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Abstract

CASP13 has investigated the impact of sparse NMR data on the accuracy of protein structure 

prediction. NOESY and 15N-1H residual dipolar coupling data, typical of that obtained for 15N,
13C-enriched, perdeuterated proteins up to about 40 kDa, were simulated for 11 CASP13 targets 
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ranging in size from 80 to 326 residues. For several targets, two prediction groups generated 

models that are more accurate than those produced using baseline methods. Real NMR data 

collected for a de novo designed protein were also provided to predictors, including one data set in 

which only backbone resonance assignments were available. Some NMR-assisted prediction 

groups also did very well with these data. CASP13 also assessed whether incorporation of sparse 

NMR data improves the accuracy of protein structure prediction relative to non-assisted regular 

methods. In most cases, incorporation of sparse, noisy NMR data results in models with higher 

accuracy. The best NMR-assisted models were also compared with the best regular predictions of 

any CASP13 group for the same target. For 6 of 13 targets, the most accurate model provided by 

any NMR-assisted prediction group was more accurate than the most accurate model provided by 

any regular prediction group; however, for the remaining 7 targets, one or more regular prediction 

method provided a more accurate model than even the best NMR-assisted model. These results 

suggest a novel approach for protein structure determination, in which advanced prediction 

methods are first used to generate structural models, and sparse NMR data is then used to validate 

and/or refine these models.

Keywords

CASP; Structure Prediction; Sparse NMR Data; Simulated NMR Spectra; Residual Dipolar 
Coupling; Protein Modeling; Contact Prediction

INTRODUCTION

Since its inception, CASP has been a driving force in the field of contact prediction and 

contact-directed modeling (see for example references [1–5]). Conceptually, even a few 

accurate native contacts could reliably guide de novo fold predictions, or provide valuable 

information for selecting among alternate models. During the CASP10 International 

Meeting, it was suggested that rather than using predicted contacts, which at the time were 

not very reliable, it might be more productive to explore the impact of a few real 

experimental contacts, as can be obtained from NMR, cross-linking, fluorescence energy 

transfer, or other experimental methods. This concept developed in CASP11 into the first 

NMR-assisted contact prediction experiment [6–8]. In the meantime, the accuracy of contact 

prediction based on evolutionary sequence co-variance analysis and machine learning has 

increased dramatically [5, 9–14], making the original proposal of replacing predicted 

contacts with real, sparse experimental contacts moot. None the less, the concept of 

combining sparse experimental data with sophisticated modeling methods is an important 

and emerging area of integrative structural biology, and CASP provides an important venue 

for testing and developing such hybrid methods. In CASP12 and CASP13, this integrative 

approach was also explored using small angle X-ray scattering [15] and chemical cross-link 

data [15]. Such integrative data-driven protein prediction is evolving into an important 

approach for structural biology.

The NMR Community has also explored automated NMR structure analysis in the context 

of the Critical Assessment of Protein Structure Determination by NMR (CASD-NMR). In 

this series of studies [16–19], NOESY peak lists and NMR resonance assignments for 20 
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small proteins were distributed to several groups developing fully automated nuclear 

Overhauser effect spectroscopy (NOESY) assignment and structure determination methods. 

In the first phase, CASD-NMR 2010, NOESY peak lists for 10 proteins were preprocessed 

to be relatively free of noise peaks, and automated structure determination was carried out in 

a blind fashion, without knowledge of the manually refined reference structure. It was 

observed that with such data, several fully automated NOESY analysis program could 

consistently deliver structures with backbone rmsd’s < 2.5 Å from the manually-refined 

reference structure, demonstrating the feasibility of routine, fully automated protein 

structure determination by NMR. These results were extended in CASD-NMR 2013, a 

similar blinded study using uncurated, noisy NOESY peak lists. Across the entire set of 

more than 140 models submitted in this phase, 70% of all entries had a backbone accuracy 

relative to the reference NMR structure better than 1.5 Å backbone rmsd, with some 

methods having up to 100% of their submitted models within 1.5 Å rmsd. However, using 

these uncurated NOESY peak lists, some automated structure determination methods did not 

converge for some targets. These studies provide benchmark results demonstrating strengths 

and weaknesses of several programs for fully automated NOESY analysis and structure 

generation of small (< 15 kDa) proteins.

