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Abstract

In planning randomized clinical trials (RCTs) for diseases such as Alzheimer’s disease (AD), 

researchers frequently rely on the use of existing data obtained from only two time points to 

estimate sample size via the subtraction of baseline from follow-up measurements in each subject. 

However, the inadequacy of this method has not been reported. The aim of this study is to discuss 

the limitation of sample size estimation based on the subtraction of available data from only two 

time points for RCTs. Mathematical equations are derived to demonstrate the condition under 
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which the obtained data pairs with variable time intervals could be used to adequately estimate 

sample size. The MRI-based hippocampal volume measurements from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) and Monte Carlo simulations (MCS) were used to illustrate the 

existing bias and variability of estimates. MCS results support the theoretically derived condition 

under which the subtraction approach may work. MCS also show the systematically under- or 

over-estimated sample sizes by up to 32.27% bias. Not used properly, such subtraction approach 

outputs the same sample size regardless of trial durations partly due to the way measurement 

errors are handled. Estimating sample size by subtracting two measurements should be treated 

with caution. Such estimates can be biased, the magnitude of which depends on the planned RCT 

duration. To estimate sample sizes, we recommend using more than two measurements and more 

comprehensive approaches such as linear mixed effect models.

Keywords

two time point measurement; sample size estimation; subtraction; linear mixed effects model; 
randomized clinical trial

1 ∣ INTRODUCTION

It is a common practice when planning randomized clinical trials (RCTs) to use an existing 

dataset for the estimation of sample size needed to detect the treatment efficacy. In RCTs 

for diseases such as Alzheimer’s disease (AD), the longitudinal changes of an outcome 

variable are often obtained by subtracting measures from two time points: the baseline and 

the follow-up. Power analysis is always an important part of designing placebo controlled 

RCTs. Among a number of possible causes for the negative outcomes of multiple recent 

RCTs in patients with Alzheimer’s Disease (AD) or mild cognitive impairment (MCI), the 

insufficient number of enrolled participants cannot be ruled out. This report examines the 

limitation of the power analysis that is based on the subtraction of available data from only 

two time points.

Statistical power analysis balances the likelihood of confirming a hypothesis (e.g., with an 

80% chance) and controlling the likelihood of a false positive (e.g., with a 5% type-I error). 

A typical AD RCT tests the hypothesis that the efficacy outcome of an intervention will be 

better (e.g., 25% more efficacious) on the treatment arm compared to the placebo arm. This 

co-called effect size could arise from interventions for disease modification, symptomatic 

treatment, or disease prevention, therefore it accounts for the drug’s pharmacodynamic 

and/or pharmacokinetic profiles. For AD RCTs, the hypothesis is that the intervention 

introduced to the treatment arm slows or reverses the baseline-to-follow-up declines. 

Because estimated sample sizes for RCTs represent the minimum number of subjects 

needed to detect such effect size, under-estimates in sample size could adversely affect 

trial outcomes.

To estimate the number of subjects needed for future RCTs, researchers typically use 

existing longitudinal datasets1,2,3. The existing data are often times observational only, 

and the observed changes from the progression of the underlying disease are conceptually 

equivalent to what would be expected from the placebo arm in the planned RCT. It is 
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not uncommon that the existing longitudinal data have only measurements from two time 

points – the baseline and one follow-up, and the sample size estimation is based on their 

difference4,5,6,7. Other methods exist, with data available from additional data points beyond 

only two time points, such as linear mixed effects (LME) models8,9 and mixed models for 

repeat measures (MMRM)10,11. This study discusses the limitation of power analyses related 

to the situation where data from only two time points are available.

The subtraction approach suffers from a major weakness that is counter intuitive: the 

estimated number of subjects is the same regardless of the duration of the proposed RCT 

(unless with additional conditions, see Discussion). This report examines this weakness 

and derives the conditions under which longitudinal data from only two time points could 

be used to adequately estimate sample size. Finally, we used the LME model and Monte 

Carlo simulations (MCS) to analyze longitudinal hippocampal volumetric data from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) to investigate the bias and variability 

of sample size estimates.

