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Single cell sequencing of human white adipose tissue identifies 
novel cell states in health and obesity
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Timothy E. O’Sullivan1,2,*

1Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of 
Medicine at UCLA, Los Angeles, CA 900953

2Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA

3Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, 
California, USA

4Institute for Genomics and Proteomics, University of California, Los Angeles, California, USA

Abstract

White adipose tissue (WAT) is an essential regulator of energy storage and systemic metabolic 

homeostasis. Regulatory networks consisting of immune and structural cells are necessary to 

maintain WAT metabolism, which can become impaired during obesity in mammals. Using single-

cell transcriptomics and flow cytometry, we unveil a large-scale comprehensive cellular census of 

the stromal vascular fraction (SVF) of healthy lean and obese human WAT. We report novel 

subsets and developmental trajectories of adipose-resident innate lymphoid cells (ILCs), dendritic 

cells (DCs) and monocyte-derived macrophage populations that accumulate in obese WAT. 

Analysis of cell-cell ligand receptor interactions and obesity-enriched signaling pathways revealed 

a switch from immunoregulatory mechanisms in lean WAT to inflammatory networks in obese 

WAT. These results provide a detailed and unbiased cellular landscape of homeostatic and 

inflammatory circuits in healthy human WAT.

White adipose tissue (WAT) is the primary metabolic organ utilized for energy storage in 

mammals. During dietary nutrient excess, adipocytes store energy in the form of 

triacylglycerides to fuel peripheral organ metabolism during states of caloric restriction 
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through fatty acid release1. Chronic caloric excess results in the expansion of the WAT 

through adipocyte hyperplasia and hypertrophy, resulting in increased body mass and 

obesity1. Due to limits on adipocyte fat storage and cell size, adipocytes can undergo chronic 

stress responses and apoptosis during obesity, leading to WAT inflammation that contributes 

to a systemic low-grade inflammatory state associated with cardiovascular disease and Type 

2 diabetes (T2D)1,2. However, the cell types and mechanisms responsible for initiating 

human WAT inflammation during obesity remain poorly understood.

In mice, diet-induced or genetic obesity-associated increases in the cytokines tumor necrosis 

factor (TNF) and IL-6 in addition to miRNA-containing exosomes produced by 

proinflammatory macrophages can subsequently reduce systemic insulin sensitivity over 

time3. Furthermore, recruitment and activation of type 1 immune cells such as CD8+ T cells, 

TH1 cells, NK cells and type 1 innate lymphoid cells (ILC1) contribute to the accumulation 

of proinflammatory macrophages in the adipose tissue in an IFN-γ-dependent manner4. 

However, current clinical strategies to target individual proinflammatory cytokines or 

pathways induced by WAT macrophages in obese patients (i.e. anti-TNF) are either 

ineffective or only moderately improve insulin sensitivity in obese T2D patients, suggesting 

that multiple overlapping pathways likely maintain WAT inflammation in humans5. Given 

that the prevalence of obesity is expected to increase to nearly 50% of the US population by 

20306, there is a pressing need to understand the complete cellular composition and cell type 

specific inflammatory network of the healthy human WAT in order to dissect the 

mechanisms that may lead to systemic chronic low-grade inflammation and obesity-

associated metabolic dysfunction.

Recent studies employing single cell RNA-seq (scRNAseq) or single nuclei RNA-seq have 

provided broad characterization of the composition of the stromal vascular fraction (SVF) 

and adipocytes of human WAT7–9. While these studies have discovered abundant adipocyte, 

stromal and macrophage populations with unique roles in WAT homeostasis, their scale was 

too limited to represent the full extent of immune cell heterogeneity present in the tissue. 

Thus, whether previously annotated WAT immune populations represented bona fide cell 

lineages, activation or developmental states, or a complex mixture of unidentified cell types 

remained unknown. Therefore, we sought to generate a large scale, high-dimensional 

analysis of sorted immune cells derived from healthy lean and obese patient WAT to more 

precisely define the changes in immune composition and signaling networks that are 

associated with human obesity at single cell resolution.

Our analysis of approximately 110,000 human cells present in the SVF of human WAT 

revealed 28 distinct cell types, including 8 previously uncharacterized immune populations. 

These consisted of unique subsets of adipose-resident natural killer (NK) cells, innate 

lymphoid cells (ILCs), macrophages and dendritic cells (DCs). Using independent cohorts of 

healthy patient samples, we demonstrated that distinct subsets of stromal cells, T cells, DCs, 

macrophages and ILCs accumulate in obese WAT by flow cytometry. Finally, analysis of 

single cell ligand-receptor pairs and upstream regulators revealed distinct obesity-associated 

inflammatory interactomes and signalomes enriched in WAT-resident immune cells. Our 

high-dimensional single cell WAT atlas provides insight into the potential functions, 

regulation and interactions of known and novel human WAT cell types.
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Results

Single cell sequencing reveals a diverse WAT immune system.

To understand the unbiased cellular composition of the SVF of healthy human WAT, we 

isolated single cell suspensions of deep subcutaneous abdominal adipose tissue from 3 lean 

and 3 obese patients. Patients were considered “healthy” if they had no history of 

cardiovascular or liver disease, diabetes, or immunological disorder. (Supplementary Table 

1). Single cell suspensions were sorted into CD45+ (hematopoietic) and CD45− (non-

hematopoietic) cells for each patient sample, and then profiled using 10x Genomics 

Chromium droplet scRNA-seq (Fig. 1a). The resulting quality-controlled human WAT SVF 

single cell atlas included 82,577 cells that were clustered based on differential expression of 

marker genes and visualized using a uniform manifold approximation and projection 

(UMAP) plot (Fig. 1b, Extended Data Fig. 1a, Supplementary Table 2). Cluster annotation 

and identification was corroborated using overlapping marker genes from the Human Cell 

Atlas and previous scRNA-seq datasets profiling human immune lineages and parenchymal 

cells10–14. Clustering analysis revealed 19 distinct clusters: adipocyte precursor cells (APC), 

preadipocytes (pAD), smooth muscle cells (SMC), endothelial cells (Endo), conventional 

type 1 DCs (cDC1), perivascular macrophages (PVM), non-classical monocytes (ncMo), B 

cells, naïve CD4+ T cells, naïve CD8+ T cells, cytotoxic CD8+ T cells, CD8+ γδ T cells, 

regulatory T cells (Treg), mucosal-associated invariant T cells (MAIT), mature natural killer 

(mNK) cells, and 4 previously uncharacterized clusters of myeloid-like cells, conventional 

type 2B DC-like cells (cDC2B), NK-like cells, and non-NK ILCs (Extended Data Fig. 

1a,b,Extended Data Fig. 2a–c).

Identified clusters contained cells from both lean and obese WAT samples, suggesting that 

each identified cell type was associated with a common cell lineage rather than derived from 

a single patient sample (Fig. 1c). Analysis of the frequency of lean and obese patient cells in 

each cluster revealed an increased proportion of endothelial cells and adipose-resident 

dendritic cells, unconventional T cells, ILCs, myeloid-like and NK-like cells in obese WAT 

samples. In contrast, frequency analysis suggested a decreased or unchanged proportion of 

preadipocytes, circulating CD8+ and CD4+ T cell subsets, B cells, and other myeloid 

populations (Fig. 1d,e). To interrogate these changes, we first used an independent cohort of 

4 lean, 4 overweight, and 3 obese individuals to validate all identified structural cell and 

conventional and innate-like T cell populations by flow cytometry (Extended Data Fig. 1c, 

Extended Data Fig. 2d, Supplementary Table 3). Using an additional cohort of 4 lean 

patients, we confirmed KLRB1 (CD161) expression on a defined population of MAIT cells 

and detected the presence of CD4+CD8− and CD4−CD8− γδ T cells in addition to a rare 

population of Vα24-α18-positive invariant natural killer T cells (iNKT) cells that could not 

be resolved by our 36,601 non-B cell lymphoid lineage scRNA-seq dataset (Extended Data 

Fig. 2e,f, Supplementary Table 3). Flow cytometry further supported our scRNAseq 

analysis, demonstrating that WAT endothelial and APCs, as well as γδ T, MAIT, CD4+T 

cells, and Treg cells positively correlated with increasing patient BMI. In contrast, SMCs, 

pADs, and CD8+ T cells had a negative correlation. Interstitial progenitor cells had no 

correlation with patient BMI (Fig. 1f,g, Extended Data Fig. 1d, Extended Data Fig. 2g). 
While these results suggested that human obesity is associated with an accumulation of 
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diverse non-immune and lymphoid cell lineages consistent with tissue-resident phenotypes, 

how WAT-resident ILC and myeloid populations changed during obesity remained unclear. 

Several of the obese-enriched cell clusters (NK-like, myeloid-like, ILCs, cDC2B-like) likely 

represented heterogeneous populations of transcriptionally similar cell types or novel cell 

subsets that have not been described previously, suggesting that analysis of a larger sample 

size from sorted subsets was necessary to confirm cell lineage identification.

Unique WAT-resident ILC subsets accumulate in obese patients.

