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ABSTRACT OF THE THESIS

A Visual Tracking Study and A Proposal of Modifications

By

Yu Hua Nicole Tseng

Master of Science in Mechanical Engineering

University of California, Irvine, 2019

Professor Athanasios Sideris, Chair

On-line visual tracking of a specified target in motion throughout frames of video clips

faces challenges in robust identification of the target in the current frame based on the past

frames. Three approaches for tracking the target image patch are described and compared.

These approaches utilize particle filtering and principal component analysis (PCA) to identify

the most likely location of the target in the current frame and a low dimensional subspace

representation of the patches of images to be kept as the templates in the dictionary for the

identification. By using a combination of methods and compare the result of each, a new

model based is proposed. The goal is to achieve a more robust and accurate tracking of a

target throughout the video and continue updating the identification templates to adapt the

target changes, such as apparences in lighting, angle, scale and occlusions. The challenges

in tracking are to introduction of the ”right” templates into the identification templates in

the dictionary and identify the most accurate particle image patch while tracking the target

with the right tracking patch scaling.

The first approach considered and on which the structure of the visual tracker is based

is the ”Incremental Learning for Robust Visual Tracking” by D. Ross et al., which is a

computationally fast tracker that utilizes a method of low dimensional subspace for the

identification template dictionary and incremental PCA for its tracking. The tracker has a

xiii



simple rule in accepting the patches of images to be in the identification template dictionary

after the image patch has gone through a singular value decomposition (SVD), where it

eliminates singular values are smaller than 10−6 of the sum of squared sinuglar values and the

corresponding bases are also eliminated. This elimination scheme has very limited robustness

in tracking, therefore, more selective processes in accepting identification templates in the

dictionary are explored and introduced on top of the existing method in comparison and to

address the challenges in on-line video tracking.

The second approach is the ”Least Soft-Threshold Squares Tracking” proposed by D.

Wang et al. solves the least soft-threshold squares distance problem to identify the distances

of the particles to the templates in the dictionary, which greatly improves the tracking

accuracy. This method is also computationally cheap in comparison to the first approach,

and its accuracy is also better than the first approach, but it would sometimes fail to track

in some applications. Finally, the third approach reviewed is the ”Robust Visual Tracking

and Vehicle Classification via Sparse Representation” by X. Mei et al. is to weight each

particles when selecting the most likely target patch so the best patch has a highest weighted

probability which ensures it being selected and introduced to the template dictionary. This

approach performs well in comparison to the first and the second approaches in tracking

accuracy and robustness, but this approach is extremely computationally expensive.

Three new components are proposed in an effort to mitigate some of the limitations that

the three approaches exhibit. One such component is to simply reject the image patches that

exhibit too great of difference to the current template dictionary, which resulted in improved

tracking robustness. This method is computationally cheap and easy to implement. Another

component introduced is a second set of dictionary that is composed of admitted image

patches, which is used for tracking when the image patches appears to be too dissimilar

to the dictionary with low dimensional representation. It is expected that with more well

defined and stronger features, it forces the tracking to identify the target. Finally, the third

xiv



component introduced is the to prevent shrinkage of the target boundary box by weighting

the particles drawn with the ratio of area change so that more weight is placed on particles

with less arial change. This increases the likelihood of recovering the target again if tracking

loses the target, and instead of shrinking the boundary box, the tracking is biased to staying

with the image patch of the same size. The resulting performance of the proposed tracking

scheme has not been noticeably improved, part of the reason is because the metrics available

to identify a noisy image patch from the good image patches are not always indicative of the

noisy-good image patch divide.
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Chapter 1

Introduction

Visual tracking requires robustness and speed. Robustness comes from the tracker’s ability

to accurately identify the specified target consecutively, and the tracker’s relates to the

amount of computational process the tracking requires from frame to frame. Here, more

emphasis is placed on the analysis on the robustness of the tracker rather than the speed,

as computational speed also depends on the computing hardware and there is continued the

advancement in its development.

The two main objectives of a visual tracker are to accurately identify the specified target and

“predict” its motion/perturbation [33]. To track a target in motion, a few considerations

and decisions have to be made for the tracker to deal with target appearance change and

the target motion from one moment to the next. The target appearance may be affected by

noise, scaling, occlusion, illumination variations, viewing angles and surrounding background

[18], [13]. In fact, the main challenge in visual tracking lies in handling the variability of

target appearance [18]. The target object motion/perturbation poses another challenge in

visual tracking. A tracker’s ability to estimate the current position of the target based on

prior target positions is also a main component in judging the performance of a tracker [33].
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A visual tracker must be flexible enough to track successfully when encountering statistically

probable cases. Both of the main objectives of a visual tracker here are modeled statistically

using Gaussian distributions. In the case of target appearance changes, the assumption is

that the appearance of the target would be similar to that of the previous observations. A

similar assumption is made with the motion of a specified target, where the target is assumed

to move continuously and gradually within the confine of the frame from one instance to the

next, rather than disappearing from one location and reappearing far away within the frame

from one moment to the next.

1.1 Visual Recognition

There are two general representation models that visual trackers take on: global and local

[24]. Global exploits overall observation that varies in the the whole target region, analyzing

the target image patch as a whole image when comparing target image patches. Global

representation reflects the information of all references, e.g. low dimension representations.

For instance, when there is change in illumination, it is reflected on the global appearance

change. Whereas local treats the target image as many small localized image patches in

order to compare the changes in each small region. For instance, when a partial occlusion

occurs in the image, it is captured locally, but not globally, so that other localized regions

are still able to capture parts of the target appearance.

There are broadly two types of pattern recognition, discriminative and generative [30], [5],

[22], [9]. A discriminative model is a conditional probabilistic modeling combining structure,

priors, invariants, latent variables and data to form a good joint density of the domain as a

whole that directly optimizes a relatively less domain-specific model only for the classification

or regression mapping [5]. Assuming the conditional probability of the information Y given

the observation Y , P (X|Y ), and estimate the data directly using the conditional probability
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P (Y |X). A generative model is a statistical model that assumes within this generative

density, one can specify partial knowledge a priori and refine this model with incomplete

information using empirical observations and data. Given the probability of the target P (Y )

and the conditional probability distribution of the observationX given the target Y , P (X|Y ),

through training and using Bayes rule, the conditional probability of the target Y given the

observation X, P (Y |X), can be found.

To track the target in a frame, the visual tracker would need some reference to identify

the target. The reference has to contain enough information about the appearances of the

target for a visual tracker to successfully perform. The reference functions like an image

dictionary for the target, and these target images need to contain the right amount of target

appearance information [16]. The large amount of images about target appearances can

be stored efficiently and compactly in a low-dimension subspaces, such as in eigenspace

or sparse subspace, where multiple images could be encoded into and represented by the

subspace. Two examples of these low-dimension subspace dictionaries for storing images

in visual tracking applications, eigenspace and subspace dictionaries, are further discussed

here.

1.1.1 Discriminative Model

Discriminative models require some references to differentiate the intended target from the

rest of the image because it is structured to classify items. Some discriminative computer

vision require off-line training and testing prior operation and some do not.

If training is required, it is recommended to train on large amount of training data sets to

allow refinement of classifications. The quality of the training data sets influences the ability

of the discriminative model to identifying objects [14]. When encountering an object with

an appearance that has not been trained on, the recognition runs the risk of identification
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failure. The advantage of having already been trained on data sets is that the recognition

performance would demonstrate high accuracy. Trained discriminative models have gained

wide popularity since the introduction of convolutional neural network (CNN) from the

breakthrough of LeNet-5 [11], which achieved a high accuracy visual recognition using CNN

to AlexNet [8] that won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

of 2012. Notably, GoogLeNet [26] won the ILSVRC of 2014, and, most recently, NASNet

[35] developed by Google Inc. exceeded previously achieved accuracy in computer visual

recognition.

Visual trackers could be built to take advantage of the benefits that CNN offers. This is

demonstrated by Apostolopoulos et al. [1] where their visual tracker can track a target that

is partially occluded by recognizing the object as the specified target. Many others have

demonstrated ability to visually identify targets with high accuracy and speed [1], where the

tracker proposed by Held et al. [4] runs at reportedly 100 fps. In recent years, discriminative

computer vision has demonstrated a near-human visual recognition and currently dominates

computer vision/recognition development.

A discriminative visual recognition without training still requires a references for differenti-

ating targets from non-targets. An approach is learning on the go by collecting the target

image patch in a reference template dictionary. This approach provides flexibility in the

choice of targets and in responding to target appearance change, as it is independent of the

training data sets. The drawback without pre-training is that if the target appearance is

compromised due to noise, scaling, occlusion, illumination variations, viewing angles and

surrounding background, the learning in the reference dictionary is corrupted as well.

The visual tracker by Shen et al. [22] incrementally learns both the appearance of the target

and the background and separates them by collecting a discriminative sparse subspace dic-

tionary. This tracker has demonstrated competitive robust tracking in the criteria of center

location error (CLE), overlap rate (OR) and success rate (SR) running reportedly above 33
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frames per second (fps). Another work by Sun et al. [25] implemented incremental sparse

subspace discriminative dictionary learning of the target appearances also demonstrated

good tracking performance in the criteria of CLE and OR.

1.1.2 Generative Model

A generative model-based visual recognition also requires references of the target appearance

to estimate similarity of the given image to that in the reference. As the case of discriminative

models, the reference could be acquired by training or adopted incrementally, and each

method has its associated advantages and disadvantages as discussed in section 1.1.1.

A trained generative CNN visual tracker by Song et al. [23] uses a generative adversarial

network (GAN). They argue that discriminative features tend to over fit in one frame and

while the features available may not be robust, and generative adversarial learning provides

more robust features and mitigates the over-fitting in one frame. This tracker demonstrates

competitive performance with the ability to accurately track the target at, reportedly, 1.5

fps. The generative visual tracker proposed by Zhou et al. [34] demonstrates an incremental

learning tracker that is able to track a target more accurately in the Pattern, Analysis,

Statistical Modelling and Computational Learning (PASCAL) overlap rate criterion than

the benchmark trackers at the time, which were all discriminative models. Despite the

robustness of this tracker, it reportedly runs only about 5 fps.

1.1.3 Low Dimensional Subspace Representation

Visual tracking must tackle the issue of target appearance variability throughout the period

of tracking. As briefly mentioned in section 1.1.1, there are two approaches: pre-training the

visual tracker and adapting to appearance changes incrementally.
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Using eigenspace to represent and learning an image is proposed by Hiroshi et al. [16], in

which eigenspace representations are in a compact low-dimension approximated encoding of

a large set of images. The compact low-dimension approximations are in terms of a small

number of orthogonal eigenbasis images. The eigenbasis images span a subspace of the

training images, i.e. eigenspace, and a linear combination of them is used to approximately

reconstruct any of the training images. This is an efficient way of storing appearances of one

object, such as the appearances of the object under different illuminations [2] and viewing

angles.

Two observations are made by Black et al. [3] on eigenspace representation technique. First,

since this technique requires a least-squares fit between an image and the eigenspace, the

eigenspace would have a poor representation when there are noises in the input images

being matched. Secondly, eigenbasis representation tries to represent all possible angles

of an object and all of its possible appearances, but it is easier to represent a smaller set

of canonical appearances allowing a parameterized transformation, e.g. affine, to link the

input images and the eigenspace. This involves appearance estimation and transformation

of the parameters that takes the appearance into the image, resulting a multiple views and

a transformation model.

Black et al. [3] proposed tracking by pre-training eigenbasis representations, a low-dimension

subspace, and a robust error norm, which assumes an eigenspace subspace constancy for

motion estimation. The robustness of their visual tracking requires a large amount of training

data that must include all possible appearance variations of the tracked target, i.e. all

appearance variations of illuminations and angle perspectives, to form the representation

eigenbasis. Though this visual tracker is dependent on the training data set and is inflexible

to the tracking target once it is trained on one particular object, it demonstrates the potential

for an appearance reference to be stored in a low-dimension subspace.

Another low-dimension subspace technique has since been developed in visual recognition to
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efficiently store templates in the dictionary using the “least absolute shrinkage and selection

operator” (LASSO) method [27]. The LASSO method is a sparse representation technique by

solving an optimization problem of an input image to a least-squares optimizing eigenspace,

i.e. 2-norm `2 space, with a 1-norm `1 space problem. Depending on the type of problem

being posed, the intended solution for the optimization is different, but the goal is to pro-

mote the sparsity in the least-squares problem. Wright et al. [32], [31] proposed using sparse

representation for human face and object classification, which produced lower classification

errors. Kumar et al. [9] proposed a generative visual tracker with robust sparse representa-

tion and weighted principle component analysis (PCA), which has performed competitively

with many bench mark visual trackers in the criteria of center location error (CLE) and

overlap rate (OR) at a running rate above 1.6 fps.

1.2 Motion Tracking

The challenge in target tracking in a video frames is that there are cases when the motion

of the target is not smooth in relation to the confinement of the frame. This is due to the

interactions between the motions of the camera and that of the target. For instance, if the

objective of the camera that is not stationary is to keep the target near the center of the

camera scope frame, then the camera frame would try to adjust to the target motion as the

target moves. Though the movement of the target is smooth relative to Earth, in relation

to the camera scope frame, the motion of the target could be erratic due to the camera

adjustment. Another occurrence could be that the camera frame itself is moving unsteadily

due to the camera being mounted on another moving object, in which case, the target motion

moving in the frame would also result to be unpredictable. This phenomenon is illustrated by

tracing the motion of one spot on the target in two video clips in Figure 1.1a and Figure 1.1b,

where a spot on the target object moves about within the confine of the frame in a non-
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smooth manner and often moves erratically with many sharp direction changes.

These non-smooth and unpredictable motions of the target relative to the video frame illus-

trate the difficulties to implement a model for all cases of target motion that could predict

with good accuracy based prior frames, e.g. a smooth motion model encountering a case of

predicting a low probability of a target moving right in the current frame, which is based on

knowing that it moved left in the prior frames, even though the target does move to the right.

Despite the potential unpredictability of the motion, it is assumed that the target motion is

continuous and incremental, where the current position of the target in the frame is going

to be near the previous position. Therefore, for a visual tracker to track the target position

relative to the frame, the tracker must search all vicinity around the previous target position

relative to the frame. An approach that allows this type of search is particle filtering.
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(a)

(b)

Figure 1.1: Examples of the movement (yellow line) of a spot (red cross, ×) on a target
within the confine of the frame throughout the video clip.

1.2.1 Particle Filter

In the application of computer visual tracking, to estimate the position of the target in the

current frame given the prior frame, trackers must search near the position of the target

in the prior frame. With the assumption that the target behaving with Brownian motion,

particle filtering achieves the target position estimation by drawing particles based on affine

parameters, i.e. location, scaling and angle. This assumes a Gaussian probabilistic distri-

bution of the parameters, each with an independent variance. Each parameter of the target
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particle is drawn with a random value based on its respective variance, and the parameters

are grouped in a set where each parameter describes a different aspect of the particle to

form a state of the particle. The particle states can be used to transform into corresponding

images patch particles, where each image patch particle has slightly perturbed parameters,

e.g. slight position translation, adjusted scaling and/or slight rotation from the prior frame.

The more particles are drawn, the more likely one of the particle image patches captures

the target in the current frame allowing the tracker to successfully track the target. This

is illustrated in examples shown in Figure 1.2 that compares a case of drawing 5 particles

and a case of drawing 75 particles, where the case with 5 particles has lower likelihood in

capturing the target in the current frame and the case of drawing 75 particles has much

higher likelihood in capturing the target in the current frame. Although it should be noted

that more particles will be more computationally expensive in identifying the target for

each frame. This is a trade-off between the efficiency, i.e. number of particles drawn, and

effectiveness, i.e. ability for particle filter to estimate the posterior distribution.

(a) 5 image patch particles drawn. (b) 75 image patch particles drawn.

Figure 1.2: Examples of image patch particles drawn (yellow rectangles) with respect to the
identified target image patch of the previous frame (red rectangle).

As discussed in 1.2, due to unpredictability of the target motion direction, it is difficult to

10



implement a general motion model to predict the actual direction of target motion based

on target motion of prior frames, therefore, particles could not be drawn from a predicted

location. But by assuming that target behaves in Brownian motion, the unpredictability

could be compensated by drawing more particles in a larger parameter search region.

A possible limitation of implementing a particle filter in visual tracking may be that the speed

of target being faster than predicted, where the variances are not large enough, resulting the

search region not large enough to capture the target, i.e. the variances for the x and y

translation parameters being too small. Another possible limitation is that the the search

region of the parameters is large enough, but there are not enough particles to identify the

target with good accuracy, resulting the identification of a target image patch not being

representative of the target appearance.

Regardless of the type of representation model or the type of probabilistic model of the

visual trackers, particle filtering has been a popular choice to estimate target image patch

demonstrating good performances, e.g. Ross et al. [18] and Song et al. [23].

1.3 Related Work and Motivation

This work is motived by the Incremental Visual Tracking (IVT) proposed by Ross et al. [18],

which is a global discriminative approach to identify the target image patch consecutively

with an incrementally adaptive template dictionary. A particle filter is implemented in IVT

to address the motion tracking. IVT uses gray-scale images to conduct the tracking. The

dictionary is a set eigenbasis vectors forming low dimensional image representation subspaces,

and a series of dictionary templates are used for identifying the target and, at the same time,

being adaptive to the changing appearance of the target during the tracking. Each template

in the dictionary represents a low dimensional PCA subspace, i.e. a PCA eigenbasis vector,

11



and the errors are calculated by an ordinary least squares method. With the implementation

of these ideas, IVT has the the advantage of being trained on-line without any off-line

pre-training or structural tuning, thus, allowing it to be independent of the quality and

availability of data sets.

Two other low-dimension subspace approaches are explored here to address the challenges in

identifying the target image patch and updating the template dictionary. These two tracking

approaches are chosen due to their similarity in the tracking scheme where they also keep an

incrementally adaptive dictionary of templates that represent prior target images, their use

of particle filtering for motion tracking and that they also use gray-scale images in tracking.

One approach is a global generative approach called “Least Soft-Threshold Squares Tracking”

(LSST). LSST is proposed by Wang et al. [30], which, in addition to the eigenbasis templates

forming its dictionary, solves for the sparse noise from a 1-norm `1 and 2-norm `2 optimization

problem. The resulting solution is the least soft-threshold square distances to the template

dictionary as a metric for identifying the most probable target image patch particle in the

current frame. This approach tries to identify the outliers effectively by separating noise into

sparse and non-sparse parts. The other approach is “Robust Visual Tracking and Vehicle

Classification via Sparse Representation” (RVT) proposed by Mei et al. [13], which solves for

a 1-norm `1 regularized least-squares problem to find the target coefficients associated with

every image patch particle and use the coefficients to weight the image patches introduced

into the dictionary. The tracker runs reportedly only at 0.5 fps due to having to solve the

computationally expensive optimization problem.
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Chapter 2

Incrementally Adaptive Reference

Approaches

As discussed in section 1.1.1, off-line trainings for a visual tracker require a large amount

of data sets and the tracking results are dependent on the quality of the training data sets,

i.e. object varieties and all their possible appearances. A solution is to keep an appearance

template dictionary. But an issue arises with the appearance templates when the target

appearances change drastically over the tracking period and the templates do not reflect

the changes, e.g. when tracking a human head as a target where the features of a face

are the initial target appearance, but later in the tracking, the head is turned to have the

appearance of the back of the head. To address this temporal appearance issue, Incremental

Visual Tracking (IVT) proposed by Ross et al. [18] allows the appearance templates in

the dictionary to be adaptive. The dictionary is updated with the target image patches

throughout the tracking period, so that the dictionary always reflects both the past and

the current appearances of the target, making the tracking more robust. The incrementally

adaptive dictionary has demonstrated good results to robustly track targets as demonstrated

by Shen et al. [22], Sun et al. [25] and Zhou et al. [34], among many others.
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In the following sections, three incremental adaptive reference tracking approaches are dis-

cussed in detail: Incremental Visual Tracking (IVT), Least Soft-Threshold Squares Tracking

(LSST) and Robust Visual Tracking (RVT). For the purpose of comparing these three ap-

proaches, they are assumed to draw particles the same way with inference Markov hidden

parameters and are able to transform a set of image patch parameters into the image patches,

and that the dictionary each keeps is in the subspace spanned by eigenbasis and centered at

the basis mean or by the previously-seen image patches. These mechanisms that are assumed

to be the same in the three tracking approaches are elaborated in the discussion of IVT and

are referenced to by the subsequent discussions on LSST and RVT.

