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Abstract

Drawing from a large corpus (17,000+ articles) of financial 
news,  we perform a Bayesian sparse model analysis of the 
argument-distributions of the UP and DOWN-verbs, used to 
describe movements in indices,  stocks and shares.  Previous 
work, by Gerow and Keane (2011a, 2011b, 2011c), has 
shown, using measures of overlap and k-means clustering, 
that metaphor hierarchies and antonymic relations can be 
found in this data; for instance, UP verbs have rise as a 
superordinate organizing a distinct set of subordinate verbs 
(soar, jump, climb, surge, rebound, advance).  This work 
empirically realizes  theories about the structuring of our 
conceptual systems with metaphors (Lakoff, 1992; Lakoff & 
Johnson, 1980) but does so using a distributional approach to 
meaning; namely, that words that occur in similar contexts 
have similar meanings  (see Wittgenstein, 1953). However, 
Gerow  and  Keane’s  analysis  does  not  show  the  overall 
structure of how these metaphors semantically relate to one 
another. In the present paper, we re-analyzed their data using 
a Bayesian sparse model (Lake & Tenenbaum, 2010) in order 
to  infer  this  metaphor  space  as  a  uniform  representation, 
based  on  the  argument  distributions.  Therefore,  we  treated 
arguments as features of metaphors. Our model learned three 
dimensional  graphs  in  an  unsupervised  manner  as  sparse 
representations of the metaphoric structure over all argument 
distributions,  in  parallel.  Doing  so,  it  also  successfully 
indicates the metaphoric hierarchies and antonymy relations, 
that were found by the previous models.  In conclusion, we 
discuss the benefits of this approach.

Keywords: Argument features; analogy; Bayesian inference; 
emergent  structure;  corpus  analysis;  metaphor  hierarchies; 
semantic cognition; similarity;  sparse representation; spatial 
metaphor; structure discovery; unsupervised learning.

Introduction
In  recent  years,  significant  progress  has  been  made  in 
deriving meaning from statistical  analyses  of  distributions 
of  words  (e.g.,  Gerow  &  Keane,  2011a;  Landauer  & 
Dumais,  1997;  Turney,  2006;  Turney  &  Pantel,  2010; 
Michel  et  al.,  2010).  This  distributional  approach  to 
meaning  takes  the  view that  words  that  occur  in  similar 
contexts tend to have similar meanings (see Wittgenstein, 
1953)  and  that  by  analyzing  word  usage  we can  recover 
meaning.   For  instance,  Michel  et  al.,  (2010)  argue  that 
significant insights into human culture and behavior can be 
derived  from  analyzing  very  large  corpora,  such  as  the 
GoogleBooks repository. 

Gerow  and  Keane  (2011a-c;  henceforth abbreviated as 
G&K) took such a distributional approach to understanding 
metaphorically-structured  knowledge  (in  hierarchies  and 
antonymic relationships) between “UP" and "DOWN” verbs 
from a corpus of financial news reports. Lakoff and Johnson 
(1980)  have  argued  that  metaphors  are  used  to  structure 
many domains of human experience and also many abstract 
conceptual  domains  (e.g.,  emotions).  They  specifically 
identified the use of the UP-DOWN metaphor opposition in 
accounts of wealth (e.g., WEALTH-IS-UP as in high class) 
and  in  the  rise and  fall of  numbers  (e.g.,  MORE-IS-UP; 
LESS-IS-DOWN). 

G&K (2011a) build a corpus of 17,000+ financial articles 
covering  a  4-year  period,  about  the  major  world  stock 
indices  (Dow  Jones,  NIKKEI,  FTSE-100)  from  the 
Financial Times,  NY Times and  BBC websites; the corpus 
contained over 10M words. After parsing the corpus, G&K 
selected all the sentential instances of the most commonly 
occurring UP and DOWN verbs (see G&K, 2011a, 2011b 
for  details).  Table  1  shows  some of  the  most  commonly 
used  arguments  found  in  the  corpus,  indicating  the 
metaphoric usage of the selected verbs. G&K then analyzed 
the  clustering  in  these  distributions  (using  k-means 
clustering)  and  the  overlaps  between  the  distributions  of 
different  verbs  (using  the  %  overlap  in  each  pair-wise 
comparison  of  verb  arguments).  This  analysis  threw  up 
some striking regularities.