2 ∣ MATERIALS AND METHODS

2.1 ∣ Theoretical considerations

We assume the use of the LME model to derive the condition under which the simple 

subtraction approach can be adequate for the two-time-point longitudinal data analysis from 

multiple subjects. The LME model jointly explains the population-level fixed effects and the 

subject-specific random effects to evaluate the relationship between average responses and 

time measurements based on a linear regression paradigm8. Such model generally has three 

assumptions: (1) the change of response over time is linear, (2) the observation at each time 

point is contaminated by an additive Gaussian error (residual term), which is independently 

and identically distributed (i.i.d) for all visits (this can be loosened, but is outside the scope 

of this report), and (3) the random effect terms are independent of the residual term.

We estimate the sample size per arm for a balanced RCT that would last for Tp years by first 

assuming no subject dropout (Tp is the number of years for a planned trial, and the subscript 

p stands for planned). For an existing dataset that was collected independent of and before 

the proposed trial, we assume there are N subjects (N>1) and subject j (j=1, 2, …, N) has 

the baseline observation xjb and a follow-up observation xj
f with the observation time length 

Tj, where Tj is the time duration (in years) between the first and second visits for subject j. 
We recognize the baseline-to-follow-up time variability among subjects and that the average 

baseline-to-follow-up time duration does not necessarily equal to the planned RCT duration.

2.2 ∣ Simple subtraction

A straightforward subtraction procedure to estimate sample size with two-time-point 

measurements is as follows (Figure 1). First, the per-year change for each subject is found; 

that is, for subject j it is 
xjb − xj

f

Tj
=

Δj
Tj

. Under the assumption of linear change, the estimated 

Tp-year change for subject j becomes Tp ×
xjb − xj

f

Tj
. The mean change over Tp-years over all 
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N subjects is Tp × Δ, and the standard deviation (std) is Tp × stdΔ. Here, Δ is the one-year 

mean change over N subjects, Δ = 1
N ∑j

Δj
Tj

, and stdΔ is the within arm standard deviation, 

stdΔ = 1
N − 1 ∑j

Δj
Tj

− Δ
2
. For planning clinical trials, we assume Δ is the change in the 

placebo arm without any intervention. Note that the durations (the time interval lengths) 

between the two consecutive time points for individual subjects, the annualized average over 

subjects (Δ above) and the effect size are for the existing dataset, therefore are as given. The 

inadequacy of using such pre-acquired data (with the given durations) to estimate the sample 

size for a planned clinical trial with its own duration is the focus of this study. See more on 

this important issue in the Discussion section.

For sample size estimation, we assume the statistical power to be 80% and the two-tailed 

type-I error to be 0.05. Also, we assume the treatment effect to be 25%3,5,12,13,14,15. In other 

words, the change in the treatment arm of the planned clinical trial is 0.75×Δ due to the 

treatment. As a side note and discussed below, our conclusions are independent of these 

parameters. We also assume that the treatment has no effects on the variability or both trial 

arms have the same standard deviation equivalently. With these parameters and assumptions, 

the sample size estimation is straightforward, having a closed mathematical expression. The 

estimated sample size Np depends only on the ratio of the standard deviation over the mean 

difference between the two arms((Tp × stdΔ) / (Tp × 0.25 × Δ) = stdΔ/ (0.25 × Δ)) based on 

the Gaussian distribution assumption: Np = 2 (z1−α/2 + z1−β)2 × (stdΔ/ (0.25Δ))2, where the 

appearance of 2 is related to the fact that the std of the mean difference is equal to the std 

of the placebo arm (or equivalently the treatment arm) multiplied by 2, z1 − α 2 and z1−β 

are the corresponding z-score at 1 − α/2 and 1 − β separately, only determined by the given 

statistical power (1 − β) and type-I error (α)1, 16. Note, subscript p in Np is again for planned 

(trial) and Np is the estimated sample size per arm for a balance design. Thus, given these 

statistical power, the type-I error and the treatment effect, the sample size is only dependent 

on the ratio stdΔ/Δ, independent of the trial duration, which is counter intuitive. Also, this 

provides us the rational for our discussion below to focus on the ratio stdΔ/Δ only.