With an incrementally adaptive dictionary, the tracker has to decide which target image

patches to populate the dictionary with: which image patches should be accepted and re-

tained in the dictionary and what traits would constitute a good target image? Each visual

tracker has an approach in selecting the target images in its particle filter and metrics in

selecting the chosen target image patches into the template dictionary. These decisions and

metrics are discussed at length in the following sections.

After the decision of whether or not to accept the chosen target image patch into the dic-

tionary, the tracker structure has to wrestle with another decision: the number of templates

to be kept in the dictionary. For instance, in the case of image patch template dictionary, if

there are too many templates in the dictionary, meaning that much earlier target appearances

are remembered in detail, the dictionary may not reflect the more recent target appearances

and may be less effective. But if there are not enough reference templates in the dictionary

and the dictionary remembers too little information, and the dictionary may not be suffi-

cient to identify the target after an occlusion. The focuses for the tracking performances are

empirically analyzed in chapter 3 where experimental results are presented.

An example of comparatively good eigenbasis templates in a dictionary and a corrupted

one can be seen in Figure 2.1. The dictionary in Figure 2.1a exhibits much more similarities
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among the templates where each template exhibit more distinct identifiable features, whereas

the dictionary in Figure 2.1b has many templates that are dissimilar to one another and

have faded/blurred features. Having faded features in the dictionary templates could mean

that the dictionary has obtained image patches that are less representative of the target

appearance, and the target representations in the eigenbasis templates have been changed

by accepting those less representative image patches. With corrupted dictionary templates,

the dictionary would be far less effective as a reference for target tracking, especially after

an occlusion.

(a) An example of a comparatively good batch of eigenbasis templates
in the dictionary.

(b) An example of a comparatively bad batch of eigenbasis templates
in the dictionary.

Figure 2.1: The eigenbasis templates in the dictionary.

2.1 Incremental Visual Tracking (IVT)

Incremental visual tracking (IVT) proposed by Ross et al. [18] visually tracks a target with-

out prior training, i.e. is independent of external training image data sets. They achieved

this by implementing an incrementally adaptive reference dictionary that obtains the esti-

mated target image patches during the tracking, which includes more recent appearances
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in the dictionary to handle varying target appearances. Furthermore, the templates in the

dictionary are eigenbasis representations of target image patches seen so far, and besides

being an efficient way of storing images, they help collectively provide a compact notion of

the target object being tracked [3] [10], [18].

The images IVT tracks are in gray-scale, and the target image patches are converted into

a specific image resolution that are usually smaller than the actual image bounded by the

tracking boundary box, e.g. 32 pixels-by-32 pixels. These image patches are stored and

analyzed in this resolution during the tracking. From the proposal of Black et al. [3], as

discussed in section 1.1.3, the target boundary box is defined by six affine parameters, and

the image patch extracted is the image within the boundary box. More specifically, these

boundary box affine parameters describe pixel translation in x, pixel translation in y, scaling

of height and width, angle of rotation, aspect ratio, and skewness. Each pixel in the image

patches is represented with a numerical value [0, 1]. This is because the image is in gray-

scale, and per MATLAB definition, the numerical representation of the intensity of gray of

each pixel is between 0 and 1, where 0 is pure black and 1 is pure white (other programming

language like Python may use [0, 255] instead). Gray-scale scheme is different from red-

green-blue (RGB) images, where each pixel on each layer represent intensity of red, green

or blue, then the same pixel of each layer is combined to create a resulting color of mixing

red, green and blue, each in its own intensity. In comparison, gray-scale images retains less

information.

An initial target image patch on the first frame must be chosen before the tracking begins,

and this image patch is also initialized as the dictionary template mean and is assumed to

be from the zero-th frame. The particle filter draws the affine parameter particles from the

estimated image patch parameters associated with the prior frame, each parameter is drawn

with a pre-defined parameter variance. This produces particles that represent a Gaussian

distribution within the mean. Then the corresponding image patches are extracted from
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these affine parameter particles on the current frame. These images patch particles are in

the pre-define resolution in numerical values that represent the gray-scale intensities of the

pixels and are now ready for probability analysis. The probability of each particle indicates

the similarity of the particle to the dictionary. An example of particles drawn based on

a target image patch with respect to each parameter variance is illustrated in Figure 2.2.

The random perturbation of the image patch parameters is to address the issues with target

motion in respect to the frame discussed in 1.2 and with the variability of target appearances.

(a) (b) (c) (d)

(e) (f)

Figure 2.2: Examples of boundary boxes (yellow boxes) associated with particles drawn with
only one single affine variance from the prior frame parameters (red boxes), each variance
is for (a) translation of pixels in x, (b) translation of pixels in y, (c) scaling, (d) angle of
rotation, (e) aspect ratio, and (f) skewness.

2.1.1 Incremental Principle Component Analysis (PCA): Updat-

ing the Dictionary And the Mean

The eigenbasis template dictionary is incrementally updated during tracking so that the

dictionary reflect the appearance changes seen by the tracker thus far. In order for IVT

to reference to the dictionary accurately, it is required that the eigenbases and their mean
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being updated. The Sequential Karhunen-Loeve (SKL) procedures proposed by Levey et al.

[12] is extended in IVT so that the algorithm updates not only the eigenbases, but also the

basis mean. Ross et al. [18] call this algorithm the “incremental PCA algorithm.”

The SKL Algorithm

Let a d× n data matrix be A = {I1, ..., In}, i.e. a populated dictionary, where Ii is a d× 1

observation, i.e. an eigenbasis template in the pre-defined resolution and vectorized. The

singular value decomposition (SVD) of A is computed so that A = UΣV>. When a d×m

data matrix of new observations B is available, i.e. a batch of target image patches where each

image patch is in the pre-defined resolution and is vectorized, the SVD of the concatenation

of A and B, [A B], has to be computed efficiently into [A B] = U′Σ′V′>. This provides

updated eigenbases in U′ and updated eigenvalues in Σ′ so that have incorporated the new

observation data in B. The incremental PCA is only interested in finding U′ and Σ′, and

they could both be computed by letting B̃ be the component of B orthogonal to U so that

[A B] is partitioned as

[A B] = [U B̃]

Σ U>B

0 B̃
>
B


︸ ︷︷ ︸

let be square matrix R

V 0

0 I

 . (2.1)

Let R be a square matrix of size k + m and k is the number of singular values in Σ, and

that the SVD can be found so that R
SVD
= ŨΣ̃Ṽ

>
no matter what n is. With this, the SVD

of [A B] can then be expressed as

[A B] = [U B̃]
(
Ũ
′
Σ̃′Ṽ

′>)V 0

0 I

 =
(

[U B̃]Ũ
)

︸ ︷︷ ︸
U′

Σ̃︸︷︷︸
Σ′

Ṽ
>

V 0

0 I




︸ ︷︷ ︸
V′>

, (2.2)

where U′ = [U B̃]Ũ and Σ′ = Σ̃. Since the aim of SKL is to calculate U′ and Σ′, it is
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not necessary to compute V′ and it is left out of the computation in the SKL algorithm,

i.e. [A B] = [UΣV> B] leaving out V′ is instead expressed as [UΣ B]. By following these

procedures, an algorithm for SKL is as followed:

Given A, from which the SVD is computed to get U and Σ:

1. Taking the QR decomposition of [UΣ B] to obtain B̃ and R: [UΣ B]
QR
= [U B̃]R.

2. Computer the SVD of R to obtain Ũ and Σ̃: R
SVD
= ŨΣ̃Ṽ

>
.

3. U′ = [U B̃]Ũ and Σ′ = Σ̃, and if the desired number of eigenbasis vectors in U′ is

less than the number of non-zero singular values, then these excessive vectors and

singular values may be discarded.

Figure 2.3: The SKL algorithm.

The Incremental PCA Algorithm

The following lemma is in extension to allowing the computation of the updated basis mean:

Lemma 1. Let A = [I1, ..., In] and B = [In+1, ..., In+m] be data matrices and C = [A B] be

their concatenation. Denote the means and scatter matrices of A, B, C as ĪA, ĪB, ĪC and

SA, SB, SC respectively. It can be shown that SC = SA + SB + nm
n+m

(
ĪB − ĪA

) (
ĪB − ĪA

)>
.�

In this lemma, a scatter matrix is defined as the outer product of the centered data matrix,

e.g. SB = Σm
i=n+1(Ii − ĪB)(Ii − ĪB)>, thus, a scattered matrix differs from the sample

covariance matrix by only a scatter multiple SB = m · cov(B).

The proof of Lemma 1 is attached in Appendix A.

Let [(I1− ĪA), ..., (In− ĪA)] be expressed in the short-hand notation of (A− ĪA), and similarly

for (B − ĪB) and (C − ĪC). From Lemma 1, it is clear that the SVD of (C − ĪC) equals to

the SVD of concatenation of (A− ĪA), (B− ĪB), and the additional vector
√

nm
n+m

(
ĪB − ĪA

)
,

which can be formulated into the following algorithm.
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Given A, ĪA, n and B, from which the SVD of (A − ĪA) is computed to get U and Σ,

and the SVD of (C− ĪC) is computed to get U′ and Σ′:

1. Compute the mean vectors ĪB = 1
m

Σn+m
i=1+nIi and ĪC = n

n+m
ĪA + m

n+m
ĪB.

2. Form matrix B̂ =
[(

Im+1 − ĪB
)
· · ·

(
In+m − ĪB

) √
nm
n+m

(
ĪB − ĪA

)]
.

3. Compute B̃ = orth
(
B̂−UU>B̂

)
and R =

Σ U>B̂

0 B̃
> (

B̂−UU>B̂
)
, where the

operator orth() performs orthogonalization, maybe via QR. (Note that the B̃ here

is one column larger than that in the SKL algorithm.)

4. Compute the SVD R: R
SVD
= ŨΣ̃Ṽ

>
.

5. U′ = [U B̃]Ũ and Σ′ = Σ̃.

Figure 2.4: The incremental PCA algorithm.

The Forgetting Factor

By incorporating what Levey et al. [12] suggested, IVT ensures that the dictionary reflects

the more recent target image patches than the earlier ones by implementing the option of

forgetting factor f . The forgetting factor is a bias to down-weight the earlier observations

so that the newer observations are more significant. The forgetting factor f down-weights

the earlier observation and f ∈ [0, 1], where f = 1 indicates no forgetting is to occur. By

adding the forgetting factor, R in step 3 of the incremental PCA algorithm in Figure 2.4

becomes R =

fΣ U>B̂

0 B̃
> (

B̂−UU>B̂
)
, which is equivalent to taking the QR decomposition

of
[
fUΣ B̂

]
instead of

[
UΣ B̂

]
. The incorporation of the forgetting factor is possible

according to the following lemma by Ross et al. [18], whose proof is attached in Appendix A:

Lemma 2. A forgetting factor f reduces the contribution of each block of data to the overall

covariance modeled by an additional factor of f 2 at each SVD update.�
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Therefore, at the kth eigenbasis update, the block of m observations added during the jth

update (j < k) will have its covariance down-weighted by a factor of f 2(k−j).

The forgetting factor on the basis mean is addressed in the similar sense by reducing the

covariance contribution and its contribution to the resulting mean. By implementing the

forgetting factor, ĪC in step 1 of the incremental PCA algorithm in Figure 2.4 is modified to

ĪC = fn
fn+m

ĪA + m
fn+m

ĪB.

During the updating process, if the eigenvalue associated with a specific eigenbasis template

is less than 10−6, then the template is expelled from the dictionary. This mechanism is to

help allowing the dictionary to keep only the relevant eigenbasis templates.

2.1.2 The Dynamic Model: Estimating the Target Position with

Particle Filtering

As discussed in section 1.1.3, a warping mechanism can transform the affine parameters to

the images patch they represent. A brief discussion of the particle filter mechanism on these

parameters is described in section 1.2.1. Let Xt = (xt, yt, θt, st, αt, φt) represent an IVT state

X at time t consisting of six parameters, x, y, θ, s, α, φ, denoting x translation in pixels, y

translation in pixels, rotation angle in radians, scale in fraction, aspect ratio in fraction, and

skew angle in radians respectively.

Position estimation is cast as an inference task with Markov assumption in hidden state

variables. A set of images observed at time t, It = {I1, · · · , I1}, the values of its hidden state

variable X is estimated using Bayes’ theorem

p (Xt|It) ∝ p (It|Xt)

∫
p (Xt|Xt−1) p (Xt−1|It−1) dXt−1. (2.3)

This tracking model is governed by the observation model estimating the likelihood of Xt
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given the observation It, p (It|Xt), and the dynamic model estimating the likelihood of Xt

given the observation Xt−1, p (Xt|Xt−1). The observation model is discussed in detail later

in section 2.1.3.

In the dynamic model, each parameter in the state Xt is modeled with an independent

Gaussian distribution around Xt−1, each with its corresponding variance. The variances of

the parameters are collectively represented by Ψ =
(
σ2
x, σ

2
y, σ

2
θ , σ

2
s , σ

2
α, σ

2
φ

)
. Namely,

p (Xt|Xt−1) = N (X; Xt−1,Ψ) , (2.4)

where N denotes Gaussian (or normal) distribution and the search around Xt−1 defines the

motion of interest to the tracker, i.e. large variance σ2
x in x translation means a wider search

region in x-direction, hence, a fast movement in x-direction is assumed. The variance for

each affine parameter in IVT is assumed to be static, thus, the variances do not change

during tracking.

2.1.3 The Observation Model: Estimating the Target Image Patch

The image observations are modeled by a probabilistic interpretation of the principal com-

ponent analysis (PCA) [28]. A target image patch drawn at time t, It, is chosen based on Xt

under the assumption that the chosen target image patch It can be represented by the prior

target appearances spanned by U, i.e. dictionary templates, and centered at the mean µ, i.e.

eigenbasis template mean. The eigenbasis templates are the culmination of the prior target

appearances, and this eigenbasis subspace is centered at the mean of the eigenbasis. The

probability of an image patch being generated from this subspace is inversely proportional to

the distance d from the image patch to the reference point, i.e. µ. The longer the distance

d is from the reference point µ in the subspace U, the less likely the image patch is relevant

and being the target appearance estimation. The distance d can be decomposed into the
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distance-to-subspace ds and the distance-within-subspace from the projected image patch to

the subspace center dw, which is an idea proposed by the analysis of Moghaddam et al. [15].

The probability of an image patch at time t generated from a subspace, denoted by pds (It|Xt),

is modeled as a Gaussian distribution by

pds (It|Xt) = N
(
It;µ,UU> + εI

)
, (2.5)

where I is an identity matrix and the εI term corresponds to the additive Gaussian noise

in the observation process. The negative exponential distance from It to the subspace

spanned by U, exp
(
−
∥∥(It − µ)−UU> (It − µ)

∥∥2), i.e. exp
(
−‖ds‖2

)
, is proportional to

N
(
It;µ,UU> + εI

)
as ε→ 0 [20]. The proof of this is attached in Appendix B.

And within a subspace, the likelihood of the projected image patch can be modeled by the

Mahalanobis distance from the mean,

pdw (It|Xt) = N
(
It;µ,UΣ−1U>

)
, (2.6)

where Σ is the matrix of singular values corresponding to the columns of U.

By accounting for the likelihood of outside and within the subspace, the overall likelihood

of a image patch being generated from a subspace is

p (It|Xt) = pds (It|Xt) pdw (It|Xt) = N
(
It;µ,UU> + εI

)
N
(
It;µ,UΣ−1U>

)
. (2.7)

Equation 2.7 is used in IVT for finding the probability of a drawn image patch particle at

time t, It, to Xt.

Furthermore, as proposed by Black et al. [3], due to the effect of the noisy pixels, the outliers,

i.e. the noisy pixels that are unlikely to be part of the target image patch with the current

eigenbases, should be ignored. The method proposed to numerically signify the degree of
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a particle being an outlier is by using a robust error norm p (x, σ) = x2

σ2+x2
rather than the

common Euclidean norm ‖x‖2.

An example of a calculated IVT probability associated with available templates and image

patch particles drawn in Appendix D, where the available templates are illustrated by Fig-

ure D.1 and the available image patch particles drawn are in Figure D.3. This example is

purely for presentation purpose, since the templates in IVT dictionary are stored as eigen-

bases and would not appear to be easily recognizable object like the ones in Figure D.1. The

basis mean, the image patch with the highest probability p (It|Xt) and the image patch with

the lowest probability are shown in Figure 2.5. The basis mean, i.e. the dictionary template

mean, is shown to be more similar to the image patch particle with the highest probability

than the one with the lowest probability. The image patch particle with the lowest proba-

bility, in this example resulted a zero probability, i.e. p (It|Xt) = 0, which means that it has

a very high dissimilarity to the basis mean.

Figure 2.5: An IVT example using of the drawn 800 particles and the available templates in
Appendix D. The probability calculated for each particles (top). Bottom images are (from
left to right) the basis mean, the highest probable image patch and the lowest probable image
patch.
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2.2 Least Soft-Threshold Squares Tracking (LSST)

Least soft-threshold squares (LSS) tracking proposed by Wang et al. [30] is a generative

tracking method that models the error term with the Gaussian-Laplacian distribution, which

uses maximum joint likelihood of parameters to find an LSS distance as a measure of the

difference between an observation image patch and the dictionary. As aforementioned in

section 2.1.3, care has to be taken with noisy pixels when comparing an image patch with

the dictionary. LSS tries to respond to outliers effectively by selecting image patch particles

with high similarity to the dictionary, which allows more target representative images to

populate the dictionary. Wang et al. propose to pose a linear regression optimization

problem assuming Gaussian-Laplacian noises and that being the estimated target image

patch alone is not sufficient of it being representative of the target appearance. To address

this insufficiency of the estimated target image patch being representative to the target

appearance, a reconstruction of the estimated target image patch is necessary before being

admitted into the dictionary. This mechanism is elaborated later in this section. The

assumption of Gaussian-Laplacian noise is made so that the linear regression can detect

outliers in an image patch particle more effectively than detecting noisy pixel using the

least-squares distance.

The LSS tracking image patch parameter-to-image transformation scheme is the same as

described in section 2.1.

2.2.1 Least Soft-Threshold Squares

The LSS is a linear regression method that assumes that the error vectors adhere to the

independent and identically distributed (i.i.d.) Gaussian-Laplacian distribution. It uses a

linear model to fit a series of noisy observations by solving the LSS optimization problem
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iteratively. The optimal minimal distance achieved serves as a measure of the dissimilarity

between the observation vector and the dictionary, in which the larger the resulting distance,

the greater the dissimilar the observation has to the dictionary.

Gaussian-Laplacian Noise

A linear model is used to represent how close an image patch is to the linear combination of

the dictionary templates. The estimated k-dimensional coefficient vector x ∈ Rk×1 expresses

a noisy d-dimensional observation vector y ∈ Rd×1, i.e. the image patch, as a linear combi-

nation of the images stored in the dictionary A that are represented by the columns of A.

This is expressed as

y = Ax + e, (2.8)

where A is the data matrix denoting A = [r1; r2; · · · ; rd] ∈ Rd×k, i.e. the eigenbasis matrix

(or the dictionary) with the ith row being ri, and e is the error (or the residual) term denoting

e = y − Ax = [e1; e2; · · · ; ed]. Note that ei = yi − rix, i = 1, ..., d, and e1; e2; · · · ; ed are

assumed to be i.i.d. according to some probability density function (PDF). Note that the

eigenbasis templates are the columns of the dictionary matrix A, not the rows ri, and rows

are being highlighted here for discussion purpose.

If the image patch particle y is exactly the same as the Ax term, then the error term e would

result to be zero, but consider that the image patch particles being drawn as perturbed

target image of the previous frame and that the dictionary is a collection of slightly different

estimated target images from the past frames, there would certainly exist some dissimilarities.

