UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Mops and Learning

Permalink
https://escholarship.org/uc/item/5tm3b0m7

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 3(0)

Author
Schank, Roger C.

Publication Date
1981

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/5tm3b0m7
https://escholarship.org
http://www.cdlib.org/

MOPs and Learning

Roger C. Schank
Yale University
Computer Science Department
PO Box 2158
New Haven, CT 06520

This paper is an attempt to sketch out some of
what MOPs are about. It is taken from Schank (in
press).

A MOP is an orderer of scemnes.
A scene is a memory structure that groups
together actions with s common goal, a common
time, and some other common thread.
It provides a sequence of very general
actions. Specific memories are stored in
scenes, indexed with respect to how they
differ from the general action in the scene.

Scenes actually point to specific memories.
MOPs do not. MOPs merely point to scenes. Scripts
are particularly common instantiations of scenes.
Thus, a scene consists of a generally-defined
sequence of actions, while a script groups together
particular realizations of the generalizations in a
scene. Scripts package together particular
realizations of scenes that have been known to
frequently recur in a given context. Specific
memories can be organized in terms of scripts also.
This follows from the above, since a script 1is no
more than a scene that has been colored
(particularly instantiated) in a given way.

MOP“ s Defined

Since memories are to be found in scenes, a
very important part of memory organizatiom is our
ability to travel from scene to scene. A MOP is an
organizer of scenes. Finding the appropriate MOP,
in memory search, enables one to answer the
question “What would come next?”, where the answer
is another scene. That is, MOPs provide
information about how various scenes are connected
to one another.

A MOP consists of a set of scenes directed
towards the achievement of a low level goal.
A MOP always has one major scene that is the
essence or purpose of the MOP.

There is a natural progression in terms of
generality of structures that suggests itself:
meta MOPs
MOPs
scenes
scripts

Meta MOPs describe ordered progressions of scenes
at their most abstract levels. As such they
provide the stuff out of which MOPs are made. They
do not actually contain memories. MOPs are less
general descriptions of such progressions. The
scenes they contain actually contain specific
memories.

There are three kinds of scenes, physical,
societal, and personal. Physical scenes represent
a kind of "snapshot" of one's surroundings at a
given time. Memories grouped in physical scenes
provide information about what happened and how
things looked.

166

Some MOPs refer to societal things rather than
physical ones. M-CONTRACT is a MOP that organizes
scenes that are not physically bounded. Thus,
entities such as AGREE, or DELIVER, while behaving
very much like scenes in a physical MOP, have no
physical instantiation. They can happen anywhere
and can take a great many different physical forms.
Thus, a delivery of agreed upon services that fails
to come about will be indexed under the DELIVER
scene in M-CONTRACT. In this way, a failure of a
department store to deliver a package that was paid
for might remind one of a restaurant that required
pre-payment and then failed to serve the desired
food. Such reminding can only be accounted for by
a memory organization that has scenes that are not
exclusively physically bounded. DELIVER is an
example of a societal scene, that is, one that may
have many possible physical realizations.

Personal scenes are responsible for
idiosyncratic behavior that is personally-defined.
A personal scene is a scene whose common thread is
a particular goal that belongs to the person whose
scene it is. Any private plan to achieve ones own
ends that is liable to repeat itself frequently is
a possible personal scene.

This division in scenes 1is parroted by a
similar division in MOPs. Physical MOPs can
contain scenes that seem societal in nature, but
what 1is actually happening is that one event is
being governed by two scenes. Thus, for example,
both M-CONTRACT which 1is a Societal MOP, and
M-AIRPLANE, which is physical share a PAY scene.
But each relates to different aspects of that
event. In other words,. "paying" can be seen as
both a physical event and as a social event.
Different MOPs provide expectations in each case.
These expectations will coalesce to some degree,
providing uniform expectations. Events confirming
those expectations will be remembered in terms of
both of the scenes that were active.

What is the difference between!S$SAIRPLANE (that
is, our prior view of a script) and M-AIRPLANE
(that is, our current view of a MOP)?

The Difference Between MOPs and Scripts

A MOP is an ordered set of scenes.
A script (1977 version) is an ordered set of scenes

BUT---
The definition of scene is different in each case.

For a MOP, a scene is a structure that can be shared
by a great many other MOPs.

For a script (1977 version) a scene was particular
to a given script and was not accessible without
using that script.

A script (new version) is scene-specific. No script
transcens the boundaries of a scene.