While these CASD-NMR studies were very successful with these relatively small proteins, 

determining larger-sized protein (20 – 70 kDa) structures by solution NMR is extremely 

challenging but highly feasible [20, 21]. For such larger proteins, perdeuteration becomes 

necessary to circumvent the efficient spin relaxation properties resulting from their slow 

rotational correlation times. Backbone and sidechain amide hydrogens (HN) can be 

exchanged back into the protein structure, allowing collection of HN-HN NOE data, and 

some methyl and/or aromatic groups can be protonated by biosynthetic methods [22, 23]. 

However, aside from such selectively protonated side-chain moieties, replacing most protons 

in the protein structure with deuterons also eliminates most long-range and sidechain 

NOESY information. The difficulty in determining accurate structures with no, or limited, 

side-chain information (i.e. sparse NMR data) is a major technological challenge to the 

modeling community that currently limits routine application of solution NMR to larger 

systems.

In CASP11, we explored this challenge together with the global CASP community [6–8], by 

providing interatomic contacts derived from sparse nuclear Overhauser effect (NOE) data 

simulated from the X-ray crystal structure coordinates of 19 CASP template-free modeling 

targets, assuming perdeuteration with selective protonation of backbone amide and certain 

methyl groups. These targets ranged in size from 108 to 462 residues. The results were 

compared with baseline modeling results using some of the more successful automated 

structure determination programs assessed in CASD-NMR, including the ASDP program 

[24, 25]. While most NMR-assisted CASP11 methods could not provide accurate models 

using these sparse experimental data, a few groups (e.g., Lee, Baker) submitted models for 

several targets that were more accurate than those generated using “conventional” baseline 

automated NOESY analysis methods. These results demonstrate the strong synergy between 

the computational NMR and protein prediction communities, as each has the potential to 

learn from one another.
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In CASP13, we extended our NMR-assisted structure prediction study begun in CASP11. 

NMR data were simulated from CASP free modeling targets with realistic degrees of 

incompleteness and noise, typical to that observed in real NMR spectra of perdeuterated, 

selectively protonated proteins. These free modeling targets ranged from 80 to 326 residues. 

In addition to contacts based on simulated 3D NOESY data, simulated residual 15N-1H 

dipolar coupling (RDC) data, and dihedral restraints as derived from backbone chemical 

shift data, for a subset of residues were also provided. In some cases, contact predictions 

from evolutionary sequence co-variance analysis were also provided to predictors. Two real 

NMR data sets were also made available to the CASP13 prediction community. These 

results further drive the field of integrated protein structure modeling by exploring the 

impact of sparse experimental data in enhancing the power of protein structure prediction 

methods.

METHODS

Experimental NMR Structure Determination

NMR studies were performed using a uniformly 15N,13C-enriched sample of a de novo 
designed protein, named foldit3 [26], CASP13 target 1008. The synthetic codon optimized 

gene (Genscript, Inc), designed to exclude ACA nucleotide sequences [27, 28 ], was cloned 

into plasmid pET15TEV_NESG [29]. The resulting protein product includes a short N-

terminal 6xHis purification tag, followed by a TEV protease cleavage site, which was 

removed prior to data collection. Details of the production and characterization of this 

sample have been described elsewhere [26], and are also provided in the Supplemental 

Material. Homogeneity (> 97%) was validated by SDS polyacrylamide gel electrophoresis. 

The purified protein was dialyzed against 20 mM potassium phosphate, pH 6.5, and the 

protein concentration was adjusted to between 0.3–0.4 mM for NMR studies.