2.3 ∣ When simple subtraction is adequate for sample size estimation

As we noticed just above, the sample size estimation for the planned clinical trial is solely 

based on the ratio stdΔ/Δ of the existing dataset (viewed as the placebo arm in the trial). 

Using an LME model, the baseline and follow-up measures for subject j in the existing 

dataset are:

xjb = b + ktjb + bj + kjtjb + ϵjb

xj
f = b + ktjf + bj + kjtjf + ϵj

f (1)

where b and k are the fixed intercept and slope for all subjects, respectively. The index j 
corresponds to subject j, and bj and kj are the random intercept and slope for subject j, 

respectively. The baseline and follow-up times are tjb and tj
f, respectively, and Tj = tjb − tj

f. 

Also, the term εjb or εj
f is the measurement noise, referred to as the residual error for baseline 
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time and followup time, respectively. As mentioned earlier, the residual error is i.i.d, with 

zero expectation and standard deviation σe. Thus, the measurement change in subject j is:

Δj = xjb − xj
f = Tj(k + kj) + ϵjb − ϵj

f (2)

Note that the residual error difference εjb − εj
f is a random variable, cannot be cancelled 

out by the subtraction (though the difference has expectation 0). We denote the standard 

deviation of residual error difference as σd. Under the i.i.d. assumption, σd = 2σe, where σe 

is the standard deviation of the error term at a given visit. Note that under no circumstances 

we can assume zero σd.

The sample size for an RCT, which is planned to last for Tp years, can be estimated by 

using baseline and follow-up measurements for either an ideal or real-world scenario. Both 

scenarios utilize Equation (2).

Ideal scenario: The data pairs of baseline and follow-up measurements used for the 

sample size estimation of an RCT of Tp-year duration are acquired exactly Tp years apart 

for all subjects; that is, Tj = Tp for all j. In this case, for the jth subject, we can directly use 

baseline and follow-up data to calculate the variance of change over trial period such as.

var(Tp
Δj
Tj

) = var(Tp
Δj
Tp

) = var(Δj) = Tp
2σβ

2 + σd
2 (3)

where σβ
2 is the variance of random slope kj over subjects. The variance of the sum of Tp

Δj
Tj

over N subjects for total change during Tp years is:

var(∑jTp
Δj
Tj

) = var(∑jTp
Δj
Tp

) = var(∑jΔj) = NTp
2σβ

2 + Nσd
2 (3′)

Real-world scenario: Tj varies among subjects according to Equation (2). We first 

convert a change to a change per-year, and then we write Equation (4) for the Tp-year 

change:

Tp
Δj
Tj

= Tp(k + kj) + Tp
εjb − εj

f

T j
(4)

Under the assumption of independent subject specific random effect and residual error, for 

the jth subject, we have

var(Tp
Δj
Tj

) = Tp
2σβ

2 +
Tp

2σd
2

Tj
2 (5)
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And for N subjects:

var(∑jTp
Δj
Tj

) = NTp
2σβ

2 + Tp
2σd

2∑j
1

Tj
2 (5′)

Because both the ideal and real-world scenarios have the same goal of estimating the sample 

size for an RCT with a duration of Tp years, we can identify under what condition the 

estimated sample sizes are the same for the two scenarios. We only need to consider the 

variance, or the standard deviation to be used in the sample size estimation, because the 

expected mean change over Tp years is simply Tp × k, owing to the zero expectation of 

the kj term in both scenarios. By equating Equation (3’) with Equation (5’), Equation (6) is 

obtained which shows the condition under which the two scenarios are equivalent, i.e., they 

provide equivalent sample size estimation:

