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Abstract Hybrid lipid‒nanoparticle complexes have shown attractive characteristics as drug carriers

due to their integrated advantages from liposomes and nanoparticles. Here we developed a kind of

lipid-small molecule hybrid nanoparticles (LPHNPs) for imaging and treatment in an orthotopic glioma

model. LPHNPs were prepared by engineering the co-assembly of lipids and an amphiphilic pheophor-

bide a‒quinolinium conjugate (PQC), a mitochondria-targeting small molecule. Compared with the pure

nanofiber self-assembled by PQC, LPHNPs not only preserve the comparable antiproliferative potency,

but also possess a spherical nanostructure that allows the PQC molecules to be administrated through

intravenous injection. Also, this co-assembly remarkably improved the drug-loading capacity and formu-

lation stability against the physical encapsulation using conventional liposomes. By integrating the advan-

tages from liposome and PQC molecule, LPHNPs have minimal system toxicity, enhanced potency of

photodynamic therapy (PDT) and visualization capacities of drug biodistribution and tumor imaging.

The hybrid nanoparticle demonstrates excellent curative effects to significantly prolong the survival of

mice with the orthotopic glioma. The unique co-assembly of lipid and small molecule provides new po-

tential for constructing new liposome-derived nanoformulations and improving cancer treatment.
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1. Introduction

Liposomes are lipid-based small vesicles that are composed of at
least one lipid bilayer surrounding the aqueous core1,2. This
characteristic of liposomes mimics the shape of natural cellular
compartments and they have minimal toxicity, high level of
biocompatibility and biodegradability3e5. The amphiphilic struc-
ture of liposomes allows them to entrap both hydrophilic and
hydrophobic drugs, making them excellent candidates for drug
delivery platforms6,7. Although liposomes have many intrinsic
advantages, poor stability and low drug loading capacity of con-
ventional liposomes limit their efficacy, thus needing further
optimization8e10. Recently, hybrid lipid‒nanoparticle complexes
(HLNCs) have emerged as a new generation of drug delivery
systems11e13. These hybrids are engineered to integrate the
excellent properties of nanoparticles, such as high stability and
ease of functionalization, with good biocompatibility and low
toxicity of liposomes. For instance, solid lipid nanoparticles
entrapping inorganic nanoparticles, like Au nanoparticles and
polymetric lipid hybrid nanoparticles entrapping polymers, such
as polylactic acid, both exhibited improved stability and potential
application in bioimaging and drug delivery12,14e16. Since lipid-
based hybrid nanoparticles have many integrated advantages, it
is promising to utilize lipid on other nanomaterials for improved
formulation to achieve enhanced therapeutic effect.

Recently, small molecule self-assembled nanomaterials in
which single or multiple drug molecules serve as both building
blocks and cargos have been engineered as a promising candidate
for drug delivery17e19. Compared to the conventional nanoscale
drug delivery system, small molecule-assembled nanomaterials
exhibit improved features, such as higher drug loading efficiency
and a simple formulation process20. Our group has developed a
mitochondria targeting photosensitizer (PQC NFs) capable of
forming nanofibers (NFs) through the self-assembly of amphi-
philic pheophorbide a‒quinolinium conjugate (PQC)21. PQC NFs
exhibit specific accumulation in mitochondria and can be retained
within tumor sites in vivo for 10 days. As a consequence, PQC
NFs could achieve a powerful tumor ablation effect in both sub-
cutaneous and orthotopic oral cancer models with only a single
dose of treatment. Unfortunately, due to the nanofiber structure,
PQC NFs were unable to be administrated by intravenous injec-
tion (i.v.), which limits its application to other tumor types and its
clinical translation.

Herein, we report a kind of mitochondria-targeting lipid-small
molecule hybrid nanoparticles (LPHNPs) which were constructed
by the co-assembly of lipids and PQC. Different from PQC NFs,
LPHNPs exhibited a spherical nanostructure and desirable particle
size, which reduced the potential systemic toxicity and enabled
the nanoparticles to be administered via i.v. injection (Fig. 1). In
addition, LPHNPs showed a higher loading capacity and better
stability compared to conventional liposomes and preserved the
excellent properties of PQC, such as mitochondria targeting,
fluorescent imaging capability, and photosensitization. Notably,
LPHNPs achieved excellent in vivo imaging ability, and potent
therapeutic effects in an orthotopic glioma model in immune
competent mice. The simple preparation procedure, admirable
PDT therapeutic effect, and optical imaging ability make this
hybrid nanoparticle an ideal candidate for imaging and treatment
of glioma.