Previous studies from mice and humans suggest that ILCs consist of a heterogeneous family 

that can be classified into three distinct groups based on the expression of transcription 

factors, cell surface markers, and effector cytokines15. Our CD45+ sorted scRNA-seq dataset 

suggested that CD200R1 expression could distinguish ILCs from mNKs, similar to previous 

studies performed in mice and human PBMCs16,17. To examine whether further cellular 

heterogeneity existed in human WAT ILCs, we pooled single cell suspensions from the WAT 

of either 7 lean or 5 obese patients and sorted CD45+Lin−CD7+CD200R1+ or CD45+Lin
−CD7+CD200R1− populations that were subsequently analyzed using scRNA-seq (Extended 

Data Fig. 3a, Supplementary Table 4). Assessment of 14,849 pooled cells from both sorted 

populations revealed 7 distinct clusters based on differential expression of marker genes 

(Fig. 2a, Extended Data Fig. 3b, Supplementary Table 5). Similar to the CD45+ sorted 

scRNAseq dataset, mNK cells comprised a distinct cluster marked by expression of 

FCGR3A, FGFBP2, KLRF1, and EOMES (Fig. 2b, Extended Data Fig. 3b,c). However, we 

also identified the presence of two additional distinct NK subsets derived from CD45+Lin
−CD7+CD200R1− cells that expressed lower levels of FCGR3A and KLRF1 and displayed 

similar cluster marker expression with the previously identified NK-like cluster: one cluster 

of NK-like cells discerned by expression of IL7R, SELL, and CD2 similar to previously 

described CD56bright immature NK (iNK) cells in human peripheral tissues18, and a 

population of NK-like cells distinguished by expression of CXCR6, KLRC1, and GZMK 
consistent with tissue resident NK (trNK) cells described in the human liver19,20 (Fig. 2b, 

Extended Data Fig. 3b,c). 4 clusters did not express the NK lineage associated genes IRF8, 

EOMES, KLRF1, NCAM1, or PRF1. Instead these clusters could be distinguished from NK 

lineage cells based on CD200R1 and IL7R co-expression and were derived from sorted 

CD45+Lin−CD7+CD200R1+ cells, but not CD45+Lin−CD7+CD200R1− cells, indicating that 

these clusters represented ILCs (Fig 2a–c, Extended Data Fig. 3b–d). WAT ILC clusters 

were defined based on differential expression of markers genes: GATA3, IL1RL1 consistent 

with ILC2 described in mice and humans21–23; ZNF683, TBX21 consistent with ILC1 

described in mice16,24; CCR6, IL1R1, IL23R consistent with ILC3 described in mice and 

humans23,25,26; and SELL, IL1R1 consistent with circulating ILC precursor (ILCP) cells 

found in human blood27,28 (Fig. 2b,c, Extended Data Fig. 3b,c). These results confirmed that 

CD200R1 could be used as a bona fide surface marker to distinguish ILCs from NK lineage 

cells in human WAT. Analysis of the frequency of lean and obese patient cells in each cluster 

suggested an accumulation of trNK and ILC3 in obese WAT, with a decrease in mNK and 

ILCP-like cells and little change in other identified subsets (Extended Data Fig. 3e).

To functionally validate the existence of identified NK cell and ILC clusters, we utilized 

WAT samples from two additional cohorts of 26 (10 lean, 9 overweight, 7 obese) and 12 (5 
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lean, 4 overweight, 3 obese) patients, respectively (Supplementary Table 3). Flow cytometry 

experiments corroborated the results from our scRNA-seq analysis, supporting the 

identification of 3 distinct IFN-γ-producing NK cell populations based on PERFORIN, 

CD62L, CD16, TBET, and EOMES expression: TBEThiEOMESintPERFORINhiCD16+ 

mNK; TBETintEOMEShiPERFORINintCD16− trNK; 

TBETloEOMESloPERFORINintCD16−CD62L+/− iNK (Fig. 2d,e, Extended Data Fig. 4a,c). 
Comparison of WAT NK cell subsets with human PBMC-derived CD56dim and CD56bright 

NK cells suggested that while WAT mNK cells phenotypically overlap with CD56dim NK 

cells, WAT iNK and trNK were phenotypically distinct from CD56bright NK cells and likely 

represent unique subsets of the NK cell lineage found in the WAT (Fig. 2e). Furthermore, 

mature CD200R1+ ILC populations did not express PERFORIN or EOMES, and could be 

discerned based on the expression of several surface markers and signature cytokines 

following stimulation: TBET, IFN-γ, and IL-2 expression defined ILC1; CRTH2 and IL-13 

expression defined ILC2; NKp44, IL1R1, CCR6, RORChi and IL-17A expression defined 

ILC3 (Fig 2e,f, Extended Data Fig. 4b,d,e). CD62L, the lack of other mature ILC markers, 

and the absence of cytokine production defined the ILCP-like population, similar to results 

obtained with CD200R1+CD62L+ ILCPs derived from human PBMCs (Fig. 2f, Extended 

Data Fig. 4d–f). To confirm whether specific subsets of WAT ILCs accumulate during 

obesity, we examined the frequency and density of each identified NK and ILC population 

from WAT samples of lean, overweight, and obese patients. WAT mNK cells displayed 

decreased frequency and density in obese compared to lean patients, and negatively 

correlated with patient BMI (Fig. 2g,h, Extended Data Fig. 4h). iNK and trNK cells 

increased in frequency, but not density, and did not significantly correlate with patient BMI, 

suggesting that iNK and trNK cells do not accumulate during obesity, but represent a larger 

proportion of NK cell subsets in obese WAT due to depletion of mNK cells (Fig. 2g,h, 

Extended Data Fig. 4h). Analysis of adipose-resident ILC populations revealed similar 

frequencies and densities of ILC1s in lean and obese patients (Fig. 2g,h, Extended Data Fig. 

4i). ILC2s decreased in frequency and in density in obese patients, consistent with previous 

reports in humans and mice21, but did not significantly negatively correlate with increasing 

patient BMI due to similar densities of WAT ILC2s in overweight and lean patients (Fig. 2g, 

Extended Data Fig. 4g,i). ILC3s and ILCP-like cells increased in frequency and density in 

obese WAT, and positively correlated with patient BMI, suggesting that WAT-resident ILC3s 

preferentially accumulate in obese patients compared to other mature ILC subsets (Fig. 2g,h, 

Extended Data Fig. 4i).

While circulating CD62L+ ILCPs have been found to give rise to all mature ILCs in 

humans28, UMAP visualization of sorted ILC subsets suggested that the identified WAT 

ILCP-like population was more transcriptionally similar to ILC1s and ILC3s than to ILC2s, 

suggesting that ILCP-like cells might rather represent a committed precursor to ILC1s and 

ILC3s. To test this hypothesis, we utilized RNA Velocity Analysis29 to determine the 

transcriptional fate of the ILCP-like population in silico (Fig. 3a). Projection of the velocity 

field arrows onto the UMAP plot extrapolated future states of ILCP-like cells to both mature 

ILC1 and ILC3 populations (Fig. 3a). Furthermore, CytoTRACE analysis30 suggested that 

ILCP-like cells represented less differentiated cells and that progression towards either the 

ILC1 or ILC3 cell states increased the differentiation score (Fig. 3b). Manually averaged 
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principal curves were assigned based on RNA velocity and CytoTRACE analysis, 

suggesting a clear developmental trajectory from ILCP-like cells to ILC1 and ILC3, but not 

ILC2 populations (Fig. 3c). Monocle pseudotime analysis further corroborated the ILCP-like 

to ILC1 and ILC3 transition, and assessment of the frequency of lean and obese patient cells 

in each cell cluster revealed a shift in frequency from ILCP-like and ILC1s in lean samples 

to ILC3 in obese samples (Fig. 3d,e). Analysis of differentially expressed genes (DEGs) 

between the ILC1 and ILC3 fates from ILCP-like cells showed a clear bifurcation, further 

suggesting a developmental switch to the ILC3 fate during obesity (Extended Data Fig. 5). 

Ingenuity pathway analysis (IPA) implicated both IL-23 and STAT3 signaling as important 

mediators of the transition to the ILC3 fate, whereas IFN-α coupled with ID2 and STAT5B 

signaling regulated the transition to the ILC1 fate (Fig. 3f,g, Supplementary Table 6,7). 
These results suggest that a previously unidentified shared ILC1-ILC3 precursor exists in the 

human WAT, and that the accumulation of WAT-resident ILC3 during obesity may be due to 

increased ILC3 differentiation from ILCP-like cells.

Distinct DC and macrophage subsets accumulate in obese WAT.

To examine whether further cellular heterogeneity existed in human WAT myeloid cells, we 

pooled single cell suspensions either from the WAT of 7 lean or 5 obese patients and sorted 

CD45+Lin−CD11b+CD14+ and CD45+Lin−CD11bintCD14intHLA-DR+CD11c+ populations 

that were subsequently analyzed using scRNA-seq (Extended Data Fig. 6a, Supplementary 

Table 4). Assessment of pooled cells from both sorted populations resolved 12,824 healthy 

human WAT DCs, macrophages, monocytes, and neutrophils that clustered into ten distinct 

populations based on differential expression of marker genes (Fig. 4a,b, Extended Data Fig. 

