j=1
where y is an £ x 1 vector of monomials in x and h. The purely hereditary nature

of Hperea(q) forces G and G to be unique (so, in fact, G = G).

1See [PW] as a reference for the Gram representation.
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Since G is positive semidefinite, we can write G as G = WTW, where

W : R — RY is an N x ¢ matrix with rank(W) — N such that

Similarly, we can write G as G = WTW, where W : R® — RV isan N x /
matrix with rank(W) = N such that

(fn)alh]

Wy =

Note that the range of W is an N-dimensional subspace sitting inside of R .
Let RY denote the subspace of RY spanned by the first N coordinates of
RY: ie.,

RN = span{ey, ey, ..., ext

where e; is the i standard basis vector in RY. Then define the N x N matrix

. . — W
E:RN—>]RNasE:< N)sothatEWyz( y)e]RN.Wenotethatif
0 0

N = N, then E = I§.
Let V: RY — RN be an N x N unitary matrix that maps R™ onto the

Wy
V 0 = Wy.

This implies that Wy = VEWy and note that the N x N matrix U; =

VE :RY — RY is an isometry and that

range of W such that

: = U, : . (2.16)

(fn)[h] (f§)=[h]



37

Now, we perform nc integration to each nc polynomial in the vectors on both sides

of Equation (2.16). We do this according to Corollary 2.2.9 to get

fi fi
=0 | +a (2.17)
In fx

where & € RV,

Similarly, if, at the start of the proof, we assumed N > N is such that we

have

N M
p= 3 Ak YA T
j=1 j=1

then, we would have constructed an isometry Us : RM — RM such that

where ¢ € RM and M is as in Equation (2.13).
Combining Equation (2.17) and Equation (2.18), we can then write p with

the minimal number of hereditary and antihereditary squares as
N M
p=> ffi+> kkl +F+F"
j=1 j=1

O
Chapter 2 of this dissertation is taken from [GHV] that has been submitted
for publication with coauthors J. William Helton and Victor Vinnikov as
J. M. Greene, J. W. Helton and V. Vinnikov, Noncommutative Plurisubharmonic
Polynomials, Part I: Global Assumptions, preprint, http: //arziv. org/ abs/
1101. 0107 .



Chapter 3

Noncommutative
Plurisubharmonic Polynomials,

Local Assumptions

In this chapter, we show that if an nc polynomial is nc plurisubharmonic
on an nc open set then the polynomial is actually nc plurisubharmonic everywhere
and has the form

p=>Y_ [1fi+> kikj + F+F" (3.1)
where the sums are finite and f;, k;, [ are all nc analytic.

In Chapter 2, it was shown that if p is nc plurisubharmonic everywhere
then p has the form in Equation (3.1). In other words, Chapter 2 makes a global
assumption while the current chapter makes a local assumption, but both reach
the same conclusion.

This chapter requires a technique that is not used in Chapter 2. We use a
Gram-like vector and matrix representation (called the border vector and middle
matrix) for homogeneous degree 2 nc polynomials. We then analyze this represen-
tation for the nc complex Hessian on an nc open set and positive semidefiniteness
forces a very rigid structure on the border vector and middle matrix. This rigid

structure plus the theorems in Chapter 2 ultimately force the form in Equation

(3.1).

38
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Now, we recall the main theorems of Chapter 3.

3.1 Main Results of Chapter 3

As we will see, in Section 3.4, the nc complex Hessian, ¢, if matrix positive

on an nc open set, can be factored as
g = Vi(z,a")[h, KT L(z,27) Dz, 27)L(z, sV (2, ") B, HT]  (3.2)

where D(z, 27) is a diagonal matrix, L(x, 27) is a lower triangular matrix with ones
on the diagonal (we call this a unit lower triangular matrix), and V' (x, z7)[h, h7]
is a vector of monomials in z, 27, h, h7.

When we take the transpose of a matrix with monomial or polynomial
entries (e.g., L(z,zT)T or V(z,zT)[h, hT]T), we get the matrix obtained by taking
the transpose (as a matrix) and applying the transpose (involution) to every entry.

Example 3.1.1. If

hxx

then
vl = < 2T2ThT #ThT BT >
The next theorem shows the surprising result that the diagonal matrix,
D(z,27) in Equation (3.2), does not depend on x,z” and that L(x,z”) has nc

polynomial entries.

Theorem 3.1.2. If p is an nc symmetric polynomial that is nc plurisubharmonic

on an nc open set, then q, the nc complex Hessian of p, can be written as
q=V(x,2")[h, W) L(z, 2" )DL(x, 2") 'V (x, 27)[h, hT]
where V (x, z7)[h, hT] is a vector of monomials in x,x™ h, hT,
D = diag(dy,ds, . .., dy)

is a positive semidefinite constant real matriz, and L(z,xT) is a unit lower trian-

gular matriz with nc polynomial entries.
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Proof. The proof of this theorem requires the rest of this chapter and culminates
in Subsection 3.4.4. O

This gives rise to an extension of the main theorem from Chapter 2. In
Chapter 2, it is shown that an nc polynomial which is nc plush everywhere has
the specific form given in Equation (3.3) below. In this chapter, Theorem 3.1.3,
below, is a stronger, “local implies global”, result in that an nc polynomial that is
nc plush just on an nc open set is actually nc plush everywhere (and has the form

in Equation (3.3)).

Theorem 3.1.3. If an nc symmetric polynomial, p, s nc plurisubharmonic on an
nc open set, then p is, in fact, nc plurisubharmonic everywhere and has the form

expressed in Chapter 2

p=>Y_ [1fi+> kikj + F+F" (33)
where the sums are finite and each f;, k;, and F' is nc analytic.