Now, to make this specific, let wus actually
look at M-AIRPLANE and 'SAIRPLANE. Recall that
ISAIRPLANE was more or less a list of an entire
airplane trip. It included making the reservation,
getting to the airport, checking in, riding in the
plane, eating the meal and so on. In SAM and FRUMP
these things were all stored in a complex
structure, complete with optional tracks, under the
name ! SAIRPLANE.

But, now we wish to be able to make
generalizations, get reminded across contexts and
within contexts, and in general bring whatever
relevant information from memory that we can find
to help us in processing an input. To do this, we
need structures that are far more general than a
detailed complex list of events. For example,
getting someplace by car, and making reservations
by telephone are two scenes that were part of
‘SAIRPLANE that could not possibly be part of
M-AIRPLANE. The reason for this is that one could
easily confuse one trip in a car to visit a friend
who lives near the airport, with a trip to the
airport that was intended to enable one to fly
someplace. Similarly, one could easily confuse a
phone conversation maiking airline reservations
vwith one making hotel resevervations. In fact they
might well be the same conversation.

The problem with our old conception of scripts
was that much too much that could have been defined
generally, and that is likely to be stored in a
general fashion in memory, was defined specifically
as a part of a particular script. When one takes
away everything that could have been defined
generally from !SAIRPLANE one 1is left with the
things specific to!$SAIRPLANE, namely getting on the
plane, being seated, being served a meal and so on.
The above entities are the scripts that we now
believe in. That is, M-AIRPLANE is a structure
that, like any MOP, organizes a set of scenes. One
of these scenes is SITTING IN THE PLANE (SITP).
This scene has in it a number of scripts specific
to that scene. These include !$(SITP)EATING,
'$(SITP)MOVIE, and so on. Experiences that occurred
within them, that is while those scripts were
directing processing, that did not coincide with
the expectations generated by that script, would be
encoded as failures and indexed within that script.

M-AIRPLANE fills one strand of the meta
MOP-TRIP. It consists of the following scenes:

M-AIRPLANE s scenes

CHECK-IN + WAITING AREA + BOARDING +
SIT-IN-THE-PLANE + DEPLANE +COLLECT-BAGS

Each of the scenes wused by M-AIRPLANE is
constructed as generally as possible. We should
point out that it is people who are doing the
construction of these scenes. .One of the scenes of
M-AIRPLANE is something called WAITING AREA. Now
it is reasonable to ask, is this the same as the
scene as WAITING ROOM in M-PROF-OFFICE-VISIT?
Clearly such answers depend upon the experiences ¢
memory has had and the decisions about what is like
what (its generalizations) that it has made. It i
perfectly plausible that a memory that had been t«
a doctor's and a lawyer’s office and hac
constructed a scene WAITING ROOM, might upon 1it:
first encounter with an airport, see the waitin
area as 8 version of WAITING ROOM. And, of course
it might not.

:Our point is that the possibility for suc
generalizations, for interpreting a new experienc
in terms of what it believes to be 1its mos
relevant old one, must exist for a memory. I
order to do this, scenes must be memory structure
in their own right, disassociated form th
structures they are used with in processing. Thus
MOPs as we have outlined them must be the kinds o
memory structures we need. Scripts, 1in the ol
version of them, were too restrictive 1in this
regard. This does not mean that scripts do not
exist of course. Some of the experimental work on
scripts relates to MOPs as we have now defined them
and some of it relates to our new, more restricted
definition of them.

Learning

Higher level learning and generalization takes
place by 1indexing a given expectation failure in
terms of the MOPs and scenes that were active at
each of the three levels of analysis whenever the
expectation failure occurred.

.One key problem that a theory of memory must
explain is what to do when an expectation fails.
Consider again the Legal Seafood case (first
discussed in Schank, 1980). After processing an
episode at Legal Seafood, we would want to have
detected a MOP-based expectation failure and have
s0 indexed it. Why is this a MOP-based failure and
how does a system know what structure to alter?
The MOP M-RESTAURANT indicates the order of
occurrance of scenes in a sequence. .One way that a
MOP can fail is by having the ordering of scenes
that it predicts turn out to be wrong. In Legal
Seafood, the PAYING scene comes immediately after
the ordering scene. Thus M-RESTAURANT would be
marked, at least initially, with an index after
.ORDER that PAY came next in this particular
instance. But, just simply marking M-RESTAURANT is
not enough.

The main question that is generated by any
expectation failure is: What alteration of the
structure that generated that expectation must be
made? There are three possibilities, alteration,
reorganization, and the construction of a new
structure.