Table  1:  The  percentage  of  rise’s argument 
distribution  covered  each  of  the  10  most  frequent 
arguments.

Rank Argument Word % of Corpus
1 Index 7.3
2 Share 5.6
3 Point 4.8
4 Percent 2.9
5 Price 2.4
6 Stock 2.0
7 Yield 1.9
8 Cent 1.3
9 Profit 0.9
10 Rate 0.9
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Metaphor Hierarchies 
G&K (2011b) argued that if one verb-metaphor (e.g., that 
referred to by rise) was organizing another metaphoric verb 
(e.g.,  soar)  then  the  argument  distribution  of  the  former 
should largely cover the latter, but the opposite would not 
be the case.  They also argued that  verb-metaphors  at  the 
same  level  of  generality  (e.g.,  a  basic  level),  sibling 
metaphors, would  have  symmetrically  overlapping 
argument distributions. Their coverage- and cluster analysis 
confirmed these types of structure. On coverage, they found 
that  rise organized  a  group of  metaphoric  siblings  (soar,  
jump, climb, surge, rebound, advance), set off from a set of 
other  more  outlying  verb-metaphors  (increase,  rally,  
recover,  gain,  alleviate,  elevate;  see  Figure  1,  A).  In  the 
clustering, they found that  rise was quite separate from all 
the  other  verbs  that  clustered  together  and  that  gain and 
climb were  quite distinct  (see  Table 2).  A similar pattern 
was  found  for  fall and  its  subordinate-related  verb-
metaphors  (dip,  retreat,  sink,  plunge,  tumble,  slide  slip,  
slide,  ease,  drop,  ease,  plummet),  with  decline,  lose, 
decrease and  worsen being outliers (see Figure 1,  B, and 
G&K, 2011b, for detailed results).

Figure 1:  Argument coverage of (A) main UP-verbs 
and (B) main DOWN-verbs from G&K (2011b).

Metaphoric Antonyms
G&K  (2011c)  also  analyzed  verb  distributions  for 
antonymic relations; arguing that preferred antonyms  rise-
fall should  have  more  similar  distributions  than  less 
preferred  antonyms  rise-decrease  or  rise-lower.  G&K 
performed a psychological experiment to find the preferred 
antonyms  between  the  UP  and  DOWN  verbs  and  then 
formulated several different similarity measures (Euclidean 

distance,  cosine  similarity,  K-L   divergence)  on  the 
argument  distributions  to  determine  which  one  best 
predicted the human choices.  Given a set of 13 UP verbs 
and  15  DOWN  verbs  (as  possible  antonyms)  people 
identified 114 unique antonym pairs. Of these,  in 60% of 
cases, the cosine similarity of the argument distributions of 
pairs  correctly  identified  the most  preferred  antonym-pair 
from  the  human  ratings.  This  figure  rose  to  87%  if  we 
consider identifying the 1st or 2nd most preferred pairs (see 
G&K, 2011c for details). Table 3 lists some results of the 
human antonymy ratings. 

Table 2:  Top 5 clusters in k-means analysis of UP-
verbs (* rest = the remaining verbs).

Rank Cluster Groups % of Tot.
(Freq.)

1 rise, rest* 62% (1451)
2 rise, gain, rest* 18% (702)
3 rise, [climb, gain], rest* 4% (36)
4 rise, [jump, climb, gain], rest* 3% (27)
5 all-verbs-as-one-group 2% (18)

Table 3: Some examples of people’s verb antonymy 
ratings,  conducted  by  G&K  (2011c).  Percentage 
measures  indicate  mean  antonymy  ratings  over 
participants and sub-tasks (free generation and match 
the opposite).

Verb pair Antonymy
rise-fall 57%
jump-fall 31%
drop-climb 13%
decline-rise 27%
slide-climb 23%
soar-plummet 17%

Using Sparse Models Instead 
G&K  found  a  number  of  interesting  regularities  for 
hierarchical  and  antonymic  relationships  between  the 
argument distributions of UP and DOWN verbs. However, 
their results were based on different approaches, rather than 
a unifying model, and do not indicate the semantic structure 
of  the  metaphoric  corpus  as  a  whole.  Arguably,  it  is 
essential  to  understand  the  cognitive  semantics  of  the 
corpus, as the meaning of individual concepts must depend 
on how they relate  to one another  (Kemp & Tenenbaum, 
2008). Bayesian sparse models, also known as sparse graph 
codes  (MacKay,  2003),  appear  to  be  good candidates  for 
this task.