6b–d, Supplementary Table 8). Our analysis identified three populations of monocytes: non-

classical monocytes (ncMo) based on expression of FCGR3A and HES4, Mo-1 by 

expression of FCER1A, and Mo-2 via increased expression of CSF3R, FCAR, and SELL in 

comparison to Mo-1 (Fig. 4b, Extended Data Fig. 6b–d). Using cluster annotation and cell 

cluster identification data from the Human Cell Atlas and other previously published 

datasets10–12,31, we created module scores to assess the identity of the Mo-1 and Mo-2 

populations (Supplementary Table 9). Analysis of gene expression data and module score 

results suggested that Mo-1 and Mo-2 both displayed enrichment for the classical monocyte 

gene module, suggesting the presence of two cell states of classical monocytes (Extended 

Data Fig. 6e). scRNAseq analysis also identified a population of human WAT neutrophils 

based on expression of THBS1 and S100A12 which displayed enrichment for the neutrophil 

gene module compared to other myeloid cell clusters (Fig. 4b, Extended Data Fig. 6b,c,f). 
We confirmed the presence of 2 previously identified macrophage subsets present within the 

human WAT: TREM2, CD9, and LPL expressing lipid-associated macrophages (LAM)8, 

LYVE1, SELENOP, and C1Q expressing perivascular macrophages (PVM)32, and an 

uncharacterized inflammatory macrophage (IM) population with high expression of 

CCL3L1, TNF, and CXCL3 (Fig 4b, Extended Data Fig. 6b,c). Furthermore, analysis of the 

frequency of lean and obese patient cells in each cluster revealed an accumulation of IM, 

LAM, Mo-1, and Mo-2 cells with a decrease in PVMs, neutrophils, and ncMos in obese 

patient samples (Extended Data Fig. 6g). To confirm the presence of scRNA-seq-identified 

cell lineages, we utilized WAT from an additional patient cohort (7 lean, 7 overweight, 7 

obese) (Supplementary Table 3). Analysis of macrophage populations corroborated the 
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results from our scRNA-seq data by supporting the identification of three different CD11B
+CD14+CD15−CD64+CD68+ macrophage subsets (Fig. 4c, Extended Data Fig. 7a,b). WAT 

macrophage subsets were defined based on differential expression of MRC1 (CD206) and 

CD11c, with expression of CD9 distinguishing CD206+CD11c+ LAMs, and CD206+CD11c
− distinguishing WAT PVMs as described previously8,32,33 (Fig. 4c,d). To confirm that 

CD206−CD11c+ WAT macrophages represented IMs, we harvested WAT from an additional 

cohort of individuals (4 lean, 2 overweight, 4 obese) and profiled endogenous IL-1β and 

TNF production by flow cytometry (Supplementary Table 3). While PVMs showed little 

endogenous production of TNF or IL-1β, both LAMs and IMs showed increased IL-1β 
production and a trend toward higher TNF production in obese compared to lean patients, 

suggesting that IM and LAM populations are subsets of proinflammatory macrophages in 

obese WAT (Fig. 4e, Extended Data Fig. 7c).

In contrast to our CD45+ sorted scRNA-seq dataset, DC-sorted scRNAseq analysis identified 

three distinct WAT DC populations: classical type 1 dendritic cells (cDC1) defined by 

expression of IRF8, DPP4, CADM1, and XCR1, classical type 2 dendritic cells subset A 

(cDC2A), via expression of CD1C, IRF4, IL7R and LAMP3, and cDC2B, by increased 

expression of CD1C, IRF4, FCER1A and CLEC10A, consistent with phenotypes of DC 

subsets recently reported in human blood34 (Fig. 4f, Extended Data Fig. 6b,c, 

Supplementary Table 4). Validation of DC subsets within the human WAT tissue was 

performed using an additional patient cohort (9 lean, 9 overweight, 7 obese) and confirmed 

the presence of three distinct populations (Fig. 4g, Extended Data Fig. 7a, Supplementary 

Table 3). WAT cDC1s were distinguished by expression of DPP4 (CD26) CD26+CD1C−, 

while cDC2s could be differentiated into two subsets by expression of CD206, CD14, 

FCER1A, and CLEC10A: cDC2B (CD26−CD1C+CD206+CD14hiFCER1A+CLEC10A+); 

cDC2A (CD26−CD1C+CD206-CD14intFCER1A−CLEC10A−) (Fig. 4g, Extended Data Fig. 

7d). While DC subset frequencies did not change, their densities increased in obese 

compared to lean patients, positively correlating with increasing patient BMI (Fig. 4h,i, 

Extended Data Fig. 7e). Furthermore, IMs and LAMs were not present in high frequencies 

or densities in lean WAT, but drastically accumulated in obese WAT and positively correlated 

with increasing patient BMI (Fig. 4j,k, Extended Data Fig. 7f,g). Altogether, these data 

suggest that cDC1, cDC2B, cDC2A, LAM, and IM populations accumulate in obese human 

WAT (Fig.4h–k, Extended Data Fig. 7e,g).

Classical monocytes differentiate into PVM and IM in WAT.

Studies in mice have shown that recruitment of CCR2-dependent monocytes is required for 

adipose tissue inflammation, proinflammatory macrophage accumulation, and insulin 

resistance35,36. While these studies suggest that circulating monocytes give rise to the 

majority of inflammatory macrophages in obese mice, previous work has also proposed that 

WAT-resident macrophages are polarized to a metabolically activated proinflammatory 

phenotype37,38. However, the ontogeny and upstream regulators of inflammatory 

macrophages in human WAT are not well understood. To test whether scRNA-seq identified 

monocyte or macrophage subsets were precursors to WAT IMs and LAMs, we used RNA 

velocity analysis (Fig. 5a). UMAP visualization of manually subclustered monocyte and 

macrophage subsets suggested that the Mo-1 population was most transcriptionally related 
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to both the Mo-2 and PVM populations, whereas Mo-2 appeared to be more 

transcriptionally similar to IM. Projection of the velocity field arrows onto the UMAP plot 

showed a strong directional flow of the Mo-1 cluster to both PVM and IM fates, suggesting 

that human WAT macrophages are derived from the Mo-1 cell state in silico (Fig. 5a). 
CytoTRACE analysis indicated that both PVM and a subset of Mo-1 were the least 

differentiated cell states, while LAM, Mo-2 and IM represented more highly differentiated 

cell types (Fig. 5b). Manually averaged principal curves incorporating both RNA velocity 

vectors and CytoTRACE differentiation scores suggested distinct developmental trajectories 

from Mo-1 to PVM and IM, with Mo-2 representing an additional transition state between 

Mo-1 and IMs in obese cells, as well as differentiation from PVM to LAM (Fig. 5c). 
Monocle pseudotime analysis further supported the bifurcation of PVM and IM fates from 

Mo-1 (Fig. 5d). Analysis of the frequency of lean and obese patient cells in each cell cluster 

displayed a preference of Mo-1 transitioning to IM rather than to PVM in obese cells, 

suggesting a developmental shift from monocyte-derived PVMs in lean patients to 

polarization of Mo-1 to IMs in obese WAT (Fig. 5e). Analysis of the DEGs between PVM 

and IM fates showed a clear bifurcation in gene expression programs (Extended Data Fig. 

8). We then assessed the potential upstream regulators of the DEGs between Mo-1 to PVM 

and IM as well as PVM to LAM using IPA (Fig. 5f–h, Supplementary Table 10–13). This 

implicated proinflammatory cytokines (TNF, IFN-γ, IL-1β, IL-6, OSM, and MIF) and 

signaling pathways (JUN-FOS) as significant mediators of the transition of Mo-1 to IM, 

whereas anti-inflammatory cytokines (IL-1RA, IL-13, and IL-37) and transcription factors 

(NANOG, MAFB, MEF2C, and GATA4) were suggested to regulate the transition to PVM 

(Fig. 5f,g). IPA suggested that the proinflammatory cytokines TNF, IFN-γ, IL-1β, and 

IL-12A and signaling pathways involving JUN-FOS mediated the transition from PVM to 

LAM (Fig. 5h). Our analysis also suggested hypoxic signaling pathways (HIF-1α, ARNT, 

EPASE1) as regulators of the PVM to LAM transition. Thus, these results suggest an obese 

WAT microenvironment-induced shift in monocyte-derived macrophage development 

towards proinflammatory subsets influenced by specific pro-inflammatory cytokines and 

hypoxia.

Ligand-receptor analysis reveals WAT interactomes.

Given the observed changes in immune composition of obese compared to lean human WAT, 

we next analyzed how WAT cellular communication networks changed during obesity. To do 

this, we performed ligand-receptor analysis on all lean WAT cells acquired using 

CellPhoneDB39 to generate a lean WAT homeostatic interactome (Supplementary Table 14). 

CellPhoneDB ligand-receptor analysis revealed thousands of structural cell-to-immune as 

well as immune-to-immune interactions (Fig. 6a). Connectome web analysis of putative 

WAT-resident populations revealed structural cells, dendritic cells, ILC subsets, and PVMs 

as central communication hubs in the healthy lean WAT (Fig. 6b). Analysis of highly 

expressed interactions uncovered various uncharacterized and validated signaling pathways 

implicated in adipose tissue homeostasis and immunoregulation in mice (Fig. 6c). Analysis 

of the lean interactome suggested that cDC2A may serve an immunoregulatory role via 

production of GAS6, JAG1, PDGFβ, and AREG, interacting with APC, pAD, endothelial 

cells, and SMC. These cells could contribute to the maintenance of the WAT via interactions 

involving NECTIN2 and ICOSLG with Treg populations40,41 and CD200-CD200R with 
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ILCs42. Furthermore, cDC2A uniquely expressed the chemokines CCL17, CCL22, and 

CCL19, and the cytokine IL-15, which interacted with ILCs, NK cells, and APC, suggesting 

additional roles for cDC2A in the recruitment and maintenance of innate lymphocytes and 

progenitor cell types in the lean WAT. pAD expressed IL-15RA, suggesting a synergistic 

mechanism with cDC2A-derived IL-15 to regulate WAT lymphocyte populations. In 

contrast, PVMs likely play an important role in WAT homeostasis through interactions with 

structural cells involving VEGFA, TGFβ, and PDGFC. Amongst ILCs, ILC3 may play 

similar homeostatic roles to ILC2 via ICOS and TNFRSF25 signaling43,44, and trNK may 

function in maintaining dendritic cell populations in the lean adipose tissue via CSF2-

CSF2R signaling. Together, these results implicate diverse structural and immune cell 

crosstalk in the maintenance of human WAT homeostasis and suggest that protective anti-

inflammatory mechanisms may be active within healthy lean WAT.