By maximizing the posteriori probability p (x|y) ∝ p (x,y) · p (y), which is the same max-

imizing the joint likelihood probability p (x,y), the maximum a posteriori (MAP) esti-

mate of coefficient x can be obtained. The coefficient x can be alternatively estimated by
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x̂ = arg max
x

p (y|x) = arg max
x

p(e), resulting in maximum likelihood estimation (MLE),

with the assumption of a uniform prior.

With the PDF of the errors fθ(ei), the likelihood of the estimator, i.e. the joint probability

of the error term e, is p(e) = Πd
i=1fθ(ei). Here, θ is the parameter set that characterizes

the probability distribution, e.g. Gaussian distribution. And maximizing the likelihood

function is the same as minimizing the objective function Lθ (e1, ..., ed) = Σd
i=1pθ(ei), where

pθ(ei) = −log fθ(ei).

Assuming Gaussian distributed errors e, where ei ∈ N (0, σ2
N), i.e. ei being a zero-mean

Gaussian random variable with variance σ2
N and a PDF fN (ei) = 1√

2πσN
exp

(
− e2i

2σ2
N

)
, the

MLE solution is the same as the ordinary least squares (OLS) solution

x̂ = arg min
x

1

2
‖y - Ax‖22 . (2.9)

Which has the closed form solution x̂ =
(
A>A

)−1
A>y.

If we assume Laplacian distributed errors e (ei ∈ L (0, σ2
L)), i.e. ei being a zero-mean

Gaussian random variable with variance σ2
L and a PDF fL(ei) = 1√

2σL
exp

(
−
√
2|ei|
σL

)
, the

MLE solution is the same as the least absolute deviations (LAD) solution

x̂ = arg min
x

1

2
‖y - Ax‖1 . (2.10)

An OLS is comparatively simpler to solve, but it is sensitive to outliers due to the Gaussian

noise assumption, while LAD is comparatively robust to outliers but more difficult to solve

as seen in the elaboration that follows.

By using an additive combination of these two components in the error vector e, Equation 2.8

can be alternatively expressed as

y = Ax + n + s, (2.11)
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with an i.i.d. Gaussian noise vector n (ni ∈ N (0, σ2
N)) and an i.i.d. Laplacian noise vector s

(si ∈ L (0, σ2
L)), thereby, forming the Gaussian-Laplacian distribution [21]. In this applica-

tion, n would be able to handle the small dense noise and s would handle the outliers. The

joint PDF is p(e) = Πd
i=1fNL(ei), and fNL(ei) is found by convolution of the two PDFs,

fNL(ei) = fN (ni) ∗ fL(si)

=

∫
fL(si)fN (ei − ni)dsi

=
1

2
√

2σN
exp

(
− e2i

2σ2
N

)[
erfcx

(
σN
σL
− ei√

2σN

)
+ erfcx

(
σN
σL

+
ei√
2σN

)]
.

(2.12)

Where erfcx(x) = exp (x2) erfc(x) and erfc(x) = 2√
π

∫∞
x
e−tdt.

By considering the Laplacian noise term s as missing values with the same Laplacian prior,

the joint likelihood p(y,x, s) can be maximized instead, and

p(y,x, s) = p(y|x, s)p(x, s)

= p(y−Ax− s)p(s)

= K · exp

[
− 1

σ2
N

(
1

2
‖y−Ax− s‖22 + λ ‖s‖1

)]
.

(2.13)

Where K =
(

1√
2σL

)d (
1√

2πσN

)d
and λ =

√
2σ2

N

σL
. Therefore, to maximize joint likelihood of

p(y,x, s) is to minimize the function 1
2
‖y−Ax− s‖22 + λ ‖s‖1 with respect to x and s.

Least Soft-Threshold Squares Regression: Likelihood of Particle to the Dictio-

nary

In Equation 2.13, 1
2
‖y−Ax− s‖22 + λ ‖s‖1 is considered as the objective function in maxi-

mizing the joint likelihood of p(y,x, s),

L (x, s) =
1

2
‖y−Ax− s‖22 + λ ‖s‖1 , (2.14)
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where the optimal solution is [x̂, ŝ] = arg min
x,s

L (x, s). Equation 2.14 is convex but not

differentiable everywhere due the `1 regularization term on s, thus, there is no closed form

solution for this optimization problem. To solve for the optimal solutions [x̂, ŝ], Wang et al.

[30] propose an iterative algorithm called the least soft-threshold squares regression, which

iterates till convergence by holding one of the two variables constant, i.e. s, and compute for

the other one, i.e. x, then use this solution to compute for the first variable held constant.

The proposed computations are as followed.

Proposition 1. Given ŝ, the optimal x̂ can be computed by the ordinary least squares

solution x̂ =
(
A>A

)−1
A> (y− ŝ).

Proposition 2. Given x̂, the optimal ŝ can be computed by a soft-thresholding (or shrink-

age) operation ŝj = Sλ
(

[y−Ax̂]j

)
where Sλ = max(|x| − λ, 0) · sign(x) and j denotes the

iteration count.

Proposition 1 and 2 imply that L (xi+1, si+1) ≤ L (xi+1, si) ≤ L (xi, si). Additionally, the

convergence to a local minimum is guaranteed by the theorem proposed by Tseng et al. [29],

which states: If f (x) = g(x) +
∑n

i=1 hi (xi) with g being convex and differentiable, each hi

being convex and x = (x1, · · · , xn), then the block-coordinate descent on xi’s converges to a

global minimum of f .

Let P =
(
A>A

)−1
A> which is computed before the algorithm and set a stopping criterion,

e.g. the number of iterations or when a difference between objective values meets a pre-set

value. The proposed algorithm is as followed.
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Input: An observation vector y, a data matrix A, pre-computed P =
(
A>A

)−1
A>,

and a small constant λ.
1. Initialize j = 0 and s0 = 0
2. Iterate
3. Obtain xj+1 via xj+1 = P(y− sj)
4. Obtain sj+1 via sj+1 = Sλ(y−Axj+1)
5. j ← j + 1
6. Until convergence or termination (of the pre-set criterion)

Output: x̂, ŝ

Figure 2.6: The least soft-threshold squares regression algorithm.

And since the objective function L (x̂, ŝ) is convex, the solution is the global minimal solution.

A MATLAB code of the algorithm in Figure 2.6 is attached in Appendix C.1.

Least Soft-Threshold Squares Distance

When expressing the data matrix as a concatenation of column vectors A = [a1, · · · , ak],

where ai is the eigenbasis vector, the Ax term is seen as a linear combination of columns of

A, Ax = x1a1 + · · ·+ xkak.

The distance d between a noisy observation y and the subspace A (i.e. dictionary) is usually

defined to be inversely proportional to the maximum joint likelihood with respect to the

coefficient x,

d(y; A) ∝ −log max
x

p(y,x). (2.15)

Since −log max
x

p(y,x) = −log max
x

p(y|x)p(x), and
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−log max
x

p(y|x)p(x) ∝ −log max
x

p(y|x)

∝ −log max
x

exp

(
−1

2
‖y−Ax‖22

)
∝ min

x

1

2
‖y−Ax‖22 .

(2.16)

Therefore, for OLS method, the distance can be defined as

dOLS (y; A) = min
x

1

2
‖y−Ax‖22

=
1

2

∥∥∥y− (A>A
)−1

A>y
∥∥∥2
2
.

(2.17)

And for LAD method, the distance can be defined as

dLAD (y; A) = min
x

1

2
‖y−Ax‖1 . (2.18)

From these distance definitions, LSS method defines the LSS distance to be

dLSS (y; A) = min
x,s

1

2
‖y−Ax− s‖22 + λ ‖s‖1 . (2.19)

2.2.2 Dynamic Model

As discussed in section 2.1.2, IVT assumes a Markov model with hidden state variables for

its motion tracking. The same assumption is made by the LSST, that LSST is a Bayesian

inference task. The same affine parameter method that can be used to transition affine

parameters into an image patch described in section 2.1, and the same particle drawing

approach in accordance to Equation 2.4 is also implemented here.

For t target image patch observations as observed vectors y1:t = [y1, · · · ,yt], the estimation

of the target state variable x is formulated as the maximum a posteriori estimation

x̂t = arg max
xi
t

p
(
xit|y1:t

)
, (2.20)
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where xit is the ith state particle, and the particle with the highest likelihood throughout

frames 1 : t is collected in y1:t. From these state particles, corresponding image patch

particles are extracted, and an image patch particle with the highest similarity to y1:t is

selected as the estimate target patch ŷt. The corresponding estimate state x̂t of frame t is

also known now. And by Bayes theorem, p (xt|y1:t) can be formulated as

p (xt|y1:t) ∝ p (yt|xt)
∫
p (xt|xt−1) p

(
xt−1|y1:t−1

)
xt−1, (2.21)

where p (xt|xt−1) describes the transition from the previous frame t−1 to current frame t, in

the LSS tracking dynamic model. And p (yt|xt) is the observation model that estimates the

likelihood that an image patch particle belongs to the object class, i.e. subspace spanned by

the eigenbasis templates in the dictionary.

2.2.3 Observation Model

The same concept as described in section 2.1.3 is applied here, where the PCA subspace is

spanned by the column eigenbasis vectors in U and the subspace is centered at the basis

mean µ. With an i.i.d. Gaussian-Laplacian noise

y = µ + Uz + n + s, (2.22)

where y is the observation vector, i.e. an image patch particle, z is the coefficients associated

with the eigenbasis vectors, and n and s are the Gaussian and the Laplacian noise component

respectively.

By formulating Equation 2.22 into the form of Equation 2.9 described in section 2.2.1, it

would require letting ȳ = y − µ, which centers the observed image vector y at the basis

mean µ. Following this convention, the distance between observed image vector y and the

subspace (U,µ) described by Equation 2.19 in this context is now

32



dLSS (y; U,µ) = min
z,s

1

2
‖ȳ−Uz− s‖22 + λ ‖s‖1 . (2.23)

With the solution to the optimization problem with qth particle

[ẑq, ŝq] = arg min
ẑq ,ŝq

1

2
‖ȳq −Uzq − sq‖22 + λ ‖sq‖1 (2.24)

from the LLS regression iterative method described in Figure 2.6, the distance can be found

by dLSS (yq; U,µ) = min
z,s

1
2
‖ȳq −Uzq − sq‖22 +λ ‖sq‖1, and the observation likelihood can be

computed as

p (yq|xq) = exp (−γdLSS (yq; U,µ)) , (2.25)

where γ is a constant controlling the shape of the Gaussian kernel.

2.2.4 Template Update

In addition to the procedures of admitting an estimated target image into the dictionary, one

extra step is taken by the LSS tracking. The best image patch particle chosen yo may have

noise and admitting a noisy image into the dictionary may corrupt the target appearance

representation. From the LSS regression method, the observation vector yo =
[
y1o ; · · · ; ydo

]
,

where yio denotes a pixel of yo and each corresponds to the Laplacian noise vector so =[
s1o; · · · ; sdo

]
, where d is the total number of pixels in the image patch resolution. Recall

that from section 2.2.1, a Laplacian noise vector s handles the outlier noises, meaning that

if sio 6= 0, there is occlusion or some other noise indicated in the pixel sio. Wang et al. [30]

propose to replace these Laplacian noises detected with the respective pixels in the basis

mean µ,

yir =


yio, sio = 0

µi, sio 6= 0

, (2.26)
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where yr =
[
y1r ; · · · ; ydr

]
denotes the reconstructed vector and µ =

[
µ1; · · · ;µd

]
.

The dictionary eigenbasis templates and the basis mean are found with the same procedures

as that of IVT and are updated incrementally as described in section 2.1.1.

An example of a calculated LSST probability associated with the available templates and the

image patch particles drawn in Appendix D, where the available templates are illustrated

by Figure D.1 and the available image patch particles drawn are in Figure D.3. This exam-

ple is purely for presentation purpose, since the templates in IVT dictionary are stored as

eigenbases and would not appear to be easily recognizable object like the ones in Figure D.1.

The basis mean, the image patch with the highest probability and the image patch with the

lowest probability are shown at the bottom of Figure 2.7. The basis mean, i.e. the dictionary

template mean, is shown to be more similar to the image patch particle with the highest

probability than the one with the lowest probability. The dictionary template update process

of Equation 2.26 is illustrated in Figure 2.8, where the pixels with non-zero error, i.e. sio 6= 0,

is replaced with the pixels in the basis mean, i.e. µi, so that the reconstructed image patch

yr admitted into the dictionary would not have the erroneous pixels to cause corruption of

the target appearance representation. The resulting reconstructed image patch yr has high

similarity to the basis mean.
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Figure 2.7: An LSST example using of the drawn 800 particles and the available templates in
Appendix D. The probability calculated for each particles (top). Bottom images are (from
left to right) the basis mean, the highest probable image patch and the lowest probable image
patch.

Figure 2.8: An LSST example using of the drawn 800 particles and the available templates
in Appendix D to demonstrate the dictionary template update process of Equation 2.26.
(From left to right) The basis mean, the chosen image patch particle, the chosen image
patch particle with the noisy pixels shown in black, and the reconstructed image patch with
the noisy pixels replaced by corresponding pixels in the basis mean before being admitted
into the dictionary.

2.3 Robust Visual Tracking (RVT)

Robust visual tracking proposed by Mei et al. [13] solves a one-norm `1 regularization prob-

lem to find the sparse representation composed of three types of templates: target templates,

positive trivial templates and negative trivial templates. The positive and negative templates

have their corresponding trivial coefficient vectors from the regularization problem, which

measure the similarity of the target image particle to the dictionary. The trivial coefficient
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vectors indicate outliers in the observed image patch to the dictionary with sparsity con-

straints, e.g. occlusion, noisy pixels, etc., where the non-zero values in the vectors represent

errors in the respective pixels. The dictionary is incrementally updated during the tracking

and the templates are populated directly from the most likely image patch particle in the

particles drawn. RVT maintains the dictionary templates by accepting estimate target im-

age patches from the video frames which is extracted from the corresponding state variables

(affine parameters), and the same affine parameters-to-image patch transformation method

described in section 2.1 is used.

RVT maintains the dictionary with image patch template weights. The RVT approach

proposes selecting the most likely image patch particle out of the particles drawn, where the

particles are drawn based on the particle filtering method discussed in section 2.1.2. Each

particle is assigned a weight that indicate how similar the particle is to the dictionary. The

more similar the particle is to the dictionary, the heavier the weight is for the respective

particle. The most similar particle identified is weighted in the dictionary with respect to

its likelihood to the dictionary, i.e. the weight is a function of a particles’s similarity to the

dictionary. This target image estimate, if accepted by the dictionary, would carry the weight

with it into the dictionary as the image patch template weight. The higher the weight in

comparison to the other dictionary templates, the less likely the template gets replaced by

the future image patch templates. The numerical values of particle likelihood tend to be

very small, since there are hundreds of particles drawn. This is seen in Figure 2.5. This

method of maintaining the dictionary is to ensure that the best target representation is kept

in the dictionary.

A portion of the RVT is omitted in the comparison where RVT dictionary has a set of static

templates that do not update incrementally. It is not specified how Mei et al. acquired

these static templates, and furthermore, it would require some prior knowledge of the target

before tracking begins, which is not the aim in this exploration. Mei et al. choose to have

36



their image patch in a resolution of 12 pixels-by-15 pixels, total of 180 pixels per image

patch, but this will be adjusted to a chosen resolution for all three tracking approaches.

Another portion, that is omitted is the part where dynamic affine parameter variances are

implemented. This exploration will only use static variances for comparison purpose.

2.3.1 Sparsity Through 1-Norm `1 Minimization

The target images in the dictionary can be represented in a reduced-dimensional subspace, as

mentioned in section 1.1 and the dictionary in IVT and LSST is formed by eigenbases using

the method discussed in section 2.1.1. The dictionary in RVT, much like the formulation in

section 2.2.1, the dictionary subspace A is spanned by a set of templates A = [a1, · · · , ak] ∈

Rd×k, where the ith template ai is vectorized with d pixels, ai ∈ Rd. The difference is that

RVT populates the dictionary directly using the estimated target image patches, this means

that ai is an image patch accepted by the dictionary and not an eigenbasis template in the

eigenbasis subspace. With the coefficient vector x = [x1, · · · , xk]> ∈ Rk and the chosen image

patch particle in the same resolution y ∈ Rd, the chosen image patch can be approximated

in the linear span of A,

y ≈ Ax = x1a1 + · · ·+ xkak. (2.27)

Similar to the formulation in section 2.2.1, the noise, e.g. occlusion, in the chosen image

patch particle can be seen as error e ∈ Rd, y = Ax + e as Equation 2.8 showed. And with

high similarity between the chosen image patch particle y and the dictionary A, there should

be few low values in the error vector e, where the location of non-zero value elements in e

also indicate the location of the noise.

The error term is formulated differently in RVT. Wright et al. [32] propose to include a

collection of trivial templates I = [t1, · · · , td] ∈ Rd×d to capture the occlusions,
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y = [A I]

x

r

 , (2.28)

where the ith trivial template ti ∈ Rd is made up of all zero entries except for one entry. This

means if all trivial templates were to be added together, it would form an identity matrix

in the image patch resolution size, in addition, since all the templates are vectorized, I can

be thought of as an identity matrix ∈ Rd×d. And r = [r1, · · · , rd]> ∈ Rd denotes the trivial

coefficient vector. And since [A I]

[
x

r

]
= Ax + Ir, the Ir term expresses the error term e

in Equation 2.8.

Mei et al. [13] argue that a tracking template can almost always be represented by the target

templates dominated by non-negative coefficients in x, where a image patch particle that has

high similarity to the templates are positively related. For instance, the second frame target

image patch is very similar to the first frame target image patch stored as template in the

dictionary, therefore, the coefficient entries in x are positive values. Non-negative coefficients

help filtering out what is similar to dictionary templates in the image patch particles that are

at reversed intensity patterns, e.g. target in brightness transitions into a shadow. Thereby,

non-negative constraints are imposed onto x. However, it is unreasonable to impose such

constraints onto the trivial coefficient vector r, since it is associated with the error-term and

can be positive or negative. Thus, the trivial coefficient vector r is formulated into a positive

and a negative trivial coefficient vector, r+ and r−, that contain positive and negative trivial

templates respectively.

y = [A I − I]︸ ︷︷ ︸
B


x

r+

r−


︸ ︷︷ ︸

c

=̂Bc, s.t. c � 0, (2.29)

where B = [A I − I] ∈ Rd×(k+2d) and, as the component-wise inequality denoted by �,
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c is the non-negative coefficient vector c =

 x

r+

r−

 ∈ Rk+2d with the positive trivial coefficient

vector r+ and the negative trivial coefficient vector r−.

Since Equation 2.29 is underdetermined, it does not result in a unique solution for c. When

there are noises in an image patch particle, only a fraction of the entries in the trivial

coefficient vectors r+ and r− reflects the noises. Therefore, a sparse solution to Equation 2.29

is desired. A sparse solution would provide compression in the transform domain by the

formulating the one-norm `1 regularized least-squares problem,

min ‖Bc− y‖22 + λ ‖c‖1 , s.t. c � 0, (2.30)

where ‖·‖1 and ‖·‖2 are the one-norm `1 and two-norm `2 respectively.

Equation 2.30 is solved by an approach proposed by Kim et al. [6], which solves the problem

with an interior-point method. This method uses the pre-conditioned conjugate gradients

(PCG) algorithm to compute the search direction, and the amount of time to run the PCG

algorithm is dependent on the number of iterations and the cost of a PCG step. The regular-

ization parameter λ determines the number of PCG iterations required by the truncated New-

ton interior-point method. Admittedly, this problem formulation requires a computationally

expensive step in PCG, which is a matrix-vector product that has O(d(2d+k)) = O(d2+dk),

where k is the number of target templates. Mei et al. propose to solve this minimization

problem by the routine Kim et al. proposed [7]. Here, a coordinate descent approach sim-

ilar to the one employed in the LSST method is used. The MATLAB code is attached in

section C.1.