Bayesian  sparse  models  basically  infer  an  emergent 
structure  in  a  probabilistic  framework  (Rogers  & 
McClelland,  2004).  Applied to semantics,  they have been 
shown to perform particularly well at finding regularities for 
the clustering of features for very large numbers of words 
from  different  conceptual  domains  (Lake  &  Tenenbaum, 
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2010).  These  models  assume  that  people  learn  a  set  of 
parameters that fit their observed data well.

Sparse  models  may  be  better  at  handling  metaphoric 
structure  than  other  structured  probabilistic  models  for 
semantic cognition (e.g., Kemp & Tenenbaum, 2008). The 
latter generate structures as instances of forms and discover 
the  structural  instance  of  the  form that  best  explains  the 
underlying dataset; including, structural instances based on 
the graph grammar of trees, linear orders, multidimensional 
spaces,  rings,  dominance  hierarchies,  cliques,  and  other 
forms that are supposed to be the organizing principles for 
data  of  different  cognitive  domains.  In  this  way,  these 
models account for domain-specific inferences. The learned 
structures  can  then  be  used  to  model  human  inductive 
reasoning  about  novel  properties  of  objects  within  those 
domains (Kemp & Tenenbaum, 2009). 

However, considering a dataset of metaphors, we need to 
take  into  account  that  contemporary  cognitive  linguistics 
understands  conceptual  metaphor  not  as  domain-specific 
inference  but  rather  as  mappings  from  one  conceptual 
domain  to  another  (Lakoff,  1987;  Gibbs,  1994,  1996; 
Fauconnier &  Turner, 1998, 2003). For example, mapping 
the directionality of movement to changes in quantity (e.g., 
“prices  are  rising”).  A  cognitive  model  of  metaphoric 
structure would, therefore, not necessarily need to select be-
tween structural instances of domain specific forms. Since a 
metaphoric corpus is likely to consists of many mappings of 
many different conceptual domains, it would rather need to 
infer an emergent structure on the basis of a psychologically 
justified  prior  probability  over  the  hypothesis  space  of 
possible  structures.  We think  that  sparseness  would  be  a 
useful  prior  for  such  a  model,  as  it  accounts  for  the 
cognitive  parsimony  that  is  needed  to  mentally  structure 
metaphors over the vast array of semantic domains (Lakoff, 
1992); as well as for the trade off between cognitive effect 
and computational effort (Wilson & Carston, 2006).

Sparse Model Analysis of Verb-Metaphors
Lake and Tenenbaum’s (2010) Bayesian sparse model was 
used on G&K’s  verb-metaphor corpus,  involving UP and 
DOWN verbs, extracted from the larger finance corpus (see 
Data Set). This metaphor corpus contained 9,700+ distinct 
sentence instances for these two sets of verbs. The sparse 
model should be able to  learn and graph the structure of 
these verb-metaphors by determining how they covary with 
regard  to  the  frequency  of  their  argument  features. 
Graphically, the verb-metaphors are represented as nodes in 
a weighted graph, where the strength of the link between 
two object-nodes is related to the weighted covariation of 
their  features.  The  weights  of  the  graph,  denoted  as  the 
symmetric matrix W, are learned from data by optimizing an 
objective function that trades off the fit to the data with the 
sparsity of the graph. In the present study, the sparse model 
technique was used to build three different graphs: a graph 
for the UP verb-metaphors and their arguments (using a 13 
x 386 matrix), a graph for the DOWN verb-metaphors and 
their arguments (using a 15 x 456 matrix), and a graph of 

the combined set of UP and DOWN verb-metaphors (using 
a 28 × 605 matrix).1

Method
Data Set A total of 28 verbs were used, 13 UP-verbs with 

386 distinct,  unique arguments,  15-DOWN verbs 
with  456  distinct,  unique  arguments  (based  on 
those used by G&K, 2011b-c).  There were 9,721 
distinct  sentence  instances  in  the  corpus  (5803 
sentences  with  UP  verbs,  3918  sentences  with 
DOWN verbs). 