To assess the changes that occur to the cellular communication network during obesity, we 

similarly performed CellPhoneDB ligand-receptor analysis on all obese WAT cells. Analysis 

of the cell-cell interactions indicated an increased number of overall ligand-receptor pairings 

in the obese compared to lean cells, especially ligand-receptor interactions involving 

recruited circulating myeloid and macrophage subsets (Fig. 7a). Connectome web analysis 

revealed an enrichment of PVM, IM, cDC2B and LAM communication hubs within the 

obese WAT (Fig. 7b,c). Analysis of the obese interactome suggested that IM and LAM likely 

contribute to adipose tissue inflammation during obesity via TNF, IL-1β, IL-18, CXCL8, 

PDGFβ, and TNFSF13B-mediated regulation of stromal cells, dendritic cells, and 

circulating myeloid subsets. Interestingly, our analysis suggested that PVM populations in 

obesity act as major producers of chemokines (CCL3, CCL3L1, CCL4, and CCL2) involved 

in the recruitment of myeloid cells. Previous studies have demonstrated that CCL2-CCR2 

mediated recruitment of monocytes significantly contributes to adipose tissue inflammation 

and systemic insulin resistance in mouse models of obesity 36, suggesting that PVM may 

indirectly contribute to inflammation in humans in a similar manner. cDC2B expressed MIF, 

IL-18, IL-1β, and TNFSF9, interacting with ILCs, NK cells, and myeloid cells, suggesting 

that dendritic cell populations may exacerbate adipose tissue inflammation and tissue 

fibrosis in a similar manner to proinflammatory macrophages. trNK significantly paired with 

WAT dendritic cell populations via LIGHT (TNFSF14-TNFRSF14) interactions45. Because 

LIGHT signaling has also been shown to enhance adipose tissue macrophage-mediated 

inflammation46, these results may suggest a role for trNK in human obesity-associated 

inflammation. Similarly, obese ILC3 appear to be mediators of adipose tissue inflammation 

via TNFSF13B and MIF, acting upon macrophage, dendritic cell, and monocyte subsets. 

Together, these data suggest significant shifts within the WAT interactome during obesity, 

and implicate new cell types in the potentiation of human WAT inflammation during obesity 

(Extended Data Fig. 9a).

IPA uncovers a distinct obese-enriched WAT signalome.

In order to understand whether predicted interacting cell types influence transcriptional 

changes during obesity, we performed IPA on the DEGs between all lean and obese WAT 

cell populations (Supplementary Table 15,16). Our analysis uncovered approximately 110 

genes implicated as putative shared upstream regulators in three or more cell types. Analysis 
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of highly expressed upstream regulators suggested that many of the inflammatory signals 

identified using CellPhoneDB served as transcriptional regulators of gene expression during 

obesity (Fig. 8a). A number of common upstream regulators identified by our analysis (TNF, 

IL-1β, IL-18, IL-6, IGF1, IFN-γ, CXCL8, and OSM) were also found to be associated with 

human systemic insulin resistance previously, (Fig. 8a, Supplementary Data Table 17). 
Furthermore, our analysis suggested that many previously uncharacterized WAT-resident 

immune cells including IM, cDC2A, cDC2B, ILC3, and trNK highly expressed the upstream 

ligands of many of these key pathways in obesity. Our analysis also found several secreted 

upstream regulators which have not yet been associated with human insulin resistance but 

have been suggested to play a role in the development of metabolic dysfunction in mice 

(CSF2, LIF, BMP4, EDN1, CXCL12, and TNFSF13B) (Supplementary Data Table 17). 

Analysis of non-secreted upstream regulators suggested that several transcription factors 

(HIF1-α, CREB, MYC, CEBPB, FOXO1, and STAT4) implicated in obesity-associated 

inflammation and metabolic dysfunction in mice (Supplementary Data Table 17), may also 

be important in regulating adipose tissue inflammation in human cells (Fig. 8b). Together, 

gene set enrichment analysis of the common upstream regulators suggested a number of 

significant pathways that were transcriptionally regulated in obese WAT cells (Fig. 8c, 

Supplementary Table 18). Implicated signaling mechanisms involved several JAK-STAT 

signaling pathways including IL-1, IL-6, IL-12, IL-17, IFN-γ signaling, TNF signaling, and 

hypoxia. Furthermore, many of these pathways were induced in novel human WAT cell 

types, as shown by gene set enrichement analysis of obese trNK, ILC3, cDC2B, and IM 

(Extended Data Fig. 9b–e). Combined, these data suggest that a complex mixture of 

inflammatory pathways produced by macrophages, dendritic cells, ILCs, NK cells, and 

structural cells regulate inflammatory signaling pathways in the human WAT during obesity 

(Extended Data Fig. 10).

Discussion

We performed scRNA-seq on a total of 110,250 cells from multiple sorted atlases including 

CD45− cells, CD45+ cells, macrophages, dendritic cells, NK cells, and ILCs. This led to the 

validation of 13 out of 13 previously identified populations as well as the identification an 

additional 15 distinct cell clusters including previously uncharacterized populations of WAT 

ILCs, dendritic cells, NK cells, and proinflammatory macrophages. Using flow cytometry, 

we then validated the presence of each of these populations within the human lean and obese 

WAT using an independent cohort of patients. Finally, we utilized single cell ligand-receptor 

analysis to profile both the lean and obese human WAT interactomes in addition to a cell 

type-specific obesity-enriched signalome.

Our study identifies a number of unique ILC populations (iNK, trNK, ILC1, ILC3, ILCP-

like) that have not been described in human WAT previously. We find that the healthy human 

WAT contains a distinct population of trNK that can be differentiated from both WAT mNK 

and iNK populations and shares a similar phenotype with trNK cells described in human 

liver transplant studies20. Our data suggests that trNK as well as ILC1 express IFN-γ, which 

is implicated in the regulation of obesity-associated transcriptional changes of many cell 

types, notably as a critical regulator of IM differentiation. Accordingly, previous studies in 

DIO mice have suggested that WAT-resident ILC1 and NK populations produce IFN-γ early 
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during high fat diet administration24, and that IFN-γ is important for the regulation of 

adipose tissue inflammation47. As such, trNK and ILC1 cells may play a similar role in the 

potentiation of human WAT inflammation during obesity, although future studies will be 

needed to support this conclusion. Our data also suggests that trNK are involved in the 

recruitment of cDC1 via XCL1/2-XCR1 signaling during obesity, similar to mechanisms 

recently observed within the tumor microenvironment48. The full extent of ILC-dendritic 

cell communication in the WAT, and the implications of these interactions merits attention 

by future mechanistic studies in mice.

We also identify a subset of human WAT ICL3 which accumulate during obesity. In the lean 

state, our data suggests that ILC3 may play a homeostatic role, similar to ILC2. However, in 

the obese state, our data suggests that ILC3 are mediators of adipose tissue inflammation via 

expression of LIF, TNFSF13B, and MIF. Furthermore, although we were unable to 

determine the source of IL-17 signaling as suggested by gene set enrichment analysis, our 

data suggests that adipose ILC3 may contribute to the proinflammatory effects of this 

cytokine during obesity. As such, our data suggests that resident ILC3s likely play important 

roles in human WAT biology that were not recognized previously. However, ILC3s are not 

present in lean or obese mouse WAT24, highlighting key differences between mouse and 

human WAT ILC composition and suggesting that certain aspects of ILC-mediated 

inflammation during obesity may not be evolutionarily conserved in mammals.

Our scRNA-seq dataset also identified three unique subpopulations of WAT DCs that 

accumulate in obese patients. While the specific roles of cDC1, cDC2A, and cDC2B subsets 

in mammalian obesity are unknown, studies in mice have implicated WNT signaling and 

dendritic cells in driving tolerogenic programs in lean WAT49. Whether this process 

becomes dysregulated during obesity is unclear. Analysis of the lean interactome suggests 

that cDC2A serve an immunoregulatory role, similar to dendritic cell populations found in 

tumors50. During obesity, however, our data suggests that cDC2B may contribute to tissue 

inflammation via expression of MIF, IL-18, IL-1β, and TNFSF9. As such, future studies are 

necessary to elucidate the roles of these different dendritic cells within the adipose tissue. 

Similarly, previous studies in DIO mice have suggested both protective and proinflammatory 

roles of CD9+ LAMs through TREM2 function or cytokine production respectively8,33. Our 

results suggest that human WAT LAMs, alongside IMs, actively produce IL-1β and TNF in 

obese patients. Both populations likely additionally contribute to adipose tissue 

inflammation via expression of IL-18, CXCL8, and PDGFβ. Furthermore, while analysis of 

endogenous cytokine production suggests that PVMs are not actively producing IL-1β or 

TNF in obese patients, ligand-receptor analysis suggests that these macrophages may 

contribute to adipose tissue inflammation via increased chemokine production and 

recruitment of monocytes into the WAT. These data suggest that there are likely more 

complex mechanisms underlying the contribution of WAT dendritic cells and macrophages 

to adipose tissue inflammation and insulin resistance than previously understood.