∑j
1

Tj
2 = N

Tp0
2 (6)

In this expression, we use Tp0 specially to indicate it is the trial duration that can make 

use of the existing data to provide adequate sample size. It is interesting to note that Tp0 

is not the simple arithmetic mean over Tj. Instead, the reciprocal of the squared Tp0 equals 

the mean of the reciprocals of squared individual time lengths Tj as Equation (6) can be 

re-written as: 1
N ∑j

1
Tj2

= 1
Tp0

2 .

2.4 ∣ Data

While there are a number of different well-established AD biomarkers7,17,18,19,20,21, we opt 

to use volumetric hippocampus measurements from structural magnetic resonance imaging 

(MRI) data22,23,24,25. Any existing dataset with variable follow-up time points could be used 

to illustrate the limitations of the simple subtraction procedure. We use the MRI data from 

the ADNI (adni.loni.usc.edu) to illustrate a general point, relevant to sample size estimates 

for all clinical trials, not only AD. The ADNI was launched in 2003 as a public-private 

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of 

ADNI has been to test whether serial MRI, positron emission tomography (PET), and 

clinical and neuropsychological assessments can be combined to measure the progression 

of MCI and early AD. For up-to-date information, see www.adni-info.org. The ADNI study 

was approved by the institutional review boards of the participating institutions. Informed 

written consent was obtained from all participants.

The participants include 182 persons with clinical diagnosis of MCI (male/female: 108/74; 

age range: 57.2-90.7 years; age mean: 72.9±7.0 years; Mini-mental State Examination 

(MMSE) range: 22-30; mean MMSE: 28.1±1.7). Each person has at least two longitudinal 

structural MRI observations over the time interval from 1.50 to 2.37 years. Data from 

all visits are used to estimate the parameters in the LME model. For simple subtraction, 
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we use the baseline data and the data from one follow-up visit that occurred on average 

approximately 2 years after the baseline (mean: 1.995 ± 0.119 years).

The Structural MRI data are acquired at multiple sites. (http://adni.loni.usc.edu/methods/

documents/mri-protocols/) and are gradwarped, intensity corrected and scaled for 

gradient drift. They are preprocessed with FreeSurfer 5.3 with images intensity 

normalization and skull stripping, and cortical and subcortical regions are labeled. The 

automated segmentations have also been manually inspected and corrected as needed 

(surfer.nmr.mgh.harvard.edu/fswiki/)26,27. We obtain the relative hippocampal volume by 

dividing hippocampal volume by intracranial cavity volume (ICV) for each subject. The 

mean relative hippocampal volume of all subjects is 0.00467 ± 0.00082 at baseline and 

0.00451 ± 0.00096 at the 1.995-year follow-up. The average change of relative hippocampal 

volume over this period is 0.00017 ± 0.00036.

2.5 ∣ Monte Carlo simulations based on LME model

The MCS has been conducted based on the LME modeling of the ADNI data. We simulate 

the relative hippocampus volume at different relative ages. The relative age is calculated as 

the difference between the ages at the time of scanning and the time of conversion to AD for 

subjects who progressed to AD at the end of the follow-up period (MCI-c). For subjects who 

maintained a diagnosis of MCI (MCI-nc), their relative ages are calculated as the difference 

between the scanning time and the average conversion time for MCI-c subjects.

For the 182 subjects, we fit data from 438 visits to the LME model, which includes 

more time points than the selected two-time points. Here, we estimate the following model 

parameters – fixed parameters, random effect covariance matrix and the random error term 

variance matrix, and we treat these estimated parameter values as true model values in the 

subsequent MCS. Then we compare the sample size output according to Equation (3) to the 

sample size generated from the simple subtraction procedure.

