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Abstract

Computer models of case-based reasoning (CBR) generally
guide case adaptation using a fixed set of adaptation rules. A
difficult practical problem is how to identify the knowledge re-
quired to guide adaptation for particular tasks. Likewise, an
open issue for CBR as a cognitive model is how case adapta-
tion knowledge is learned. We describe a new approach to ac-
quiring case adaptation knowledge. In this approach, adapta-
tion problems are initially solved by reasoning from scratch,
using abstract rules about structural transformations and gen-
eral memory search heuristics. Traces of the processing used
for successful rule-based adaptation are stored as cases to en-
able future adaptation to be done by case-based reasoning.
When similar adaptation problems are encountered in the fu-
ture, these adaptation cases provide task- and domain-specific
guidance for the case adaptation process. We present the tenets
of the approach concerning the relationship between memory
search and case adaptation, the memory search process, and
the storage and reuse of cases representing adaptation episodes.
These points are discussed in the context of ongoing research
on DIAL, a computer model that learns case adaptation knowl-
edge for case-based disaster response planning.

Introduction

The fundamental principle of case-based reasoning (CBR)
for problem-solving is that new problems are addressed by
retrieving stored records of prior problem-solving episodes
and adapting their solutions to fit new situations. In most
case-based reasoning systems, the case adaptation process is
guided by fixed case adaptation rules. Practical experience de-
veloping CBR systems has shown that it is difficult to estab-
lish appropriate case adaptation rules (e.g., Allemang, 1993;
Leake, 1994). In defining adaptation rules, a key problem is
the classic operationality/generality tradeoff that was first ob-
served in research on explanation-based learning (e.g., Segre,
1987): Specific rules are easy to apply and are reliable, but
only apply to a narrow range of adaptation problems; abstract
rules span a broad range of potential adaptations but are of-
ten hard and expensive to apply because they do not provide
task- and domain-specific guidance. In those CBR systems
that do perform case adaptation, specific rules are often used,
requiring that the developer perform difficult analysis of the
task and domain to determine which rules will be needed. In
practice, the problems of defining adaptation rules are so acute
that many CBR applications simply omit case adaptation (e.g.,
Barletta, 1994).

This paper presents a new method by which a case-based
reasoning system can learn adaptation knowledge from ex-
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perience. The method models a progression from case adap-
tation using general adaptation rules to case adaptation by a
case-based reasoning process that reflects both (1) the spe-
cific adaptation problems the reasoner has encountered and
(2) the reasoner’s idiosyncratic memory organization and do-
main knowledge. The approach is motivated both by prag-
matic considerations and cognitive modeling concerns. The
pragmatic benefits of learning from experience to refine case
adaptation knowledge are simplified knowledge acquisition,
improved efficiency of adaptation, and improved quality of
the results of adaptation. The benefits from a cognitive mod-
eling perspective are in providing an account of how human
abilities for adapting cases might develop and improve.

In our approach, two types of general rules are provided
as the initial basis for case adaptation: rules describing struc-
tural transformations (i.e., characterizing ways to transform
case structure, such as adding or substituting particular com-
ponents of a case), and rules about how to search memory for
the information needed to apply a transformation (e.g., that
can be used to provide general guidance about how to search
for appropriate items to substitute after a substitution transfor-
mation has been selected). As adaptation problems are solved
successfully using these rules, two types of cases are stored
to enable future case-based reasoning about the adaptation
process itself. Memory search cases encapsulate information
about the steps in the memory search process. Adapration
cases encapsulate information about the adaptation problem
as a whole and how it was solved, including both the transfor-
mation used and the memory search process followed. Stor-
age and reuse of these two types of cases facilitates future case
adaptation in two ways. First, when a new adaptation problem
is similar to a previously solved problem, the previous adap-
tation case is retrieved and used to suggest a transformation
and memory search plan that were effective in the past. Sec-
ond, even when a new adaptation problem is different from
previously-solved problems, prior memory search cases can
help to guide the memory search needed for the new prob-
lem. This approach to case adaptation models how case-based
reasoning systems can make the transition from adaptation by
general rules (which may be unreliable and hard to apply) to
adaptation that reflects specific lessons acquired with adap-
tation experience. Experience also facilitates the solution of
novel adaptation problems, because the rule-based adaptation
process can apply prior memory search cases when solving
new adaptation problems.

We begin with a brief discussion of the evidence for de-
velopmental changes in human case adaptation ability and an



outline of the background for our approach. We then identify
and discuss key issues in the context of an implementation of
this approach to learn to improve case adaptation during case-
based reasoning for disaster response planning.