All NMR spectra were recorded at 25 ºC using cryogenic NMR probes. NMR data were 

collected on a Bruker AVANCE III 600 MHz spectrometer, processed using the program 

NMRPipe [30], and analyzed using the programs SPARKY [31] and XEASY [32]. Spectra 

were referenced to external DSS. Sequence-specific resonance assignments were determined 

using AutoAssign software [33, 34] together with interactive manual analysis. NMR data 

collection included simultaneous 15N,13C-edited 3D NOESY and 15N-edited 3D NOESY, 

both recorded with mixing time τm = 120 ms. Backbone dihedral angle constraints were 

then derived from the assigned chemical shifts using the program TALOS_N [16–19] for 

residues located in well-defined secondary structure elements. The programs ASDP [24, 25] 

and CYANA [35, 36] were used to automatically assign NOEs and to generate 3D structures, 

respectively. NOESY peak lists used for NMR-assisted predictions in CASP13 were all 

based on fully-automated NOESY peak assignment with ASDP.

For structure refinement, RPF analysis [37, 38], comparing observed and predicted NOESY 

peak lists, was used to guide iterative cycles of noise/artifact peak removal, peak picking, 

and NOESY peak assignments. The 20 conformers with the lowest target CYANA function 

value were then refined by restrained molecular dynamics in explicit water [39] using the 

program CNS [40]. Structural statistics and global structure quality factors were assessed 

using the PSVS 1.5 [41] and PDBStat [42] software packages. The global goodness-of-fit of 
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the final structure ensembles with the NOESY peak list data, the NMR DP score, was 

determined using the RPF program [37, 38].

Baseline Modeling with ASDP-Cyana

Baseline modeling was carried out using state-of-the-art “conventional” methods for 

modeling protein structures from NMR data. NMR structures were modeled using the ASDP 
program for NOESY peak assignment, together with Cyana for structure generation from the 

resulting restraints. This pipeline, described in detail elsewhere [25], was one of the top 

performing automated NOESY analysis methods in the CASD-NMR experiments [16–19]. 

ASDP uses expert system methods to assign NOESY cross peaks, and to generate distance 

restraints. These restraints are then input to a structure generation program. In this case, 

structures were generated from the restraints using the restrained molecular dynamics in 

torsion angle space module of the program Cyana. The resulting intermediate structure 

models are then used to iteratively rule in / rule out additional NOESY cross peak 

assignments [24]. The final structures generated in several cycles of NOESY peak 

assignment and model generation are then refined with these NMR restraints active using 

Rosetta, with loop remodeling and core repacking, as described elsewhere (Mao et al. 2013).

CASP Assessment Units and Assessment Metrics

Simulated sparse NMR data were provided to CASP13 predictors for 11 proteins and protein 

domains (Table 1, CASP Targets), ranging in size from 80 to 326 residues. In addition, real 

NMR data were provided for one target, protein T1008 (aka, foldit3) [26], of 80 residues. In 

this case, two different real NMR were made available, differing in the completeness of the 

assignment of the NMR frequencies. Submitted prediction models were assessed by 

standard CASP metrics [43–45]. Summed or averaged Z scores for each metric were 

computed by the CASP Prediction Center [46]. NMR DP scores [37], comparing the short 
1H-1H distances in prediction models with the NOESY peak list, and 15N-1H RDC Q scores 

[47, 48] were provided for each model submitted to the CASP Prediction Center for 

statistical analysis.

Accuracy of submitted models was evaluated at the domain level. Z scores were calculated 

for a total of 14 assessment units (domains) listed in the third column of Table 1. The Z 

score analysis excluded the combined domain constructs N0957s1-D1.D2 and N0989-

D1.D2, and also the n1008 target for which full NMR assignments were available, although 

structure accuracy metrics for these are also available on the CASP13 Prediction Site. The 

relative performance of participants was established based on the combination of Z scores 

calculated from per-target distributions of evaluation scores.

Sidechain Rotamer Analysis

In order to assess the accuracy of predicted structures against a reference structure, a useful 

metric of structure quality is the accuracy of side-chain rotamer states for well-defined (i.e., 

converged), buried (i.e., not on the protein surface) side chains [49]. PDBStat [42] is a 

computer program originally developed as a universal coordinate and protein NMR restraint 

converter. Its primary function is to provide a user-friendly tool for interconverting between 

protein coordinate and NMR restraint data formats. It also provides an integrated set of 
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computational methods for protein structure quality assessment. Here, the PDBStat program 

was extended for assessing the agreement of sidechain χ1 and χ2 rotamer states between 

predicted and reference protein structures. This automated sidechain analysis protocol of 

PDBStat was used to assess NMR-assisted protein structure predictions in CASP13.