In summary, our study provides a comprehensive atlas of immune and structural cell 

populations within the healthy human WAT, offering insight into cell type specific 

transcriptional changes and communication networks that underpin obesity-associated WAT 

inflammation. Our dataset not only increases our understanding of the interactions that occur 
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between cell types in human WAT, but also identifies potential therapeutic targets that may 

aid in reducing systemic low-grade inflammation in obese patients.

Methods

Human Samples

Human deep subcutaneous white adipose tissue samples were obtained from donors 

undergoing cosmetic abdominoplasty procedures via Barret Plastic Surgery, Los Angeles. 

Donor characteristics are summarized in Supplemental Tables 1,3, and 4. Human samples 

were defined healthy status based on no prior history of cardiovascular disease, liver disease, 

diabetes or immunological disorders and divided into three categories based on body mass 

index (BMI): lean: BMI < 25; overweight: 25 < BMI < 30; obese: BMI > 30. The human 

samples used in this study do not qualify as “human subjects” research, confirmed by the 

UCLA IRB. As such, obtaining informed consent was not necessary. Human samples were 

de-identified and were not obtained for the specific purpose of these studies.

Adipose Tissue Harvest and Cell Dissociation

Patient deep subcutaneous adipose tissue was freshly harvested from abdominoplasty 

samples within an hour of their respective operations. Adipose tissue samples were kept on 

ice until processing. Adipose tissues were first washed 3 times with 1x PBS before physical 

homogenization in Adipose Harvest Media ((AHM) 1x HBSS + CaCl + MgCl, 5% Heat-

inactivated fetal bovine serum (FBS), 1% L-glutamine, 1% Penicillin-Streptomycin, 50 μ 
g/mL DNAse1) using a blender (900 Watts, Ninja BL450 Series). Homogenized tissue was 

then distributed into 14mL round bottom tubes and supplemented with Collagenase Type II 

digestion media (AHM + 2mg/mL Collagenase Type II (Worthington Biochem)) before 

shaking incubation at 37°C for one hour. Post incubation, digested samples were filtered 

using 100μm cell strainers (Corning) and then centrifuged to isolate the stromal vascular 

fraction (SVF) pellets. After aspiration of the supernatants, the pellets were lysed using 

ACK lysis buffer, pooled into one tube, and then filtered again through 100μm nitex mesh. 

The combined SVF pellet was then split and either resuspended in a mixture of 9:1 FBS to 

DMSO solution and frozen at −80°C or stained using fluorescently labeled antibodies and 

then analyzed via flow cytometry.

Fluorescence-Activated Cell Sorting

Selected samples for single cell RNA-sequencing analysis were thawed and then pooled 

based on BMI to ensure high cell count recovery for each subpopulation and BMI 

classification (Lean: n=10, Obese: n=8). Samples were then sorted on the BD FACSAriaIII 

before submission for 10x Library preparation. Cells were sorted from lean and obese WAT 

samples as follows: non-immune cells (CD45−), immune cells (CD45+, Macrophages 

(CD45+Lin−(CD3+TCRαβ+CD19+CD34+CD5+CD7+)CD11b+CD14+), conventional 

dendritic cells (CD45+Lin−(CD3+TCRαβ+CD19+CD34+CD7+)CD11b−CD14intHLA-DR
+CD11c+), NK cells (CD45+Lin−(CD3+TCRαβ+CD19+CD34+CD14+CD5+TCRγδ
+)CD7+CD200R1−), and ILCs (CD45+Lin−(CD3+TCRαβ
+CD19+CD34+CD14+CD5+TCRγδ+)CD7+CD200R1+).
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10x Library Preparation, Sequencing, and Alignment

Single cell RNA-sequencing libraries were generated with the Chromium Single Cell 3′ v3 

assay (10X Genomics). Libraries were sequenced using the NovaSeq 6000 S2 platform 

(Illumina) to a depth of approximately 300 million reads per library with 2x50 read length. 

Raw reads were aligned to human genome (hg38) and cells were called using cellranger 

count (v3.0.2). Individual samples were aggregated to generate the merged digital expression 

matrix using cellranger aggr (v3.0.2).

Cell clustering and cell type annotation

The R package Seurat51 (v3.1.2) was used to cluster the cells in the merged matrix. Cells 

with less than 500 transcripts detected or more than 25% mitochondrial gene expression 

were first filtered out as low-quality cells. The gene counts for each cell were divided by the 

total gene counts for the cell and multiplied by a scale factor 10,000, then natural-log 

transformation was applied to the counts. The FindVariableFeatures function was used to 

select variable genes with default parameters. The ScaleData function was used to scale and 

center the counts in the dataset. Principal component analysis (PCA) was performed on the 

variable genes, and 20 principal components were used for cell clustering (resolution = 0.5) 

and Uniform Manifold Approximation and Projection (UMAP) dimensional reduction. The 

cluster markers were found using the FindAllMarkers function, and cell types were 

manually annotated based on the cluster markers10–14,31,52–54. Module scores were 

calculated using the AddModuleScore function with default parameters and used to validate 

certain cell type annotations10–12,31,55. To calculate the sample composition based on cell 

type, the number of cells for each cell type from each sample were counted. The counts were 

then divided by the total number of cells for each sample and scaled to 100 percent for each 

cell type.

Cell type sub-clustering

Sub-clustering was performed on all cell types. The same functions described above were 

used to obtain the sub-clusters. Sub-clusters that were defined exclusively by mitochondrial 

gene expression, indicating low quality, were removed from further analysis. To calculate the 

composition of lean and obese cells for the sub-clusters, the number of lean and obese cells 

for each sub-cluster were counted. The number of lean (or obese) cells in each cluster was 

then divided by the total number of lean (or obese) cells to calculate the percentages of each 

cell state. Subclusters were filtered based on >10% frequency for each cell lineage and 

assigned as a lean or obese-enriched state if the subcluster contained >5% representation of 

lean compared to obese cells and vice versa. Cell states with equal representation of lean and 

obese cells were excluded from lean and obese-specific cell state analysis. For each cell 

type, differential expression analysis was carried out on the lean cells from the lean state and 

obese cells from the obese state. Then ingenuity pathway analysis (IPA) was applied to the 

DEGs to determine the potential upstream regulators driving the differential expression. The 

upstream regulators that were activated in obese (activation z score >= 2) in at least three 

cell types were plotted. The normalized expression matrix for ILC and myeloid subtypes 

were extracted and uploaded to the CytoTRACE webtool (https://cytotrace.stanford.edu/), 

and the output CytoTRACE score for each cell was then plotted on the UMAP.
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Pseudo-time trajectory construction

Pseudo-time trajectories for ILCs and myeloid cells were constructed using the R package 

Monocle53 (v2.10.1). The raw counts for cells in the intended cell types were extracted and 

normalized by the estimateSizeFactors and estimateDispersions functions with the default 

parameters. Genes with average expression larger than 0.5 and detected in more than 10 cells 

were retained for further analysis. Variable genes were determined by the 

differentialGeneTest function with a model against the cell type identities. The top 2,000 

variable genes with the lowest adjusted p value were used to order the cells. The orders were 

determined by the orderCells function, and the trajectory was constructed by the 

reduceDimension function with default parameters. Differential expression between pseudo-

time states was carried out using the Seurat function FindMarkers. The DEGs with the 

lowest adjusted p value were used to plot the heatmap showing the bifurcation expression 

patterns. The heatmap was generated using function plot_genes_branched_heatmap. 

Ingenuity Pathway Analysis was used to determine the upstream regulators for the DEGs.

RNA velocity analysis

To estimate the RNA velocities of single cells, velocyto29 was used to distinguish unspliced 

and spliced mRNAs in each sample. The python package scVelo58 was then used to recover 

the directed dynamic information by leveraging RNA splicing information. Specifically, the 

data was first normalized using the filter_and_normalize function. The first- and second-

order moments were computed for velocity estimation using the moments function. The 

velocity vectors were obtained using the velocity function. The velocities were projected 

into a lower-dimensional embedding using the velocity_graph function. Finally, the 

velocities were visualized in the UMAP embedding using the velocity_embedding_stream 

function. All scVelo functions were used with default parameters.