2. Materials and methods

2.1. Chemicals

Pheophorbide a (PA) was bought from Santa Cruz Biotechnology
(TX, USA). L-a-Phosphatidylcholine was purchased from Avanti
Polar Lipids, Inc (AL, USA). Cholesterol was brought from MP
Biomedicals (OH, USA). mPEG-DSPE (MW: 2000) was brought
from Laysan Bio, Inc (AL, USA). Organic solvents were pur-
chased from Fisher Scientific (MA, USA).

2.2. Preparation of NPs

PQC molecule was synthesized according to our previous report21.
LPHNPs and PA@liposome were prepared via a classical thin-film
hydration method22,23. Briefly, L-a-phosphatidylcholine (EPC, 10
mg), cholesterol (2.2 mg), mPEG-DSPE (2.2 mg) and PQC (1 mg)
or PA (1 mg) were dissolved in chloroform and added into a
round-bottom flask under stirring. Then, the chloroform was
evaporated to form a thin film. 1 mL phosphate-buffered saline
(PBS) was added to re-hydrate the thin film, followed by low-level
shaking overnight.

2.3. Characterization of NPs

UVevis spectra were obtained with a UVevis spectrometer (UV-
1800, Shimadzu). Fluorescence spectra were collected by a fluo-
rescence spectrometer (RF-6000, Shimadzu) with the excitation
wavelength at 412 nm. Size distribution, PDI and zeta potential
were measured by dynamic light scattering (DLS; Malvern, Nano-
ZS). The morphology of nano-assemblies was observed by a Talos
L120C TEM (Thermo Fisher, USA) at an accelerating voltage of
80 kV. To calculate the drug loading rate, a standard curve be-
tween a series of free PQC or PA solutions and the absorbance at
410 nm was generated. Nano-assemblies were filtered by the
centrifugal centrifuge columns (MWCO: 10 kDa) and the absor-
bance of the filtrate was measured.

2.4. Cell culture

The original and transfected GL261 and U251 cells were kindly
provided by Dr. Kit Lam’s lab. The U118 and IMR-90 cells were
obtained from ATCC. U118 and U251 cells were cultured in
Dulbecco’s modified Eagle medium (DMEM), containing 10%
FBS and 1% penicillin/streptomycin. IMR-90 cells were cultured
in Eagle’s minimum essential medium (EMEM), containing 10%
FBS and 1% penicillin/streptomycin. GL261 cells were main-
tained in the Gibco Dulbecco’s modified Eagle medium: Nutrient
Mixture F-12 (DMEM/F-12), containing 1 � ITS (Insulin-
Transferrin-Selenium) Liquid Media supplement (Sigma, USA), 1
� MEM Non-Essential Amino Acids (Thermofisher, USA), 1 �

http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1 Schematic illustration of hybrid nanoparticles (LPHNPs) based on amphiphilic lipids and mitochondria targeting PQC molecules.
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GlutaMAXTM (Thermofisher, USA), 10% FBS and 1% peni-
cillin/streptomycin. All cells were incubated at 37 �C in a fully
humidified atmosphere of 5% CO2 in the air.

2.5. Cell viability assay

GL261, U251, U118 and IMR-90 cells (5 � 103 cells/well) were
plated in 96-well plates, incubated overnight, and then treated
with different concentrations of agents as indicated. After 24 h
treatment, the cells were washed and cultured with fresh medium.
For the light treated groups, cells were irradiated for 30 s using a
633-nm LED array (Omnilux new-U, power density: 30 mW/cm2)
and further incubated for 24 h in parallel with the non-light treated
group. Cell viability was quantified using the CellTiter-Glo assay
(Promega, USA) and the luminescence intensity was measured by
a microplate reader (Molecular Devices, SpectraMax iD5, USA).

2.6. Cell uptake assay

GL261 cells (5 � 103 cells/well) were seeded in a 96-well plate,
incubated overnight for full attachment, and treated with 1 mmol/L
of agents at different time points as indicated. At the end of the
experiment, cells were lysed with dimethyl sulfoxide (DMSO).
Fluorescence intensity (Ex Z 412 nm, Em Z 675 nm) was
measured by a microplate reader (Tecan, Switzerland).