The χ1 and χ2 rotamers for all residues in each reference structure were assigned to the 

nearest g+, t, or g− conformational state. Side chains with solvent accessible surface area 

(SASA) less than 40 Å2 in the reference structure (calculated using the program Molmol 
[50]) were considered as buried side chains. In considering NMR structure ensembles, side 

chains whose χ1 (or χ2) dihedral angle values had standard deviation of < 30 degrees were 

considered as ‘converged side chains’. For NMR-derived reference structures, the medoid 

conformer of the ensemble (i.e. the conformer most similar to all of the other conformers 

[42, 51]) was selected as the representative structure.

Organization of Simulated and Real Data for CASP Predictors

The NMR data packages distributed to CASP13 participants for each target are summarized 

in Supplementary Table S1. Data consisted of an Ambiguous Contact List (described 

below), a Table of Dihedral Angle Restraints, and a Table of RDC Values (for two 

alignments), where available. For several targets, residue-residue contact predictions, based 

on multiple sequence alignments (Evolutionary Contacts, ECs) from the Meta PSI COV 

server [14], were also provided. For bookkeeping, the participants also were provided a 

FASTA file with the protein sequence. All files were distributed as tab-separated text files, to 

facilitate data ingestion, compressed in a single archive. Simulated and experimental data 

were organized and distributed in essentially the same manner. All simulated and 

experimental data distributed to participants are available on the CASP13 web site (http://

www.predictioncenter.org/casp13/index.cgi), as well as from the Zenodo web site (DOI: 

10.5281/zenodo.3386805).

RESULTS

Simulation of Resonance Assignments

Sequence specific resonance assignments were simulated from the atomic coordinates of the 

X-ray crystal structures of 11 CASP-NMR targets (excluding targets N1008 and n1008 for 

which real NMR data were generated for this study). First, any selenomethione (MSE) 

residues in the original PDB coordinate file of the reference X-ray structures were changed 

to methionine (MET). Hydrogen atoms were then added to the coordinates of X-ray crystal 

structures with the program Reduce [52]. The resulting coordinates were then used to 

simulate 1H, 13C, and 15N chemical shift values using the program SHIFTX2 [53]. As one 

goal of the CASP13 experiment is to explore the impact of NMR data obtainable from NMR 

studies of larger proteins on the accuracy of structure prediction, resonance assignments 

were all simulated assuming a perdeuterated protein sample with typical selective 

reprotonation [22, 23]. Specifically, only backbone HN, N, Cα, and C’ atoms, sidechain Cβ 

atoms, and the C and H atoms of Ile(δ1), Leu, Val and Ala methyl groups were included in 

the simulated chemical shift table. This proton labeling pattern corresponds to that provided 

by the application of typical selective labeling strategies used for studies of proteins in the 
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size range 20 to 70 kDa. It was assumed that individual stereospecific assignments of the 

isopropyl methyls of Leu and Val were not available, and no corrections were made to 

account for deuterium isotope effects on bound 13C chemical shift values.

Simulation of NOESY Peak Lists

In order to create incomplete NOESY peak lists like those observed with real NMR data, a 

number of resonance assignments were deleted prior to simulating the NOESY spectra. In 

this process, illustrated for a representative target in Figure 1, our expertise in protein NMR 

studies was used to simulate the effects of line broadening due to conformational dynamics 

and/or weak spectra in causing “missing resonances”. First, we created a list containing 

selected regions for each CASP target proposed to exhibit missing resonances and/or 

NOESY cross peaks (e.g., yellow residues in Figure 1A). The choice of region to select was 

made so as to simulate the effects of local dynamics which could plausibly result in 

exchange broadening. This typically included surface loop residues and/or potentially 

dynamic secondary structures. Within each of these regions, we randomly selected 25% of 

the residues and deleted all chemical shift assignments for these residues (e.g., red residues 

in Figure 1B).