Proof. That D = D(xz,z"), in Theorem 3.1.2, is a positive semidefinite constant

real matrix immediately implies
g(X, XT)[H, H"] = 0

for all X, H € U,>1(R™™)9; that is, p is nc plush at all X € U,,>1(R™™)9. Conse-
quently, Theorem 2.1.1 in Chapter 2 gives that p is of the desired form

p=>_ ffi+> kik] + F+F"

where the sums are finite and f;, k;, I are nc analytic. n
Note that with an nc polynomial, p, as in Equation (3.3), the nc complex

Hessian, ¢, of p is

¢ =Y (FDar W 1(f)alB] + D (ks k] )ar[h'] (3.4)

which is matrix positive since it is a sum of squares. From Equation (3.4), we see
that the nc complex Hessian for an nc polynomial that is nc plush on an nc open

set has even degree.
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3.1.1 Guide to Chapter 3

In Section 3.2, we introduce a Gram-like representation of nc quadratics.
In Section 3.3, we study this Gram-like representation for the nc complex Hessian
and prove some properties for this representation. In Section 3.4, we introduce the

LDLT decomposition of the nc complex Hessian and conclude that D is constant.

3.2 Middle Matrix Representation For A Gen-
eral NC Quadratic

In this section, we turn to a special representation for nc symmetric quadratic
polynomials called the middle matrix representation (MMR). We represent nc
quadratics in a factored form, v” Mwv. This representation greatly facilitates the
study of the positivity of nc quadratics by letting us study the positivity of M.
Now we give details.

Any noncommutative symmetric polynomial, f(z,z?,h,h"), in the vari-

ables x = (z1,...,1,), 27 = (xlT,...,xg), h = (hi,...,hy), and AT = (th,...,hg)
that is degree s in x, 27 and homogeneous of degree two in h, h’ admits a repre-

sentation of the form

f(z, 2, h, hT) = V(x, 2")[h, K" )" M (z, 27V (z, 27)[h, hT] (3.5)

where M (z,z7), called the middle matrix, is a symmetric matrix of nc polyno-

mials in x, 27 and V(x,z7)[h, hT], called the border vector, is given by

Va(z, z)[h]

Vo(z, 2T)[h]

V(z,z")[h, "] = Vi, 4T

Vo(a, z")[h']

The Vi(x,z7)[h] (resp. Vi(z,xT)[hT]) are vectors of nc monomials of the form

hym(z,z") (resp. hlm(z, z")) where m(z, z") runs through the set of (2¢)* mono-
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mials in z, 27 of length k for j = 1,...,g. Note that the degree of the monomials
inV,isk+1.

We note that the vector of monomials, V (z,zT)[h, k'], might contain mono-
mials that are not required in the representation of the nc quadratic, f. Therefore,
we can omit all monomials from the border vector that are not required. This gives
us a minimal length border vector and prevents extraneous zeros from occurring
in the middle matrix. The next lemma, Lemma 3.2.1, says that a minimal length

border vector contains distinct monomials.

Lemma 3.2.1. If f(x, 27, h, hT) is an nc symmetric polynomial that has a middle
matriz representation, then there is a middle matriz representation for f such
that the border vector contains distinct monomials. Here, distinct precludes one

monomial being a scalar multiple of another.

Proof. Suppose we have f with the representation

T
m P11 P12 P13 m
T T
f(x,x hyh ): am P21 P22 D23 am
n P31 P32 P33 n

with « a real number and m and n distinct monomials. Write f as

[ = mT(pll + 0422922 + apo1 + apia)m
+ m" (p1z + apaz)n + n’ (pa1 + aps2)m + n' pan

which leads to the representation

m + a?poy + apar + +a m
f(a:,xT, h, hT) _ ( ) ( P11 P22 P21 P12 P13 D23 ) ( >
n P31 + aps2 D33 n

that has distinct monomials in the border vector. [

To aid us in the following sections, we cite a theorem (Theorem 8.3 in
[CHSYO03] and Theorem 6.1 in [HMO04]). Note that in [CHSY03], the following
theorem is stated for a positivity domain but the proof only uses the fact that
positivity domains are nc open sets (satisfy the two conditions in Subsection 1.4.2).
Hence, we slightly generalize the statement of the theorem to work on a general

nc open set as defined in Subsection 1.4.2.
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Theorem 3.2.2. Consider a noncommutative polynomial Q(z,zT)[h, hT] which
is quadratic in the variables h,h™ that is defined on G C U,>;(R™™)9. Write
O(z, zT)[h, k] in the form
O, ™[, W) = V(, ™) [, K77 M (2, WV (7 [, 7]
and suppose that the following two conditions hold:
(i) the set G is an nc open set as defined in Subsection 1.4.2;
(ii) the border vector V (x, x™)[h, hT] of the quadratic function Q(x, z")[h, h'] has
distinct monomaals.
Then, the following statements are equivalent:
(a) Q(X, XT)[H, HT] is a positive semidefinite matriz for each pair of tuples of
matrices X and H for which X € G;
(b)) M(X,XT) =0 for all X €G.

We will also need the following well known lemma (c.f. [HMO04]). Just for
notational purposes of stating the lemma, let B(H)¢ denote all g-tuples of operators

on ‘H, where H is a Hilbert space.

Lemma 3.2.3. Given d, there exists a Hilbert space K of dimension ng (29)7 such
that if G is an open subset of B(K)?, if p has degree at most d, and if p(X, XT) =0
for all X € G, then p = 0.

Next, we proceed to study this middle matrix representation for the nc

complex Hessian.

3.3 Middle Matrix Representation For The NC

Complex Hessian

In Section 3.2, we introduced the middle matrix representation for a general
nc quadratic polynomial, and this section specializes it to the nc complex Hessian.
The requirement that the nc complex Hessian be positive on an nc open set forces

rigid structure to the border vector and middle matrix.
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3.3.1 Border Vector for a Complex Hessian: Choosing an

Order for Monomials

Let p be an nc symmetric polynomial in g free variables such that the degree
of its nc complex Hessian is d. Then the complex Hessian will be homogeneous of
degree two in h, hT.

For a fixed degree k, there are ¢ nc analytic monomials and ¢* nc antian-
alytic monomials in x,z7. That means there are (2¢)* — g* — ¢* = (29)* — 2¢*
‘mixed” monomials of degree k (i.e., monomials that are not nc analytic nor nc

antianalytic).