The image patch particle that has the smallest residual from projecting onto the target

template subspace is the chosen particle. The chosen image patch particle ŷ out of np

particles drawn Y =
{

y
(1)
t , · · · ,y(np)

t

}
at time t (or frame t), is governed by
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ŷ = arg max
y∈Y

d∏
j=1

N
(

(y−Ax)(j) ; 0, σ2
)
, (2.31)

where x is found by the one-norm `1 minimization of Equation 2.30 and (y−Ax)(m) denotes

the mth entry in y − Ax, i.e. the pixel difference. Note that each member in the set

Y has a corresponding state x, and all states belong to the parameter particle set X ={
x
(1)
t , · · · ,x(np)

t

}
.

Importance Weights Associated with Each Particle Drawn

One-norm `1 minimization favors templates with large norms due to the regularization of

‖c‖1 term. The larger the norm associated with the ith template ai is, the smaller the

coefficient xi needed in the approximation of ‖y−Bc‖2. And since it can be thought of as a

numeric indication of the similarity between the image patch y to the Bc term that contains

the dictionary, Mei et al. propose to define the importance weight wi to the template ai as

‖ai‖2. Therefore, the larger the weight associated with a template, the more important the

template is in the dictionary. Since the templates in the dictionary is updated during the

tracking, the weight associated with each template is also updated.

2.3.2 Dynamic Model

Mei et al. specify the affine parameters governing the location and the size of the target patch

to be a set of eight affine parameters, (α1, α2, α3, α4, t1, t2, v1, v2), where (α1, α2, α3, α4) denote

patch deformation parameters, (t1, t2) denote patch translation parameters in the frame (i.e.

pixel translations in x and y), and (v1, v2) are the velocity in x and y translations (t1, t2). For

the purpose of comparing with IVT and LSST, these affine parameters are changed to using

the parameters used in IVT and LSST instead. The parameters used in IVT and LSST are

described in section 2.1.2. This means that the velocities are not taken into account in RVt,
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but the result would offer a one-to-one comparison of IVT, LSS and RVT methodologies.

The particle filter follows the same method with Markov hidden parameters as discussed in

section 2.1.2 and expressed in Equation 2.21. With xt being the state composed of the image

patch affine parameters (i.e. the state variables) at time t, and all the available observations

y1:t−1 =
{
y1, · · · ,yt−1

}
(i.e. a collection of chosen image patches prior to time t), the

predicted distribution up to time t− 1 is p
(
xt|y1:t−1

)
, where

p
(
xt|y1:t−1

)
=

∫
p (xt|xt−1) p

(
xt−1|y1:t−1

)
dxt−1. (2.32)

In this prediction step, the state vector xt is estimated at time t, which the follows updating

step of the observation yt can be found using Bayes rule

p (xt|y1:t) =
p (yt|xt) p

(
xt|y1:t−1

)
p
(
yt|y1:t−1

) , (2.33)

where p (yt|xt) is the likelihood. The posterior p
(
xt|y1:t−1

)
is approximated by np particles

drawn X = {xqt}q=1,··· ,np
, each member in X has an importance weight wqt associated with

it.

2.3.3 Observation Model

The particles drawn at time t are in a set X = {xqt}q=1,··· ,np
and the importance distribution

in Equation 2.33 denoted by p (xt|x1:t−1,yt) governs which of the particles in X to be chosen.

The weights of the particles are updated as

wqt = wqt−1
p (yt|x

q
t ) p

(
xqt |x

q
t−1
)

p (xt|x1:t−1,yt)
, (2.34)

where yt is the image patch corresponding to the state particles drawn xqt .

And by using the bootstrap particle filter method, p (xt|x1:t−1,yt) = p (xt|xt−1). Thus, the
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weights become the observation likelihood p (yt|xt), i.e. the similarity between an image

patch to the templates in the dictionary.

The probability of each image patch particle yt to the estimated xt at time t is p (yt|xt),

which is computed from the error approximation by the dictionary using the one-norm `1

minimization described in section 2.3.1, specifically, it is described by Equation 2.31 as

p (yt|xt) =
d∏
j=1

N
(

(y−Ax)(j) ; 0, σ2
)
, (2.35)

where A is the dictionary and x is the coefficient vector, d is the total number of pixels in the

image patch of the specified resolution, and σ2 is the variance in the Gaussian distribution

for all pixels in the appearance model. This formulation works under the assumption that a

noise in each pixel is an independent Gaussian noise, but in reality, the noises in an image

are typically not independent, e.g. when illumination changes, there could be similar noise

in the shadow region.

2.3.4 Template Update

Templates are incrementally updated once an image patch is chosen during the tracking.

Template update also updates the importance weight associated with the target image patch

templates, which is obtained by the zero-mean unit norm of the template.

Mei et al. propose to have ten templates in the dictionary. The dictionary is initialized

by populating it with perturbed first target image (which is initialized as the zero-th target

image) in four directions (i.e. positive and negative x and y directions) with a small variance

σ = 0.0001 for all directions. Furthermore, the number of templates retained in the dictio-

nary is consistent in all the tracking approaches, i.e. if it is chosen to have ten templates

in the dictionary, then IVT, LSS and RVT are all going to retain ten templates in their

dictionaries.
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Mei et al. propose a template update algorithm that replaces templates, updates templates

and updates weights. If the resulted image patch y has a high dissimilarity to the template

set, it will replace the least important template in A and will then carry the median weight

of the current templates. By assigning the median weight to the newly admitted image patch

template, the dictionary avoids the newly added templates to be important enough, but not

dominating. The weight of each template increases when the similarity between the chosen

image patch and the template is high, otherwise the weight decreases.

The similarity function sim(·, ·) of RVT is defined as cos(θ), with θ being the angle between

the two normalized input vectors, i.e. the chosen image patch and each templates. The more

similar two image patches are, the closer to 1 the similarity function cos(θ) yields. Mei et al.

choose the maximum template weight to be 0.3 to avoid any template being too dominating.

Depending on the experiment, a dissimilarity factor τ can be chosen between 0 and 1 to

allow admitting a chosen image patch as a new template. The algorithm is as followed.

1. The chosen tracking target yt, i.e. from the particle set Yt =
{

y
(1)
t , · · · ,y(np)

t

}
according to the observation model Equation 2.35.

2. The coefficient vector solution x from Equation 2.30.
3. The current template weights w, such that wi ← ‖ai‖2.
4. A predefined threshold τ .
5. Update weights according to the coefficients of the target templates.
wi ← wi ∗ exp(xi).
(a) From the largest coefficient xm = max x, find the corresponding template am.

m = arg max
1≤i≤np

xi.

6. if (sim (y, am) < τ)
7. i0 ← arg min

1≤i≤np

wi

8. ai0 ← y (replacing the existing template with the lowest weight)
9. wi0 ← median(w) (replacing the weight of the newly introduced template)

10. end if
11. Normalize template weights w such that sum(w) = 1.
12. Adjust weights w such that max(w) = 0.3 to prevent template weight skewing.
13. Normalize templates ai such that ‖ai‖2 = wi.

Figure 2.9: The algorithm to update templates in RVT.
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The template updating algorithm in Figure 2.9 is supposed to reduce the drift of the chosen

target patch in the frame. Figure 2.10 illustrates a frame with the estimated target boundary

box, the previously chosen image patch and the current target image patch estimate. It also

shows all the available templates and the associated weights partly affected by the similarity

to the current target image patch estimate.

An example of a calculated RVT probability associated with the available templates and the

image patch particles drawn in Appendix D, where the available templates are illustrated by

Figure D.1 and the available image patch particles drawn are in Figure D.3. The previously

chosen image patch, the currently chosen image patch with the highest probability, i.e. one

with the lowest values of coefficients, and the image patch with the lowest probability, i.e.

one with the highest values of coefficients, are shown in Figure 2.11.
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Figure 2.10: An RVT example with the current frame shown with the red estimated target
boundary box (top), the chosen image patch from the previous frame and the currently
chosen image patch (right beneath the current frame) with all the available templates (right
beneath the chosen image patches) and the associated weights (bottom).

Figure 2.11: An RVT example using of the drawn 800 particles and the available templates
in Appendix D. The probability calculated for each particles (top). Bottom images are (from
left to right) the chosen image patch from the previous frame, the highest probable image
patch and the lowest probable image patch.
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2.4 Tracking Approach Comparison

All three tracking approaches, IVT, LSST and RVT, have similar general structures. All

three approaches have the same key steps, which are listed in Table 2.1.

1. Specifying the first image patch boundary box on the first frame where affine pa-
rameters and image patch in specified resolution are acquired.

2. Drawing particles on the current frame with respect to the previous affine param-
eters and their variances, where affine parameters are also transformed into image
patch particles.

3. A visual tracking method to identify the image patch particle with the highest
likelihood, thus, its respective affine parameters.

4. A dictionary updating method and a set of rules to update and acquire new tem-
plates in the dictionary.

Table 2.1: The key steps in the general structure that IVT, LSST and RVT have in common.

The structure of RVT slightly varies from IVT and LSST in that between the steps 1 and 2,

the whole dictionary is populated using the first image patch with a small x and y translation

variance of 0.0001, whereas IVT and LSST populate their dictionary templates on the go.

The methods in which IVT, LSST and RVT handle steps 3 and 4 differ and are the defining

characteristics of the tracking approaches, e.g. the “incremental” part of the name in IVT

comes from its method to incrementally update the dictionary eigenbasis and the basis mean

in step 4.

In step 3, IVT uses the distances between the basis mean-centered image patch particles

projected onto the the eigenbasis subspace, and the mean is used as the reference of likeli-

hood the particles being the best tracking estimation, as described by Equation 2.5. LSST

also uses distance as a measure of likelihood, but it solves for the distance using a sparse

optimization problem of mean-centered particles to the linearly combination of the eigen-

bases and their errors, posed by Equation 2.14. The more zeros the error vector has for an
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image patch, the more likely the distance is small, and the more likely the particle is the

target estimate. RVT does not use distance as a measure of an image patch’s similarity to

the dictionary, but similar to LSST, RVT also solves for a sparse optimization problem. The

RVT sparse optimization problem solves for the coefficients with 3 components: one that is

associated with the dictionary templates, one associated with positive trivial templates, and

one associated with negative trivial templates. The RVT optimization problem is to iden-

tify the differences in the particles drawn to the dictionary templates, positive and negative

trivial templates, as described by Equation 2.30. The lower the coefficients associated with

trivial templates are, the more likely the particle is the best tracking estimation. Note that

IVT and LSST assumes that the current target appearance is a linear combination of the

eigenbasis templates, whereas RVT assumes that the current target appearance is a linear

combination of the past image patches in the dictionary and that RVT does not maintain a

dictionary template mean.

Although both LSST and RVT solve for sparse optimization problem, LSST formulates the

optimization problem through robust distance (Hubert distance), which is described by the

algorithm in Figure 2.6. RVT solves its sparse optimization problem with respect to the

dictionary templates and it is much more computationally expensive than solving the LSST

sparse optimization problem.

The “weighting” imposed on each dictionary template in IVT and LSST is through updating

of the the eigenbasis template via the incremental PCA method as described in Figure 2.4.

While RVT assigns the weights of each template partly based on the sparse coefficients

associated with the dictionary templates and partly by a set of few rules for a newly admitted

template as described by the template update algorithm in Figure 2.9 steps 5 and 9.

In step 4 in Table 2.1, IVT and LSST both follow an incremental PCA method, described by

Figure 2.4, to update the dictionary eigenbasis templates and the basis mean. With a target

that has highly variable appearances, the basis mean often gets blurry as a result. RVT
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updates the dictionary templates with the assumption that the current target appearance is

a linear combination of the recent few target image patches preceding it, given that those

image patches meet the criterion described by step 6 in Figure 2.9.

The three approaches are summarized in Appendix E with the specifications that are common

among the approaches in Table E.1 and that are different in Table E.2 and a summary of

the three algorithms in Table E.3.
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Chapter 3

Results

To compare the strength of each tracker, selected representative video samples from Ams-

terdam Library of Ordinary Videos dataset, called ALOV++ [17], are used. Another source

of video samples is from the database set up for the work of “Incremental Learning for

Robust Visual Tracking” [18] of Ross et al. [19]. As aforementioned, each video example

is converted into gray scale for tracking. The videos selected for the tracking performance

examination are recorded at high enough frames rate, usually at 30 frames per second (fps),

to avoid blurring of the images in the frame when movement is too large between two frames

or when a sudden fast movement creating a large translation variance. These less desirable

traits in frames occur in a video called “david indoor” that has been recorded at 15 fps,

where frame images are often blurred as shown in Figure 3.1 and the changing of the move-

ment from frame to frame is sometimes more abrupt than in a 30-fps video. In the tracking

performance examination, the videos are chosen to be about 30 fps for consistency.

For performance comparisons of the three tracking approaches, for consistency, 16 templates

are kept in the dictionary and 800 particles are drawn at each frame for the dynamic model.

But depending on how large the video frame is and its ratio to the size of the target image
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Figure 3.1: A frame from “david indoor” that has blurred image due to being recorded at
15 fps, a low frame rate than 30 fps.

boundary box, the particle drawing variance of each affine parameter is slightly changed for

each video. For instance, the video “david indoor” has a frame size width-by-height 324×240

pixels and a target boundary box size around 80×100 to 50×60 pixels, occupying a third

to a fifth of the video frame. Target movement in “david indoor”, therefore, assumed to

be less likely to vary than that of the video “01-Light video00001,” which has much higher

resolution of 1280×720 pixels and a target image patch size of 65×70 that occupies less than

a tenth of the frame. An example frame from each video with target image patch marked is

illustrated in Figure 3.2.

(a) A frame from “david indoor” with a res-
olution of 324×240 pixels.

(b) A frame from “01-Light video00001”
with a resolution of 1280×720 pixels.

Figure 3.2: Examples of video frame size to the target‘ boundary box size (marked by the
red rectangle).

One initial target boundary box is set for one specific video regardless of the tracking ap-

proach. The affine parameters are pixels in x-translation, pixels in y-translation, percentage

of image patch scaling, radians of angle rotation, aspect ratio in faction, and skewing in
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radians as discussed in section 2.1 and illustrated in Figure 2.2. The target image patch res-

olution, or the target image patch size, is transformed to be at width-by-height 32×32 pixels

when using the dynamic model to identify the next image patch, and the image patches are

also stored as such in the dictionary. The higher the resolution of the target image patch,

the more detailed and well-represented the image patch is, but also more computationally

expensive in the dynamic model. A resolution that is too low may not be detailed enough

for identifying good image patch particles. Though, a high resolution of the target image

patch may also hinder the ability in tracking, as it contains more details of the target that

may not be important in identifying a comparable image patch in the subsequent frames. A

slightly lower resolution target image patch is helpful in getting an idea of the appearance

without focusing too much on the fine details.

3.1 Quantitative Evaluation

There are a few common comparative methods in measuring tracking performances. These

methods are success plot and precision plot from using the one-pass evaluation (OPE) [23]

and center location error (CLE) [23]. The evaluations are applied to how the tracking handles

certain types of tracking challenges, e.g. occlusion and lighting change.

The precision metric of OPE measures the target boundary box location within a certain

threshold distance from the ground truth locations, with the threshold distance pre-set at

certain amount of pixels. The success metric of OPE measures the overlapping ratio between

the predicted bounding boxes and the ground truth. CLE measures the distance of the center

of the bounding box to that of the ground truth.

The OPE and CLE comparison methods are not utilized here, as they require defining the

ground truth image boundary box on every frame of the video, which is a long process, and
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also, defining the boundary of the target in a frame may be very subjective that varies from

one person to another.

One other measure of performance is the root mean square error (RMSE). RMSE measures

similarly to CLE, but instead of using the center of the target boundary box to calculate

the distance errors, it uses several feature defined on the target to calculate the distance

errors. It requires one or more define feature points in the target boundary box and the

error distances from those of the estimated image boundary box, then take the square root

of the average of the sum of the squared distances. Defining these feature points throughout

the video frames is much easier, e.g. the edge of the mouth or one corner of the vehicle. Let

di be the distance of the ith feature between the ground truth and those of the estimated

image patch with a total of n features, where i = 1, ..., n,

RMSE =

√∑n
i=1 d

2
i

n
. (3.1)

3.2 Illumination and Scaling

A video named “car4” is a 659-frame video from Ross et al. [18] that is recorded at about

30 fps with the total time length being about 22 seconds. It is selected to examine the

tracker’s ability to handle illumination change. The apparent target in the video is the rear

of a vehicle that goes through illumination changes in the shadow and in the sunlight. These

illumination changes are the most prevalent between frames 5 and 10, frames 184 and 187,

and frames 231 and 235. The vehicle also goes through a few significant scaling changes.

There are 3 ground true features identified for the target in this video.

The initial target boundary box is bounded by the pixel coordinates (247.4259, 82.5498),

(247.5498, 77.5741), (242.5741, 277.4502) and (242.4502, 282.4259) using MATLAB’s image

display convention, where the upper left corner of the image is the origin and x-axis increases
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from left to right and y-axis increases from top to bottom. The trackers are set to draw

particles with variances of 3 pixels for x-translation, 3 pixels for y-translation, 0.08% scaling,

0.01 radian for rotation, 0.2% for aspect ratio, and 0.001 radian for skew.

3.2.1 IVT

As proposed by Ross et al., IVT is examined with a forgetting factor of 0.95, which retains

most of the eigenbasis representation and forgets 0.05 of the previous eigenbasis representa-

tions. The dictionary updating frequency is every 5 frames. IVT is able to track the target

through illumination and scaling changes, but it struggles a little to track the target with

small errors, where at the RMSE increases as the tracking continues, as seen in Figure 3.3.

The sudden increase in the RMSE occurs past frame 230, seen in Figure 3.5c, when the

target illumination changed, and the tracking started to track a shifted appearance of the

target. By around frame 350, seen in Figure 3.5d, the shifted image appearances start to

dominate the dictionary and the target boundary box shifts even more off the target till the

last frame of the video. Though, despite the shifted target boundary box, the IVT responds

well to target scaling throughout the tracking.

During the IVT tracking using the “car4” video, almost every image patch is admitted by the

dictionary except for the ones that have eigenvalues lower than 10−6. This is the reason why

even an image patch that is less representative of the target appearance, one that has a low

non-normalized probability, is admitted into the dictionary. When those image patches that

are less representative of the target appearance are admitted into the dictionary, they corrupt

the target representations and influence IVT’s ability to track in the subsequent frames. This

apparent in Figure 3.4, where right before frame 200 when the image boundary box starts

to shift, the non-normalized probability of the image to the basis templates becomes really

low (low representation of the target appearance). This occurs again around frame 230 and
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frame 350 when the target boundary box shifting is worsened. These shifted image patches

are accepted into the dictionary and affecting what the dictionary templates represent, as

seen in Figure 3.5e.

Figure 3.3: The root-mean-square error (RMSE) of the IVT tracking of video “car4” based
on the proposal of Ross et al.

Figure 3.4: The base 10 logarithm of the probability of the chosen image patch to the basis
templates from the IVT tracking of video “car4” based on the proposal of Ross et al.
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(a) Frame one. (b) Lighting. (c) Shade and scaling. (d) Tracking shifts off.

(e) Dominated by the
shifted appearance.

(f) The last frame,
shifting persists.

Figure 3.5: The key video frames of the IVT tracking performance of video “car4” based on
the proposal of Ross et al. The video frame is shown with the target features to be tracked
as the ground truth (marked by the yellow crosses), the estimated target feature location
(marked by a red cross) and the image boundary box estimate (a red frame). The basis
mean is shown below the video frame on the left, while the currently selected image patch
is on the right. The dictionary is shown at the bottom, where each template is displayed.

3.2.2 LSST

The optimal solution of Equation 2.23 is computed with λ being 0.5. In this target tracking

video, choosing λ value at 0.5 provides adequate optimal solutions. Higher λ values tend to

require less iterations to solve the optimization problem, and since 0.5 works well with this

video and target, it is implied that any lower values, e.g. 0.1, would result in comparable or

better performance. And in alignment to the proposal from Wang et al. [30], the forgetting

factor is set to 1 where the existing templates retains all information admitted, and that the

dictionary updating frequency is every 5 frames.
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LSST is able to track the specified target when encountering target illumination variations

with successful results. It is able to grasp the “idea” of the target through the eigenbasis

templates, which allows highly probable identifications of the target regardless of illumination

and scaling.