These chemical shifts were then used, together with 1H-1H distances from the atomic 

coordinates, to simulate 3D 13C-edited and 3D 15N-edited NOESY peak lists (frequencies 

and intensities) which would be obtained for perdeuterated 13C,15Nenriched, backbone 1HN 

and ILVA 13C-1H3 methyl labeled proteins. For all potential 1H-1H NOEs, a summation 

distance [42] was calculated from the atomic coordinates of all degenerate proton 

resonances,

rij = ∑
k = 1

n 1
rij, k

6 −1/6
. Eqn (1)

If the resulting rij was less than a cutoff distance Dcutoff, 3D 13C- or 15N-edited NOE cross 

peaks were simulated with intensity of 10,000 / r6
ij. The maximum observable interproton 

distance was set to 5 Å. NOESY “cross peaks” (frequencies and intensities in a NOESY 

peak list), representing these short inter-proton distances, were then created between these 

resonances. Adjacent NOESY peaks created within tolerances of 0.02 ppm for the direct H 

dimension, 0.2 ppm for the C/N, and 0.03 ppm for the indirect H dimension were merged, 

and the corresponding resonance frequencies were averaged, to simulate overlapped regions 

in the NOESY spectra. Short 1H-1H distances between protons in residues for which 

resonance assignments were deleted did not generate any NOESY peak, corresponding to 

False Negative, FNs.

After simulating these NOESY peak lists (i.e., the resonance frequencies and intensities of 

observable NOESY cross peaks, excluding cross peaks involving resonances that are 

missing due to exchange broadening), an additional 15% of the residues in the resonance 

assignment list were randomly selected and their chemical shift values were removed from 

the chemical shift list, while preserving the corresponding NOESY peaks (e.g., blue residues 

in Figure 1C). This process simulates the situation where the NOESY cross peak is present, 
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but one or both of the corresponding sequence-specific resonance assignments cannot be 

determined. These NOESY cross peaks cannot be correctly matched to the original 1H-1H 

pair, and have the potential to be incorrectly assigned. Finally, weak NOESY noise peaks 

were added to the NOESY peak lists, at frequency positions consistent with assigned 

resonances, but not corresponding to short 1H-1H distances in the reference structure. These 

are false positive NOESY peaks, FPs. The contacts indicated by these FP peaks are 

generally inconsistent with the native protein structure. This similar process of resonance 

assignment deletions (resulting in FNs and incorrect NOESY cross peak assignments) and 

random addition of weak NOESY peaks (resulting in FPs) was applied in simulating 13C- 

and 15N-edited 3D NOESY spectra peak lists from reference X-ray structures of 11 CASP-

NMR targets (excluding targets N1008 and n1008 for which real NMR data were available).

NMR data were simulated assuming a monomer structure for all targets. No efforts were 

made to simulate interfacial X-filtered NOESY data; homodimers were simulated as the 

single protomer. Targets N0957s1 and N0989 are two-domain proteins, in which each 

domain is well-defined relative to the other. Hence, the complete two-domain coordinates 

were used to simulate NOE and RDC data assuming the same static orientation of domains 

as observed in the corresponding X-ray crystal structures. Target N0980 is a dimer of 

heterodimers (2:2 tetramer). Since one chain is a small polypeptide, we simply used the 

coordinates of the single protomer of the larger subunit as the target for simulating NMR 

data. Target N0981 is a five-domain structure, in which the domains are likely to be 

independent of one another. Hence, each domain was treated as an independent target, and 

NOESY and RDC data were simulated separately for each of them.

Statistics on Simulated and Real NOESY Peak Lists

Statistics on the NOESY peak list data for each target are summarized in Supplementary 

Table S1 and Supplementary Figure S1. The process of simulating NOESY peak lists 

outlined here provided data sets with properties similar to those generally obtained for 

uniformly 15N,13C-enriched, perdeuterated proteins with ILVA methyl 13C-1H3 labeling. 