Analytic Border Vector

For 0 < k < d—2,let Ay = Ax(z)[h] be the vector of nc analytic monomials
with entries hjm(z) where m(x) runs through the set of g* nc analytic monomials
of length k£ for j =1,..., 9. The order we impose on the monomials in this vector

is lexicographic order. Thus, the length of A, = Ay (z)[h] is ¢**! and the vector
A(l’)[h] = COl(Ad_Q, ce ,Al, Ao) (37)
has length ¢ ' +---+¢> +g=gv where v = g* 2+ -+ ¢> + g + 1.

Antianalytic Border Vector

Let Al = Ai(z7)[h"] be the same as Ay = Ay (z)[h] except replace each h;
with i} and replace each z; by z]. So Aj is the vector of nc antianalytic monomials
with entries A]m(z") where m(z") runs through the set of g* nc antianalytic

monomials of length & for j = 1,..., g (again, the order is lexicographic). Thus,
the length of AL = A (z7)[hT] is ¢g**! and the vector

A(@)[RT] = col(Al_,, ... AL Ab) (3.8)

also has length gv.
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Mixed Term Border Vector

Next, we define notation to handle all nonanalytic and nonantianalytic
monomials. Let By = By(x,z7)[h] be the vector of monomials with entries h;z!
fori =1,...,gand j = 1,...,g. The length of B; is ¢g>. For 2 < k < d — 2,
let By, = By(z,27)[h] be the vector of monomials with entries hjm(x,z”) where
m(x, z7) runs through the set of (2¢)* —2¢* monomials of length k that are not nc
analytic nor nc antianalytic for j = 1,...,g. Again, we put the same lexicographic
order on the monomials. Thus, the length of By, = By(z,2T)[h] is g((29)* — 2¢%)
and the vector

B(z,2")[h] = col(By_s, . .., Ba, By)

has length ¢®+ 3292 g((29)* — 2¢*). Then we can also define B, = B (z, z7)[h"] to
be the vector of monomials with entries h;‘rxi fori=1,...,gand j=1,...,g. This
also has length g®. Then we define, for 2 < k < d—2, the vector B = By,(z,z")[h']
to be the same as By, except h; is replaced by h;fp. In other words, each entry looks

like h]m(x,2z"). Then the vector
Bla,a )W) = col( Bl . ., B, BY)

has the same length as B(x,z7)[h].
Note that the degree of the monomials in Ay, AL, By, By is k + 1.

3.3.2 The Middle Matrix of a Complex Hessian

Now we can represent the nc complex Hessian, ¢, of a symmetric nc poly-

nomial p as

A(z)[h] ! @1 Q 0 0 A(z)[h]
A(zT)[hT] 0 0 Q5 Qs A(z™)[h"]
B(x, z7)[hT] 0 0 Qf Qs B(z,2")[h"]

(3.9)

where Q; = Q;(z,xT) are matrices with nc polynomial entries in the variables

T

T
L PN N S P



46

Again, we wish to stress that the vectors A(z)[h], A(xT)[hT], B(x,zT)[h],
and B(z,z7)[hT] may contain monomials that are not required in the represen-
tation of the nc complex Hessian, g. Therefore, we omit all monomials from the
border vector that are not required. This gives us a minimal length border vector
and prevents extraneous zeros from occurring in the middle matrix. Lemma 3.2.1
says that a minimal length border vector contains only distinct monomials.

We also note that Theorem 2.2.16 (P1) shows that every term in the nc
complex Hessian, ¢, contains exactly one h; and one h} for some j and k. This

structure forces the zeros in the middle matrix in Equation (3.9) above.

3.3.3 Structure of the Middle Matrix

In this subsection, we prove some properties about the structure of the

middle matrix in the MMR for a matrix positive nc complex Hessian.

Lemma 3.3.1. Let p be an nc symmetric polynomial that is nc plush on an nc

open set, G. Then, the MMR in Equation (3.9) for its nc complex Hessian, q, of
p has Q2 = Qs = Qs = Qs = 0. Thus,

q:< Ax)[h] ) <@1<x,xT> 0 )( Ax)lh] ) (310)
A(aT)[") 0 Qsea”) )\ AGT

Proof. We consider the upper left block of the middle matrix in Equation (3.9)

A@P \ [ @Qea”) Q™) \ [ AW
B(z,z")[h] Qa(z,2")" Qu(x,2”) B(z,")[h]
with the goal of showing () = 0 and @), = 0. Thus, suppose the border vector

contains a nonzero monomial which is an entry in the vector of mixed monomials,

B(x,2T)[h]; i.e., the border vector contains a term

Tmy(x, 2" (3.11)

hema(z, 2")x]

for some monomials m; and my in the variables x1, ..., zg, 27, ... ,mg.

Soon we shall look at the diagonal entry, P¥) in the middle matrix corre-

sponding to this border vector monomial in (3.11) and show it is 0. By Theorem
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3.2.2, we have the middle matrix positive semidefinite for every X in the nc open
set, G. By Lemma 3.2.3, if an nc polynomial is zero on an open set of matrix
tuples with sufficiently large dimension, then the nc polynomial is identically zero.
Hence, if there is ever a diagonal entry in the middle matrix that is zero on an
open set of matrix tuples of large enough dimension, then that diagonal entry is
identically zero. Hence, to force matrix positivity, the corresponding row and col-
umn in the middle matrix must be zero. This implies that the particular monomial
in the border vector is not needed in the representation, thereby contradicting the
border vector being of minimal length. Thus, showing P is 0, a contradiction.
The term(s) in the nc complex Hessian corresponding to the diagonal entry

PO of the middle matrix and monomial (3.11) in the border vector are

T . T3 Tp0 T
mEa;mThl Pl )hkmlxj Mo

where P is some matrix positive polynomial in z, . .. Ty LT, ,:1:5. By Theo-

rem 2.2.16 (P2), ¢ must also contain the Levi-differentially wed term(s)
mghjmfhfp(o)mkmlx?mg.
This means the border vector must contain the monomial(s)
{hgp(o)kal%rmz}mon (3.12)

where {hfP(O)kalijmg}mon is the list of the monomials that appear as terms in
the nc polynomial h{P(O)kalijmQ.