2.7. Colocalization assay

To conduct the subcellular localization assays, GL261 cells were
incubated in a cell view dish overnight and treated with LPHNPs
or PA@liposome (1 mmol/L) for 24 h, followed by staining with
MitoTracker Green (Cell Signaling Technology, USA) for 1 h and
Hoechst 33342 (Thermo Fisher Scientific, USA) for 15 min. Cells
were visualized using a confocal laser scanning microscopy
(CLSM; Carl Zeiss, Germany). Signals of LPHNPs or PA@l-
iposome were observed under the Cy5 channel, MitoTracker were
observed under the Alexa Fluor 488 channel and Hoechst 33342
were observed under Hoechst 33342 channel. The corresponding
Pearson’s correlation coefficient was calculated by ImageJ Fiji.

2.8. Mitochondrial membrane potential analysis

JC-1 dye (Thermo Fisher Scientific, USA) was used as an indicator
of mitochondrial membrane potential. Briefly, cells (2 � 104 cells/
well) were treated as indicated for 24 h, washed and cultured with
fresh medium. For the light treated group, cells were irradiated for
30 s using a 633-nm LED array (30 mW/cm2) and incubated for 2
h. Then 0.5 mg/mL JC-1 was added for another 30 min of incu-
bation. Meanwhile, Hoechst 33342 (0.1 mg/mL) was added and
incubated for 15 min. Images were captured by CLSM. The ratio of
red/green fluorescence intensity was calculated by ImageJ Fiji.

2.9. Electron microscopy

GL261 cells seeded at 2 � 104 cells/well in 8-well slide plates
(Thermo Fisher, USA) were incubated overnight, treated as indi-
cated for 24 h and then washed with PBS. For the light treated
group, cells were incubated with fresh medium and were treated
with light for 30 s. After another 2 h of incubation, cells were
fixed with the 0.1 mol/L cacodylate buffer containing 2.5%
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glutaraldehyde plus 2% paraformaldehyde, and transferred to the
carbon square mesh, followed by observation using the Talos
L120C TEM.

2.10. ROS/MitoROS production assay in cellular level

GL261 cells (1.0 � 106 cells/well) were seeded in 96-well plates
and cultured for 24 h. The cells were treated with 1 mmol/L
LPHNPs or PA@liposome NPs for 24 h. After washing with PBS,
the cells were incubated with DCF-DA (10 mmol/L) probe for
30 min, followed by light treatment (633-nm LED array,
30 mW/cm2) for 30 s. Cells were collected and analyzed by flow
cytometry (Guava easyCyte Flow Cytometer, MilliporeSigma,
USA). Data analysis was accomplished using guavaSoft
3.3 software. For CLSM, cells were treated as above and were
incubated with DCF-DA (10 mmol/L) and 1 � MitoROS™ 580
(AAT Bioquest, Inc., USA) probe for 30 min, followed by light
treatment (633-nm LED array, 30 mW/cm2) for 30 s. Cells were
incubated for 30 min and then observed by CLSM.

2.11. Apoptosis assay

GL261 cells (5 � 105 cells/well) were seeded in 6-well plates and
cultured for 24 h. The cells were treated with 0.5 mmol/L LPHNPs
or PA@liposome NPs for 24 h. After washing with PBS, the cells
were incubated with fresh media and irradiated for 30 s (633-nm
LED array, 30 mW/cm2), and were cultured for another 24 h. Cells
were collected and stained with the apoptosis kit (Annexin V-
FITC/propidium iodide, Biolegend, USA) according to the man-
ufacturer’s instructions. All samples were immediately analyzed
by flow cytometry (Guava easyCyte Flow Cytometer, Milli-
poreSigma, USA) after staining. Data analysis was accomplished
using guavaSoft 3.3 software.

2.12. Animal model

All animal experiments were carried out in accordance with
guidelines and animal protocol approved by the ethics committee
of the University of California, Davis, USA. Female C57BL/6
mice (6 weeks old) were purchased from Harlan (Livermore, CA,
USA) for orthotopic model establishment. 2 mL of GL261 cells (5
� 105 cells) were injected into the right striatum of the mouse.
Animals received post-surgery pain management for 3 days.