Perspective

Human development of case adaptation: Multiple psy-
chological studies have shown evidence for human case-based
reasoning both in the early phases of learning adomain and af-
ter achieving expertise (see Kolodner (1993) for an overview
of these results). However, the development process for
knowledge used to guide the application of prior cases has re-
ceived less study. Gentner (1988) has shown that as children
develop, a shift occurs in how they adapt stories to fit new
characters. In Gentner’s experiments, children first acted out
stories, using toys to play the roles of the characters, and then
were asked to act out the same stories but using different toys
representing new characters. Although both older children (8-
10 years old) and younger children (5-7 years old) were in-
fluenced by the transparency of the object mappings between
toys when they choose which characters to substitute into par-
ticular roles of the stories, considerations of structural features
helped the older children to make better substitutions. Our re-
search models how criteria for deciding which adaptations to
favor may be learned from experience.

Computer models of adaptation learning: Some CBR
systems have capabilities for learning special-purpose case
adaptation rules. For example, CHEF (Hammond, 1989),
a case-based planner, augments a static library of domain-
independent plan repair strategies by learning ingredient crit-
ics for suggesting adaptations appropriate to particular ingre-
dients. The resulting learning is useful, but in a limited con-
text. Another approach is to rely on an external source to pro-
vide a library of adaptation cases to be reused (Berger, 1995;
Sycara, 1988). This approach is also useful, but does not ad-
dress how to generate the cases used. Our aim is a general
model of how an adaptation system can acquire adaptation
cases for reuse as it solves novel adaptation problems.

Combining Rules and Cases to Learn
Adaptation

Our approach begins with adaptation based on general rules.
As novel adaptation problems are solved, the adaptation
component stores information about successful adaptation
episodes in a library of specific adaptation cases for future
use.! Unlike abstract adaptation rules, adaptation cases en-
capsulate the system’s experience on specific adaptation and
memory search problems and reflect the system’s specific
task, domain, and memory organization. When no relevant
cases are available, rule-based adaptation is used. Thus our
method models how a reasoner can shift between rule-based
and case-based case adaptation as appropriate to respond to
familiar or novel adaptation problems.

'Useful information could also be obtained by failure-driven
learning from failed adaptation attempts. That process is a future re-
search direction.
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The computer model

A project to investigate this adaptation learning method is
now being conducted at Indiana University with Andrew Kin-
ley and David Wilson. We are investigating the process in
the context of adaptation of response plans for natural and
man-made disasters. Human disaster managers are trained
by studying casebooks of disasters and responses, and it has
been observed that they frequently report that their new solu-
tions are based on response plans for similar previous episodes
(e.g., Rosenthal et al., 1989).

Our computer model, DIAL (for Disaster response with
Introspective Adaptation Learning), starts with a library of
disaster response cases. As it generates disaster response
plans, it learns both new cases and strategies for adapting its
cases to fit new situations.

The entire DIAL system includes a schema-based story un-
derstander that processes inputs in a conceptual representa-
tion, a response plan retriever/instantiator, a simple evalua-
tor for candidate response plans, and an adaptation compo-
nent to adapt retrieved plans when problems are found. All
components except for the adaptation component are based in
a straightforward way on previous systems (e.g., the under-
stander is based on previous understanding systems such as
SAM (Cullingford, 1978), and the case-based planner is based
on previous case-based planners such as CHEF (Hammond,
1989)). Consequently, further discussion will focus only on
the case adaptation process.

DIAL’s adaptation process

DIAL’s adaptation component receives as input an instanti-
ated disaster response plan and a description of a problem in
that plan to repair by case adaptation. Its processing combines
reasoning from scratch with case-based reasoning, in the fol-
lowing sequence of processing steps:

1. Case-based adaptation: DIAL attempts to retrieve cases

representing adaptations that have applied to similar adap-
tation problems in the past. If it is successful, the adapta-
tion case is re-applied. Otherwise, rule-based adaptation is
initiated.

Rule-based adaptation: Based on the problem type, the
system selects a transformation (e.g., substitution), and
generates a knowledge goal (Ram, 1987) for the informa-
tion needed for the transformation. Introspective planning
(Hunter, 1990) is done to search for the needed information.
Search terminates when the information is found or when
a pre-set limit on the allowed number of plan steps is ex-
ceeded.