Again, we shall look at the term(s) in ¢ corresponding to the diagonal in
the middle matrix corresponding to any one of the border vector monomial(s) in
(3.12). Pick hfﬁ(o)kalx;fpmg as a specific border vector monomial in the list in

(3.12). Then, the term(s) in ¢ look like
mngmfxg(ﬁ(o))ThkP(l)hgﬁ(o)kalijmQ

where P is a matrix positive polynomial in x1,... x4 z],..., 27, which is a

diagonal entry of the middle matrix. Theorem 2.2.16 (P2) implies ¢ must also
contain the Levi-differentially wed term(s)

~ ~

mQThjmlThf(P(o))Tka(”a:{P(O)kalijmZ
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which means the border vector must contain the monomial(s)
{h’f(7/5(0))Txkp(l)xgﬁ(O)kalx?mZ}mon (313)

where {hf(ﬁ(o))Tka(l)xfﬁ(o)kalemg}mon is the list of the monomials that
appear as terms in the nc polynomial hf(ﬁ(o))Tka(l)xfﬁ(o)kalx?mg.

Note that the border vector monomial in (3.13) has degree at least 2 more
than the degree of the border vector monomial in (3.12) which has degree at least
2 more than the degree of the border vector monomial in (3.11). We can continue
this process and the degree of the successive border vector monomials will keep
increasing by at least 2 at each step. At some step, the degree of the border
vector monomial will exceed d — 1. This contradicts the fact that the border
vector monomials must have degree at most d — 1. Thus, we have shown that
Qs = 0. A similar argument shows that ()3 = 0. Since the middle matrix is
positive semidefinite, by the argument at the beginning of this proof, we also get
that 2 = 0 and Q¢ = 0. Hence, the nc complex Hessian has the representation in

Equation (3.10), as claimed by the theorem. O

Theorem 3.3.2. The nc complex Hessian, q, of an nc symmetric polynomial that

is nc plush on an nc open set can be written as in Equation (3.10)

q@,xT)[h,hT]:( Al ) (@xx,ﬂ) 0 )( A )
Aa®)[h7] 0 Qs(z,27) A(z7)[h7]

where every nc polynomial entry in Q1 (x, 1) is hereditary and every nc polynomial

entry in Qs(x, x1) is antihereditary.

Proof. Suppose, for the sake of contradiction, (); contains an nc polynomial entry
which is not hereditary. Without loss of generality, this nc polynomial contains a
term of the form

my (z7)zj2) mo(x, 2T) (3.14)

where m; is a monomial in 27 and ms is a monomial in z and z”. Since this is
part of an entry in the middle matrix, this means that the nc complex Hessian

must contain a term of the form

ma (T hfmy ()2 mo(x, ") hemy(z)
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where mz(xz”)h] is a specific monomial entry from the vector A(x)[h|T and hymy(z)
is a specific monomial entry from the vector A(z)[h]. Then, Theorem 2.2.16 (P2)
implies that the nc complex Hessian must also contain the Levi-differentially wed
term

ma(z")hi my (") hjzp ma(z, ) e my(z).

This implies that the border vector must contain the monomial
hjxima(z, ") my(z)

which contradicts having an nc analytic or nc antianalytic border vector, as re-
quired by Lemma 3.3.1. The proof that (05 contains antihereditary nc polynomial
entries is similar. O

For a real number, r, we define || as the largest integer less than or equal
to r and we define [r] as the smallest integer greater than or equal to r. The next
theorem puts an upper bound on the degree of the monomials in the border vector

for q.

Lemma 3.3.3. Suppose p is an nc symmetric polynomial that is nc plush on an
nc open set. If the degree of its nc complex Hessian, q, is d, then the degree of the

border vector monomaals is at most L%J

Proof. Write the MMR for ¢(z, z7)[h, h'] as

M My \ [V
a=vimv=(vrovr ) 1
My M, Vs

with the following property. If d is odd, V; contains monomials of degree 1, ..., \_gj
and V5 contains monomials of degree (%W ,...,d—1. If d is even, V; contains
monomials of degree 1, ..., g and V5 contains monomials of degree g +1,...,d—1.

In either case, polynomials in M, correspond to terms in ¢ having degree strictly
greater than d. Hence My = 0. By Theorem 3.2.2, M (X, X7) = 0 for all X in an
nc open set. This forces My(X, XT) = 0 for all X in an nc open set. Then, by
taking X to have large enough size, Lemma 3.2.3 implies M, = 0. O]
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Consequences of Positivity of the Complex Hessian

Now we turn from a description of the middle matrix to describing the
structure of the nc complex Hessian of an nc polynomial that is nc plush on an nc

open set.

Proposition 3.3.4. The nc complex Hessian, q, of an nc symmetric polynomial
that is nc plush on an nc open set is a sum of hereditary and antihereditary poly-

nomaials.

Proof. This follows immediately from Lemma 3.3.1 and Theorem 3.3.2. ]
Finally, we show that the degree of ¢ must be even when p is nc plush on
an nc open set. This fact is obvious if p is assumed nc plush everywhere because

then the nc complex Hessian is a sum of squares, as provided by Theorem 1.1.1.

Theorem 3.3.5. Suppose p is an nc symmetric polynomial that is nc plush on an

nc open set. Then, the degree of its nc complex Hessian, q, is even.

Proof. Suppose the degree of ¢ is 2N 4+ 1. Without loss of generality, Proposi-
tion 3.3.4 and Theorem 2.2.16, requiring the presence of Levi-differentially wed
monomials, imply that ¢ must contain a hereditary term of the form

xlal ... hg;hjlsz, ST

111 ¥4

where 5,0 > 0, s+ ¢ =2N + 1, and 41,...,45,j1,...,j¢ € {1,...,g}. This means
that in the middle matrix representation for ¢, the border vector must contain
, and h; x;, , ---x; which have degree ¢ and s, respectively. But since

s+¢=2N+1and s,/ > 0, one of either s or / is at least PNQ—Jﬂ This contradicts
Lemma 3.3.3. ]

hjlsz Ty

3.4 LDL" Decomposition Has Constant D

This section concerns the “algebraic Cholesky” factorization, LDL™, of the
middle matrix. We will show that for an nc polynomial that is nc plush on an

nc open set, this D is a positive semidefinite matrix whose diagonal entries are
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all nonnegative real constants, and L is unit lower triangular with entries which
are nc polynomials. This is a stronger conclusion than one would expect because,
typically, such factorizations have nc rational entries, see [CHSY03, HMVO06]. In
our approach, the LDL” factorization of a symmetric matrix with noncommutative
entries will be the key tool for the determination of the matrix positivity of an nc

quadratic function.