2.13. In vivo/ex vivo fluorescence imaging

C57BL/6 mice bearing orthotopic GL261 tumors were subjected
to tail vein injection of LPHNPs (10 mg/kg). Mice were injected
with D-luciferin (150 mL of 20 mg/mL) and imaged using Lago X
(Spectral Instruments Imaging, USA) at designated time points.
After 24 h of injection, mice were sacrificed, and their organs
including the brain with tumor were harvested for ex vivo imaging.
The whole brain bearing a tumor was immersed with optimum
cutting temperature (O.C.T.) compound and frozen at �80 �C, and
then cut into 10 mmol/L thick cryo-sections for fluorescence im-
aging. The corresponding Pearson’s correlation coefficient was
calculated by ImageJ Fiji.

2.14. In vivo antitumor studies

One week after tumor implantation, C57BL/6 mice bearing
orthotopic GL261 tumors were randomly divided into three
groups: PBS, LPHNPs and PA@liposome. LPHNPs and PA@l-
iposome (10 mg/kg) were injected via tail vein for one dose on
Day 0. For the light treated groups, the right side of the brain was
irradiated with a NIR laser system (Shanghai Xilong Optoelec-
tronics Technology, China) at 680 nm at 0.2 W/cm2 for 3 min after
24 and 48 h of drug administration. Tumor growth was monitored
over time by recording bioluminescence signals (mouse was
injected with 150 mL of 20 mg/mL D-luciferin) using Lago X
(Spectral Instruments Imaging, USA). At the end of experiment,
mice were sacrificed, and the tumors were harvested for histopa-
thology analysis.

2.15. Statistical analysis

The experimental data were statistically analyzed using the
GraphPad Prism 7.0. Data were reported as the mean � standard
deviations (SD). Data statistics were analyzed by calculating the t-
test between two groups. ns.: not significant; *P < 0.05;
**P < 0.01; ***P < 0.001; ****P < 0.0001.

3. Results and discussion

3.1. Preparation and characterization of the LPHNPs

As we presented previously, PQC molecule, the active pharma-
ceutical ingredient that targets mitochondria tends to form nano-
fibrils (PQC NFs), which is conducive to the retention in tumor of
agents but not to their blood circulation (Fig. 2A and C)21. To
adjust and optimize the micromorphology of PQC nano-
assemblies, we introduced an amphiphilic lipid (L-a-phosphati-
dylcholine) for co-assembly. The typical thin-film hydration
method was utilized to prepare LPHNPs (Fig. 2B). Transmission
electron microscopy (TEM) studies showed that LPHNPs have a
uniform and typical core-shell vesicular microstructure (Fig. 2D).
This result is consistent with the dynamic light scattering (DLS)
measurements, by which the hydrodynamic size, polydispersity
index (PDI), and surface charge of LPHNPs were determined to be
w54.3 nm, w0.26 and �1.9 mV, respectively (Fig. 2E). To better
elucidate the superiority of the hybrid nanoparticle, we also made
a conventional nanoformulation (PA@liposome) that physically
loads the hydrophobic PA in liposomes. Under the same drug
loading content with LPHNPs, PA@liposome displayed irregular
microstructures with several cavities and uneven thickness of films
despite the similar DLS result to that of LPHNPs (Fig. 2G and H).
This is likely due to the high hydrophobicity and strong p‒p
stacking of PA as well as the resulting varied aggregation and
distribution in the hydrophobic bilayer. It should be noted that
compared with the high-positively charged PQC NFs (w40 mV)
and high-negatively charged PA@liposome, LPHNPs displayed a
neutral surface charge (Supporting Information Fig. S1a), which
reflects that the interaction between the lipids and PQC molecules
on the surface of nano-assemblies (Fig. 2B). Co-assembly of lipids
with PQC qualified a high drug loading capacity (up to 55%) with
an excellent encapsulation efficiency (92%), which can be
attributed to the amphiphilic property and co-assembly of PQC
and lipids (Fig. S1b). In addition, LPHNPs were stable in the long-
term (one week) storage condition or in the presence of 10%
serum (Fig. 2F and Fig. S1c). At 10% loading rate, PA@liposome
also showed stability for over one week or in PBS with 10% serum
(Fig. 2I and Fig. S1d). However, PA@liposome precipitated after
one-week storage when the loading rate increased to 20%



Figure 2 (A) Chemical structures of PA and PQC. (B) Schematic synthesis of LPHNPs. (C, D) Representative TEM images of PQC NFs (C)

and LPHNPs (D). Scale bar Z 50 nm. (E) DLS analysis of LPHNPs. (F) Stability of LPHNPs in PBS for 7 days. (G) Representative TEM image

of PA@liposome. Scale bar Z 50 nm. (H) DLS analysis of PA@liposome. (I) Stability of PA@liposome in PBS for 7 days. (J) 1O2 production

levels of different formulations of PQC or PA in the aggregation (PBS) and dissociation (PBS/SDS) forms with SOSG as an 1O2 indicator. The

mentioned PBS/SDS solution contains 1% SDS (w/v) which was used to disrupt nanoparticles. Values are mean � SD. Statistical analysis was

performed with t-test. ns., not significant.
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(Fig. S1e). Overall, LPHNPs exhibited a notable advantage over
the traditional liposome formulations.