. Evaluation: The adaptation is evaluated by a human user
who inputs to the system whether the adaptation is accept-
able. If not, other adaptations are tried. If no plans succeed
with a given resource limit, rule-based adaptation is con-
tinued with an increased limit. (This gives preference to
shorter memory search plans.)

Storage: When the results of adaptation are successful, the
resulting response plan, the adaptation case, and the mem-
ory search plan are stored to be available for future use.

The following sections describe the rule-based adaptation and
case-based adaptation processes. This is followed by a de-
scription of processing for an implemented program example.



Rule-based adaptation

In order to reason about adaptation problems, a uniform
framework is needed for characterizing case adaptation.
DIAL's rule-based case adaptation process is based on a char-
acterization of the case adaptation process as involving two
parts: structural transformations and memory search to find
the information needed to apply the transformations. In
accordance with this view, case adaptation knowledge can
be treated as having two parts, abstract transformations and
memory search strategies. This characterization of adaptation
knowledge follows the principle of the adaptation strategies
developed by Kass (1994). The aim of adaptation strategies
is to achieve both operationality and generality by extending
traditional adaptation rules to contain domain-independent
strategies for searching memory to find the domain-specific
information required by particular adaptation problems.

Kass’s adaptation strategies were static; they were hand-
coded rather than learned. However, his basic framework sug-
gests a view of how to learn adaptation knowledge. In this
view, learning specifics about case adaptation knowledge can
be seen as learning the memory search information needed to
operationalize general structural transformations (additions,
deletions, and substitutions). Viewing adaptation learning in
this way provides a broadly-applicable framework for char-
acterizing case adaptations: it is well known that a small set
of transformations is sufficient to characterize a wide range of
adaptations (Carbonell, 1983; Kolodner, 1993). The result-
ing learning can have a significant effect on adaptation perfor-
mance, because in general, a large amount of domain-specific
reasoning may be required to find the information to apply
those transformations. The following sections discuss how
DIAL’s rule-based adaptation process finds the information
necded to apply general transformations when solving novel
adaptation problems. This process involves selecting a trans-
formation to apply, generating knowledge goals for the infor-
mation needed to apply the transformation, and using a plan-
ning process to guide search through memory for the needed
information.

Selecting transformations and generating related knowl-
edge goals: When DIAL uses rule-based adaptation to pro-
cess a novel adaptation problem, it first selects a transforma-
tion to apply. It then performs memory search for the informa-
tion needed to apply the transformation. The current imple-
mentation uses a very simple scheme for selecting transforma-
tions: candidate transformations for repairing particular types
of adaptation problems are indexed directly under elements
in the vocabulary that the system uses for describing types of
adaptation problems. Given a problem description as input,
DIAL'’s rule-based adaptation process retrieves the transfor-
mations associated with the problem description and attempts
to apply them. When reasoning from scratch, DIAL has no
guidance about which to favor; the transformations associated
with the problem category are applied in an arbitrary order un-
til a successful adaptation is found. However, when an en-
tire successful adaptation case is stored, the combination of a
particular transformation and particular memory search strat-
egy that were previously successful will be retrieved and re-
applied. Consequently, the learning process involves learning
about combinations of transformations and memory search
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strategies that are applicable to particular types of problems.

The following example illustrates this process of transfor-
mation selection. Consider a case-based disaster planner that
attempts to re-apply a response plan for a chemical spill, but
finds that one part of the retrieved plan is inapplicable: the re-
trieved plan used city buses to evacuate victims, but the city
faced by the current spill has no bus system. The problem of
an unavailable filler suggests using a substitution transforma-
tion to replace bus transportation by a different alternative.

Once a transformation has been selected, memory search is
needed—in the transportation example, it is necessary to find
aform of transportation to substitute. This is addressed by first
representing the needed information as a knowledge goal, and
then reasoning introspectively about possible plans for search-
ing memory to find the needed information.

Representing knowledge goals: Knowledge goals have
previously been investigated largely in context of opportunis-
tically recognizing needed information as it becomes avail-
able. Representations of knowledge goals developed for this
task describe the desired information in a single concept spec-
ification (Ram, 1987)—a pattern to be matched against new
information, and a description of how the information will be
used. That type of description is sufficient for its intended
purpose of representing questions to be compared to new in-
put information. However, work on DIAL suggests that when
knowledge goals are used to guide active memory search, de-
scriptions of knowledge goals must include two additional
facets as well.

The first of these is what we call a comparative specifica-
tion. The comparative specification describes how to choose
between multiple items in memory that match the concept
specification. The comparative specification is needed be-
cause, in a rich memory, a number of candidate items may sat-
isfy the requirements for retrieval. For example, in searching
for a substitute method of transportation for an evacuation, a
comparative specification might provide the additional infor-
mation that the method found should be the one yielding the
highest evacuation rate.