3.4.1 The LDL" Decomposition

Begin by considering the block 2 x 2 matrix

A BT
M:
B C

where A is a constant real symmetric invertible matrix and B and C are matri-
ces with nc polynomial entries with C' symmetric. Then, M has the following

decomposition

I 0 A 0 I A1BT
M = : (3.15)
BA™! I 0 C—BA-'BT 0 I

where all matrices in this decomposition contain nc polynomial entries. If C' —
BA~'BT contains a constant real symmetric invertible matrix somewhere on the
diagonal, then we can apply a permutation, II, on the left of M and its transpose,
17, on the right of M to move this constant real symmetric invertible matrix to
the first (block) diagonal position of C'— BA™*BT. We then pivot off this constant

real symmetric invertible matrix, factor C' — BA™'BT as LDL™, and we get

, I o\[{Ao0\[T A'BT
myT7 = : X ) .
BA™ L J\o D)\o LT

This can be continued, provided at each step, a constant real symmetric invertible
matrix appears somewhere on the diagonal to obtain IIMIIT = LDLT where L
is a unit lower triangular matrix with nc polynomial entries and D is a (block)
diagonal matrix with real constant blocks. This special situation is the one which

turns out to hold in the derivation which follows.



52

Indeed, we shall only care about the case where A is a constant real sym-
metric invertible matrix. For the case where A contains nc polynomial entries and
is considered to be “noncommutative invertible”, see [CHSY03]. In this case, we
also have the notion of “noncommutative rational” functions (see [HMV06]). How-
ever, as we soon shall see, while nc rationals are mentioned, they never actually
appear in any calculations in this dissertation.

We recall an immediate consequence of Theorem 3.3 in [CHSY03]:

Theorem 3.4.1. Suppose M (x,xT) is a symmetric r X r matriz with noncommu-
tative rational function entries and that M (X, X7T) = 0 for all X in some nc open
set. Then, there exists a permutation matriz, 11, a diagonal matriz, D(x,zT), with
)

nc rational entries, and a unit lower triangular matriz, L(x,z"), with nc rational

entries such that
M (z, 291" = L(z,27)D(z, 27) L(x, 7).

Remark 3.4.2. In this chapter, we care about the positivity of the middle matriz,

M(z,2T). If I is a permutation matriz, it is clear that
IMX, XH" =0 <=  MX, X" =0

for any X € R™"™ and anyn > 1. As a result, for ease of exposition, we will often,
without loss of generality, omit the permutation matriz, 11.

Also, there will be some instances where we will, without loss of generality,
assume a specific order in the border vector, V (z,z)[h, hT]. For ezample, we may
assume a given monomial, say, hm(x,z), is the first monomial in V (z, 2™ )[h, hT].
This assumption also amounts to a permutation of V(x,xT)[h, hT] which, again,

does not affect positivity of M(x,xz7) so we omit it from the discussion.

We now proceed to apply the LDL” factorization to the middle matrix of
the nc complex Hessian. Let p be an nc symmetric polynomial and let ¢ denote
the nc complex Hessian of p. Since ¢ is homogeneous of degree 2 in h, hT, ¢ admits
the MMR

q=V(x,z")[h, K" M (z, 2" )V (2, 27)[h, hT]. (3.16)
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If p is nc plush on an nc open set, then M (z, z7) is symmetric and matrix positive

on an nc open set and we can factor M (z,zT) following the process underlying

Equation (3.15) and Theorem 3.4.1, thus converting Equation (3.16) to
q=V(x,z")[h, ") Lz, 2")D(x, 2")L(z, ")V (2, 27)[h, hT] (3.17)

up to a harmless rearrangement of the border vector.

In Section 3.4.4, we prove one of the main theorems of this dissertation,
Theorem 3.4.9, which was stated in Section 3.1 as Theorem 3.1.2. We recall that
this theorem says that D(x,zT) in Equation (3.17) does not depend on z, z” and
is a positive semidefinite constant real diagonal matrix for an nc polynomial that
is nc plush on an nc open set. In addition, we will prove that L(z,z”) contains nc

polynomials instead of nc rationals. Now we start the build up to Section 3.4.4.

3.4.2 Properties of LDL" for NC Polynomials that are NC
Plush on an NC Open Set

In this subsection, we present properties of the LDL” factorization of the
nc complex Hessian for an nc polynomial that is nc plush on an nc open set.

Recall from Section 1.4.2 that a set G C U,>1(R™™)¢ is an nc open set if:
(i) G respects direct sums, and

(ii) there exists a positive integer ng such that if n > ng, the set G,, := GN(R™*™)¢

is an open set of matrix tuples;

and an nc symmetric polynomial, p, is nc plush on an nc open set, G, if p has an
nc complex Hessian, ¢, such that ¢(X, XT)[H, H”] is positive semidefinite for all
X € G and for all H € (R"*") for every n > 1.

For an nc symmetric polynomial that is nc plush on an nc open set, Theorem
3.3.5 shows that the nc complex Hessian has even degree; denote it 2N. We will
use this fact throughout the duration of the chapter. The next lemma is a stepping

stone for Lemma 3.4.4.
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Lemma 3.4.3. Suppose p is an nc symmetric polynomial that is nc plush on an
nc open set, G. Let 2N denote the degree of its nc complexr Hessian, q. Then, q

must contain a term of the form
am™h"hm  (or amhh™m™)

where m is an nc analytic monomial of degree N — 1 and « is a positive real

constant.