3.2. Optical and photodynamic properties

We next investigated the optical properties for further under-
standing the co-assembly details of lipids and PQC molecules. As
shown in Supporting Information Fig. S2a and b, similar to that of
PA@liposome, the fluorescence of LPHNPs was quenched in the
aggregation state (intact nanoparticle), while recovered in the free
state (dissociated nanoparticle) when the nanoparticles were
dissociated by sodium dodecyl sulfate (SDS). As previously
shown, PA is a typical fluorophore with aggregation-caused
quenching (ACQ) property24e26. The fluorescence quenching
behavior of LPHNPs indicates that the strong hydrophobicity
interaction and p‒p stacking of PA play an essential role in the
co-assembly. Moreover, the near-infrared (NIR) fluorescence im-
aging studies demonstrated inactivated fluorescence of aggregated
photosensitizer and the discernible fluorescence of free photo-
sensitizer (Fig. S2c). This is consistent with the aforementioned
findings. Subsequently, the photodynamic efficiency was evalu-
ated by using the singlet oxygen sensor green (SOSG) as an 1O2

indicator27. It was found that in the same medium, different for-
mulations of PQC and PA produced an equivalent level of 1O2.
This result not only indicates that the PQC and PA with the same
photosensitization group have the equivalent photodynamic effi-
ciency but also implies that the co-assembly with lipids did not
hinder the 1O2 generating capacity of PQC (Fig. 2J). In addition,
the free PQC or PA molecules (in SDS/PBS) produced signifi-
cantly increased levels of 1O2 than their aggregated forms (in pure
PBS), which is consistent with the fluorescence performance and
our previous findings21.

3.3. Cellular uptake and cell viability

Cellular uptake of LPHNPs was assessed by using GL261, a
murine glioma cell line. As shown in Fig. 3A, LPHNPs showed a
rapid accumulation inside cells over time, and their cellular con-
centrations at predetermined time points are significantly higher
than those of PA@liposome, respectively. This is because of the
neutral surface charge of LPHNPs in contrast to the negative
charge on the surface of conventional liposomes28,29. Cell
viability assays were then carried out to ascertain the anticancer
effects against GL261 cells, and the results are presented in Fig.
3B. In the absence of light irradiation, PA@liposome and free
PA exhibited a neglectable anti-GL261 effect (IC50 > 90 mmol/L),
while LPHNPs and PQC NFs were more potent by showing their
IC50 at approximately 3 mmol/L (Supporting Information Fig.



Figure 3 (A) Time-dependent uptake of PA@liposome and LPHNPs (1 mmol/L) in GL261 cells. (B) Viability curves of GL261 cells treated

with PA, PQC NFs, PA@liposome and LPHNPs, with or without light irradiation. (C) Fluorescence colocalization of LPHNPs or PA@liposome (1

mmol/L) and mitochondria in GL261 cells. Cell nuclei were stained with Hoechst 33342. Scale bar Z 20 mm. (D) Pearson correlation coefficient

(Pearson’s R) for colocalization analysis and the mean fluorescence intensity in (C). (E) Fluorescence imaging of ROS in GL261 cells treated as

indicated (0.5 mmol/L). Cell nuclei were stained with Hoechst 33342. Scale bar Z 50 mm. (F) JC-1 imaging for analysis of the mitochondrial

membrane potential of cells that were treated as indicated. Cell nuclei were stained with Hoechst 33342. Scale bar Z 20 mm. (G) Corresponding

quantitative analysis of red to green fluorescence intensity ratio of cells in (G). (H) Representative TEM images of GL261 cells that were treated

as indicated (0.5 mmol/L). Scale bar: 2 mm (upper panel) and 0.2 mm (lower panel). Arrows: mitochondria. NL: without light irradiation, L: with

light irradiation. Light treatment was performed at a power density of 30 mW/cm2 (633-nm LED array) for 30 s. Values are mean � SD. Statistical

analysis was performed with t-test, ns., not significant; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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Figure 4 (A) Bioluminescence imaging of orthotopic GL261 tumors and fluorescence biodistribution of LPHNPs (10 mg/kg) in living mice at

different time points after i. v. injection. (B) Confocal images of cryosection of harvested brain tissues from the orthotopic GL261 mouse model at