A few key frames of the performance are shown in Figure 3.7, and the image patch boundary

stays very close to the specified target throughout the video and that it scales itself according

to the scaling of the specified target. It can also be seen that the estimated feature points

(indicated in red crosses) are very close to that of the ground truth (indicated in yellow

crosses), which results in very low RMSEs that stay below 12 pixels as seen in Figure 3.6.

Since LSST and IVT have the same dictionary update algorithm, the difference in perfor-

mance is entirely from the dynamic model that each utilizes to choose the most probable

image patch particle. In the dynamic model, LSST reinforces stronger eigenbasis template

representation by “repairing” the part of the chosen image patch that is noisy with that of

basis mean, where the dictionary is less likely to be corrupted by the noise. So even if the

chosen image patch has a low probability, it is repaired before being admitted into the dic-

tionary, thus, mitigating the issues that IVT presents. This repairing process is illustrated in

Figure 2.8. Consequently, LSST does not exhibit the boundary box shift after illumination

change and produces very low RMSE to the ground truth, as seen from the stronger target

features that the LSST templates have in Figure 3.7.
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Figure 3.6: The root-mean-square error (RMSE) of the LSS tracking of video “car4” based
on the proposal of Wang et al.

(a) Frame one. (b) Lighting. (c) Shade and scaling. (d) Lighting changes.

(e) Lighting changes. (f) Lighting changes. (g) The last frame.

Figure 3.7: The key video frames of the LSS tracking performance of video “car4” based on
the proposal of Wang et al. The video frame is shown with the target features to be tracked
as the ground truth (marked by the yellow crosses), the estimated target feature location
(marked by a red cross) and the image boundary box estimate (a red frame). The basis
mean is shown below the video frame on the left, while the currently selected image patch
is on the right. The dictionary is shown at the bottom, where each template is displayed.
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3.2.3 RVT

RVT is not able to track the specified target when encountering target illumination variations

following the proposal by Mei et al. [13]. The issue appears to be that RVT performance

is sensitive to illumination changes and that the dictionary update rule hinders template

updating. When the illumination changes, RVT chooses an image patch with the least

amount of error, but it biases towards the pre-illumination change appearance, which leads

RVT to identify an image patch with similar illumination intensity. This error is compounded

in the subsequent frames, so that when the target boundary box starts to shift off the target a

little bit, it continues the shifting as seen in Figure 3.9b and Figure 3.9c. This is partly due to

the dictionary template not being updated during the tracking, where the rule of admitting

a new image patch, which is the similarity between the new patch and the heaviest weighted

template is below 0.5. But as shown in Figure 3.10, none of the chosen image patches ever

has similarity below the value 0.7, as a result, the dictionary never gets updated.

Another reason for RVT’s failure to track appears to be that RVT does not truly grasp the

“idea” of the target using its dictionary templates. RVT choose the image patch particle just

as long as the illumination is similarly represented, which results in RVT failing to identify

the image patch of the specified target when encountering illumination changes.

A few key frames of the performance are shown in Figure 3.9, and the image patch boundary

initially stays consistent relative to the specified target throughout the video, but during

this period, it fails to scale according to the scaling of the specified target. And because the

dictionary update rule based on the similarity value “cosθ,” as described in section 2.3.4,

which hinders dictionary update during the tracking, and RVT only tries to identify an image

that has the highest numerical resemblance to those first dark frames. When the templates

are made up of bright target image patches and the target encounters a dark illumination

change, the scaling of the image patch grows large to capture more dark spots to numerically
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satisfy the tracking, which can be seen in Figure 3.9c. These issues are reflected on the RSME

illustrated in Figure 3.8, where the error increases during the tracking.

Figure 3.8: The root-mean-square error (RMSE) of the RVT tracking of video “car4” based
on the proposal of Mei et al.

(a) Frame one. (b) Patch slightly shifts
off the target.

(c) Patch lost track of
the target.

Figure 3.9: The key video frames of the RVT tracking performance of video “car4” based on
the proposal of Mei et al. The video frame is shown with the target features to be tracked
as the ground truth (marked by the yellow crosses), the estimated target feature location
(marked by a red cross) and the image boundary box estimate (a red frame). The chosen
image patch is shown below the video frame on the left, while the currently selected image
patch is on the right. The dictionary is shown at the beneath the image patches, where each
template is displayed. Below the dictionary is the weighting of each templates.
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Figure 3.10: The resulting similarity values (blue line) from RVT tracking video “car4” based
on the proposal of Mei et al. where the red dash line indicates the criterion of template update
(the value of similarity value τ). (An image patch is admitted if similarity value is less than
τ .)

3.3 Occlusion and Motion

A video named “01-Light video00001” from the ALOV++ is selected as an example video

to examine how well a tracking performs when presented with temporary target occlusions

and varying target motions. This video is composed of 356 frames with a human head as

the apparent target, which gets occluded between frames 93 and 97 and once more between

frames 133 and 141. There are also partial occlusions and bigger appearance changes, i.e.

head turns to the side where a face with all the facial features changes to some features

partially visible. The frames prior to the first occlusion allows the trackers to recognize and

learn the target appearances, and when the occlusions occur, the tracking performance is

examined on how well the trackers respond to the a shorter occlusion of 5 frames and a

longer occlusion of 9 frames. The video is recorded at around 30 fps, and the total time

length of the video is, therefore, around 12 seconds. Because of the small size of the target

boundary box relative to the frame size, there is one ground truth feature identified for the

target in this video.

The initial target boundary box is bounded by the pixel coordinates (1044.7074, 220.7961),

(1040.8358, 219.7226), (1035.2926, 259.2039) and (1039.1642, 260.2774) using MATLAB’s im-

age display convention where the upper left corner of the image is the origin and x-axis
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increases from left to right and y-axis increases from top to bottom. The trackers are set to

draw particles with variances of 15 pixels for x-translation, 15 pixels for y-translation, 0.08%

scaling, 0.01 radian for rotation, 0.2% for aspect ratio, and 0.001 radian for skew.

3.3.1 IVT

As proposed by Ross et al. [18], IVT is examined with a forgetting factor of 0.95, which

retains most of the basis representation and forgets 0.05 of the prior information retained.

The tracking performs really well before encountering the first occlusion, as shown in Fig-

ure 3.13b. Before the first occlusion, the target boundary box is able to scale, rotate and

track the target as target appearance scales, rotates and moves around in the frame. The

RMSE in Figure 3.11 shows that before the first occlusion, the RMSE value remains below

20. Once past the first occlusion, though IVT tracking boundary box stays in the vicin-

ity of the target, it is unable to identify the target and starts to wander off, as shown in

Figure 3.13c. After which, the chosen image patch resembles less and less like the linear

combination of the dictionary basis templates as shown in Figure 3.12. Therefore, the cho-

sen image patch shrinks to gain higher probabilistic values, i.e. the average numerical value

of the basis templates. The longer the chosen image patch shrinks, the stronger the effect

of these near single-color image patches is in the dictionary. This effect can be seen in the

dictionary eigenbasis templates of Figure 3.13d, where the templates resemble little of the

target appearance, i.e. the features of the target is much softened, and is dominated by the

single color appearance.

It can be seen in Figure 3.12 that when the occlusion occurs, the non-normalized probability

of the chosen image patch drops steeply around frame 97, which indicate the stark dissimi-

larity in the image patch. But despite the high dissimilarity of the image patch, this image

patch is still admitted by the dictionary and start affecting the basis templates as shown in
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Figure 3.13c and Figure 3.13d.

Figure 3.11: The root-mean-square error (RMSE) of the IVT tracking of video “01-
Light video00001”.

Figure 3.12: The base 10 logorithm of the non-normalized probability in the IVT tracking
of video “01-Light video00001”.

(a) Frame one. (b) Before the first oc-
clusion.

(c) After the first occlu-
sion.

(d) Patch unable to re-
cover and shrinks.

Figure 3.13: The key video frames of the IVT tracking performance of video “01-
Light video00001” based on the proposal of Ross et al. The video frame is shown with
the target feature to be tracked (marked by a yellow cross), the estimated target feature
location (marked by a red cross) and the image patch (a red frame). The basis mean is
shown below the video frame on the left, while the currently selected image patch is on the
right. At the bottom is the dictionary, where each template is displayed.
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To demonstrate that different tracking approaches may require different settings due to

different behaviors, even if tracking using the same video and target, a much more successful

tracking performance is presented here. This is done with reduced affine parameter variances

of 9 pixels for x-translation, 9 pixels for y-translation, 0.01% scaling, 0.01 radian for rotation,

0.2% for aspect ratio, and 0.001 radian for skew. This set of variances produces similar

tracking performance as prior to the variance reduction, where IVT fails to recover from an

occlusion in Figure 3.16b. The RMSE also indicates that the IVT lost track of the target

before frame 100 in Figure 3.14. A difference with this set of reduced variances is that the

target boundary box does not collapse into a smaller area, instead, it stays roughly the

same size after losing track of the target, as seen in Figure 3.16c. In Figure 3.15, the non-

normalized probability provides an indication where the occlusion occurs with a steep drop,

which can be utilized as a measure to detect occluded or noisy image patches.

Figure 3.14: The root-mean-square error (RMSE) of the IVT tracking of video “01-
Light video00001” with modified affine parameter variances.

Figure 3.15: The base 10 logorithm of the non-normalized probability in the IVT tracking
of video “01-Light video00001” with modified affine parameter variances.
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(a) Before the first oc-
clusion.

(b) After the first oc-
clusion.

(c) Patch unable to re-
cover and but does not
shrink.

Figure 3.16: The key video frames of the IVT tracking performance of video “01-
Light video00001” with modified affine parameter variances. The video frame is shown with
the target feature to be tracked (marked by a yellow cross), the estimated target feature
location (marked by a red cross) and the image patch (a red frame). The basis mean is
shown below the video frame on the left, while the currently selected image patch is on the
right. At the bottom is the dictionary, where each template is displayed.

3.3.2 LSST

The optimal solution of Equation 2.23 is computed with λ being 0.1. A higher value of

λ allows for less iterations and faster results, but it may not produce adequately optimal

solutions. In this target tracking video, choosing λ value at 0.1 provides adequate optimal

solutions. To align with the proposal from Wang et al. [30], the forgetting factor is set to 1

where the existing templates retains everything, and the dictionary updates every 5 frames.

LSST fails to track a target that goes through significant appearance changes throughout the

video, i.e. the full face visible shifting to only one side of the face visible, despite the continual

updating of the dictionary. This is a consequence of LSST’s inability to differentiate good

and bad image patches as the eigenbasis templates try to represent the current and the past

image patches. And by accepting almost all image patches into the dictionary, the dictionary

fails to preserve a good current target appearance. Once the tracking loses the target, for the

image patches to achieve higher probability, the target boundary box tends to become smaller
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to capture more single-colored image patches. This phenomenon is analogous to producing

an “average” of the eigenbasis templates that produce less errors than capturing a larger

region. The size decrease in the target boundary box is significant and abrupt, and once the

image patch size decreases too much, the target tracking is unrecoverable and the boundary

box will only continue to stay small. The target boundary box shrinking phenomenon is

illustrated in Figure 3.18b and Figure 3.18c. This inability for LSST to track the target with

significant appearance variations also affects the RMSE, as shown in Figure 3.17, where the

error continues to increase during the tracking.

As illustrated in Figure 3.19, the LSST non-normalized probabilities from the chosen image

patches are not good indications of whether or not they are similarity to the dictionary

templates. This is different from the case in IVT. The minimized distance in Figure 3.20

also does not signal similarity between the chosen image patch to the dictionary templates.

This is due to LSST losing track of the target so early in the tracking that the dictionary is

corrupted early on.

Figure 3.17: The root-mean-square error (RMSE) of the LSST tracking of video “01-
Light video00001”.
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(a) Frame one. (b) Patch shrinking. (c) Patch unable to re-
cover.

Figure 3.18: The key video frames of the LSST performance of video “01-Light video00001”
based on the proposal of Wang et al. The video frame is shown with the target feature to be
tracked (marked by a yellow cross), the estimated target feature location (marked by a red
cross) and the image patch (a red frame). The basis mean is shown below the video frame
on the left, while the currently selected image patch is on the right. At the bottom is the
dictionary, where each template is displayed.

Figure 3.19: The probability of the chosen image patch from the LSST tracking of video
“01-Light video00001”.

Figure 3.20: The minimized distance of the chosen image patch from the LSST tracking of
video “01-Light video00001”.

To demonstrate that LSST has the potential to deal with occlusions and that different

tracking approaches may behave differently, which may require different variances even with

the same video and target, the affine parameter variances are reduced to 9 pixels for x-

translation, 9 pixels for y-translation, 0.01% scaling, 0.01 radian for rotation, 0.2% for aspect
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ratio, and 0.001 radian for skew. A rule to reject image patches that are too dissimilar to

the dictionary is introduced so that dissimilar image patches do not get admitted by the

dictionary. The similarity is defined by the minimized distance dLSS, and if image patches

that have resulting dLSS great than 3, then they do not get admitted by the dictionary.

This modification in variances allows LSST to track the target closely and recover after

occlusions. The RMSE has mostly remains well under 50 pixels, except for the occurrences

of the occlusions. The frames illustrating the occlusions are shown Figure 3.22, where the

tracking recovers after the occlusions. But partly due to the tracking feature changing after

the first occlusion in Figure 3.22b, the target features represented in the eigenbasis templates

start to be blurry. And by the end of the tracking, shown in Figure 3.22e, the size of target

boundary box is shrunken.

Since in this setting, LSST is able to track the target closely and mainly without the target

boundary box shrinking, both the non-normalized probability in Figure 3.23 and the min-

imized distance in Figure 3.24 indicate where occlusions occur. The non-normalized prob-

ability drastically drops when occlusion occur, while the minimized distance clearly spikes

up significantly. Either of these values can be used as measures of occlusion occurrence or

significant noise detection in the chosen image patches.

Figure 3.21: The root-mean-square error (RMSE) of the LSST tracking of video “01-
Light video00001” with modified affine parameter variances.
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(a) Before the first oc-
clusion.

(b) After the first oc-
clusion, tracking a dif-
ferent feature.

(c) Before the second
occlusion.

(d) After the second oc-
clusion.

(e) Last frame, patch
shrunken.

Figure 3.22: The key video frames of the LSST performance of video “01-Light video00001”
with modified affine parameter variances. The video frame is shown with the target feature
to be tracked (marked by a yellow cross), the estimated target feature location (marked by
a red cross) and the image patch (a red frame). The basis mean is shown below the video
frame on the left, while the currently selected image patch is on the right. At the bottom is
the dictionary, where each template is displayed.

Figure 3.23: The probability of the chosen image patch from the LSST tracking of video
“01-Light video00001” with modified affine parameter variances.
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Figure 3.24: The minimized distance of the chosen image patch from the LSST tracking of
video “01-Light video00001” with modified affine parameter variances.

3.3.3 RVT

While RVT can track a target with large appearance changes much better than IVT and

LSST, it is unable to recover tracking the target from occlusions with the method proposed

by Mei et al. [13], which solves the optimization problem with λ in Equation 2.30 being

0.5. This is seen in Figure 3.26b and Figure 3.26c, where RVT tracks the target very closely

before the occlusion, but unable to recover the target after occlusion occurs. And eventually,

the image patch shrinks into a dot, as seen in Figure 3.26d, where the chosen image patches

can achieve higher probability. This inability to recover from an occlusion may be due to

the dictionary not being updated, as shown in Figure 3.26. If the dictionary does not reflect

the recent target appearance, RVT cannot identify the image patch with a good target

resemblance. Another cause is that RVT identifies the current image patch by referencing

to the previous image patch, so that if the previous image patch is corrupted by noises, the

current image patch identification is compromised, which can be seen in Figure 3.26c.

The dictionary updating rule is discussed in section 2.3.4, and the similarity value cos(θ)

suggested by Mei et al. is 0.5. With this similarity value, none of the image patches are

dissimilar enough to the heaviest weighted template to replace the lowest weighted template.

This is illustrated in Figure 3.27, where all the image patches are compared to the heaviest

weighted template and none of them is admitted by the dictionary.
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The RMSE increases starting from the first occlusion at frame 94, and after which, the

tracking is unable to recover the target. This is shown in RSME, where it suddenly spikes

up in Figure 3.25.

Figure 3.25: The root-mean-square error (RMSE) of the RVT tracking of video “01-
Light video00001”.

(a) Frame one. (b) Before an occlu-
sion.

(c) After an occlusion. (d) Shrunken image
patch.

Figure 3.26: The key video frames of the RVT tracking performance of video “01-
Light video00001” based on the proposal of Mei et al. The video frame is shown with the
target feature to be tracked (marked by a yellow cross), the estimated target feature location
(marked by a red cross) and the image patch (a red frame). The reference image patch is
shown below the video frame on the left, while the currently selected image patch is on the
right. Below the image patches are the dictionary templates and beneath the templates is
the weighting of each templates.
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Figure 3.27: The RVT similarity value based on the proposal of Mei et al. of video “01-
Light video00001” for each image patch compared with the heaviest weighted dictionary
template at the time, where if the similarity is less then 0.5, the image patch will replace
the lowest weighted template and be assigned with medium weight.

3.4 Suggested Modifications Based on the Performance

3.4.1 IVT

As discussed by Wang et al. [30] and confirmed by the results presented in the previous

sections, the IVT approach demonstrates the ability to handle target appearance changes

in illumination, angles and scaling, but it struggles to track when occlusions or when back-

ground clutters occur.

The IVT results in section 3.2.1 and 3.3.1 suggest that the IVT dictionary has to be more

selective in admitting the chosen image patches. Slight modifications are introduced, while

still retain the IVT structure proposed by Ross et al. [18]. A rule is introduced to reject the

image patches with low non-normalized probabilities. From studying the probability and

failure event occurrences in Figure 3.4 and Figure 3.12 that, with 16 basis templates in the

dictionary, a chosen image should not be admitted into the dictionary if the non-normalized

probability is below 10−50. The affine parameter variances are chosen to be 9 pixels for

x-translation, 9 pixels for y-translation, 0.01% scaling, 0.01 radian for rotation, 0.2% for

aspect ratio, and 0.001 radian for skew.

These modifications allow IVT to track the target much more closely after illumination
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changes, but they are not sufficient to allow IVT to recover from an occlusion. In the case of

tracking the target in video “car4” with these modifications, the target boundary box is less

prone to shifting off of target as illustrated in Figure 3.28, where Figure 3.28b shows target

boundary box not wandering off after illumination changes and able to respond to target

scaling. But shifting off target does eventually occur in Figure 3.28c. In the case of tracking

the target in video “01-Light video00001,” Figure 3.29 shows that IVT is unable to recover

from an occlusion.

(a) (b) Tracking target
closely.

(c) Box shifts off tar-
get.

(d) Last frame, shifting
worsens.

Figure 3.28: The key video frames of the modified IVT tracking performance of video “car4.”
The video frame is shown with the target feature to be tracked (marked by a yellow cross),
the estimated target feature location (marked by a red cross) and the image patch (a red
frame). The reference image patch is shown below the video frame on the left, while the
currently selected image patch is on the right. Below the image patches are the dictionary
templates and beneath the templates is the weighting of each templates.

72



(a) Frame one. (b) Before an occlu-
sion.

(c) After an occlusion. (d) A later frame.

Figure 3.29: The key video frames of the modified IVT tracking performance of video “01-
Light video00001.” The video frame is shown with the target feature to be tracked (marked
by a yellow cross), the estimated target feature location (marked by a red cross) and the
image patch (a red frame). The reference image patch is shown below the video frame on
the left, while the currently selected image patch is on the right. Below the image patches
are the dictionary templates and beneath the templates is the weighting of each templates.

3.4.2 LSST

The ability of LSST to track targets that go through illumination changes is demonstrated

in section 3.2.2. From the results in section 3.3.2, LSST struggles to track targets that go

through appearance changes. As discussed, one of the reasons is that the dictionary is not

representative enough to the more current target appearances. To retain the LSST structure

proposed by Mei et al. [13] but still introduce modifications to mitigate the tracking issues,

the variances are set at 9 pixels for x-translation, 9 pixels for y-translation, 0.01% scaling,

0.01 radian for rotation, 0.2% for aspect ratio, and 0.001 radian for skew. The results in

section 3.3.2 also indicate that the dictionary has to be kept representative to the target

appearance. Therefore, in promotion of updating with more target appearance-represented

image patches, a rule is introduced to reject any image patches with less than the minimized

distance of 3. This image patch rejection rule is similar to the modification described in

section 3.4.1.