Proof. Proposition 3.3.4 implies ¢ is a sum of hereditary and antihereditary poly-
nomials. Let w be a term of degree 2N in ¢q. Without loss of generality, suppose

w is hereditary; i.e., w has the form
w = ami k' mimshmy
where o € R, my, mo, mg, my are nc analytic monomials in x, and
deg(my) + deg(mz) + deg(mg) + deg(my) = 2N — 2.
By Theorem 2.2.16 (P2), ¢ must contain the Levi-differentially wed term
W = am! kT hing

where 11, My are nc analytic monomials in x and deg(m;) = deg(my) = N — 1.
If my = Mg, we are done (except for showing a > 0). If the conclusion of
the lemma is false, so that ¢ contains no term of the form am”h”hm, then this

implies My # my. Since ¢ is symmetric, ¢ must also contain the term

" = aml h' hin,.
If we partition the border vector so that el V = himy and €2’V = hiny, then we get

that
T

hiny 0O a --- hiny

q = hﬁlg a 0 --- hThQ

This middle matrix is not positive semidefinite for any X € G. Hence, Theorem

3.2.2 implies that ¢ is not positive semidefinite for all X € G. This contradicts the
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positivity of ¢ on the nc open set, G. Hence, ¢ must contain some term of the form
am”hT hm.

We now show « > 0. Since we know that ¢ contains a term of the form
am®h” hm with m an nc analytic or nc antianalytic monomial of degree N — 1, the
real constant o will appear on the diagonal in the middle matrix. Then, Theorem
3.2.2 implies that this a must be positive. O

When we write e;, we mean the vector whose 7" entry is 1 and every other
entry is 0. From Equation (3.17), we can write ¢ as a sum of outer products

N

q=V(z,a")[h, 7T (Z (Lez»)di(Le,;)T> V(z,z7)[h, hT]

N
= Z V(z,2)[h, k11T (Le;)d;(Ley) TV (, T)[h, hT]. (3.18)

We stress that in Equation (3.18), each Le; and d; depend on x and z. However,
the next lemma shows that one element of D is constant and one column of L

contains nc polynomials rather than nc rationals.

Lemma 3.4.4. Let p be an nc symmetric polynomial that is nc plush on an nc

open set. Let 2N denote the degree of its nc complex Hessian, q. Then, we can

write the nc complex Hessian, q, as in Equations (3.17) and (3.18) where L(x, x7)
is unit lower triangular and D(x,z7) = diag(dy,...,dy) with di a positive real
constant.

Hence, each entry in Ley, the first column of L(x,x7), is an nc polynomial

rather than an nc rational.

Proof. Theorem 3.4.1 implies D(z, z7) is a diagonal matrix. Without loss of gen-

erality, Lemma 3.4.3 implies that ¢ contains a term of the form
am®hT ki

where o > 0 is a positive real constant and m is an nc analytic monomial of degree
N — 1. The MMR of ¢ can be written as

() (o)
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Since a > 0, we can first pivot off a in computing the LDL? factorization of the

middle matrix to get

T
hm 1 0 o 0 1 7 hm
=\ = — |-
4 101 0 M—2Lem 0 I 4

Now we see that d; = el De; = a > 0 and that
1 —~ 1
Ley = ( ) and M — =t
1y o
contain only nc polynomials as entries. O]

The next lemma provides even more specific structure to Le; and maintains

the nc polynomial structure.

Lemma 3.4.5. Under the same hypotheses of Lemma 3.4.4, either:

(i) every entry of Ley (the 1°* column of L(x,zT)) is an nc antianalytic polyno-
mial, dy (the 1°* diagonal entry of D(x,zT)) is a positive real constant, and

the corresponding monomials in V (x,z7)[h, hT] are nc analytic; or

(ii) every entry of Ley (the 15t column of L(x,x7)) is an nc analytic polynomial,
dy (the 1°" diagonal entry of D(x,xT)) is a positive real constant, and the

corresponding monomials in V (x,x")[h, k7] are nc antianalytic.
Proof. Lemma 3.3.1 implies that ¢ can be written as
q = A@)[h]" Qi (z, 2" ) A()[h] + A(2") (1" Q5(x, 27 A(2") "]

where each entry of A(z)[h] is an nc analytic monomial and each entry of A(z”)[hT]
is an nc antianalytic monomial. Also, () contains hereditary nc polynomials and

(5 contains antihereditary nc polynomials. Then, we have that

q = A(x)[h] LD, LT A(x)[h] + A(zT)[AT]" LoDy LY A(2™) [

(AW LoooN{(Di 0\/L 0\ [ Awl
AT 0 Ly 0 Dy 0 Ly AlD[RT) )

AN AN 7 o AN

D LT V(z,zT)[h,hT]

(3.19)

X
B
)
-
F
>
-
)ﬁ
4
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Without loss of generality, Lemma 3.4.3 allows us to assume that ¢ contains
a term of the form
dym”h" hm
where m is an nc analytic monomial in z (so that hm is an entry in A(x)[h])
of degree N — 1 and d; is a positive real constant. Lemma 3.4.4 implies that

eI'Die; = dy and that each entry of Le; is an nc polynomial. From Equation
(3.19), we have that
Lie
Le, = 1€1
0

and (Ley )"V = (Lyey)T A(z)[h].
Next, write ¢ as in Equation (3.18) and see that the first term in this sum

becomes
VI(Ley)dy(Lex)V = di((Lyer)" A(x)[R])" ((Lrer) " A(z)[R])

Proposition 3.3.4 implies that ¢ is a sum of hereditary and antihereditary polyno-
mials. Therefore, since A(z)[h] contains only nc analytic monomials, this forces
(Lie1)T to contain only nc analytic polynomials (which means that L;e; contains
only nc antianalytic polynomials). This completes the proof of Case (i).

The proof of Case (ii) works the same way, from Lemma 3.4.3, whenever

we assume that ¢ contains a term of the form
dymhhTm®

where m is an nc analytic monomial in z of degree N — 1 and d; is a positive real
constant. [
The next lemma is a technical lemma that is used as a stepping stone to

help prove Proposition 3.4.7.

Lemma 3.4.6. Let p be an nc symmetric polynomial that is nc plush on an nc
open set. Let 2N denote the degree of its nc complex Hessian, q. Then, we can

write q as in Equation (3.18)

N
q= Z V(z, 2" [h, KT (Ley)d;(Ley) "V (z, 27) [h, hT]
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with

V((L’, xT)[h7 hT]Tel - xg\, T l‘zj;hg (7”68]). V(l’, xT>[h7 hT]Tel = Tiy v xi2hi1>

in which case, any term in q that has the form

dwxf;v - ag, b m(z, h) (resp.  diyaiy -~ wihyym(z’, hT))

12" 11

where v is a real constant and m(x,h) is some nc analytic monomial in x, h of
degree 1 in h (resp. m(z®,hT) is some nc antianalytic monomial in 2 hT of

degree 1 in h™), is a term in the nc polynomial
d\V (2, 2)[h, K117 (Ley ) (Ley) "V (z, 27)[h, hT].