To examine how the size of the existing dataset affected the estimated sample size, we 

run MCS on datasets consisting of N=182, N = 182×2 and N = 182×3 subjects, which 

correspond to the original, doubled and tripled sample sizes of the existing dataset, 

respectively. We compute the mean bias and associated std for a given planned trial duration 

over 500 repetitions.

Each simulation run i, (i=1, 2, …, 500) has the following steps:

1. For each subject j, (j=1, 2, …, N):

a. Select the two-time points that are Tj years apart.

b. Generate the subject’s random intercept and slope following the joint 

Gaussian distribution with the given parameters from the fitted model.

c. Generate the Gaussian measurement error under the assumption it is 

independent from the random effect terms.

d. Compute the hippocampal volumes xjb and xj
f at the two time points.
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e. Repeat steps 1a − 1d for all N subjects.

2. Apply the simple subtraction procedure to the simulated data from the N 
subjects.

3. Estimate the sample size, Npi, for simulation i with 80% power, a two-tailed 

type-I error of 0.05 and a 25% treatment effect in the treatment arm relative 

to the placebo arm. The different Npi estimates are computed separately for the 

planned trial durations of Tp=1, 1.98 and 5 years, with the original, doubled, 

and tripled existing dataset sizes, respectively. Note that 1.98 is the Tp value that 

satisfies Equation (6).

4. Compute the percentage bias of the relative true sample size based on the LME 

model and the simple subtraction approach.

3 ∣ RESULTS

3.1 ∣ Sample size estimation with simple subtraction

For a given treatment effect, the simple subtraction method estimates the same number 

of subjects required regardless of trial duration. The simple subtraction procedure fails 

because the standard deviation of measured changes is not linear with respect to time. More 

specifically, the noise term in Equation (2), the residual error of the data, is unrelated to 

the trial duration, Tj. Though the random intercepts canceled out between two visits, two 

residual error terms do not cancel out because they are assumed to be i.i.d.

3.2 ∣ Condition under which simple subtraction is adequate

Sample size estimation using simple subtraction is adequate when the subject-dependent 

time intervals between baseline and follow-up satisfy Equation (6), or equivalently,

Tp0 = N
∑j

1
Tj2

(6′)

We note that a common Tp for all subjects is a special case that satisfies Equations (6) or 

(6’). Also, when the standard deviation of residual error is small relative to the standard 

deviation of random slope, these residual error terms can be ignored or treated as close to 

zero, then the residual errors would cancel out with subtraction.

3.3 ∣ Sample size bias and variability from simple subtraction

The theoretical sample sizes are calculated based on the LME model. We attain the sample 

sizes of 1581, 1051 and 898 for the planned RCT with durations Tp of 1, 1.98 and 5 

years, respectively. To calculate the relative sample size bias, we generate the ratios of the 

difference between the estimated sample size from simple subtraction and the theoretical 

sample size over the theoretical value for different planned RCT durations. The biases and 

variations have been all assessed using the 500 times MCS for different trial durations. Table 
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1 and Figure 2 show the relative sample size biases (percentage) and the variations from 

simple subtraction for the three different planned RCT durations.

As shown in Table 1 and Figure 2, the sample size bias is almost zero when the trial duration 

Tp equals to Tp0 (Tp0 = 1.98), consistent with our theoretical conclusion. These biases are 

4.02%, 4.15% and 1.89% for N = 182, N = 182×2 and N = 182×3, respectively. When Tp is 

less than Tp0, (e.g., Tp = 1) the sample size obtained with the simple subtraction procedure 

is under-estimated by as much as 32.27%. When Tp is larger than Tp0 (e.g., when Tp = 5), 

the sample size is over-estimated by 21.89%. As shown by the error bars in Figure 2, the 

variability of the sample size bias decreases when N increases (e.g., when Tp = Tp0 = 1.98, 

std = 36.20%, 25.07%, 19.08%, for N = 182, N = 182 × 2 and N = 182 × 3, respectively).