Consider our visitor to Burger King and
MacDonald’s. A first encounter with Burger King,
for a person whose knowledge structures contain
only the standard M-RESTAURANT, would produce an
expectation failure in the order of ORDER, SEATING,
PAY. When multiple failures occur, it is a good
bet that it is because the MOP being used was of
little value. Thus, in a situation of multiple
failure, a new MOP must be constructed. This
construction is complex since it involves reworking
the existing MOP to create the new one. This 1is
done by altering the MOP first, and the scenes
second, as follows.

As in the Legal Seafood example, in Burger
King PAY goes right after ORDER. In fact, we might
expect a reminding here if the Legal Seafood
episode came first. We have an additional problem
with respect to M-RESTAURANT in that the SEATING
scene follows PAY and ORDER. Further there are
some script expectation failures too. For example,
ISRESTAURANT-ORDER is not usually done while
standing.

The first thing that must be done then 1is to
construct a new MOP. To construct a new MOP, we
start with the scenes of the old MOP and reorder
them according to the new episode. This is easy in
the case of what we will temporarily call M-BURGER
KING. The problem is that while the scenes may be
the same, the scripts are different. A scene
describes what takes place in general. And, in
general, what takes place in a regular restaurant
and a fast-food restaurant is the same. But the
specifics are different. We do not want to use the
scripts associated with M-RESTAURANT therefore.
The problem then 1is to construct new scripts.
Actually, this is hardly a problem at all. The new
script 1is 1identical to the first Burger King
episode. The real problem is to alter the scenes.

At this point we have a new MOP, M-BURGER
KING, that contains the scenes ENTER + ORDER + PAY
+SEATING with very specific scripts attached to
each scene. Two problems remain. First we must
encode the scripts correctly in the scene. Second
we must generalize M-BURGER KING to the MOP that is
more likely to be the one of greatest use, namely
M-FAST FOOD. These two problems are related.

167

The scene alteration problem depends, after
all, on how a scene is constructed in the first
place. Let us then, by way of example, consider
the ORDER scene.

.ORDER as we have said, is a scene that is used
by a great many MOPs. Some of these include:
M-RESTAURANT, M-SHOPPING, M-PROVIDE-SERVICE,
M-OFFICE, M-TELEPHONE-BUYING, M-TRAVEL-AGENT. The
scene ORDER, in order to be used by this diverse
set of MOPs, must be written in as general a way as
possible. ORDER is one of those scenes that is
both physical and societal. That is, it expresses
both the generalizations that are valid when
someone is physically ordering something, and those
that pertain to the relationship between the
participants in an ORDERing situation. Below, we
have the physical scene ORDER. It looks a lot like
a script, but without any particulars. Particular
scripts, pointed to by ORDER, fill in the details
(or “color”) the ORDER scene. Here then, is one
possible view of ORDER:

Participants: actor, agent
Props: desired object or service;
medium of MTRANSing
Preconditions:
actor can MTRANS to agent
agent can be assumed to have ability to
get object or do service
agent has willingness to get object or
do service
Actions:
actor establishes MTRANS linkage
actor attracts attention of agent
actor questions possibility of service being
performed or object being delivered
actor questions price of object or service
actor states desire to agent
agent agrees to comply
agent tells actor when compliance will be complete

The role of a script attached to a scene 1is to
color the scene with the particulars of that scene.
In other words, a script is a copy of a scene with
particulars filled in. For a script to be used, a
copy of the scene is made that alters the scene in
appropriate ways, leaving intact the parts of the
scene that fit perfectly.

Knowledge that is acquired from restaurants
about ordering that applies to all kinds of
ordering will be known to so apply because the
piece that was acquired will have been copied
unchanged from the scene. The only way such
knowledge can apply across the board to all
ordering 1s 1f it relates to a non-restaurant
specific portion of the script. In other words,
expectation failures that are script-specific are
stored in terms of the script itself. But ,
expectation failures that were due to expectations
that were derived from a scene piece that was
directly copied are stored in terms of the original
scene.

To see how the scene-script relationship looks
in practice lets consider the script
I SRESTAURANT-ORDER. When !SRESTAURANT-ORDER colors
ORDER 1t takes each line 1in it and either copy it
directly or alters it to suit the script. For
example, the precondition:

agent has willingness to get object or
do service

is a line in ORDER. !'$RESTARANT-ORDER colors this
line by adding the information that a waitress, can
be, because it is her job, assumed to be willing.