The second type of additional information needed in knowl-
edge goals for active memory search is what we call search
prioritization information. Rather than only representing the
search target as a complete pattern to match, DIAL’s knowl-
edge goals include a component representing information
about where it is believed that relevant information could be
found, i.e., about how to seek the information. There are gen-
erally many ways of searching for a single concept, involving
focusing on different parts of the concept at different points in
the search. As a simple example, suppose that the search goal
is to find the union that someone (say John) belongs to. One
strategy is to search for unions in memory, and then, for each
union, to retrieve information about its members to see if John
belongs to it. A better strategy might be to search for infor-
mation about John’s job, and then to search for likely unions
given his employment. Part of DIAL’s memory search plan-
ning involves determining how to break up a concept spec-
ification into a sequence of specific concepts to examine in
memory. Successful stored memory search cases reflect in-
formation about which ways of prioritizing goals have proven
effective. Finally, information is needed about the level of



resources to commit to the memory search process. Thus
DIAL’s knowledge goals include a concept specification, a
comparative specification, search prioritization information,
information about the amount of effort allowed in the search,
and how to use the information that is found.

The planning process: DIAL’s memory search process is
modeled on the query reformulation process first used in
CYRUS (Kolodner, 1984). It differs from CYRUS, how-
ever, in applying the process within the framework of knowi-
edge planning (Hunter, 1990). In this knowledge planning
framework, similar to the introspective reasoning and learning
framework proposed by Kennedy (1995), a planner reasons
introspectively about explicitly represented knowledge goals
and how to satisfy them using internal “mental” operators.
For example, two operators that can be used to guide mem-
ory search are “To find a cause for an actor’s state, search for
an action performed by the actor that could cause that state”;
“To find actions performed by an actor, check the actor’s ha-
bitual actions.” Such rules are similar in flavor to the types of
rules investigated in research on query transformation for in-
formation retrieval, and our aim of learning to refine memory
search shares the goal of recent work in information retrieval
that studies how to learn which retrieval strategies are most
useful (e.g., Baudin, Pell, & Kedar, 1994).

DIAL'’s adaptation component is provided with a set of
general memory search heuristics and basic local knowledge
about its memory organization (e.g., as information on how
to retrieve abstractions, on the relationships between schemas
and their subparts, etc.). We note that some of these rules
are relatively unguided “weak methods” of memory search
(e.g., ascending and descending abstraction hierarchies to find
related nodes), whose results are then filtered by constraints
from the knowledge goals being satisfied. However, as is de-
scribed in the following section of case-based adaptation, the
aim is to generate much more effective knowledge: success-
ful results of this relatively unguided process form the basis of
specific adaptation cases that are stored to provide more pre-
cise guidance in similar future situations.

In order to be able to reason about memory search, a system
must be able to reason about the meanings of its own memory
links. Rather than simply being names, DIAL’s memory links
are structures associated with information about the relation-
ships that hold between the linked objects, making it possi-
ble to reason about the meanings of the links in terms of those
relationships. This allows the system to decide which links
to follow to satisfy knowledge goals that were not anticipated
when a memory was originally organized.

The planning process used by DIAL is inspired by Firby’s
(1989) RAPS model of reactive planning. The choice of a
reactive model to guide memory search may seem surpris-
ing; reactive planning models are often advocated as a way
to plan in dynamic and imperfectly-understood worlds, while
the “mental’” world is modeled as entirely under the reasoner’s
control and available for examination. However, a central dif-
ficulty with guiding the memory search process is that the gen-
eral rules used to suggest memory search paths are not guar-
anteed to be correct in any particular instances, and in a rich
memory, the costs of exhaustive examination of the informa-
tion are prohibitive. Consequently, there are strong reasons
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for using a planning model that defers commitment to partic-
ular details of a plan and that is robust when problems arise.

Learning by storing adaptation cases
Why use CBR for adaptation learning?

Once a novel adaptation problem has been solved success-
fully, the question arises of what should be learned from
the results of problem-solving. Our first effort at modeling
the adaptation learning as operationalizing abstract transfor-
mations was the program AL (Adaptation Learner) (Leake,
1994a). AL’s process for performing adaptations from scratch
was similar to the process described above. After AL formed
an appropriate memory search plan, it performed explanation-
based generalization (EBG) (e.g., Mitchell et al., 1986) to
form a new general memory search rule for future use.