Model Setup The code for the model we used was written 
in  MATLAB  (provided  by  Brenden  Lake, 
Department of Brain and Cognitive Sciences, MIT; 
see  Lake  and  Tenenbaum,  2010,  for  a  detailed 
description of the model). Formally, the undirected 
graph  W defines  a  multivariate  Gaussian 
distribution  p(f(k)|W)  in  the  generative  model, 
known  as  a  Gaussian  Markov  Random  Field 
(GMRF), where the n objects are the n-dimensions 
of  the  Gaussian.  With  a  prior  distribution  on 
sparsity, the model then estimates the maximum a 
posteriori  (MAP)  parameters  W as  optimal 
structure based on data. Each data set D was cast in 
a n ×   m matrix with n metaphors and m arguments. 
Therefore, the columns of D, denoted as arguments 
{f(1), ...,   f(m)}, were assumed to be independent and 
identically distributed drawn from  p(f(k)|W).  With 
the  n-dimensional  Gaussian  distribution,  it  is 
assumed  that  arguments  vary  smoothly  over  the 
graph. So, if two metaphors  i and  j happen to be 
connected  by  a  large  weight  (wij),  they  share 
similar application frequencies over arguments. As 
a result of sparsity, most metaphors are not directly 
connected  in  the  learned  graph  (i.e.,  wij=0).  The 
resulting  weights  allowed  us  to  further  apply  a 
Markov Cluster Algorithm (MCA) to classify verb 
metaphors  based  on  the  covariation  of  their 
argument  distributions.  Inflation and pre-inflation 
settings for the MCA were hold on standard (see 
Freeman et  al.,  2007; Theocharidis,  Van Dongen, 
Enright, & Freeman, 2009). 

Results & Discussion 
Figure 2 shows the resulting weight matrices illustrated as 
sparse graphs learned  for  the three  different  datasets:  (A) 
UP  verbs,  (B)  DOWN  verbs  and  (C)  UP-DOWN  verbs 
combined (all graphs were drawn with BioLayout Express 
3D; videos of rotating versions of respective graphs should 
be  retrievable  by  clicking  on  them).  In  each  graph,  the 
labeled nodes represent verb-metaphors (e.g., rise, fall). The 
links  show  the  connection  weights  and  consequential 
distances between the nodes, denoting similarity over all 

1 Resulting weight matrices are available from the authors.
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Figure  2:  Resulting  sparse  graphs  for  (A)  UP-
metaphors,  (B)  DOWN-metaphors,  and  (C)  UP-
DOWN metaphors. 

verbs  graphed.  The  color  and  thickness  of  the  links 
represent  the  weight  magnitude;  red  links  indicate  high 
weights (with thickness indicating higher weights), whereas 
blue links indicate low weights (between 0 and 1). Colors of 
nodes denote classes of verb-metaphors found by the MCA.

Metaphoric Structure of  UP Verbs  Figure 2 (A) shows 
the  sparse  graph  for  the  UP  verb-metaphors. 
Overall, it literally provides a much better picture 
of  the  semantic  space  of  the  metaphors  with the 
relative  distances  between  each  clearly  shown, 
compared  to  G&K’s  (2011b,  2011c)  analyses. 
First,  note that  the  rise node stands out as being 
distinct and non-similar to most of the other nodes. 
Counter-intuitively,  this  occurs  because  though 
rise has  arguments  that  cover many of  the argu-
ments  of  most  other  verbs  combined (also  see 
Figure 1,  A),  it  has fewer arguments in common 
individually with  any  given  verb  (and,  therefore, 
low similarity with each). Second,  rise, climb and 
gain cluster  separate  to  the  remaining  verb-
metaphors  (purple  vs.  green  nodes).  While  we 
know that  rise has asymmetric coverage regarding 
most other verbs, climb and gain have not (also see 
Figure 1, A). Therefore,  the latter are two highly 
interconnected outliers.

Metaphoric  Structure  of  DOWN Verbs Figure  2  (B) 
shows  the  sparse  graph  for  the  DOWN  verb-
metaphors. Here, again, the results are very similar 
to what we saw for the UP verbs. Again, the sparse 
model analysis provides a much better  picture of 
the  semantic  space  of  the  metaphors  with  the 
relative  distances  between  each  clearly  shown. 
First,  note  that  now the  fall node  stands  out  as 
being distinct and non-similar to most of the other 
nodes; for the same reasons we advanced for  rise. 
However,  regarding  the  coverage,  it  can  just  be 
considered as a superordinate to some of the other 
verbs (see Figure 1, B).  Second, there is a marked 
cluster of verbs that are all (almost) equally similar 
to  one  another  (green  nodes).  Third,  there  is 
another  set  of  verbs  that  are  similar  but  distinct 
(lose, drop and slip). While slip is an outlier,  lose 
and drop are highly similar.  So, again, while these 
graphs give a better picture of the space, they may 
need to be supplemented by coverage measures in 
defining  whether  nodes  might  be  actual 
superordinates or simply unrelated.