48 h post-injection with LPHNPs and calculated Pearson’s R for colocalization analysis of GFP and Cy5 channel. Green: GL261-GFP, blue:

Hoechst 33342, red: LPHNPs. Scale bar Z 1 mm. (C) Ex vivo fluorescence imaging to show biodistribution of LPHNPs in the tumor and major

organs. Arrows: tumor. (D) Multichannel fluorescence imaging of local brain bearing the orthotopic GL261 tumor and calculated Pearson’s R for

colocalization analysis of GFP and Cy5 channel. Green: GL261-GFP, red: LPHNPs. Scale bar Z 4 mm.
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S3d). Compared with the corresponding treatment groups without
light, each group involved in light exposure showed increased
antiproliferative activity against GL261 cells. Notably, among all
groups, the light-activated LPHNPs and PQC NFs exhibited the
most striking potency (IC50 Z 0.21/0.25 mmol/L). Similar results
were also obtained in other two human glioma cell lines, U251
and U118 (Figs. S3a and b). It is worth mentioning that no matter
with or without light irradiation, LPHNPs formed from the co-
assembly of lipid and PQC are equivalent in antiproliferative ef-
ficiency to PQC NFs formed by the self-assembly of PQC, indi-
cating that the LPHNPs still preserve the properties of PQC NFs in
the sub-localization and photosensitization inside cancer cells.
Similar to PQC NFs, LPHNPs exhibited decreased cytotoxicity to
the noncancerous IMR-90 cells compared with cancer cell lines,
indicating that normal cell line is more tolerant to LPHNPs (Fig.
S3c).

3.4. Mitochondria targeting and MitoROS production

The localization of photosensitizers in mitochondria is a key
proponent of the compelling photodynamic anticancer effect of
PQC NFs in cells21. To determine whether LPHNPs possess a
comparable property of subcellular localization, the mitochon-
dria colocalization study was conducted. GL261 cells were
incubated with LPHNPs or PA@liposome, followed by staining
with MitoTracker green. As shown in Fig. 3C and D, the red
fluorescence of LPHNPs consistently overlapped with Mito-
Tracker green, which contrasts sharply with the localization of
PA@liposome and indicates that LPHNPs effectively deliver
PQC molecules to mitochondria after uptake by cells. Since it
has been verified that LPHNPs can target the mitochondria of
cancer cells, we then explored their cellular photosensitization
effects. The mitochondrial ROS (MitoROS) levels were
measured by using MitoROS™58030. Compared with PA@l-
iposome, LPHNPs significantly enhanced the generation of ROS
in mitochondria after irradiation (Supporting Information
Fig. S4a and b). Because the mitochondria are the main source
of ROS, the enhanced MitoROS level would lead to excessive
cellular ROS. By using 20,70-dichlorofluorescein diacetate (DCF-
DA), we measured the cellular ROS. As shown in Fig. 3E and
Fig. S4c, groups upon light treatment showed enhanced ROS
production compared with the groups without light treatment.
Moreover, LPHNPs with light irradiation dramatically induced
ROS generation, while PA@liposome only exhibited a limited
increase in ROS. This difference was attributed to the mito-
chondria targeting capacity and a higher cellular uptake of
LPHNPs. Owing to the limited cellular uptake and lack of
mitochondria-targeting ability, PA@liposome only showed a
small amount of ROS production.

3.5. Mitochondria dysfunction

Mitochondrial membrane potential (Djm) is essential to mito-
chondrial functions, including driving ATP synthesis and keeping
the balance of mitochondrial metabolism31e33. Decreased Djm is
a critical sign of mitochondrial dysfunction34e36. Thus, we
detected the changes of Djm by utilizing the JC-1 dye, which
aggregates in mitochondria of normal Djm and fluoresces red, and
under low Djm is dispersed to emit green fluorescence. Compared
to the untreated group, LPHNPs with irradiation caused a signif-
icant decline in the ratio of red to green fluorescence intensity,
indicating that the mitochondria treated with LPHNPs plus light
have a decreased Djm (Fig. 3F and G). To further visualize the
effect of LPHNPs on mitochondrial microstructure, the cells that
underwent different treatments were observed under TEM. As
shown in Fig. 3H, mitochondria in the control and PA@liposome
groups exhibited intact membrane structure, with the easily
identifiable double membrane and arranged cristae. LPHNPs
without light irradiation caused only a slight morphological
change, indicating their mild activity in mitochondria. The