These modifications provide slight noticeable improvements to LSST’s ability to track a
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target with relative large appearance changes and occlusions, though RMSE does not appear

to have significant changes shown in Figure 3.30. As seen in Figure 3.31, noisy image patches

from occlusions are rejected by the dictionary. The target is recovered after the first occlusion

in Figure 3.32b, but prior to the second occlusion, the target feature being tracked changes,

as seen in Figure 3.32c. The issue with shrinking of the target boundary box is slightly

improved in Figure 3.32e.

Figure 3.30: The root-mean-square error (RMSE) of the modified LSST tracking of video
“01-Light video00001.”

Figure 3.31: The minimized distance of the chosen image patch from the modified LSST
tracking of video “01-Light video00001.”
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(a) Before the first oc-
clusion.

(b) After the first oc-
clusion, tracking a dif-
ferent feature.

(c) Before the second
occlusion.

(d) After the second oc-
clusion.

(e) Last frame, patch
shrunken.

Figure 3.32: The key video frames of the modified LSST performance of video “01-
Light video00001.” The video frame is shown with the target feature to be tracked (marked
by a yellow cross), the estimated target feature location (marked by a red cross) and the
image patch (a red frame). The basis mean is shown below the video frame on the left, while
the currently selected image patch is on the right. At the bottom is the dictionary, where
each template is displayed.

3.4.3 RVT

RVT performs well when there is no occlusion present, as it references to the last image

patch and the dictionary templates for selecting the current patch. These two items are

important factors for selecting the right image patch and for recovery from target boundary

box wandering. It is apparent in Figure 3.26 that the dictionary has not been updated

throughout the tracking, which means the dictionary is not representative of the recent target

appearance and this hinders RVT’s ability to recover from occlusions. And in addition, once

an occlusion occurs, RVT references to the prior image patch that might be noisy, which
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further hinders its ability to choose the best target appearance estimate.

Template updating in step 6 of the template update algorithm in Figure 2.9 can be easily

improved by implementing a similarity value that is reflective of image patch similarity,

such as the value of 0.95. This encourages the templates to be more representative of the

current appearance. This value of high similarity is set with the assumption that the video

is captured fast enough, e.g. 30 fps, so that each consecutive frame is similar to the frame

preceding it with only subtle variations. Note this value could change if the recorded frame

rate is not as high, in which case, the consecutive frame is less similar to the preceding frame.

In addition, to ensure the dictionary only admits templates of the good target appearances, a

second rule can introduced to not admit any image patch when the dissimilarity is too high.

As shown in Figure 3.33a, when occlusion occurs between frames 93 and 97, the minimized

objective function Equation 2.30 yields a much higher value due to the high dissimilarity,

and the rule introduced can reference this as a measure of how dissimilar the image patch

is to the dictionary. The similarity value is modified to be set at 4.5. This new rejection

rule is comparatively less effective if it were to be referencing the probability values from

Equation 2.33, as shown in Figure 3.33b, where the non-normalized probability being less

indicative of the occlusions.

(a) The minimized objective function value
of the chosen image patch.

(b) The non-normalized probability of the
chosen image patch with the templates.

Figure 3.33: A comparison of RVT measures in an image patch’s similarity to the templates
of video “01-Light video00001” based on the proposal of Mei et al.

The image patch shrinking phenomenon occurs when there is high dissimilarity in the image

patch to the dictionary templates, as illustrated in Figure 3.26d. The shrinkage is due to

76



RVT’s failure to identify an image patch particle that has high enough similarity to the

prior images. In an effort to selecting image patches that are more representative of the

target appearance when occlusions occur, a new reference method can be introduced so

that image patches corrupted by the occlusions is not referenced for selection of the next

image patch. The heaviest weighted template is assumed to have the highest similarity to

the most recent target appearance and can be referenced when occlusions occur instead of

referencing an image patch corrupted by occlusions. But by doing so, the highest weighted

template should also be the newest admitted template, therefore, step 9 of the template

update algorithm in Figure 2.9 has to be revised so that the newest admitted template is

weighted at the maximum weight, and step 12 has to be revised to normalize the weights

to between 0 and 0.3. The rule of switching from using the prior image patch as a reference

to using the heaviest weighted template is if the minimized objective function from solving

Equation 2.30 is larger or equal to 5 so that the image patch is dissimilarly enough to signal

that an occlusion or a noisy image patch is detected.

With these modifications, as shown in Figure 3.36, RVT’s ability to recover after a temporary

occlusion is much improved, and its dictionary templates are much more representative of the

target appearance of the moment. Hence, the modifications also improve the RMSE as shown

in Figure 3.35. Notice that Figure 3.36d shows that the prior image patch identified is so

dissimilar to the dictionary that the heaviest weighted image patch template is referenced to

identify the current image patch instead. The frequency of updating the dictionary template

can be seen in Figure 3.34b, where when values are below 0.95 and when the minimized

objective function does not yield more than 4.5, a new image patch template is admitted.

The minimized objective function shown in Figure 3.34a, where the two large peaks are due

to the two occlusions in the videos, and because the peaks are higher than 4.5, occlusion

corrupted templates being admitted into the dictionary are largely mitigated.

These modifications are not enough to allow RVT to track a target with illumination vari-
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ations or target with background clustering, as seen in Figure 3.37 with video “car4.” This

result compared to that of section 3.2.3 in Figure 3.9 is mildly improved, where the target

boundary box size does not immediately change greatly when the illumination changes. But

once the tracking loses the target, it is unable to recover the target, unlike the result seen in

the case of occlusions.

(a) The similarity values of each image
patch.

(b) The minimized objective function values
of each image patch.

Figure 3.34: The similarity values and minimized objective function values of video “01-
Light video00001” from running modified RVT.

Figure 3.35: The modified RVT root-mean-square error (RMSE) of video “01-
Light video00001.”
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(a) Frame one, dictio-
nary populated.

(b) Dictionary updat-
ing while tracking.

(c) Right before the
first occlusion.

(d) Right after the first
occlusion.

(e) Right before the
second occlusion.

(f) Right after the sec-
ond occlusion.

(g) Identified another
feature on the target to
track.

Figure 3.36: The key video frames of the modified RVT tracking performance of video “01-
Light video00001”. The video frame is shown with the target feature to be tracked (marked
by a yellow cross), the estimated target feature location (marked by a red cross) and the
image patch (a red frame). The reference image patch is shown below the video frame on
the left, while the currently selected image patch is on the right. Below the image patches
are the dictionary templates and beneath the templates is the weighting of each templates.
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(a) Frame one, dictio-
nary populated.

(b) Target being
tracked under similar
illumination.

(c) Illumination change
causes tracking to lose
the target.

Figure 3.37: The key video frames of the modified RVT tracking performance of video “car4”.
The video frame is shown with the target feature to be tracked (marked by a yellow cross),
the estimated target feature location (marked by a red cross) and the image patch (a red
frame). The reference image patch is shown below the video frame on the left, while the
currently selected image patch is on the right. Below the image patches are the dictionary
templates and beneath the templates is the weighting of each templates.

3.4.4 Additional Remarks

It is observed that the tracking approaches IVT, LSST and RVT are sensitive to the initial

target boundary box defined. If the initial target boundary is defined slightly differently,

though, it is clear what target is being tracked to nominal human recognition, it could result

in a large mathematical variation in computation. And this happens if there is no pre-

existing concept of the target object and tracker is unable to differentiation of the target

and the background.

These approaches also have limited ability in tracking an target that continues to rotate, i.e.

a target assumed at position 0◦ in frame 1 to 30◦ in frame 150, even if target rotates slowly

with a large enough rotation variance and high enough number of particles drawn, the target

boundary box is limited in following the rotation. A component may need to be introduced

to address this issue.
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Chapter 4

Proposed Modifications In the

Tracking Components

In close examination of the performances of IVT, LSST and RVT, it is apparent that within

their general tracking algorithm structure, dictionary management and the method of choos-

ing the most likely image patch to update the dictionary are vital to robust tracking. The

results from LSST and RVT are particularly noteworthy in this regard.

LSST demonstrates exceptional performance when illumination and scaling changes occur,

as long as the target features do not vary much. This is due using eigenbasis templates to

grasp an “idea” of the target being tracked regardless of the illumination. Therefore, keeping

templates representative of the target is vital and a template rejecting mechanism needs be

introduced to keep out image patches that are not representative or are not close to the

linear combination of the dictionary templates. The disadvantages of LSST are that it has

limited ability to track a target with large appearance changes and appears to struggle with

occlusions as seen in section 3.3.2 and 3.4.2.

Based on the results in section 3.2.3 and 3.3.3, and the remarks in section 3.4.3, RVT
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has a good potential to track targets with high variations in appearance and cope with

temporary occlusions, which are all very dependent on the dictionary and dictionary template

weights being well-managed. However, RVT struggles to track targets with high illumination

variations.

These traits in LSST and RVT appear to be complimentary to each other, where RVT excels

at is where LSST struggles in performance and vice versa. These observations inspired

the proposal of implementation of weighted particles procedure and keeping two types of

dictionaries, where one dictionary keeps eigenbasis templates to provide the tracker the

“idea” of the target and the other keeps track of image patches as the templates to allow

the tracker to work with large target appearance variations. Keeping two sets of dictionaries

is also proposed by Mei et al. [13] on a different ground, where one dictionary keeps the

image patches admitted and the other one has pre-collected images of the tracking target

for more accurate target identifications. But in order to ensure that the tracking is executed

without any prior knowledge of the specific target, there is no pre-collected target images in

the dictionary in this proposal.

The MATLAB code of the proposed modifications can be found in Appendix C section C.2.

The main structure of the routine is based on the code from Ross et al. [19], where the main

routine is in subsection C.2.1 and the subroutines that are either modified or added can be

found in section C.2.

4.1 Tracking Routine Structure

The general tracking routine structure of this proposal is aligned with the structure described

in section 2.4 and in Table 2.1, but the main components are based on LSST. As in LSST,

the observation model and the dynamic model remains the same as described in section 2.2
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and an eigenbasis template dictionary is referenced for identifying the current target image

patch. This proposed routine implements the template rejection rule introduced in the

modified LSST in section 3.3.2 with the allowable dLSS being less or equal to 2.8 and a

second set of dictionary that contains the last few admitted image patches in the dictionary.

There are 16 eigenbasis dictionary templates and 8 image patch dictionary templates. The

criterion for being admitted into the dictionaries is that the image patch must have the

distance dLSS in Equation 2.23 be less than 2.8. This rule is due to the smaller distance dLSS

is, the more similar the chosen image patch is to the eigenbasis template dictionary.

4.2 Image Patch Template Dictionary

As discussed in section 3.3.2 and 3.4.2, when an occlusion occurs or when handling relative

fast changing target appearance, LSST has limited ability to recover. When a chosen image

patch has a large distance dLSS with respect to the eigenbasis templates, the probability

calculation to reference the last image patch is triggered. The last image patches is assumed

to represent a recent target appearance and have stronger features than a linear combination

of all eigenbasis templates, therefore, it is a stronger reference to identify the target image

patch. The distance dLSS value trigger is set at higher than 2.8, presumably, an occlusion

or a big target appearance change has been detected, then the mean µ and the eigenbasis

dictionary U in Equation 2.23 at time t is replaced with the newest admitted template aUIP
k

where k is the newest template and referencing the image patch dictionary UIP .

4.3 Particle Weights

Another component introduced to the tracking is image patch particle weights based on

the area change of the target boundary box. This is introduced to try to mitigate the box
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shrinking issue seen in section 3.3.2 and 3.3.2. The particle weights are multiplied with their

respective particle probabilities of Equation 2.25, resulting in a weighted probability for the

qth particle

p (yq|xq) = exp (−γdLSS (yq; U,µ)) · wqar, (4.1)

where y is the image patch particle, µ is the basis mean, x is the affine parameters of the

image patch particle y, γ is a constant between 0 and 1 controlling the shape of the Gaussian

kernel, dLSS is calculated using Equation 2.23 referencing the eigenbasis dictionary U, and

war is the particle weight based on the area change ratio from the previously chosen image

patch affine parameters. Note that when the image patch dictionary is used, yt−1 is used in

place of µ and that the image patch dictionary UIP is used instead,

p (yq|xq) = exp
(
−γdLSS

(
yq; UIP , a

UIP
k

))
· wqar. (4.2)

The image boundary box area change ratio war at time t for the qth particle is defined as

wqar =
1

1 +
∣∣∣at−1

a
(q)
t

− 1
∣∣∣ , (4.3)

where at−1 is the area of target boundary box of the previous estimation at time t − 1 and

a
(q)
t is the area of the qth particle boundary box at time t. A computation of the target

boundary box is detailed in Appendix F.

4.4 Evaluation

Based on the result in section 3.4.2, it is clear that LSST performance improves with the

rejection of image patches that are not representative of the dictionary. The performance of

implementations of the template rejection and particle weights in LSST is firstly examined
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for the tracker’s ability to mitigate target boundary box shrinking, then the performance of

the complete implementation with the image patch dictionary is examined.

The examination for LSST is with the video “01-Light video00001,” since any improve-

ment will be much more stark than using video “car4” as LSST has a good overall per-

formance with “car4.” The initial target boundary box is bounded by pixel coordinates

(1044.7074, 220.7961), (1040.8358, 219.7226), (1035.2926, 259.2039) and (1039.1642, 260.2774)

using MATLAB’s image display convention where the upper left corner of the image is

the origin and x-axis increases from left to right and y-axis increases from top to bottom.

The trackers are set to draw 800 particles with affine parameter variances of 9 pixels for

x-translation, 9 pixels for y-translation, 0.01% scaling, 0.01 radian for rotation, 0.2% for

aspect ratio, and 0.001 radian for skew. The LSS optimization Equation 2.23 is solved with

λ being 0.1.

4.4.1 Template Rejection And Particle Weights

The shrinkage of target boundary box does slightly improve with particle weights in com-

parison to LSST with only template rejections in section 3.4.2, but the improvement is not

very noticeable. In fact, when comparing with the resulting RMSE in Figure 4.1, the prob-

ability of each chosen image to the existing dictionary in Figure 4.2 and the distance dLSS

in Figure 4.3, the two versions of LSST appear to be almost identical. A frame-to-frame

comparison in Figure 4.4 also appears to be near identical.

Although the change is not very apparent, the particle weights ensure the images with less

change in target boundary box area to be more likely to be chosen, thus, increases the chance

of identifying the target again if lost tracking of the target.
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Figure 4.1: The root-mean-square error (RMSE) of the LSST with template rejection and
weighted particles tracking of video “01-Light video00001”.

Figure 4.2: The probability of the chosen image patch from the LSST with template rejection
and weighted particles tracking of video “01-Light video00001”.

Figure 4.3: The minimized distance of the chosen image patch from the LSST with template
rejection and weighted particles tracking of video “01-Light video00001”.

86



(a) Before the first oc-
clusion.

(b) After the first oc-
clusion, tracking recov-
ers.

(c) Before the second
occlusion.

(d) After the second oc-
clusion, tracking recov-
ers.

(e) Some frames
later, patch slightly
shrunken.

(f) Last frame, patch
slightly shrunken.

Figure 4.4: The key video frames of the modified LSST performance of video “01-
Light video00001” with template rejection and weighted particles. The video frame is shown
with the target feature to be tracked (marked by a yellow cross), the estimated target fea-
ture location (marked by a red cross) and the image patch (a red frame). The basis mean is
shown below the video frame on the left, while the currently selected image patch is on the
right. At the bottom is the dictionary, where each template is displayed.

4.4.2 All Components Implemented

The result is slightly worse using the image patch dictionary in the case when noise is

detected in comparison to LSST performance with only template rejections as discussed in

section 3.4.2. This appears to be attributed to the occasional unrepresented templates to be

admitted by the dictionaries.

The resulting RMSE in Figure 4.5 is low, but noticeably worse than LSST only implemented

with template rejections. The probability of each chosen image patch to the dictionary shown
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in Figure 4.6 and the distance dLSS shown in Figure 4.7 also result in less clear divide of

noisy image patches and good image patches. In fact, the last frame of the video shown in

Figure 4.8f is actually slightly smaller in comparison.

Figure 4.5: The root-mean-square error (RMSE) of the LSST with template rejection and
weighted particles tracking of video “01-Light video00001”.

Figure 4.6: The probability of the chosen image patch from the LSST with template rejection
and weighted particles tracking of video “01-Light video00001”.

Figure 4.7: The minimized distance of the chosen image patch from the LSST with template
rejection and weighted particles tracking of video “01-Light video00001”.
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(a) Before the first oc-
clusion.

(b) After the first oc-
clusion, tracking recov-
ers.

(c) Before the second
occlusion.

(d) After the second oc-
clusion, tracking recov-
ers.

(e) Some frames
later, patch slightly
shrunken.

(f) Last frame, patch
slightly shrunken.

Figure 4.8: The key video frames of the proposed modified LSST performance of video “01-
Light video00001” with template rejection, weighted particles and two dictionaries. The
video frame is shown with the target feature to be tracked (marked by a yellow cross), the
estimated target feature location (marked by a red cross) and the image patch (a red frame).
The basis mean is shown below the video frame on the left, while the currently selected image
patch is on the right. At the bottom is the dictionary, where each template is displayed.

4.4.3 Performance Remarks

The proposal of the components to be implemented in LSST does not yield expected im-

provement and is slightly worse in some cases. It becomes apparent that maintaining good

dictionary references is important, but it is also clear that the definition of “good” image

patch with any numerical indication available is difficult. The available numerical indications

tend not to have one distinct value that divides the “good” image paches and the “bad.”
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For instance, using the distance dLSS being higher than 2.8 as a metric of noisy and good

image patches is not always a good approach, as seen in Figure 4.7, where many good image

patches result in the distance dLSS higher than the value 2.8. And if a lower value, such as

dLSS > 1 is set as a measure of defining noisy image patches, it would eliminate too many

good image patches that are representative of the target appearance. This issue also applies

to the probability of each image patch to the existing dictionary, as seen in Figure 4.6. One

could implement an average value of change instead, but similar issue persists.

The result of the proposal confirms the limitation of tracking using LSST and similar meth-

ods, such as IVT and RVT, and these methods may require additional components that

differentiate image patches in different types of computation formulation to provide new

measures defining noisy image patches.
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Chapter 5

Future Work

Based on the results discussed in chapter 3 and chapter 4, the following elements could be

explored to address the limitations or improve the performance in IVT, LSST and RVT.

5.1 Dynamic Affine Parameter Variances

The results presented in chapter 3 are executed with a set of static affine parameter variances.

This means that the variances do not change throughout tracking, even if the target starts

to speed up its motion.

A version of dynamic affine parameter variances is proposed by Mei et al. [13] in the RVT,

where the past five calculated velocities are averaged to estimate new variances for the x

and y translations. With updated x and y variances based on the velocity, the search area is

more likely to cover the likely search region. The idea for the dynamic variances is the same,

but instead of only applying to the variances for x and y translations, it could be applied to

all affine parameters, e.g. rotation, scaling, aspect ratio and skew.
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If the variances were to change, the number of particles drawn should also be adjusted for

frame according to the variances, e.g. based the largest variance change, and perhaps with

considerations of the resolution of the video frame and the size of the target boundary box.

For instance, if the variances for x and y translations increase, the search area also increases,

and therefore, the number of particles would have to increase to capture more image patches

in a bigger search area.

The number of velocities to average for the dynamic variances should also consider the frame

rate of the video. For instance, in comparison to 30 fps, a 15-fps video would presumably

have larger change in target motion velocities and would probably be higher, therefore, the

number of velocities to average would be lower than that of a 30-fps video.

5.2 Introduction of A Pre-Trained Tracking Compo-

nent

Some of the limitations of IVT, LSST and RVT discussed in chapter 3 and especially in sec-

tion 3.4.4, such as the inablility to differentiate the target object from the background, their

limited ability to rotate with the target and the tracking performance being sensitive to the

initial target boundary box or the affine parameters, are due to the inability to differentiate

one object from the another. A tracking approach with some form of object recognition

would mitigate finding a numerically similar image patch without it being representative of

the target object.