Metaphoric Verb Antonyms Figure 2 (C) shows the sparse 
graphs for the combined UP and DOWN verb 
corpora. These graphs are slightly different because 
they deal with both categories of verbs. G&K's 
(2011c) analysis for antonymy worked on the basis 
that the key antonyms would be highly similar, 
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relative to other pairings across the two sets of 
verbs. Again, the sparse model shows this very 
clearly as notable key antonym pairs appear as 
close nodes: for instance, rise-fall, gain-drop, 
climb-slip, gain-lose. Further,  how  the  verb-
metaphors  cluster  (shown  by  node  coloration) 
indicates  semantic  similarity  in  how  they  got 
applied. However,  the antonymy ratings from the 
human  subject  experiment  of  G&K  (2011c) 
correlate just weakly with the ones from the model 
(Pearson's  r=0.4;  see  Figure 3).  This  might  have 
experimental- and model related reasons:  first, the 
verb-metaphors  from the corpus  were  applied by 
human speakers to describe financial changes. The 
experimental data, however, are abstract antonymy 
ratings  of  verbs,  having  neither  applicational 
relation  to  the  domains relevant  to  conceptualize 
finance, nor to any other cognitive domain. (Future 
experiments for  metaphoric antonymy would need 
to  take  this  into  account.) Second,  the  model's 
antonymy ratings  for  the  superordinates  rise and 
fall had to be excluded,  since they were 0 to all 
other metaphors, except to one another. Finally, in 
the  graph  are also some high-similar pairings 
within the same verb set, like rally-rebound and 
slip-ease, that are clearly “just similar”  and not 
antonyms.  The  latter  indicates that some prior 
categorization  of what-are-known-to-be broadly 
opposite sets is required before such a merged 
model might be useful. Again,  an  additional 
coverage analysis is needed to isolate rise and fall 
as superordinates (see also Figure 1, A and B). 

Figure 3: Model- versus human antonymy rating of 
verb-pairs  in  per  cent.  Human  ratings  reflect 
perceived  antonymy  of  verbs  (see  G&K,  2011c); 
whereas  model  ratings  reflect  the  computed 
antonymy  of  verb-metaphors  used  to  describe 
financial changes. The latter are weighted entries of 
the model's weight matrix.

Conclusion
The  suggestion  that  significant  parts  of  our  conceptual 
systems are  structured  by  metaphors  has  mainly  received 
support  from linguistic  and  anthropological  analyses  (see 
Lakoff & Johnson, 1980).  However, cashing out these ideas 

empirically in a systematic  way has proven difficult.  The 
promise of the present work is that these ideas can be em-
pirically  supported  by  a  distributional  analysis  of  verb 
arguments,  with such metaphoric import. We have shown 
that sparse models can provide a rich and informative basis 
for  relating  these  verb-metaphors  together  in  a  uniform 
metaphor  space.   We  believe  that  this  approach  may  be 
useful in modeling other cognitive tasks that rely on these 
metaphoric  spaces  (e.g.,  language  comprehension, 
analogical thinking). For instance, in analogical thinking it 
has long been argued that conceptual slippage (Hofstadter, 
1995)  and  re-description  (Keane,  1996;  Kurtz,  2006)  are 
needed  to  account  for  human  abilities:  Bayesian  sparse 
models provide a basis for allowing such slippage, assuming 
structural support for the slippage being considered.

However,  our  work  has  also  indicated  that  the  sparse 
models  will  still  need  a  coverage  analysis  to  isolate 
superordinate metaphors. And, because these are important 
for conceptually structuring the metaphor space, they should 
be implemented in the way sparse models generate and learn 
structure.  This  might  be  achievable  by  using  hierarchical 
Bayesian  sparse  models  (Chandrasekaran,  Parrilo,  & 
Willsky,  2010)  that  potentially  discover  organizing 
metaphoric  concepts  as  hidden  or  latent  variables,  and 
further increase sparsity. 
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