Figure 5 (A) Establishment of orthotopic GL261 model and treatment schedule with PBS, PA@liposome (10 mg/kg) with laser, LPHNPs

(10 mg/kg) with laser. Laser dose was set as 0.2 W/cm2 for 3 min. (B) Representative bioluminescence images of GL261-bearing mice treated

with PBS, PA@liposome with laser and LPHNPs with laser, n Z 5. (C) Quantitative data from bioluminescence imaging. (D) KaplaneMeier

survival curve of the GL261-bearing mice receiving the indicated treatments, n Z 5. (E) Calculated tumor areas from H&E staining analysis

of harvested brain tissues. (F) Representative of H&E staining analysis of the harvested brain tissues in which the heavily stained refers to the

glioma area. Scale bar: 1 mm (upper panel), 0.1 mm (lower panel). (G) Representative of Ki67-IHC staining analysis of the harvested brain

tissues. Scale bar:1 mm (upper panel), 0.1 mm (lower panel). Values are mean � SD. Statistical analysis was performed with t-test, *P < 0.05,

**P < 0.01.
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mitochondria within LPHNPs and irradiation treatment displayed
disintegrated membranes and cristae, while those treated with
PA@liposome and light remained the distinguishable membrane
structure. These data demonstrated that LPHNPs led to severe
mitochondrial dysfunction by targeting mitochondria-targeted
photodynamic effects.

3.6. Apoptosis analysis

Mitochondria play crucial roles in the programmed cell death37.
The excess production of ROS in cells causes damage to
mitochondria and further leads to the activation of cell death
processes such as apoptosis38,39. Since LPHNPs induced a dra-
matic increase in ROS and led to mitochondrial dysfunction, we
studied the proapoptotic effects of LPHNPs in cells. The apoptotic
cell population was examined by using double staining with
annexin V-FITC and propidium iodide. As shown in Supporting
Information Fig. S5, only LPHNPs with light treatment induced
a significant apoptotic population among all treatment groups, the
Annexin V positive populations reached 39%. However, PA@l-
iposome with light failed to cause apoptosis in cells, which may
refer to its low concentration and limited uptake. LPHNPs without
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light did not generate apoptotic cells, which indicated low cyto-
toxicity of LPHNPs in the absence of light.

3.7. Toxicity evaluation

To explore the systemic biocompatibility of LPHNPs, we assessed
their safety in mice by monitoring body weight, hematology and
pathological analysis. No significant body weight changes were
observed after i.v. injection of 10 mg/kg LPHNPs for three weeks
(Supporting Information Fig. S6). H&E staining showed that the
histological patterns of major organs of LPHNPs treated mice are
similar to those of the PBS group, indicating minimal systemic
toxicity of LPHNPs. In addition, there were no obvious changes in
the hematologic indexes found among the two groups. These re-
sults suggested that LPHNPs are tolerated in mice with i.v.
administration.

3.8. Fluorescence imaging in vivo

To examine the application of LPHNPs in brain tumor imaging,
an orthotopic glioma model was established by implanting
GL261 cells expressing GFP and luciferase into the right stria-
tum area of C57BL/6 mouse. Fluorescence imaging in vivo was
conducted by monitoring the fluorescence of LPHNPs at
different time intervals. Fig. 4A showed that LPHNPs circulated
rapidly through the whole body and accumulated at the tumor
sites in 2 h post-injection. Importantly, LPHNPs mainly
distributed in the tumor sites at 48 h after injection, indicating
their excellent tumor targeting capacity. The corresponding
confocal imaging of cryo-sections exhibited overlapping be-
tween GL261 tumor (green) and LPHNPs (red, Fig. 4B). It is
very interesting that hybrid nanoparticles without positive target
function can accumulate at the brain tumor sites. It has been
reported that dequalinium could facilitate the micelles to trans-
port through the blood‒brain barriers (BBB)40,41. Since dequa-
linium is a dimer of quinolinium, LPHNPs may have the similar
ability to go through the BBB. In addition, the blood‒brain
tumor barrier (BBTB) of glioma has a large fenestration size and
interendothelial gaps of 48 nm and 1 mm, respectively42. The
process of engraftment maybe also compromises BBTB integ-
rity43. Therefore, nano-sized LPHNPs could selectively accu-
mulate in glioma tissue.