4 ∣ DISCUSSION

We have examined the sample size estimation for a planned RCT via subtraction of two-

time-point measurements, discussed why the estimated sample size should in general depend 

on trial duration, and identified the special cases when the sample size estimation from 

simple subtraction might be correct. We note that the use of two-time-point measures, 

which is common for expensive studies like those that use neuroimaging-based biomarkers, 

differs from studies with more frequent measures, such as safety or clinical outcomes. 

Our findings do not apply to studies with more frequent measures or to studies that are 

analyzed with statistical procedures like LME models8,9 or MMRM10,11. Estimated sample 

sizes generated from more than two observations have been reported extensively in the 

literature9,14,15,28,29,30. We note that it is important to account for measurement variability 

appropriately across time for power analysis.

We would like to characterize this report as with the nature of reporting a problem rather 

than resolving a problem. Neverthe-less, mixed in the following discussions and in italic 
fonts, we offered some words of advice on how to deal with the limitations when data from 

only two time points are available. These pieces of advice are intended for some ‘cheap’ 

solutions for the problem we reported in this investigation.

To account for both between-subject random effects and within-subject residual errors and 

to understand the issues related to simple subtraction approach, we used the LME model8. 

It is noticed that the simple subtraction has to be properly scaled in order to account for the 

inter-subject two-visit time length variation (see Equation (2). If not linear, dividing Tj may 

not get you a term that is independent of Tj. In the nonlinear case, the simple subtraction is 

practically not feasible unless we assume that the magnitude of changes does not depend on 

the time length over which the changes occur.

When Tp was equal to Tp0, simple subtraction is adequate (Table 1 and Figure 2). In this 
case, we advise it is safe to use the simple subtraction method. For longer RCT durations, 

the required sample size is generally smaller. Simple subtraction under-estimates the sample 

size when Tp < Tp0 and overestimates the sample size when Tp > Tp0 (Figure 2). When the 
overestimation is affordable, then the simple subtraction approach can be used. Such trends 

are observed based on the average estimated sample size bias from MCS. The absolute 
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difference between the theoretical sample size and the estimated sample size from simple 

subtraction is larger when Tp < Tp0 (nearly 30%) than when Tp > Tp0 (nearly 20%). For each 

RCT duration, the standard deviation of the relative sample size bias shows a decrease trend 

as the number of subjects in the existing dataset increase (Table 1 and Figure 2).

The simple subtraction approach worked if one of the following conditions is met: (1) the 
measurement error is ignorable or linearly related to trial duration; (2) the proposed RCT 
duration Tp and the individual Tj satisfy Equation (6); and (3) if between-subject variability 
of the annualized change is low, the stdΔ/Δ ratio is roughly proportional to 1/Tp and the 
corresponding sample size decreases for longer Tp duration. Of course, our findings can be 

generalized to other outcome measures in AD or trials for any other diseases/conditions.

Because it uses data from just two time points, the simple subtraction method lacks the 

information on how the change occurs between the two measurements. If the change 

happens to be linear, it is possible for simple subtraction to accurately estimate sample sizes 

when the follow-up time is equal to the planned trial duration. If the change is nonlinear, 

more studies are needed for the use of the simple subtraction method. It is possible that the 

simple subtraction method could be amended to account for the variance in the data, but 

such a modification is outside the scope of this paper. Our math derivations can potentially 

be used in future studies to generate an accurate subtraction method based on two time 

points and LME models.

Though the sample size estimation equation does not include trial duration explicitly, it is 

implicitly included via the effect size, in the sense that one would expect the effect size 

corresponding to the treatment effect to be smaller for short duration than for long ones. 