One of the lessons learned from AL was that EBG is in fact
inappropriate for learning the memory search task. EBG de-
pends on a correct domain theory—to apply EBG to the mem-
ory search task, it requires a domain theory accounting for
each piece of information in memory and how each piece of
information is organized. Unfortunately, the memory search
problem is precisely the problem of how to search memory ef-
fectively without such a theory. Memory search must apply
heuristics to find needed information in an idiosyncratic mem-
ory whose contents and organization may not be characterized
precisely. Consequently, chains of memory search rules that
work in one instance may not apply to other problems that ap-
pear to be within the scope of those rules. Because case-based
reasoning about adaptation retains the specifics of particular
problems, it enables the lessons from memory search during
prior adaptation episodes to be reused more effectively.

Representing case adaptation episodes

After completing rule-based case adaptation, DIAL stores two
types of information about the adaptation episode, in two
types of cases. Adaptation cases encapsulate an entire adap-
tation episode: the response plan that was retrieved, the prob-
lem that required adaptation, and the entire memory search
plan used to retrieve the needed information. These cases sug-
gest effective combinations of transformations and memory
search strategies for particular adaptation problems. The sec-
ond class of cases, memory search cases, stores information
about the memory search process alone. These cases form
building blocks for more effective memory search when novel
adaptation problems are being solved. An open question con-
cerns the tradeoffs in making sub-parts of the memory search
cases accessible as separate cases, along the lines of Red-
mond’s (1992) snippets.

Re-applying stored adaptation knowledge

The flexibility of CBR systems to address new problems
comes from their ability to adapt prior cases to apply to
new situations. However, a conflicting concern is the po-
tential cost of adapting the current case compared to retriev-
ing and applying a different case, or simply generating a
new solution from scratch. DIAL controls this cost in two
ways. First, the amount of memory search effort allowed
when adapting adaptation cases is limited (this limit is im-
plemented as a limit on the number of search rules applied).
Second, the adaptation that is done for the memory search



cases themselves is very limited. DIAL’s adaptation of mem-
ory search cases is restricted to operations such as extracting
a sub-plan that addresses only the knowledge goal of inter-
est from a memory search plan that addressed more knowl-
edge goals, adding filtering steps to check the results of plans
that address the desired knowledge goals but omit needed con-
straints, and adding local search for other nearby memory
nodes when the result of memory search fails to satisfy some
of the needed constraints. An important question to address
is how additional search knowledge affects overall processing
cost (Minton, 1988).

An extended program example

In the current implementation, DIAL's initial case library con-
tains two disaster response plans: a response plan for an air
quality disaster and a response plan for an industrial chemi-
cal spill. Starting from this case library, the system has been
tested on four stories exercising different parts of its adapta-
tion mechanisms. To illustrate its processing, we consider one
of these in more detail. The stories and episodes are based
on case studies from INvironment, a newsletter for indoor air
quality consultants.

The example we consider involves the following story: At
Beaver Meadow Elementary School in Concord, New Hamp-
shire, students have been complaining of symptoms like un-
usual fatigue, eye irritation, respiratory problems, and al-
lergic reactions from being inside the building. DIAL's un-
derstander identifies the situation as involving an air quality
problem, a type of disaster, and its retriever attempts to re-
trieve and apply a response plan for a similar disaster. The
response plan it retrieves as most similar addresses the fol-
lowing episode: A & D Manufacturing in Bangor, Maine,
has recently come under pressure from workers and union-
representatives to correct perceived environmental problems
in the building. Workers have been affected by severe respi-
ratory problems, headaches, fatigue, and dizziness.

Many of the steps in the retrieved response plan for the
A & D factory disaster—investigating the extent of the risk,
moving the victims to a new location, etc.—apply to the
school problem as well. However, in the factory response,
one of the steps is to notify the employees’ union. Sim-
ple instantiation suggests notifying the union of the new
victims—the schoolchildren—as well. The evaluator detects
that schoolchildren do not have unions, and initiates case
adaptation to repair the problem. (The problem is detected by
a pattern-based anomaly detection process that compares new
role-fillers in the response plan to standard expectations. This
evaluation and problem characterization process is similar to
that described in Leake, 1992).

DIAL’s adaptation component receives two inputs describ-
ing this situation: the response plan for the A & D Manufac-
turing problem, instantiated to apply to the new situation, and
a description of the problem for adaptation to repair: that the
step notifying the students’ union is not reasonable, because
students do not belong to unions.