Cell-cell ligand receptor interaction analysis

CellphoneDB (v2.0.0) was applied for ligand receptor analysis. The raw counts and cell type 

annotation for each cell were imputed into cellphoneDB to determine the potential ligand 

receptor pairs. Pairs with p value >0.05 were filtered out from further analysis. Four runs 

were performed on four groups of cells: all lean cells, lean cells in lean-enriched states, all 

obese cells, and obese cells in obese-enriched states. The results on all lean cells were 

plotted as the base level interaction among the cell types. The number of interactions 

between each pair of cell types were plotted using the results with all lean cells and all obese 

cells. To determine the differential interactions between lean and obese specific states, 

differentially expressed genes (DEGs) were determined between the lean and obese cells for 

each cell type and an adjusted p value at 0.05 was applied to filter the DEGs. A ligand-

receptor pair with higher average expression in lean (or obese) and the ligand being 

significantly highly expressed in lean (or obese) was considered a lean (or obese) specific 

pair. Selected obese specific pairs were plotted.

g:GOSt Analysis

Cluster markers from obese-enriched states were input into the functional enrichment 

analysis query and then analyzed using g:GOSt functional profiling55.
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Flow Cytometry

Cells were analyzed for cell-surface markers using fluorophore-conjugated antibodies 

(BioLegend, eBioscience, R&D Systems, Miltenyi Biotec). Cell surface staining was 

performed in 1X PBS and intracellular staining was performed using the eBioscience Foxp3/

Transcription Factor or BD Cytofix/Cytoperm kits. Flow cytometry was performed using the 

Attune NxT Acoustic Focusing cytometer and data were analyzed using the Attune NxT 

Software v3.1.2, with quantification performed using FlowJo v9.9.6 (BD). Cell surface and 

intracellular staining was performed using the following fluorophore-conjugated antibodies: 

CD3 (UCHT1), TCRαβ (IP26), CD26 (2A6), CD56 (TULY56), CD1c (L161), CD19 (SJ25-

C1), CD34 (581), CD14 (TuK4), CD7 (124-1D1), CD45 (HI30), T-bet (4B10), CD5 

(UCHT2), TCRγδ (B1), Perforin (B-D48), CD200R1 (OX-108), EOMES (WD1928), 

CD11c (BU15), HLA-DR (L243), CD206 (15-2), IL-13 (JES10-5A2), CD9 (HI9a), IFN-γ 
(B27), CD88 (S5/1), IL1-R1 (FAB269A), CD16 (CB16), FCER1A (AER-37 (CRA-1)), 

CD294 (BM16), CD62L (DREG-56), CD89 (A59), CD301 (H037G3), CD196 (G034E3), 

IL-17A (BL168), TNF-α (Mab11), IL-1β (CRM56), CD336 (2.29), CD11b (M1/70), TCR 

Vα7.2 (3C10), CD8α (RPA-T8), CD161 (HP-3G10), FOXP3 (206D), CD15 (HI98), CD4 

(RPA-T4), CD68 (Y1/82A), CD64 (10.1), TCR Vα24-Jα18 (6B11), RORC (AFKJS-9), 

CD31 (WM59), CD29 (TS2/16), ICAM-1 (HA58). All antibodies used in this study were 

validated with human PBMCs prior to use on human WAT SVF samples.

Human Macrophage Endogenous Cytokine Production

Human adipose SVF cells were cultured for 5 hours in CR-10 media containing, Brefeldin A 

(1:1000; BioLegend) and Monensin (2uM; BioLegend) and then analyzed for intracellular 

cytokine production via flow cytometry. Cells were cultured in media alone as a negative 

control.

Ex vivo stimulation of human ILCs

Human adipose SVF cells were cultured for 5 hours in CR-10 media containing, Brefeldin A 

(1:1000; BioLegend) and Monensin (2uM; BioLegend) with or without PMA (Sigma) and 

Ionomycin (Sigma). For quantification of IL-17A staining, SVF cells were cultured 

overnight in CR-10 and then subsequently stimulated in the presence of PMA, Ionomycin, 

Brefeldin A and Monensin for 5 hours.

Quantification, Statistical Analysis, and Reproducibility

For graphs, data are shown as mean ± SEM, and unless otherwise indicated, statistical 

differences were evaluated using a Student’s t test with Welch’s correction to a assume a 

non-normal variance in our data distribution. For cell type density analysis, linear regression 

was performed alongside two-tailed Pearson Correlation analysis with 95% confidence 

intervals. p < 0.05 was considered significant. scRNAseq of sorted CD45+ and CD45− cells 

was performed initially. This was followed by scRNAseq of sorted Macrophage, DC, ILC, 

and NK cell populations. Flow cytometric analysis of each patient was performed 

independently. Graphs were produced and statistical analyses were performed using 

GraphPad Prism.
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Extended Data

Extended Data Fig. 1. Lineage-associated gene signatures of CD45+ and CD45− SVF cells from 
healthy human WAT.
(a) Dot plot showing selected top differentially expressed marker genes for each cluster, 

supporting assignment of clusters to compartments shown in Figure 1b. Color saturation 

indicates the strength of expression in positive cells, while dot size reflects the percentage of 

each cell cluster expressing the gene. (b) Violin plots showing expression levels of 

additional cluster markers for the indicated structural cell populations. (c) Representative 
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gating strategy for scRNAseq-defined human WAT non-immune cell populations (CD45−): 

Endothelial cell: CD31+, Smooth muscle cell (SMC): CD31−CD34−CD29−, Adipocyte 

precursor cell (APC): CD31−CD34−CD29+, Preadipocyte: 

CD31−CD34+CD29intICAM-1+CD26−, Interstitial progenitor cell: 

CD31−CD34+CD29intICAM-1+CD26+. (d) Density correlation analysis of the indicated 

non-immune subsets with patient BMI. Line of best fit and 95% confidence intervals are 

shown for each plot. Each point represents an individual patient. Linear regression and two-

tailed Pearson Correlation analysis with 95% confidence intervals were conducted. p < 0.05 

was considered significant.

Hildreth et al. Page 17

Nat Immunol. Author manuscript; available in PMC 2021 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 2. Single cell analysis reveals heterogeneous adaptive lymphocyte populations 
in healthy human WAT.
(a) UMAP plot of 36,601 subclustered human adipose effector lymphocytes from Figure 1. 

Cluster analysis yields 9 distinct clusters comprising of T cell subsets, ILCs and NK cells. 

(b) Unbiased heatmap of gene expression of the top 6 unique cluster marker genes for each 

T cell cluster. Cluster identities are shown above the heatmap. Color saturation indicates the 

strength of expression. (c) Violin plots showing RNA expression of additional cluster 

markers for the indicated T cell populations. (d) Representative gating strategy for 
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scRNAseq-defined human WAT T cell populations (CD45+Lin−(CD34+CD19+CD14+): γδT 

cell (γδ T): TCRγδ+Vα24-Jα18−Vα7.2−, NKT cell (NKT): TCRγδ−Vα24-Jα18+Vα7.2−, 

MAIT cell (MAIT): TCRγδ−Vα24-Jα18−Vα7.2+TCRαβ+, CD8+ T cell (CD8 T): TCRγδ
−Vα24-Jα18−Vα7.2−TCRαβ+CD8α+CD4−, CD4+ T cell (CD4 T): TCRγδ−Vα24-

Jα18−Vα7.2−TCRαβ+CD8α−CD4+, Regulatory T cell (Treg): TCRγδ−Vα24-

Jα18−Vα7.2−TCRαβ+CD8α−CD4+FoxP3+. (e) Representative histogram of KLRB1 

(CD161) expression on human WAT T cell subsets. (f) Representative flow cytometry plot of 

CD8α and CD4 expression on human WAT γδ T cells. (e,f). Data is representative of 4 

individual patient samples. (g) Density correlation analysis of the indicated T cell subsets 

with patient BMI. Line of best fit and 95% confidence intervals are shown for each plot. 

Each point represents an individual patient. Linear regression and two-tailed Pearson 

Correlation analysis with 95% confidence intervals were conducted. p < 0.05 was considered 

significant.
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Extended Data Fig. 3. Single cell analysis identifies unique human WAT-resident ILCs.
(a) Representative sorting strategy for Lin−CD7+ cell populations based on expression of 

CD200R1; used in Figure 2. (b) Unsupervised heatmap of the top 5 differentially expressed 

cluster marker genes for each indicated innate lymphoid cell cluster. Cluster identities are 

shown above the heatmap. Color saturation indicates the strength of expression. (c) Selected 

UMAP feature plots showing RNA expression of additional cluster markers, based on the 

UMAP shown in Figure 2a. (d) UMAP of sorted innate lymphoid cell populations denoted 

by the source of the sorted sample (CD200R1+ vs CD200R1−) and patient source 
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classification as lean (red, green) or obese (blue, purple); based on the UMAP shown in 

Figure 2a. (e) Bar plots showing the proportion of innate lymphoid cells derived from 7 lean 

(blue) and 5 obese (red) patients.

Extended Data Fig. 4. Flow cytometry analysis of scRNAseq-identified human WAT ILCs.
(a,b) Representative gating strategies for the scRNAseq-defined human WAT (a) NK cell 

and (b) ILC populations identified in Figure 2. Human WAT ILC populations are defined as 

CD45+Lin−(CD3+TCRαβ+CD19+CD34+CD14+CD5+TCRγδ+EOMES+)CD7+CD200R1+); 
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ILC1: TBET+, ILC2: TBET−CRTH2+NKp44−, ILC3: TBET−CRTH2−NKp44+, ILCP-like: 

TBET−CRTH2−NKp44−CD62L+/−. (c) Representative histogram of IFN-γ by human WAT 

NK cell subsets. Unstim refers to CD200R1− cells cultured without PMA and Ionomycin. 

(d) Representative histograms of T-bet, CRTH2, NKp44, and RORC expression on human 

WAT ILC subsets. (e) Analysis of RORC MFI values from human WAT ILC subsets. Each 

point represents an individual patient (n=3). ILCP-like: p=0.0198, ILC1: p=0.0313, ILC2: 

p=0.0194. (f) Representative flow cytometry plots of CD7+CD200R1+ cells isolated from 

human PBMC. (g) Density correlation analysis of ILC2 with patient BMI. Each point 

represents an individual patient. Line of best fit and 95% confidence intervals are shown for 

the plot. (h,i) Density of indicated ILCs by BMI classification. Each point represents an 

individual patient; (h) n=8 lean and n=7 obese patients. (i) ILC1: n=10 lean and n=7 obese 

patients; ILC2, ILC3, ILCP-like: n=5 lean and n=3 obese patients. ILC2: p=0.0293, ILC3: 

p=0.0094, ILCP-like: p=0.022. (c,d,f) Data is representative of 3 individual patient samples. 