For instance, a well-trained convolutional neural network (CNN) component could be in-

troduced into the tracking algorithm structure, as CNNs have demonstrated a near-human

ability in recognizing objects. Though a CNN requires careful efforts in structure tuning and

selecting training data sets as discussed in section 1.1.1. The pre-trained CNN component
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could be implemented such that after the image patch particles are drawn, they are fed into

the CNN to evaluate if the target is in the frame and perhaps how much of the target is

in the frame. This allows an extra step of particle selection where particles without the

target object or with less of the target object are eliminated before evaluating for the affine

parameters. With this elimination, the values in the rules to reject less target-represented

chosen image patches being introduced into the dictionary could be further refined.

An implementation of a pre-trained CNN could also improve the tracker’s ability to handle

illuminations and occlusions. As the number of layers in a CNN increases, CNN’s abilitiy to

differentiate of the target and the non-target objects improves, regardless of the illuminations

and occlusion on the target object.

5.3 RGB Video Frames

As mentioned in section 2.1, gray-scale image retains much less information than a red-

green-blue (RGB) image. Since IVT, LSST and RVT in their current state can only evaluate

gray-scale videos, some of the information may have been lost. For instance, a bright yellow

target with a light green background converted into gray-scale becomes similar shades of

gray, and this could lead to target boundary box shifting or target misidentification. An few

extra steps of calculations could be introduced to allow the evaluation of an RGB image to

strengthen some of the target features, which may improve the tracking performance.
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Appendix A

Proofs of Lemmas

Both proofs are as presented by Ross et al. [18].

A.1 Proof of Lemma 1

Lemma 1 addressed in section 2.1.1: The SKL Algorithm has the following proof:

By definition,

ĪC = n
n+m

ĪA + m
n+m

ĪB

ĪA − ĪC = m
n+m

(̄
IA − ĪB

)
ĪB − ĪC = n

n+m

(̄
IB − ĪA

)
And
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SC =
n∑
i=1

(
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A.2 Proof of Lemma 2

Lemma 2 addressed in section 2.1.1: The Forgetting Factor has the following proof:

When a forgetting factor of f is used, the incremental PCA algorithm in Figure 2.4 com-

putes the left-singular vectors U′ and singular values Σ′ of the matrix [fUΣ B̂]. This

is equivalent to computing the eigenvectors and (the square-roots of) the eigenvalues of[
fUΣ B̂

] [
fUΣ B̂

]>
. Now,[

fUΣ B̂
] [
fUΣ B̂

]>
= f 2UΣ2U

>
+ B̂B̂>

= f 2UΣV>VΣ>U> + B̂B̂>

= f 2
(
A− ĪA

) (
A− ĪA

)
+ B̂B̂>

= f 2SA + SB + ct

Where ct is a correction term that adjusts the mean of the eigenbasis, and SA and SB are

scatter matrices — a scalar times the covariance matrix — as defined in Lemma 1.
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Appendix B

Proof of Equation 2.5

This is a proof of N
(
It;µ,UU> + εI

)
∝ (It − µ)>

(
UU> + εI

)−1
(It − µ) in Equation 2.5.

Let y denote (It − µ),

(It − µ)>
(
UU> + εI

)−1
y = y>

[
ε−1I− ε−1U

(
I + ε−1U>U

)−1
U>ε−1

]
y

= y>ε−1
(

I− ε−1

1 + ε−1
·UU>

)
y

= ε−1y>
(

I− ε−1

1 + ε−1
·UU>

)
y,

(B.1)

where ε−1y>
(
I− ε−1

1+ε−1 ·UU>
)

y is the exact probabilistic principle component analaysis

(PPCA). It is easy to recognize the proportionality of
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)
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·UU>

)
y. (B.2)

Furthermore, in incremental PCA in IVT with the assumption that ε is approximately zero,
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Appendix C

MATLAB Code

C.1 Fitness of Evaluation of Particles During Tracking

1 function [x, s, L, it] = vt_lasso(y,A,ls,lx,sgnx ,x,s)
2 % function [x, s, L, it] = vt_lasso(y,A,ls ,lx,sgnx ,x,s)
3 %
4 % It solves min_{x,s} L=(||A*x-y-s||_2)^2+lx*||x||_1+ls*||s||_1
5 %
6 % NOTES: y can be a matrix in which case the problem is solved
7 % for each of its columns
8 % ls > 0; if ls=Inf --> s=0
9 % lx, sgnx are optional

10 % inf > lx >= 0 or lx=[] --> lx=0
11 % sgnx = 1--> x>=0 or sgnx=-1,0,[]--> x is real -valued
12 % SPECIAL CASES (examples)
13 % ’IVT ’: lx=0; ls=inf; sgnx =[];
14 % ’RVT ’: lx=ls =0.1; sgnx =1;
15 % ’LSST ’: lx=0; ls =0.1; sgnx =[];
16 %
17 % % Created by Athanasios Sideris , Aug. 2019
18
19 if nargin < 4
20 lx =0.1;
21 sgnx =[];
22 elseif nargin < 5
23 sgnx =[];
24 end
25 if isempty(lx)
26 lx=0;
27 end
28 sgnx=sign(sgnx);
29
30 T=A’*A;
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31 a=diag(T);
32 P=T\A’;
33
34 [m,n]=size(A);
35 k=size(y,2); % number of cases
36 if nargin < 6
37 % initialize with the LS solution
38 Q=[T+lx*eye(n) -A’;-A (ls+1)*eye(m)];
39 z=Q\[A’*y;y];
40 x=z(1:n,:);
41 s=z(n+1:end ,:);
42 elseif nargin < 7
43 disp(’Both x0 and s0 are required ’)
44 return
45 end
46
47 bx=zeros(n,k);
48 bs=zeros(m,k);
49 L = vecnorm(y,2) .^2;
50 iy = true(1,k); %y-cases that have not yet converged
51 it = 1;
52 while any(iy) && it < 2000
53 L0=L;
54 % fix s---update x
55 if lx==0,
56 x(:,iy)=P*(y(:,iy)+s(:,iy));
57 else % iterate over x-coordinates
58 bx0(:,iy)=-2*A’*(y(:,iy)+s(:,iy));
59 for i=1:n
60 i1=setdiff ((1:n),i);
61 bx(i,iy)=T(i,i1)*x(i1,iy)+bx0(i,iy);
62 if sgnx > 0
63 x(i,iy)=max(bsxfun(@rdivide ,-(bx(i,iy)+lx), 2*a(i)) ,0);
64 else
65 x(i,iy)=-max(bsxfun(@rdivide ,abs(bx(i,iy))-lx ,2*a(i))

,0).*sign(bx(i,iy));
66 end
67 end
68 end
69 % fix x---update s
70 if isinf(ls)
71 s=zeros(m,k);
72 else
73 bs(:,iy)=(A*x(:,iy)-y(:,iy));
74 s(:,iy)=max(abs(bs(:,iy))-ls/2,0).*sign(bs(:,iy));
75 end
76 % compute objective function
77 L(:,iy)=vecnorm(A*x(:,iy)-y(:,iy)-s(:,iy) ,2).^2+lx*vecnorm(x

(:,iy) ,1);
78 if ~isinf(ls)
79 L(:,iy)=L(:,iy)+ls*vecnorm(s(:,iy) ,1);
80 end
81 dLa = L-L0;
82 dLr = dLa./L0;
83 iy = max(abs([dLa;dLr])) >= 1e-5; %y-cases not yet converged
84 it = it + 1;
85 end
86 if it ==1000
87 disp(’Max number of iterations exceeded in vt_lasso ’)
88 end
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C.2 Proposed Modifications

The following MATLAB routines are tracking modifications proposed to the routines pro-

posed by Ross et al. [19]. The authorship is noted in each routine to indicate whether it is

an adaptation and modification or it is created for the purpose of the tracking modification

proposal.

C.2.1 Main Routine

Prior to running the tracking routine, these requirements must be fulfilled:

• All frames in the video to be tracked must be transformed into gray-scale, each pixel
with a value ranging from 0 to 1 (0 being black and 1 being white).

• The video has to be stored under the variable “data” with the rows as pixels along
x-coordinate, the columns entries as pixels along y-coordinate, and the third dimension
being the frames of the video.

• The location of the initial rectangular target boundary box has to be chosen and stored
as “p” with entries px, py, sx, sy, and θ, each denoting the target boundary box center
x-coordinate in pixels, center y-coordinate in pixels, length in x-axis in pixels, length
in y-axis in pixels, and angle rotation in radians.

• Optional: The ground truth points in each frame is stored as “truepts” and are defined
with rows as x-coordinate of each point, columns as y-coordinate of each point, and
the third dimension being the frames of the video.

1 % DESCRIPTION OF OPTIONS:
2 %
3 % Following is a description of the options you can adjust for
4 % tracking , each proceeded by its default value. For a new

sequence
5 % you will certainly have to change p. To set the other

options ,
6 % first try using the values given for one of the demonstration
7 % sequences , and change parameters as necessary.
8 %
9 % p = [px, py , sx , sy, theta]; The location of the target in

the first
10 % frame.
11 % px and py are th coordinates of the centre of the box
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12 % sx and sy are the size of the box in the x (width) and y (
height)

13 % dimensions , before rotation
14 % theta is the rotation angle of the box
15 %
16 % ’numsample ’,400, The number of samples used in the

condensation
17 % algorithm/particle filter. Increasing this will likely

improve the
18 % results , but make the tracker slower.
19 %
20 % ’condenssig ’,0.01, The standard deviation of the observation

likelihood.
21 %
22 % ’ff ’,1, The forgetting factor , as described in the paper.

When
23 % doing the incremental update , 1 means remember all past data ,

and 0
24 % means remeber none of it.
25 %
26 % ’batchsize ’,5, How often to update the eigenbasis. We’ve

used this
27 % value (update every 5th frame) fairly consistently , so it

most
28 % likely won ’t need to be changed. A smaller batchsize means

more
29 % frequent updates , making it quicker to model changes in

appearance ,
30 % but also a little more prone to drift , and require more

computation.
31 %
32 % ’affsig ’ ,[4 ,4 ,.02 ,.02 ,.005 ,.001] These are the standard

deviations of
33 % the dynamics distribution , that is how much we expect the

target
34 % object might move from one frame to the next. The meaning of

each
35 % number is as follows:
36 %
37 % affsig (1) = x translation (pixels , mean is 0)
38 % affsig (2) = y translation (pixels , mean is 0)
39 % affsig (3) = rotation angle (radians , mean is 0)
40 % affsig (4) = x scaling (pixels , mean is 1)
41 % affsig (5) = y scaling (pixels , mean is 1)
42 % affsig (6) = scaling angle (radians , mean is 0)
43 %
44 % CORRECTED
45 % affsig (1) = x translation (pixels , mean is 0)
46 % affsig (2) = y translation (pixels , mean is 0)
47 % affsig (3) = overall scaling by ratio (both x and y)
48 % affsig (4) = rotation in radians (~75 samples reaches 1

sigma , 7500 samples reaches 2 sigma)
49 % affsig (5) = elongation scaling by ratio ,
50 % affsig (6) = skew -ness , scaling angle (uncertain units ,

but [0 1], mean is 0)
51 %
52 % OTHER OPTIONS THAT COULD BE SET HERE:
53 %
54 % ’tmplsize ’, [32 ,32] The resolution at which the tracking
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window is
55 % sampled , in this case 32 pixels by 32 pixels. If your

initial
56 % window (given by p) is very large you may need to increase

this.
57 %
58 % ’maxbasis ’, 16 The number of basis vectors to keep in the

learned
59 % apperance model.
60 %
61 % script: runtracker.m
62 % requires:
63 % data(h,w,nf)
64 % param0
65 % opt.tmplsize [h,w]
66 % .numsample
67 % .affsig [6,1]
68 % .condenssig
69 %
70 % % Copyright (C) Jongwoo Lim and David Ross.
71 % % All rights reserved.
72 % % SPECIFY PARAMETERS
73 % % Modified by Athanasios Sideris and Yu Hua N. Tseng
74
75 % opt INITIALIZATION
76 rand(’state ’ ,0); randn(’state’ ,0);
77 if ~exist(’opt’,’var’) opt = []; end
78 if ~isfield(opt ,’tmplsize ’) opt.tmplsize = [32 ,32]; end %

resolution of the image patches
79 if ~isfield(opt ,’numsample ’) opt.numsample = 800; end % number

of particles
80 if strcmp(datatitle ,’01- Light_video00001 ’)
81 opt.lassolam = 0.1;
82 opt.affsig = [9 ,9 ,0.01 ,0.01 ,0.002 ,0.001]; % variances of

affine parameters
83 elseif strcmp(datatitle ,’davidin300 ’)
84 if ~isfield(opt ,’affsig ’) opt.affsig =

[3 ,3 ,.01 ,.02 ,.002 ,.001]; end
85 elseif strcmp(datatitle ,’car4’) || strcmp(datatitle ,’dudek ’)
86 if ~isfield(opt ,’affsig ’) opt.affsig =

[3 ,3 ,.08 ,.01 ,.002 ,.001]; end
87 opt.lassolam = 0.1;
88 elseif strcmp(datatitle ,’dudek’)
89 if ~isfield(opt ,’affsig ’) opt.affsig =

[3 ,3 ,.08 ,.01 ,.002 ,.001]; end
90 end
91 if ~isfield(opt ,’condenssig ’) opt.condenssig = 0.01; end
92 if ~isfield(opt ,’maxbasis ’) opt.maxbasis = 16; end % number

of eigenbasis templates
93 if ~isfield(opt ,’batchsize ’) opt.batchsize = 5; end % number

of frames to be remembered before updating eigenbasis
94 if ~isfield(opt ,’errfunc ’) opt.errfunc = ’L2’; end
95 if ~isfield(opt ,’ff’) opt.ff = 1; end % 1 = forget

nothing
96 if ~isfield(opt ,’gamma’) opt.gamma = 0.5; end % for error

function in condensation
97 if ~isfield(opt ,’lassolam ’) opt.lassolam = 0.5; end % for

104



LASSO
98 if ~isfield(opt ,’maxbasis2 ’) opt.maxbasis2 = 8; end % number

of image patch templates
99

100 % TRANSFORMING param0
101 param0 = [p(1), p(2), p(3)/32, p(5), p(4)/p(3), 0]; clear(’p’)
102 param0 = affparam2mat(param0); % initial target affine
103
104 frame = double(data(:,:,1))/256; % initial frame , [0,1]
105
106 % tmpl INITIALIZATION
107 tmpl.mean = warpimg(frame ,param0 ,opt.tmplsize); % target image

patch
108 tmpl.basis = []; % initialize
109 tmpl.eigval = []; % initialize
110 tmpl.numsample = 0; % initialize
111 tmpl.reseig = 0; % initialize residual eigenvalues
112 sz = size(tmpl.mean);
113 N = sz(1)*sz(2); % total number of pixels in each video frame
114
115 % param INITIALIZATION
116 param = []; % initialize param structure
117 param.est = param0; % initial target region parameters
118 param.wimg = tmpl.mean; clear(’param0 ’) % initial basis mean
119
120 % truepts TRACKING
121 if (exist(’truepts ’,’var’))
122 npts = size(truepts ,2);
123 aff0 = affparaminv(param.est);
124 pts0 = aff0 ([3,4 ,1;5,6,2])*[ truepts (:,:,1);ones(1,npts)];
125 pts = cat(3,pts0+repmat(sz ’/2,[1,npts]),truepts (:,:,1));
126 trackpts = zeros(size(truepts));
127 trackerr = zeros(1,npts); meanerr = zeros(1,npts);
128 else
129 pts = [];
130 end; clear(’aff0’)
131
132 %% RUN TRACKING AND UPDATING
133 % draw initial track window
134 drawopt = drawtrackresult ([],0,frame ,tmpl ,param ,pts);
135 disp(’resize the window as necessary , then press any key..’);

pause;
136 drawopt.showcondens = 0; drawopt.thcondens = 1/opt.numsample;
137
138 wimgs = [];
139
140 % initialized values are from frame 0
141 duration = 0; tic;
142 if (exist(’dispstr ’,’var’)) dispstr=’’; end
143
144 param.ref = param.wimg; param.conf_rec = []; tmpl.dict2 = [];
145 for f = 1:size(data ,3)
146 frame = double(data(:,:,f))/256;
147
148 % do tracking
149 param = estwarp_condens_prop(frame ,tmpl ,param ,opt);
150
151 % do update
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152 if ~isempty(param.recon)
153 if size(tmpl.dict2 ,2) >= opt.maxbasis2
154 tmpl.dict2 (:,1) = [];
155 end
156 tmpl.dict2 = [tmpl.dict2 ,param.wimg (:)];
157 end
158 wimgs = [wimgs , param.recon (:)];
159 if (size(wimgs ,2) >= opt.batchsize) && ~isempty(wimgs)
160 if (isfield(param ,’coef’))
161 ncoef = size(param.coef ,2);
162 recon = repmat(tmpl.mean (:) ,[1,ncoef])+tmpl.basis*param.

coef;
163 [tmpl.basis ,tmpl.eigval ,tmpl.mean ,tmpl.numsample] = ...
164 sklm_prop(wimgs ,tmpl.basis ,tmpl.eigval ,tmpl.mean ,tmpl.

numsample ,opt.ff);
165 param.coef = tmpl.basis ’*(recon -repmat(tmpl.mean (:) ,[1,

ncoef]));
166 else
167 [tmpl.basis ,tmpl.eigval ,tmpl.mean ,tmpl.numsample] = ...
168 sklm_prop(wimgs ,tmpl.basis ,tmpl.eigval ,tmpl.mean ,tmpl.

numsample ,opt.ff);
169 end
170 wimgs = [];
171
172 if size(tmpl.basis ,2) > opt.maxbasis
173 tmpl.reseig = opt.ff^2* tmpl.reseig+sum(tmpl.eigval(opt.

maxbasis +1: end).^2);
174 tmpl.basis = tmpl.basis (:,1:opt.maxbasis);
175 tmpl.eigval = tmpl.eigval (1: opt.maxbasis);
176 if (isfield(param ,’coef’))
177 param.coef = param.coef (1:opt.maxbasis ,:);
178 end
179 end
180 end
181
182 duration = duration + toc;
183 % draw result
184 if (exist(’truepts ’,’var’))
185 trackpts (:,:,f) = param.est ([3,4,1;5,6,2])*[pts0;ones(1,

npts)];
186 pts = cat(3,pts0+repmat(sz ’/2,[1,npts]),truepts(:,:,f),

trackpts (:,:,f));
187 idx = find(pts(1,:,2) >0);
188 if (length(idx) >0)
189 trackerr(f) = sqrt(mean(sum((pts(:,idx ,2)-pts(:,idx ,3))

.^2 ,1)));
190 else
191 trackerr(f) = nan;
192 end
193 meanerr(f) = mean(trackerr (~isnan(trackerr)&(trackerr >0)));
194 if (exist(’dispstr ’,’var’)) fprintf(repmat(’\b’,[1,length(

dispstr)])); end;
195 dispstr = sprintf(’%d: %.4f / %.4f’,f,trackerr(f),meanerr(f

));
196 fprintf(dispstr);
197 end
198 tic;
199
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200 % figure (1) current frame , truepts , trackpts , patches ----
201 fig1 = figure (1);clf;
202 axes(’Position ’, [0 1/2 1 1/2])
203 imshow(double(data(:,:,f))/256); % draw current frame
204 hold on;
205 drawbox(opt.tmplsize , param.est , ’Color’,’r’, ’LineWidth ’

,2.5) % draw patch box
206 plot(trackpts (1,:,f),trackpts (2,:,f),’r+’,’MarkerSize ’ ,6) %

draw truepts
207 plot(truepts(1,:,f),truepts (2,:,f),’y+’,’MarkerSize ’ ,6) %

draw truepts
208 text(0,0,num2str(f),’FontSize ’,15,’Color ’,’y’,’FontWeight ’,’

bold’,’VerticalAlignment ’,’top’)
209
210 axes(’Position ’, [0 1/3 1 1/6])
211 imshow ([tmpl.mean ,param.wimg]) % current image patch
212 text(2,0,’basis mean’,’FontSize ’,8,’Color’,’y’,’