Because DIAL starts with no adaptation cases, adaptation
of the response plan must be done starting from scratch, us-
ing the rule-based process. The first step necessary is to se-
lect a transformation to apply. The problem of schoolchil-
dren being inappropriate members of a union is an instance of
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the problem category “role/filler mismatch.” (For a descrip-
tion of possible problem types, see Leake, 1992.) The two
transformations associated with “role/filler mismatch” are to
either substitute a new filler (e.g., consider notifying the union
of some other group), or to substitute a different concept in
which the children play a role with relevant similarities (e.g.,
notifying another group relevant to the children). Many adap-
tations based on these two transformations are possible, but a
common suggestion from readers of the story is that a reason-
able substitution is to notify the children’s parents. The point
of DIAL's adaptation process is both to generate this answer
(as one of many candidates) and to learn from its success that
this is a reasonable adaptation to apply to similar future prob-
lems.

Substituting a new role corresponds to a knowledge goal
to answer the question “who should be notified instead?” To
specify the knowledge goal, DIAL first determines the con-
straints on reasonable substitutions. To find the constraints, it
must hypothesize the factors that were important in the rela-
tionship between workers and their union in the A & D man-
ufacturing problem.

DIAL infers constraints to consider by formulating dif-
ferent possible “views” (Wilensky, 1986) of the relationship
between the union and the workers in the original episode.
Each of these views suggests aspects of union membership
that might have been relevant and consequently are poten-
tial candidates for aspects to preserve when making the sub-
stitution. One candidate relationship involves representation:
being represented by the union. This suggests generating
the knowledge goal of finding representatives of the children.
Memory search for representatives of children locates “par-
ents” as a possibility. This is not the only candidate—other
groups such as “student government” are also considered, but
are rejected in the evaluation phase. In the future, the result-
ing successful adaptation (replacing the union by parents) will
be retrieved and reapplied.

The effects of learning and the ability to reuse adaptation
cases are demonstrated by DIAL’s processing of the following
stories. One, involving a chemical spill at a school, prompts
retrieval of the stored case from a prior chemical spill story
and its response plan. However, the previous plan cannot be
applied in its entirety because it (like the A & D plan) involves
notifying the students’ union. However, the stored adapta-
tion case from the Beaver Meadow school example can be re-
applied in a straightforward way. This example illustrates the
benefits of learning not only domain cases (here, disaster re-
sponse cases) but also adaptation cases: Learning adaptation
cases increases the effectiveness of applying existing cases to
new problems.

Another implemented example shows how DIAL can reuse
a stored adaptation case in a more flexible way. In that exam-
ple, the story being processed involves an air quality problem
on a military base. The most similar prior case is the A & D
air quality disaster. However, when DIAL attempts to apply
the response plan from that case, there is a problem similar
to the problem that arose when generating the response plan
for the Beaver Meadow school disaster: soldiers do not have
unions. In this situation, the learned adaptation case (substi-
tuting parents for unions) does not apply directly. Neverthe-
less, the problem is similar, and DIAL uses the prior case as



a starting point for future reasoning, reusing the initial part of
its search chain. Because representation was relevant in deter-
mining whom to substitute in the adaptation for the students,
the previous case suggests searching for representatives in the
current situation. DIAL searches its memory for representa-
tives of soldiers and finds “‘commanding officers’ as a possible
group to notify. This demonstrates the ability to perform some
adaptation of adaptation cases. More study is needed to iden-
tify appropriate adaptation strategies and their utility in terms
of both the cost of adaptation and the quality of the results pro-
duced.

Conclusions

Providing appropriate case adaptation knowledge is a difficult
problem in developing case-based reasoning systems. Our re-
search addresses that problem with a method for learning spe-
cific adaptation knowledge. DIAL builds a library of adapta-
tion cases from specific episodes of applying general adapta-
tion rules. The adaptation cases provide more effective guid-
ance to adaptation by allowing reuse of successful adaptation
strategies for the system’s particular domain, task, and mem-
ory organization.

Our current research presents a new answer to the ques-
tion of how specific case adaptation knowledge is acquired.
It has developed methods for generating knowledge goals for
case adaptation, a representation for the needed knowledge
goals, and answers to questions about the nature of adaptation
knowledge and how it may be re-applied. The next phases of
the research include extending and testing the model on addi-
tional examples, investigating the role of failure-driven learn-
ing, and evaluating the effects of case learning on the quality
and efficiency of the case adaptation process, especially as the
number of adaptation and memory search cases grows.
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