168

Similarly the actions:

actor questions possibility of service being
performed or object being delivered

and
actor questions price of object or service

are taken care of by the definition of a restaurant
in the first case, and by a menu in the second.
That 1is, |SRESTAURANT-ORDER colors ORDER by
replacing an abstract line about price with
information about reading a menu. Thus, these
lines are altered in this script to reflect known
information about restaurants.

Let’s take a look at how a problem in ORDER
can cause memory to be changed. Suppose we have a
person who orders in a restaurant and finds that he
isn“t served because he spoke in an uncouth manner.
Initially, this person might have a memory
structure that looks like this:

D-AGENCY
|

M-FASTFOOD M-RESTAURANT | M-STORE M-PROVIDESERVICE

|

- 1-POSSIBILITY? |
| 2-PRICE? |
| 3-MTRANS ORDER |
| |

| i |
| SRESTAURANT-ORDER | SAUTO-PARTS+ORDER ! $DEPT-ORDER

1-Defined by role l-copied 1-FIND plan
and MENU 2-copied 2-LOOK

2-colored by MENU 3-copied 3-PTRANs to

3-copied salesperson

This diagram shows how the scene ORDER is used
by three scripts. Those scripts have copied the
information in ORDER and either replaced it by
coloring, or copied it directly. Three MOPs that
use ORDER as one of its scenes are also shown. In
addition, the generalization of the goal behind
ORDER, namely D-AGENCY, is also connected to ORDER.
This relationship is close to a hierarchical
superset relationship. The MOP connection 1is one
of filler to empty slot.

Now let”s consider what happens when this
person’s nasty order goes unfilled in the
restaurant. First, there 1is an expectation
failure. The episode is indexed off of
I SRESTAURANT-ORDER in slot 3. But, as slot 3 has
been copied directly from the ORDER scene, this
index is moved up to that level. When the same
failure occurs 1in an auto parts store, or a fast
food restaurant, or any other script that copies
slot 3 directly from ORDER, a reminding occurs.
This second instance causes a re-evaluation of the
expectation that has failed. This re-evaluation
causes an attempt to explain the failure.

In this case, the explanation is that servers
don’t 1like to be ordered nastily. Finding such
explanations 1is an extremely complex process.
.0ften they are not easily discoverable. We may
need to be told. We may never find out. But, when
we do find an explanation, it causes a local fix to
be made that enables the person whose experience it
was to modify ORDER in slot 3 accordingly. This

allows every MOP that uses ORDER to have that fix
incorporated in it without doing a thing. The new,
altered, ORDER is simply used by any MOP that
previously wused the old ORDER. In other words,
this hypothetical person should now know to ask his
wife to cook him things in a polite way and so on.

Now let”s consider the Burger King example
again. The problem in constructing M-BURGER KING
is to take each scene that that MOP uses and treat
each action that occurs within it in terms of its
deviation from the Dbaseline scene. Thus,
I$BURGER-KING-ORDER is built by noting how the
actions observed in the first experience with
Burger King differ from the ORDER scene.

The problem is, of course, that we want this
MOP to be M-FAST FOOD. To get this MOP to be
built, it is necessary to index M-BURGER KING in
terms of M-RESTAURANT. The reason for this is as
follows: Consider a patron entering MacDonalds.
We want this patron to get reminded of Burger King.
To put this another way, we want the patron to know
to use M-BURGER-KING and not M-RESTAURANT. How can
this be accomplished? One way is to index
M-RESTAURANT at the point of its failed expectation
relevant to Burger King, in this case noting that
the scene ordering was different in a particular
way. Thus, M-RESTAURANT must now have in it a
marker recalling the past expectation failure and
directing the processor where to go for help in
further processing.

After this rerouting of processing has
occurred a few times in the same way, the reminding
ceases to occur. At that point M-BURGER KING has
been transformed into a MOP with entry conditions
of its own, that is, one that can be called in for
use without even seeing it as a type of restaurant.
To put this more generally, a new MOP is grown at
the point where 1its conditions for use have been
detected so that it can be called up independently
from the MOP in which it originated as an
expectation failure. Thus, after a few trials,
M-RESTAURANT and M-FAST FOOD are independent MOPs.

In general then, expectation failures that are
MOP-based, will 1initially just produce markers
valuable for reminding. However, if the failure is
radical enough, a new MOP must be constructed
immediately.

REFERENCES

Schank, R. C. (1980) Language and Memory .
COGNITIVE SCIENCE, Vol 4 no. 3, 243-284.

Schank, R. C. (In Press) DYNAMIC MEMORY: A Theory
of Learning in Computers and People.

169

	cogsci_1981_166-169