VerticalAlignment ’,’top’)
213 text(opt.tmplsize (1) ,0,’current patch ’,’FontSize ’,8,’Color ’,’

y’,’VerticalAlignment ’,’top’)
214
215 axes(’Position ’, [0 1/18 1 1/3])
216 I1 = []; I2 = []; I3 = []; I4 = [];
217 for basis = 1:size(tmpl.basis ,2)
218 if basis <= 8
219 I1 = [I1 (reshape(tmpl.basis(:,basis),opt.tmplsize)-min(

tmpl.basis(:,basis)))/(max(tmpl.basis(:,basis))-min(
tmpl.basis(:,basis)))];

220 elseif basis >= 9 && basis <= 16
221 I2 = [I2 (reshape(tmpl.basis(:,basis),opt.tmplsize)-min(

tmpl.basis(:,basis)))/(max(tmpl.basis(:,basis))-min(
tmpl.basis(:,basis)))];

222 end
223 end
224 if size(I1 ,2)/opt.tmplsize (1) < 8 % gray out unfilled

templates
225 I1 = [I1 0.5* ones(opt.tmplsize (1) ,(opt.tmplsize (2)*8 - size

(I1 ,2)))];
226 end
227 if size(I2 ,2)/opt.tmplsize (1) < 8 % gray out unfilled

templates
228 I2 = [I2 0.5* ones(opt.tmplsize (1) ,(opt.tmplsize (2)*8 - size

(I2 ,2)))];
229 end
230 I = [I1; I2; I3; I4]; clear(’I1’,’I2’,’I3’,’I4’,’basis’)
231 imshow(I)
232 for basis = 1:size(tmpl.basis ,2) % template number text
233 if basis <=8
234 text((basis - 1)*opt.tmplsize (1) ,0,num2str(basis),’Color’

,’y’,’FontSize ’,10,’VerticalAlignment ’,’top’)
235 elseif basis > 8 && basis <= 16
236 text((basis - 9)*opt.tmplsize (1),opt.tmplsize (2),num2str(

basis),’Color ’,’y’,’FontSize ’,10,’VerticalAlignment ’,’
top’)

237 end
238 end
239
240 axes(’Position ’, [0 0 1 1/9]) % image patch dictionary
241 I = [];
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242 for basis = 1:size(tmpl.dict2 ,2)
243 I = [I,reshape(tmpl.dict2(:,basis),opt.tmplsize)];
244 end
245 if size(I,2)/opt.tmplsize (1) < opt.maxbasis2 % gray out

unfilled templates
246 I = [I 0.5* ones(opt.tmplsize (1) ,(opt.tmplsize (2)*opt.

maxbasis2 - size(I,2)))];
247 end
248 imshow(I); clear(’I’)
249 text(2,0,’image patch dictionary ’,’Color’,’y’,’FontSize ’,10,’

VerticalAlignment ’,’top’)
250
251 % saving figure ------------------------------
252 % record_dir = [’’];
253 % if ~exist(record_dir) mkdir(record_dir); end
254 % saveas(fig1 ,[ record_dir ’frame_ ’ num2str(f) ’.jpg ’])
255 end
256 duration = duration + toc;
257 fprintf(’\n%d frames took %.3f seconds: %.3f fps\n’,f,duration ,

f/duration);
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C.2.2 Particle Filtering

1 function param = estwarp_condens(frm , tmpl , param , opt)
2 % function param = estwarp_condens(frm , tmpl , param , opt)
3 %
4 % frm current frame of the video
5 % param.param particle affine parameters (mat)
6 % param.est previous frame ’s target affine parameter (mat)
7 % param.conf normal PDF likelihood (of particles)
8 % param.coef
9 % param.wimg previous frame ’s target image patch (in

resolution)
10 % param.recon reconstructed LSST image patch (mean replacing

error pixels)
11 % param.err
12 % tmpl.mean basis mean (resolution size)
13 % tmpl.basis eigenbasis templates in eigenbasis template

dictionary
14 % tmpl.eigval eigenvalues associated with eigenbasis

templates
15 % opt.numsample number of particles
16 % opt.affsig affine parameters
17 % opt.errfunc choice likelihood PDF
18 % opt.rsig variance for using robust PDF
19 % opt.condenssig variance for condensation
20 %
21 % % Copyright (C) Jongwoo Lim and David Ross.
22 % % All rights reserved.
23 % % Modified by Athanasios Sideris and Yu Hua N. Tseng
24
25 n = opt.numsample; % number of particles
26 sz = size(tmpl.mean); % size of mean image (resolution)
27 N = sz(1)*sz(2); % total number of pixels in resolution
28
29 if ~isfield(param ,’param’)
30 param.param = repmat(affparam2geom(param.est(:)), [1,n]);
31 else
32 cumconf = cumsum(param.conf);
33 idx = floor(sum(repmat(rand(1,n),[n,1]) > repmat(cumconf ,[1,n

])))+1;
34 param.param = param.param(:,idx);
35 end
36 param.param = param.param + randn(6,n).* repmat(opt.affsig (:)

,[1,n]); % perturbation of the parameters (particles)
37 wimgs = warpimg(frm , affparam2mat(param.param), sz); % extract

image patch particles
38 diff = repmat(tmpl.mean (:) ,[1,n]) - reshape(wimgs ,[N,n]); %

difference between particle abd basis mean
39
40 % PARTICLE WEIGHTS BASED ON AREA CHANGE --------
41 param_mat_prev = [param.est (1) param.est(2) param.est (3) 0

param.est (5) param.est(6)];
42 c_prev = corners(opt.tmplsize , param_mat_prev (:) , ’Color’,’r’,

’LineWidth ’ ,2.5);
43 param_geom = affparam2geom(param_mat_prev (:));
44 A_prev = patch_area(param_geom (6),c_prev); c=[];
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45 for count = 1:n
46 c(:,:,count) = corners(opt.tmplsize , affparam2mat ([ param.

param (1:4, count); 0; param.param(6,count)]), ’Color ’,’r’,
’LineWidth ’ ,2.5);

47 A(count) = patch_area(param.param(6,n),c(:,:,count));
48 particle_weight(count) = 1/(1 + abs(1-A(count)./ A_prev));
49 end; clear(’c_prev ’,’param_geom ’,’A_prev ’,’c’,’A’) % ----
50
51 coefdiff = 0;
52 if (size(tmpl.basis ,2) > 0) % active after the 1st batch
53 y = diff;
54 U = tmpl.basis;
55 lx=0; ls=opt.lassolam; sgnx =[]; % ls = 0.1 for effective calc
56 [coef ,s,dist ,it] = vt_lasso(y,U,ls,lx,sgnx);
57 param.coef = coef;
58 end
59
60 if (~ isfield(opt ,’errfunc ’)) opt.errfunc = []; end
61 switch (opt.errfunc)
62 case ’robust ’
63 param.conf = exp(-sum(diff .^2./( diff .^2+ opt.rsig .^2))./opt.

condenssig)’;
64 case ’ppca’
65 param.conf = exp(-(sum(diff .^2) + sum(coefdiff .^2))./opt.

condenssig)’;
66 otherwise
67 if (size(tmpl.basis ,2) > 0) % starting after 1st batch
68 param.conf = exp(-opt.gamma*dist)’;
69 else
70 param.conf = exp(-sum(diff .^2)./opt.condenssig) ’; %

likelihood in Gaussian PDF
71 param.conf = param.conf.* particle_weight (:); % weighting

likelihood
72 end
73 end
74
75 [maxprob ,maxidx] = max(param.conf); % find the highest

likelihood
76 if (size(tmpl.basis ,2) == 0)
77 dist = zeros(1,n);
78 s = zeros(1,n);
79 end
80 param.conf_rec = [param.conf_rec , [param.conf(maxidx); dist(

maxidx);norm(s,1)]];
81
82 % USE IMAGE PATCH TEMPLATE DICTIONARY ---------
83 if (size(tmpl.basis ,2) > 0) && dist(find(exp(-dist)==max(exp(-

dist)))) > 2.8
84 diff = repmat(tmpl.dict2(:,end) ,[1,n]) - reshape(wimgs ,[N,n])

;
85 y = diff;
86 U = tmpl.dict2;
87 lx=0; ls=opt.lassolam; sgnx =[]; % ls = 0.1 to have effective

calc
88 [coef ,s,dist ,it] = vt_lasso(y,U,ls,lx,sgnx);
89 param.conf = exp(-opt.gamma*dist)’;
90 [maxprob ,maxidx] = max(param.conf); % find the highest

likelihood
91 end % -----------------------------------------
92
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93 % REJECTING BAD IMAGES AS TEMPLATES ---------
94 bad_template = 0;
95 if dist(maxidx) > 2.8 %param.conf(maxidx) < 0.96
96 bad_template = 1;
97 end % ---------------------------------------
98
99 param.conf = param.conf ./ sum(param.conf); % normalize the

probability to [0,1]
100 param.est = affparam2mat(param.param(:,maxidx)); % affine

parameter of the chosen image patch
101 param.wimg = wimgs(:,:,maxidx); % the distorted particle with

the highest likelihood
102 param.err = reshape(diff(:,maxidx), sz); % error of in the

chosen image patch
103 if (size(tmpl.basis ,2) > 0) % starting after 1st batch
104 param.recon = param.wimg;
105 if (sum(coef(:,maxidx)) ~= 0)
106 noisy_pixel = find(s(:,maxidx)~=0);
107 param.recon(noisy_pixel) = tmpl.mean(noisy_pixel);
108 end
109 else % before 1st batch
110 param.recon = param.wimg + param.err; % reconstructed image
111 end
112
113 % REJECTING BAD IMAGES AS TEMPLATES -----
114 if (bad_template == 1)
115 param.recon = [];
116 end % -----------------------------------
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C.2.3 Target Boundary Box Area Calculation

1 function A = patch_area(theta ,c)
2 %
3 % INPUT:
4 % theta the skew angle [rad] (6th entry of affparam2geom)
5 % c the corners of the target boundary box , 2-by -6, [x;y]
6 %
7 % OUTPUT:
8 % A area of the image patch
9 %

10 % % Created by Yu Hua N. Tseng (Auguest 2019)
11
12 c(1,:) = c(1,:) - min(c(1,:)); % translation of x-axis
13 c(2,:) = c(2,:) - min(c(2,:)); % translation of y-axis
14 if (theta >= 0 && theta < pi/2) || (theta >= pi && theta < 3/4*

pi) || (theta <= -pi/2 && theta > -pi) || (theta <= -3/4*pi
&& theta > -2*pi) % for positive phi

15 theta_b = atan2(c(2,2),c(1,2)); % angle of base to translated
x-axis

16 theta_a = atan2(c(2,4),c(1,4)); % angle of slanted side to
translated x-axis

17 theta_a_rot = theta_a - theta_b; % angle of slanted side to
translated and rotated x-axis

18 base = sqrt(c(1,2)^2+c(2,2)^2);
19 a = sqrt(c(1,4)^2+c(2,4)^2); % length of slanted side
20 elseif (theta >= pi/2 && theta < pi) || (theta >= 3/4*pi &&

theta < 2*pi) || (theta <= 0 && theta > -pi/2) || (theta <=
-pi && theta > -3/4*pi) % for negative phi

21 theta_b = atan2(c(2,1),c(1,2)-c(1,1)); % angle of base to
translated x-axis

22 theta_a = atan2(c(2,4)-c(2,1),c(1,1)); % angle of slanted
side to translated x-axis

23 theta_a_rot = theta_a - theta_b; % angle of slanted side to
translated and rotated x-axis

24 base = sqrt((c(1,2) - c(1,1))^2+c(2,1)^2);
25 a = sqrt(c(1,1) ^2+(c(2,4)-c(2,1))^2); % length of slanted

side
26 end
27 height = a*sin(theta_a_rot);
28 A = abs(base*height);
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C.2.4 Target Boundary Box Corners

1 function drawing_corners = corners(varargin)
2 % corners(opt.tmplsize , param_mat , ’Color ’,’r’, ’LineWidth

’,2.5)
3 % function drawbox(width ,height , param , properties)
4 % ([width ,height], param , properties)
5 %
6 % param , properties are optional
7 %
8 % INPUT:
9 % ([w,h] patch_resolution , param_in_mat , str , str , str , num)

10 %
11 % OUTPUT:
12 % drawing_corners in format [corners_x;corners_y], 2-by -5
13 %
14 % % Copyright (C) Jongwoo Lim and David Ross.
15 % % All rights reserved.
16 % % Modified by Yu Hua N. Tseng
17
18 %----------------------------------------------------------
19 % process the inputs
20 %----------------------------------------------------------
21 if (length(varargin {1}) == 2) % opt.tmplsize
22 w = varargin {1}(1);
23 h = varargin {1}(2);
24 varargin (1) = [];
25 else
26 [w,h] = deal(varargin {1:2});
27 varargin (1:2) = [];
28 end
29
30 if (length(varargin) < 1 || any(length(varargin {1}) ~= 6))
31 M = [0,1,0; 0,0,1];
32 else
33 p = varargin {1}; % opt.tmplsize
34 if (length(varargin) > 1 && strcmp(varargin {2},’geom’))
35 p = affparam2mat(p);
36 varargin (1:2) = [];
37 else
38 varargin (1) = []; % opt.tmplsize
39 end
40 M = [p(1) p(3) p(4); p(2) p(5) p(6)];
41 end
42
43 %----------------------------------------------------------
44 % box corners
45 %----------------------------------------------------------
46 drawing_corners = [ 1,-w/2,-h/2; 1,w/2,-h/2; 1,w/2,h/2; 1,-w/2,

h/2; 1,-w/2,-h/2 ]’;
47 drawing_corners = M * drawing_corners;
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Appendix D

Demonstration Example

To illustrate the processes in which IVT, LSST and RVT select the most likely estimated

image patch, the dictionary templates and a set of 800 particles are drawn at a certain

moment of the video are used for calculating the likelihood of each particles.

D.1 Existing Templates

Figure D.1: Templates available in the dictionary for the example calculations.
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D.2 Drawn Particles

Figure D.2: The example illustration of the target boundary boxes of the particles drawn
(yellow boxes) and the estimated target boundary box of the previous frame (red box).
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Figure D.3: All the image patch particles drawn for the example calculations.
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Appendix E

Approach Comparison and Summary

IVT LSST RVT

P
a
p

e
r

S
e
tt

in
g

(c
om

m
on

)

Number of dictionary templates, nt
Image patch resolution (w-by-h)

Number of particles, np
Affine parameter variances
(x, y, θ, s, α, φ)

16
32×32

600
(set by case)

16
32×32

600
(set by case)

10
12×15,
15×12,
10×18,
or 18×10
300
(0.06, 0.01, 0.01, 0.06, 4, 4)

Table E.1: Essential settings to define for IVT, LSST and RVT that are common in all
tracking approaches.

IVT LSST RVT

S
e
tt

in
g
s

(d
ev

ia
te

d
)

Batch size (dictionary update): 5
Probability function: normal PDF
Forgetting factor: 0.95
Cut-off eigenvalue for

templates: 10−6

Batch size: 5
λ in Equation 2.23: 0.1
γ in Equation 2.25: 0.5

σ in Equation 2.35: 10−4

Number of velocities to average: 3
`1 solver: Koh et al.[7]
λ in Equation 2.30 unspecified
Similarity cut-off τ in step 6
of Figure 2.9: 0.5

Table E.2: Essential settings to define for IVT, LSST and RVT that are specific to each
tracking approach.
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Table E.3: Key steps in IVT, LSST and RVT.
118



Appendix F

Target Boundary Box Area

Calculation

Figure F.1: A illustration of how a target boundary box gets skewed if starting from the
black rectangle with φ = 0 [rad]. The red boundary box is a result when φ is (0, π

2
) or (π, 3π

4
),

the blue boundary box the result when φ = π
2
, and the green boundary box is a result when

φ is (π
2
, π) or (3π

4
, 2π). All skewed boundary boxes all share a common center and the same

size of enclosed area.
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(a) Image patch with skew an-
gle φ when φ is (0, π) [rad].

(b) Image patch with skew an-
gle φ when φ is (π, 2π) [rad].

Figure F.2: Examples of a skewed rectangular target boundary box translated to the new
axes x′ and y′.

The area inside the target boundary box bounded by (x1, y1), (x2, y2), (x3, y3) and (x4, y4)

is computed. The information known about the boundary box is the coordinates of the

four corners. The calculation of the area is only illustrated for the white boundary box in

Figure F.2a, since the case in Figure F.2b has the same idea.

The coordinates of the corners are translated to the new coordinates:

(x′1, y
′
1) = (x1 − x1, y1 − y1)

(x′2, y
′
2) = (x2 − x1, y2 − y1)

(x′3, y
′
3) = (x3 − x1, y3 − y1)

(x′4, y
′
4) = (x4 − x1, y4 − y1)

(F.1)

The information needed to compute for the area of the target boundary box, which is a

parallelogram, is the base (the distance between (x′1, y
′
1) and (x′2, y

′
2)) and the height (the

distance between (x′4, y
′
4) and the base).

The angle between (x′2, y
′
2) and the x′-axis is denoted by θb, where

θb = tan−1
y′2
x′2
. (F.2)

This is the angle that rotates the whole parallelogram onto rotated axes.
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The angle between the line formed by (x′2, y
′
2) and (x′3, y

′
3) and the x′-axis is denoted by θa,

where

θa = tan−1
y′4
x′4
. (F.3)

The angle between the line formed by (x′2, y
′
2) and (x′3, y

′
3) and the rotated rotated x′-axis is

required, which is denoted by θ′a. It can be found by

θ′a = θa − θb. (F.4)

The length of the base b is between (x′1, y
′
1) and (x′2, y

′
2), and can be found by

b =

√
(x′2 − x′1)

2 + (y′2 − y′1)
2. (F.5)

The length a between (x′1, y
′
1) and (x′4, y

′
4) is needed to find the height of the parallelogram,

which is

a =

√
(x′4 − x′1)

2 + (y′4 − y′1)
2. (F.6)

Hence, the height h can be found by

h = a · sinθ′a. (F.7)

And the area of the parallelogram Aparallelogram is

Aparallelogram = b · h. (F.8)

121


	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	ABSTRACT OF THE Thesis
	Introduction
	Visual Recognition
	Discriminative Model
	Generative Model
	Low Dimensional Subspace Representation

	Motion Tracking
	Particle Filter

	Related Work and Motivation

	Incrementally Adaptive Reference Approaches
	Incremental Visual Tracking (IVT)
	Incremental Principle Component Analysis (PCA): Updating the Dictionary And the Mean
	The Dynamic Model: Estimating the Target Position with Particle Filtering
	The Observation Model: Estimating the Target Image Patch

	Least Soft-Threshold Squares Tracking (LSST)
	Least Soft-Threshold Squares
	Dynamic Model
	Observation Model
	Template Update

	Robust Visual Tracking (RVT)
	Sparsity Through 1-Norm 1 Minimization
	Dynamic Model
	Observation Model
	Template Update

	Tracking Approach Comparison

	Results
	Quantitative Evaluation
	Illumination and Scaling
	IVT
	LSST
	RVT

	Occlusion and Motion
	IVT
	LSST
	RVT

	Suggested Modifications Based on the Performance
	IVT
	LSST
	RVT
	Additional Remarks


	Proposed Modifications In the Tracking Components
	Tracking Routine Structure
	Image Patch Template Dictionary
	Particle Weights
	Evaluation
	Template Rejection And Particle Weights
	All Components Implemented
	Performance Remarks


	Future Work
	Dynamic Affine Parameter Variances
	Introduction of A Pre-Trained Tracking Component
	RGB Video Frames

	Bibliography
	Proofs of Lemmas
	Proof of Lemma 1
	Proof of Lemma 2

	Proof of Equation 2.5
	MATLAB Code
	Fitness of Evaluation of Particles During Tracking
	Proposed Modifications
	Main Routine
	Particle Filtering
	Target Boundary Box Area Calculation
	Target Boundary Box Corners


	Demonstration Example
	Existing Templates
	Drawn Particles

	Approach Comparison and Summary
	Target Boundary Box Area Calculation