Samples were compared using two-tailed Student’s t test with Welch’s correction, assuming 

unequal SD, and data are presented as individual points with the mean ± SEM (*p<0.05, 

**p<0.01). Linear regression and two-tailed Pearson Correlation analysis with 95% 

confidence intervals were conducted. p < 0.05 was considered significant.
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Extended Data Fig. 5. Analysis of ILC1 and ILC3 fate DEGs suggests a clear developmental 
bifurcation.
Bifurcation heatmap of enriched genes for ILC1 (left), ILCP-like (middle) and ILC3 (right). 

Color indicates increased (red) or decreased (blue) expression.
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Extended Data Fig. 6. Single cell analysis identifies unique myeloid populations within healthy 
human WAT.
(a) Representative sorting strategies for CD11b+CD14+ macrophage and HLA-DR+CD11c+ 

dendritic cell populations indicated in Figure 4. (b) Heatmap shows the top 4 differentially 

expressed cluster marker genes for each indicated myeloid cell cluster. Cluster identities are 

shown above the heatmap. Color saturation indicates the strength of expression. (c,d) Violin 

plots showing RNA expression levels of cluster markers for (c) myeloid (d) and monocyte 

populations. (e) Classical, Intermediate, and Nonclassical Monocyte gene module score 
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analysis for the indicated monocyte populations based on comparison of signature genes for 

each cell type from previously defined datasets to DEGs within each cluster. (f) Neutrophil 

gene module score analysis for the indicated myeloid populations based on comparison of 

signature genes for each cell type from previously defined datasets to DEGs within each 

cluster. (g) Bar plots showing the proportion of myeloid cells derived from 7 lean (blue) and 

5 obese (red) patients.

Extended Data Fig. 7. Flow cytometry analysis of scRNAseq-identified human WAT macrophage 
and dendritic cell populations.
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(a) Representative gating strategy for scRNAseq-defined human WAT macrophage and DC 

populations identified in Figure 4. (b) Representative histograms of CD64, CD68, CD88, 

and CD15 expression on human WAT macrophage cell subsets, CD14+ monocytes and 

CD15+ neutrophils isolated from human PBMC. (c) Flow cytometry analysis of endogenous 

TNF-α production by human WAT macrophage subsets from n=4 lean, n=2 overweight, and 

n=4 obese patients. Each point represents an individual patient. (d) Representative flow 

cytometry histograms of CLEC10A and FCER1A expression on human WAT DC subsets. 

(e) Density of the indicated DC populations by BMI classification, n=9 lean and n=7 obese 

patients. Each point represents an individual patient (f) Representative flow cytometry plots 

of human WAT macrophage populations from lean (left) and obese (right) patients. (g) 
Density of the indicated macrophage populations by BMI classification, n=7 lean and n=7 

obese patients. Each point represents an individual patient. (b,d) Data is representative of 3 

individual patient samples. Samples were compared using two-tailed Student’s t test with 

Welch’s correction, assuming unequal SD, and data are presented as individual points with 

the mean ± SEM (*p<0.05, **p<0.01).
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Extended Data Fig. 8. Analysis of the DEGs between PVM and IM fates shows a clear 
bifurcation in gene expression programs.
Bifurcation heatmap of enriched genes for PVM (left), Mo-1 (middle) and IM (right). Color 

indicates increased (red) or decreased (blue) expression.
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Extended Data Fig. 9. Novel human WAT cell types contribute to obesity-associated 
inflammatory networks.
(a) Dot plots showing expression of ligands (left) and receptors (right) in novel human WAT 

cells; only ligands and receptors from cell types with detected expression (>25%) are shown. 

Implicated chemokines can be found in the lower panel. Color saturation indicates the 

strength of expression in positive cells, while dot size reflects the percentage of each cell 

cluster expressing the gene. (b-e) GOSt analysis of obese-enriched differentially expressed 

genes for the indicated novel human WAT cell types. (b) GOSt analysis of trNK. (c) GOSt 
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analysis of ILC3. (d) GOSt analysis of IM. (e) GOSt analysis of cDC2B. Terms were 

considered statistically significantly enriched if −log10(Padj)<0.05.

Extended Data Fig. 10. Proposed model of cell-cell interactions in healthy lean and obese human 
WAT.
In lean WAT, IL-15 expression from cDC2A coupled with IL-15RA expression from APCs 

may support the viability of IL-15RB-expressing ILCs and NK cell populations. CSF1 (M-

CSF) expression from APCs and IL-13 from ILC2s likely drives the Mo-1 transition to 

PVMs, while CSF2 from APCs may support dendritic cell homeostasis. cDC2A-derived 

CD200 could suppress ILC activation at steady-state. TGFβ1, PDGF, AREG, and GAS6 

signaling from dendritic cells and PVM to APCs may promote tissue homeostasis. During 

obesity, IL-23 from an unknown source could drive the differentiation and accumulation of 

WAT ILC3s from ILCP-like cells. cDC2B-derived IL-18 and potentially IL-12 might 

stimulate the production of IFNγ by trNK and ILC1 subsets and contribute to the 

development of LAM from PVM. Increased CCL2 production from hypoxia-sensing PVM 
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and SMC could recruit circulating Mo-1 into the WAT where MIF, LIF, and IFN-γ signaling 

from ILCs and NKs, as well as IL-1β, OSM and TNF-α signaling from IM, LAM, and 

cDC2B could polarize Mo-1 to the IM fate. trNK production of TNFSF14 (LIGHT) may 

further promote inflammation of cDC2B and IM. Together, these interactions suggest a cell 

type specific positive feedback loop whereby accumulation and polarization of WAT-resident 

lymphoid and myeloid cell types potentiate inflammation during human obesity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Single cell sequencing reveals the cellular heterogeneity of the stromal vascular fraction 
of human WAT.
(a) Schematic of the experimental pipeline. Human adipose tissue was isolated from healthy 

patients (patient information in Supplementary Table 1), dissociated into single cell 

suspensions, sorted into CD45+ and CD45− cells, and analyzed using 10x Genomics 

Chromium droplet single cell RNA sequencing. Cells were clustered via differential gene 

expression and ligand-receptor analysis was performed to assess interaction among cell 

types. (b,c) UMAP plot of 82,577 human adipose cells isolated from the SVF of 3 lean and 
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3 obese patients. (b) Annotations are derived from cluster-specific analysis (Extended Data 

Fig. 1) (c) UMAP indicating the patient sample classification as lean (red) or obese (blue). 

(d,e) Boxplots showing the proportion of non-immune (d) and immune (e) cells derived 

from n=3 lean (red) and n=3 obese (blue) patients for each cell type. Centre, median; box 

limits, upper and lower quartiles; whiskers, 1.5× interquartile range (IQR). (f,g) Density 

correlation analysis of accumulating non-immune (f) and T cell (g) subsets with patient 

BMI. Line of best fit and 95% confidence intervals are shown for each plot. Each point 

represents an individual patient. Linear regression and two-tailed Pearson Correlation 

analysis with 95% confidence intervals were conducted. p < 0.05 was considered significant.
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Figure 2. Single cell analysis unveils unique human WAT-resident ILC subsets.
(a) UMAP plot of 14,849 human WAT CD45+Lin−CD7+CD200R1+ ILCs or CD45+Lin
−CD7+CD200R1− NK cells isolated from the SVF of an independent cohort of 7 lean and 5 

obese patients. Cluster analysis yields 7 distinct clusters comprising of ILCs and NK cells. 

(b) Dot plot showing selected top differentially expressed genes for the populations 

depicted. Color saturation indicates the strength of expression in positive cells, while dot 

size reflects the percentage of each cell cluster expressing the gene. (c) Violin plots showing 

RNA expression levels of selected cluster markers for indicated cell clusters. (d) 
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Representative gating strategy for scRNAseq-defined human WAT NK cell populations 

(CD45+Lin−(CD3+TCRαβ+CD19+CD34+CD14+CD5+TCRγδ+)CD7+TBET+CD200R1−): 

mature NK (mNK): EOMES+PERFORIN+, tissue resident NK (trNK): 

EOMEShiPERFORINint, immature NK (iNK): EOMESloPERFORINint. (e) Representative 

histograms of CD16, Perforin, Eomes, CD62L, and T-bet expression on human WAT NK, 

ILC1 and CD56dim and CD56bright NK PBMC populations. (f) Representative histograms of 

CD62L, IL1R1, CCR6, IL-2, IFN-γ, IL-13, and IL-17 expression on human WAT ILC 

populations. Unstim refers to CD45+Lin−CD7+CD200R1+ cells cultured without PMA and 

Ionomycin. (g) Relative frequencies of innate lymphoid cell populations as a percentage of 

Lin−CD7+ cells (above; n=8 lean, n=8 overweight, and n=7 obese patients) or Lin
−CD7+CD200R1+ cells (below; n=5 lean, n=4 overweight, and n=3 obese patients) isolated 

from the human WAT SVF. mNK: p=0.0065, iNK: p=0.0467, trNK: p=0.0138, ILC2 lean vs. 

obese: p=0.0032, ILC2 overweight vs. obese: p=0.0113, ILCP-like: p=0.0255, ILC3: 

p=0.0341. (h) Density correlation analysis of the depicted ILC types with patient BMI. Line 

of best fit and 95% confidence intervals are shown for each plot. (d-f) Data is representative 

of 3 individual patient samples. Each point represents an individual patient. Samples were 

compared using two-tailed Student’s t test with Welch’s correction, assuming unequal SD, 

and data are presented as individual points with the mean ± SEM (*p<0.05, **p<0.01). 