Moreover, ym(z,h) (resp. ~ym(z™,hT)) is a term in the nc analytic (resp. nc

antianalytic) polynomial
(Le))™V(z,z7)[h, BT].

Proof. Proposition 3.3.4 implies ¢ is a sum of hereditary and antihereditary poly-
nomials. Since the degree of ¢ is 2N, there exists a term, w, in ¢ of degree 2N.

Without loss of generality, Lemma 3.4.3 allows us to assume that w looks like

T T, T
w=dyx; -zl hi T,

12" Y11 N*

with d; € R,. We partition the border vector V(z,xT)[h, h'] as
hiyiy - - @
CESIOE ( T )

where h;, x;, - - - x;, is not a monomial entry in the vector V. Then, ¢ becomes

T

hilxig Ty 1 0 d1 0 1 gT hilxig Ty
q= ~ ~ ~ ~ ~
V ¢ L 0 D 0 LT V

V(za®)[hhT)T (Ler)(Ler)V (@a®)[hpT )= (2] ol K] FVT0) (hiy wiy i +LTV)

Ve

= dy (] -l R hy iy, - a2l DRIV 4 Vb, -y + VTV
(3.20)
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Since w;, ---x;,h; is not a monomial entry in the vector V7T, this shows that

any term in g of the form dyya] ---xl hl'm(x, h), where v is a real constant and

m(x, h) is an nc analytic monomial of degree 1 in h, is a term in the nc polynomial
d\V(x, 2" [h, hT]1" (Ley ) (Ley) 'V (z, 27) [k, hT].
Equation (3.20) implies that either

dyya), - ap b m(x, h) = dya] o] b g,

12" 11 12" 11 N

or that dyyz] ---a] hl m(x,h) is a term in the nc polynomial
dyal - LRIV

iN i2 1

This implies that either v = 1 and m(z, h) = h;, x4, - - - z;,, or that ym(x,h) is a

N

term in the nc polynomial . Hence, ym(x, h) is a term in the nc polynomial
i @iy -+ wy + LTV = (Ley) "V (z, 27)[h, A"

and Lemma 3.4.5 implies that (Le;)TV (z,27)[h, h'] is nc analytic. O

3.4.3 Part of the NC Complex Hessian is an NC Complex

Hessian

In this subsection, we focus on writing the nc complex Hessian, ¢, as in
Equation (3.18)

N
q= Z V(x,zT)[h, W1 (Le;)di(Le;)TV (z, 27)[h, AT

This subsection culminates with the result that the nc polynomial
d\V(x, 27)[h, K117 (Ley ) (Ley) "V (z, 27) [, 1],

is the nc complex Hessian for some nc polynomial that is nc plush on an nc open

set. In order to do this, we first show that the nc polynomial
(Lel)TV(x7 xT) [h7 hT]

is the nc directional derivative of some nc analytic or nc antianalytic polynomial.
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Proposition 3.4.7. Let p be an nc symmetric polynomial that is nc plush on an
nc open set, G. Let 2N denote the degree of its nc complex Hessian, q. If we write

q as in Equation (3.18) and dy is constant, then the nc polynomial
(L@l)TV(.Z'7 xT)[h7 hT]

1s the nc directional derivative of an nc analytic polynomial or an nc antianalytic
polynomial.

In addition, the nc polynomaial
d\V(x, 2 [h, 117 (Ley ) (Ley )"V (z, 27) [, h']
s the nc complex Hessian of some nc polynomial that is nc plush on G.
Proof. Without loss of generality, we can assume, by Lemma 3.4.5, that
(Le )"V (x, z7)[h, b

is an nc analytic polynomial where V (z, 27)[h, h'] and Le; are partitioned as

Vn ly 1

Vi 14 *
Vg, e e = "7 |, L= " | 6= |, (21

Vvl ngl *

where * is any nc polynomial and V; is a vector that contains only nc analytic
monomials of the form hy x;, - - - x;; having total degree j. Each f; is a vector
with the same length as V; and, by Lemma 3.4.5, ¢; contains only nc antianalytic
polynomials (KJT contains only nc analytic polynomials). With this setup, we have

that N1
Flx,h) = (Le))"V(z,z")[h, h"] = Z TV
=0

is an nc analytic polynomial in z and h. We define this as F(x, h) for convenience.
Lemma 3.4.4 implies d; € Ry is a constant and Equation (3.18) implies

that ¢ contains the terms

d\V(x, 2" [h, hT1" (Ley ) (Ley) "V (z, 2T) [k, hT] = d; (Z £]TVN]-> (Z or VN]->

J=0
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Then, since the degree of ¢ is 2N and the degree of each border vector monomial
in Viy_; is N — j, it follows that the degree of each nc analytic polynomial in éf is
at most j.

Lemma 3.4.3 implies that ¢ contains some term of the form

2,..T T3 T

with o a nonzero real constant. This implies that the vector Vy contains the mono-

mial h;,z;, - -x;, as an entry. Without loss of generality, assume this monomial

is first in lexicographic order. Then,

el Vi(z, 2T [h, h') = el Viy = hy, w4y - - 14,

As in the proof of Lemma 3.4.4, if M represents the middle matrix of ¢, then
ef'Me, = a? and, after one step in the LDLT algorithm, we see that o® = d;.