To further study the distribution of LPHNPs, the mice were
sacrificed at 24 h post-injection to collect the major organs for
ex vivo imaging. Fig. 4C and D showed that the fluorescent signals
of LPHNPs highly overlapped with the GFP signals (the indicated
tumor region), confirming the remarkable ability for brain tumor
imaging of LPHNPs. The majority of collected organs showed low
fluorescence signals, while the signals in kidneys were relatively
high. This is likely due to the renal clearance pattern for porphyrin
derivatives44e46.

3.9. Antitumor efficacy in vivo

The therapeutic effect in vivo was evaluated by using the orthotopic
GL261 model as well. Mice were randomly assigned into three
groups (n Z 5) and treated as indicated, followed by two laser
treatments (0.2 W/cm2, 3 min) at 24 and 48 h post-injection,
respectively (Fig. 5A). As shown in Fig. 5B‒D, PA@liposome
with laser group negligibly inhibited tumor progression and did not
prolong the overall survival time of mice compared to the PBS
group showing progressively increased bioluminescence intensity.
In contrast, LPHNPs with laser group significantly impeded tumor
growth and extended overall survival outcome of animals (median
survival, >60 days), as compared to the PBS group (median sur-
vival, 22 days) and PA@liposome with laser (median survival, 23
days). Importantly, three mice from the treatment group of LPHNPs
plus laser survived longer than 60 days. Compared with other
groups, the mice treated with LPHNPs and laser showed smaller
tumor areas according to H&E staining (Fig. 5E and F). The Ki67-
IHC showed the low proliferation activity of brain tissue treated
with LPHNPs and laser (Fig. 5G). In addition, all groups didn’t
exhibit abnormalities in the histology of major organs, further
indicating the safety of this hybrid nanoparticle in vivo (Supporting
Information Fig. S7).

4. Conclusions

In this work, we developed a kind of mitochondria-targeting hybrid
nanoparticles (LPHNPs) by engineering the co-assembly of the
amphiphilic photosensitizer (PQC) and lipids as an efficient nano-
platformfor imaging and therapy in anorthotopic gliomamodel. PQC
was co-assembled with lipids to achieve an improved drug-loading
rate that breaks through the limitation of conventional liposomes.
Compared with the nanofiber self-assembled by PQC, LPHNPs
preserved similar properties, including mitochondria-targeting ca-
pacity and photosensitization. In addition, the spherical nanostructure
and desirable nanoscale of LPHNPs enabled PQC molecules to be
administrated through i.v. injection. Due to the excellent mitochon-
dria targeting capacity, LPHNPs with irradiation showed enhanced
ROS and MitoROS production in cells and displayed w10 times
lower IC50 value than that of PA@liposome with irradiation.
Comparatively, PA@liposome exhibited limitedROSproduction and
efficiency of antiproliferation. Notably, the intrinsic fluorescence
imaging capability of PQC could be utilized for the visualization of
drug distribution in vivo and tumor imaging. Fluorescence imaging
showed that LPHNPs accumulated in the tumor sites at 2 h post-
injection and were retained for at least 48 h. Ex vivo imaging
further confirmed the tumor targeting capacity of LPHNPs. In the
orthotopic glioma model, a single dose of LPHNPs with laser treat-
ment exhibited superior inhibition efficacy on tumor progression.
More importantly, it significantly prolonged the survival of micewith
orthotopic glioma.

The clinic data suggest potential beneficial effect of PDT for
improving survival in glioma patients compared to standard
therapy47. However, the application of PDT is hindered by the
limited light penetration through the skull with an estimated
effective therapeutic window restricted to 0.75e1.5 cm from the
light source47e49. The initial therapeutic approach for glioma is
surgery50. LPHNPs can be used as an effective photodynamic
agent to eliminate the residue tumor cells after surgery when the
skull is still opening. In addition, LPHNPs could be further
modified through metal chelation to achieve positron emission
tomography (PET) and magnetic resonance imaging (MRI). The
simple preparation procedure, PDT therapeutic effect and in vivo
imaging ability make this hybrid nanoparticle an ideal candidate
for glioma imaging and treatment.
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