To take the exact advantage of bigger effect size in the existing dataset, researchers should 

select only samples whose baseline-followup time differences satisfy Equation (6) with the 

corresponding larger Tp, or samples whose baseline-followup time differences are close to 

Tp (longer duration means bigger effect size). These suggestions given here reflected the 

limitation of the subtraction of two consecutive time points in that the effect size and the 

duration are pre-set due to the fact that dataset used were already in existence. The only 

flexibility left is then the selection of sub-cohort from this existing dataset to match the 

planned trial duration, recognizing the fact that the quantitative and yet implicit relationship 

between effect size and the trial duration was not considered appropriately by this simple 

subtraction approach. With more longitudinal time points available (>2), this effect size/

duration relationship can be quantified, and the sample size more adequately estimated for 

varying duration of a planned trial.

The fact that the simple subtraction approach caused the estimated sample sizes to be the 

same regardless of trial duration in general (but see possible exceptions for condition 3) 

needs better understanding. Note that the absolute change, which corresponds to the final 

treatment effect, could be different depending on the trial duration. If the relative treatment 

effect was 25% for a one-year clinical trial and the change in the placebo arm was 1.0, 

then the difference between the placebo and treatment arms would be 0.75. If the relative 

treatment effect was still 25% but the trial duration was two years, then the two-year 

absolute change without treatment would be 2.0, which does rely on the assumption of 
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linearity with time. The difference between the placebo and treatment arms with the 25% 

treatment effect will be 1.5. Thus, even though the one-year and two-year clinical trials 

would have had the same common relative treatment effect of 25%, the absolute differences 

between the two arms would not be the same depending on the length of time.

There are limitations of this study. The first limitation of this study is primarily related to 

the assumptions we included in the LME model. We assumed the noise in the data was 

Gaussian and that the measured changes were linear with time. Secondly, we only derived 

the conditions under which simple subtraction might work and identified the issues with 

this method. Procedures to address the inadequacy of the simple subtraction method when 

data are only available from two-time points should be topics for future research. Briefly, 

such procedures may 1) require prior knowledge of the LME model or 2) consider the 

possibility of combining bias information to correct sample size estimates after more careful 

examinations of the effects of inter-subject variability in the time to follow-up measurements 

on the bias and variability of sample size estimation.

In conclusion, the use of simple subtraction on two time points for the estimation of RCT 

sample sizes should be used with caution because this method can be biased when the 

trial duration is longer or shorter than the observed measurement intervals and there are 

substantial individual variations in measurement interval.
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Appendix

‡Data used in preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators 

within the ADNI contributed to the design and implementation of ADNI and/or provided 

data but did not participate in analysis or writing of this report. A complete listing of 

ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how to 

apply/ADNI Acknowledgement List.pdf
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FIGURE 1. 
The flowchart of estimating sample size with the two-time point subtraction procedure.
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FIGURE 2. 
The relative sample size bias (percentage) based on subtraction of the existing dataset from 

two-time points that are average approximately two years apart. Error bars are standard 

deviations, and Tp is the trial duration. When Tp = Tp0 = 1.98 years, the sample size can 

be estimated using simple subtraction. When Tp = 1 years (<1.98), the sample size obtained 

with the simple subtraction is under-estimated. When Tp = 5 years (>1.98), the sample size 

is over-estimated. As shown by the error bars, the variability of the sample size bias would 

decrease when N increases.
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TABLE 1

The relative sample size bias (percentage) and the variations (std) from simple subtraction for different 

planned RCT durations.

Data size
T p = 1 T p = T p0 = 1.98 T p = 5

Mean std Mean std Mean std

N = 182 −30.85 24.06 4.02 36.20 21.74 42.36

N = 182 × 2 −30.76 16.66 4.15 25.07 21.89 29.34

N = 182 × 3 −32.27 12.68 1.89 19.08 19.24 22.33

Note: Tp is the number of years for a planned trial; Tp0 is the value of Tp satisifying Equation (6); std represents the standard deviation.
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