Then, by Theorem 2.2.16 (P2), ¢ also contains the Levi-differentially wed terms

T T3T
diziy, - m, by T Ry T - Ty
T TrT o e B s,
dlxiN . -xithlxnxmh,B Tiy
T T1T
dleiN s J]Z-thll’ill’b s xiNflhiN'

Since ¢ contains these terms and the term in (3.23), Lemma 3.4.6 implies that
F(z,h) contains the term

hi1$i2$i3 Ty (324)

and the terms

$i1hi2$i3 Ty

Ty Tiyhig -+ - 2

Ly Ly~ * xiNflh/iN’

Hence, F(x,h) contains all 1-differentially wed monomials to h;, x;,x;, - - - x;, as

N

terms. Theorem 2.2.4 implies that F(x, h) contains the nc directional derivative

of x;, @i, Tiy -+ - Ty -
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Now we pick any other term in F(x, h) and show that F(z,h) contains all
other 1-differentially wed monomials to it and that they all occur with the same

coefficient. Suppose F(z, h) contains the term

fyxs:l .. 'xSkhﬁlxﬂQ .. 'xBNf‘]'

We already showed that F(z, h) contains the monomial in (3.24), h;, @, - - - T4,

ThT

x;,h;, as a term. This

as a term so F(x,h)” must contain the monomial x; - -

implies that dyF(z,h)? F(x,h) contains the terms

T T T
dlxiN o zzhzl(hl1$i2 Ty + Vsy =" xskhﬁl‘rﬁz o xﬁN—j)‘

Hence, ¢ contains the term
T hT

T
dl,yx’i]\] 7,2 ’lesl e IskhﬂleZ e xﬁij

and Theorem 2.2.16 (P2) implies that ¢ contains the Levi-differentially wed terms

T T T

dlvxiN ’ zghzlh&xsz T, X TPy LBy
T T

dl’yxiN T ZthleIh‘ T, X TPy LBy
T T T

dl'yxiN 5, hzlxﬂxw T hSkxﬁﬁEﬁz T TBN_y
T T

dl’yxiN T z2hZ1$51$52 o '$5kxﬁlhﬂ2 BNy
T T

dl'yxiN ’ ’Lzhll‘rsl'rSQ s, T LBy hﬁij'

Since ¢ contains all of these terms with xzzv x Z;hle on the left, Lemma 3.4.6
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implies F(z, h) must contain the terms

Yhs Ty + T, Tp, T, - - " LBy

7x81h82 T s, T TBy XN

Vls1Lsg "+ ° hSkxﬁlxﬁz Ty
Vs Tsy * 'xskhﬁlxﬁz BRI IN

VLs Lsg * 'xskxﬂlhﬂz BNy

VLs1Lsg ** " L X LBy " hﬁN—j'
All of these terms in F(z, h) have the same coefficient, v, and the monomials are
1-differentially wed to each other. Thus, Theorem 2.2.4 implies that they sum to
the nc directional derivative of

VTs1Lsg """ Lsp T LBy """ TPy
Hence, we have shown that F(z,h) = (Le))TV (z,27)[h, hT] is an nc directional
derivative, where, without loss of generality, we assumed that F(x,h) was nc an-
alytic.

Now we have that

F(z,h) := (Le))"V(z,27)[h, hT]

is the nc directional derivative of some nc analytic or nc antianalytic polynomial.
Suppose, without loss of generality, that F(x, h) is the nc directional derivative of

some nc analytic polynomial, F(x). Then, F(z, h) is nc analytic and
dy F(z, ) F(x,h) = diV(z,2")[h, K" (Ley) (Le))"V (z, ) [h, BT]
is the nc complex Hessian of the nc polynomial
d F(z)' F(z).
Hence, for any n > 1, any X € G, and any H € (R"*™)9, we have

d\F(X, H)Y' F(X,H) = 0.
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3.4.4 Constant D Result

In this subsection, we show that for an nc symmetric polynomial, p, that
is nc plush on an nc open set, the matrix D(z,zT) in Equation (3.17) has no
dependence on z or 27 and is actually a positive semidefinite constant real matrix.

First, we require a helpful lemma.

Lemma 3.4.8. Ifp is an nc symmetric polynomial that is nc plush on an nc open

set, G, then its nc complex Hessian, q, can be written as in Equation (3.17)
0 = V(a,a") b W] Lz, ") D(w, ) L(a, ™)V (z, 27 b, h7]

where D(z,z") is a diagonal matriz of nc rationals and D(X,XT) = 0 for all
Xeg.

Proof. This follows immediately from Theorem 3.4.1. ]

Theorem 3.4.9. Suppose p is an nc symmetric polynomial that is nc plush on an
nc open set, G. Let 2N denote the degree of its nc complex Hessian, q. Then q

can be written as in Equation (3.17)
g = V(@,27)[h, )T L(z,27) D(z, 27) L(z, 27)TV (z, 27)[h, h7]

where D(z,27) = diag(dy, ds, ..., dy) is a positive semidefinite constant real ma-
triz (i.e., di € Rsq for alli =1,...,.N) and L(z,27) is a unit lower triangular

matrix of nc polynomials.

Proof. Lemma 3.4.8 implies D(X, XT) = 0 for every X € G. This means

for every X € G and every ¢ = 1,...,N. It remains to show that each d; is a
nonnegative constant real number.

First, write the nc complex Hessian, ¢, as in Equation (3.18)

N
q= Z V(x, 2" [h, K1) (Le;)di(z, 27 ) (Ley) 'V (2, 27)[h, 7).



65

Lemma 3.4.4 shows d; € R, is a constant, Le; contains nc polynomial entries, and

Proposition 3.4.7 shows that
diV (z,2")[h, h"]" (Ley)(Ler)"V (z,27)[h, h"]

is the nc complex Hessian for some nc polynomial that is nc plush on G. Since nc
differentiation is linear, we know that the difference of two nc complex Hessians is

an nc complex Hessian. This implies that
¢ = q—d\V(z,2")[h, "] (Ley)(Le )TV (2, ) [h, BT
N
= Y Vi, 2")[h, B")" (Le;)di(x, 2")(Le)) "V (, 2") [, BT

=2
is an nc complex Hessian. Since d;(X, XT) = 0 for all X € G and for all 4, we have
that ¢ is the nc complex Hessian for an nc symmetric polynomial that is nc plush
on G. O

Chapter 3 of this dissertation is taken from [G10] that has been submitted

for publication as

J. M. Greene, Noncommutative Plurisubharmonic Polynomaials, Part II: Local As-

sumptions, preprint, http: // arziv. org/abs/1101. 0111 .
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