Linear regression and two-tailed Pearson Correlation analysis with 95% confidence intervals 

were conducted. p < 0.05 was considered significant.
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Figure 3. RNA velocity and CytoTRACE analysis identifies a shared ILC precursor to mature 
adipose ILC1 and ILC3.
(a) RNA Velocity analysis of WAT ILC clusters with velocity field projected onto the 

UMAP plot of human adipose ILCs subclustered from Figure 2. Arrows show the local 

average velocity evaluated on a regular grid and indicate the extrapolated future states of 

cells. (b) CytoTRACE scatter plot of WAT ILC clusters. Color indicates the level of 

differentiation from low (grey) to high (red). (c) UMAP plot of WAT ILC clusters with 

velocity arrows and corresponding principal curve shown in bold. Principal curve indicates 

the manually averaged differentiation directionality projected by RNA Velocity and 

CytoTRACE analysis. (d) Monocle analysis of the ILCP-like, ILC1, and ILC3 populations 

indicating pseudotime directionality (left) and cell type (right); ILC1 (red), ILCP-like 

(green), ILC3 (blue). (e) Bar plots showing the proportion of the indicated ILC clusters 

derived from pooled 7 lean or 5 obese patients. (f,g) IPA Analysis of putative upstream 

regulators of the ILCP-like to ILC3 transition (f) or the ILCP-like to ILC1 transition (g).
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Figure 4. Single cell analysis identifies unique cell lineages within human WAT myeloid 
populations.
(a) UMAP plot of 12,824 pooled human adipose myeloid cells isolated from the SVF of 7 

lean and 5 obese patients. Cluster analysis yields 10 distinct clusters comprising of DCs, 

macrophages, monocytes and neutrophils. (b) Dot plot showing selected top differentially 

expressed genes for the neutrophil, monocyte, and macrophage populations depicted. (c) 
Representative gating strategy for scRNAseq-defined human WAT macrophage populations 

(CD45+Lin−(CD3+TCRαβ+CD19+CD34+CD5+CD7+CD1c+)HLA-DR+CD11b+CD14+): 
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Perivascular macrophage (PVM): CD206+CD11c−, Lipid-associated macrophage (LAM): 

CD206+CD11c+, Inflammatory macrophage (IM): CD206−CD11c+. (d) Representative flow 

cytometry histogram of CD9 expression on human WAT macrophage populations. (e) Flow 

cytometry analysis of endogenous IL-1β production by human WAT macrophage subsets 

from an additional n=4 lean, n=2 overweight, and n=4 obese patients. LAM: p=0.0158, IM: 

p=0.0204. Each point represents an individual patient. (f) Dot plot showing selected top 

differentially expressed genes for indicated DC subsets. (g) Representative gating strategy 

for scRNAseq-defined human WAT dendritic cell populations (CD45+Lin−(CD3+TCRαβ
+CD19+CD34+CD7+CD16+CD88+CD89+)HLA-DR+CD14intCD11c+): conventional type 1 

dendritic cell (cDC1): CD1c−CD26+, conventional type 2 dendritic cell A (cDC2A): CD1c
+CD26−CD206−CD14int, conventional type 2 dendritic cell B (cDC2B): CD1c
+CD26−CD206+CD14hi. (h) Relative frequencies of DC subsets as a percentage of Lin
−CD11c+HLA-DR+ cells isolated from the SVF of WAT from n=9 lean, n=9 overweight, and 

n=7 obese patients. (i) Density correlation analysis of the depicted DC subsets with patient 

BMI. Line of best fit and 95% confidence intervals are shown for each plot. (j) Relative 

frequencies of macrophage populations as a percentage of Lin−CD11b+CD14+ cells isolated 

from the SVF of WAT from n= 7 lean, n=7 overweight, and n=7 obese patients. PVM lean 

vs. obese: p=0.0054, PVM overwieight vs. obese: p=0.0362, LAM lean vs. obese: p=0.0052, 

LAM overweight vs. obese: p=0.0088, IM: p=0.0404. (k) Density correlation analysis of the 

indicated macrophages with patient BMI. Line of best fit and 95% confidence intervals are 

shown for each plot. Each point represents an individual patient. (c,d,g) Data is 

representative of 3 individual patient samples. Samples were compared using two-tailed 

Student’s t test with Welch’s correction, assuming unequal SD, and data are presented as 

individual points with the mean ± SEM (*p<0.05, **p<0.01). Linear regression and two-

tailed Pearson Correlation analysis with 95% confidence intervals were conducted. p < 0.05 

was considered significant.
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Figure 5. RNA velocity analysis uncovers a distinct monocyte state upstream of adipose 
inflammatory macrophages in obese individuals.
(a) RNA Velocity analysis of WAT monocyte and macrophage clusters with velocity field 

projected onto the UMAP plot of human adipose myeloid cells subclustered from Figure 4. 

Arrows show the local average velocity evaluated on a regular grid and indicate the 

extrapolated future states of cells. (b) CytoTRACE scatter plot of WAT monocyte and 

macrophage clusters. Color indicates the level of differentiation from low (grey) to high 

(red). (c) UMAP plot of WAT monocyte and macrophage clusters with velocity arrows and 

corresponding principal curve shown in bold. Principal curve indicates the manually 

averaged differentiation directionality projected by RNA Velocity and CytoTRACE analysis. 

(d) Monocle analysis of the Mo-1, PVM, and IM populations indicating pseudotime 

directionality (left), cell type (middle); PVM (red), Mo-1 (blue), IM (red), and patient source 

classification as lean or obese (right); lean (red), obese (blue). (e) Bar plots showing the 
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proportion of the indicated myeloid populations derived from 7 lean and 5 obese patients. (f-
h) IPA of putative upstream regulators (left) and transcription factors (right) implicated in 

the Mo-1 to IM transition (f) in the Mo-1 to PVM transition (g), or in the PVM to LAM 

transition (h).
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Figure 6. CellphoneDB analysis reveals the lean human WAT interactome.
(a) Interaction heatmap plotting the total number of lean WAT-derived cell receptor (y-axis) 

and ligand (y-axis) interactions for the specified cell types. Color represents the number of 

interactions between cell types; higher number of interactions (red), lower number of 

interactions (blue). (b) Connectome web analysis of lean interacting putative tissue-resident 

cell types, based on expression of the ligand in at least 25% of the cell population. Vertex 

(colored cell node) size is proportional to the number of interactions to and from that cell, 

while the thickness of the connecting lines is proportional to the number of interactions 
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between two nodes. (c) Dot plots showing expression of ligands (left) and receptors (right) 

in human tissue-resident WAT cells; only ligands and receptors from cell types with detected 

expression (>25%) are shown. Implicated chemokines can be found in the lower panel. 

Color saturation indicates the strength of expression in positive cells, while dot size reflects 

the percentage of each cell cluster expressing the gene.
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Figure 7. CellphoneDB analysis predicts a dramatic remodeling of the human WAT interactome 
during obesity.
(a) Interaction heatmap plotting the total number of lean WAT-derived cell receptor (y-axis) 

and ligand (y-axis) interactions for the specified cell types. Color represents the number of 

interactions between cell types; higher number of interactions (red), lower number of 

interactions (blue). (b) Connectome web analysis of obese highly interacting cell types, 

based on expression of the ligand in at least 25% of the cell population. Vertex (colored cell 

node) size is proportional to the number of interactions to and from that cell, while the 
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thickness of the connecting lines is proportional to the number of interactions between two 

nodes. (c) Dot plots showing expression of ligands (left) and receptors (right) in human WAT 

cells; only ligands and receptors from cell types with detected expression (>25%) are shown. 

Implicated chemokines can be found in the lower panel. Color saturation indicates the 

strength of expression in positive cells, while dot size reflects the percentage of each cell 

cluster expressing the gene.

Hildreth et al. Page 45

Nat Immunol. Author manuscript; available in PMC 2021 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. Analysis of putative upstream regulators uncovers a distinct obese human WAT-
enriched signalome.
(a,b) IPA of obese immune and non-immune populations showing common putative 

upstream regulators. Terms were considered common if implicated in three or more cell 

types from a lineage. Terms were considered statistically significant if the activation z-score 

> 2. (a) Dot plots showing expression of common secreted upstream regulators from obese 

cells (left) and the putative regulated cell types (right) as suggested by IPA; left: color 

saturation indicates the strength of expression in positive cells, while dot size reflects the 
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percentage of each cell cluster expressing the gene; right: color indicates the implicated cell 

type, while dot size reflects the number of genes downstream of the suggested secreted 

upstream regulator. Only ligands from cell types with detected expression (>25%) are 

shown. Red-highlighted upstream regulators denote those that have been associated with 

human insulin resistance (see Supplementary Data Table 17). (b) Dot plot showing common 

non-secreted signaling upstream regulators. Color indicates the implicated cell type, while 

dot size reflects the number of genes downstream of the suggested signaling upstream 

regulator (c) GOSt analysis of differentially regulated signaling pathways in obesity. Terms 

were considered statistically significantly enriched if −log10(Padj)<0.05.
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