Analysis of these NOESY peak lists against the reference atomic coordinates showed that 5 

to 18% of short distances in the reference structures have no corresponding NOESY peak, 

and 5 to 10% of the NOESY peaks in these lists cannot be assigned to any true short 1H-1H 

distance. For these simulated NOESY peak lists, the data ranged from 3.5 to 9.3 NOESY 

peaks per residue. This compares to 8.4 NOESY peaks per residue for the sparse real data 

set N1008, and 43.4 NOESY peaks per residue for the generally complete experimental 

dataset of n1008. Generally speaking, the low restraint density (10 NOESY peaks / residue) 

of the simulated data sets, and of the real data set N1008, make these targets challenging for 

NMR-based structural determination using traditional methods.

These NOESY data sets (summarized in Supplementary Table S1) are not only sparse 

(incomplete), but they also include significant numbers of false peaks which cannot be 

satisfied by the correct structure. For the simulated datasets, 6.2 to 9.1% of the peaks in the 

NOESY spectra cannot be satisfied by the reference structure. For real data set N1008, the 

fraction of peaks with possible assignments for which none are consistent with the native 

structure is even higher, 19.7%. This is because this protein sample was fully protonated, but 
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its NOESY peak list was analyzed using only the backbone resonance assignments, 

including HN and Hα resonances; cross peaks involving sidechain atoms with chemical 

shifts similar to backbone atoms were thus often incorrectly assigned (uniquely or 

ambiguously) as backbone-backbone NOEs, making this real data set particularly 

challenging. For the real data set n1008, which included essentially complete backbone and 

sidechain assignments, only about 0.2% of the NOESY peaks cannot be explained by the 

final, refined solution NMR structure, a hallmark of high quality NMR data and structures 

[54].

Generation of Ambiguous Contact Lists

The ideal input for NMR-assisted prediction would be the unassigned NOESY peak lists 

together with sequence-specific NMR assignments and RDC data, as was done in the 

CASD-NMR project [16–19]. However, in order to reduce the extent of domain specific 

NMR spectroscopy knowledge required for participation in CASP13, the organizers instead 

provided these NOESY data as “Ambiguous Contact Lists” (Supplementary Figure S2). For 

each NOESY peak, the Ambiguous Contact List provides the set of 1H-1H pairs which, 

within a defined frequency tolerance of matching the NOESY peak frequencies to the 

chemical shift frequencies, are possible assignments for each NOESY peak.

Ambiguous Contact Lists were generated by analyzing simulated (or real) NOESY peak lists 

together with the corresponding resonance assignment lists, without knowledge of the target 

3D structure. The resonance assignment list was first modified to simulate the small 

inconsistencies generally seen between peak frequencies measured in the NOESY spectrum 

and the corresponding frequencies in the resonance assignment list. Random noise shifts 

were added to the chemical shift values in each dimension, with standard deviation 0.01 ppm 

for direct 1H dimension, 0.20 ppm for indirect C/N, and 0.02 ppm for the indirect 1H 

dimension. 3D NOESY peak lists were then analyzed together with these resonance 

assignment lists using the Cycle 0 module of the program ASDP. This algorithm assigns 

NOESY cross peaks to one or more potential 1H-1H interactions based on chemical shift 

matching. These initial assignments use information, based on backbone chemical shift, on 

the locations of α-helices and β-strands, inter strand alignments, and other topological rules 

derived automatically from distances within standard secondary structures, to reduce the 

ambiguity of NOESY cross peak assignments, as described elsewhere [24]. The Cycle 0 

ASDP analysis was executed with match tolerances of 0.03 ppm for H atoms and 0.30 ppm 

for C/N atoms, and with parameters Dcutoff = 5.0 Å and Dupper = 7.5 Å.

In this protocol, outlined in Figure 2, only one cycle of ASDP was executed. If peaks could 

be uniquely assigned by the algorithms of ASDP cycle 0, the unique assignments for these 

particular NOESY peaks, including any unique long-range HN-HN NOEs important for β-

strand alignments, were included in the Ambiguous Contact Lists. Short-range intra-residue 

and sequential NOESY peak assignments (|i-j| ≤ 2) were excluded. For each remaining 

NOESY peak, the output of ASDP Cycle 0 provided all possible proton pair assignments 

within the defined resonance frequency match tolerances. In practice, each NOESY peak is 

assigned to a set of ambiguous 1H-1H pair assignments whose chemical shifts are 

compatible with the resonance frequencies associated with the 3D NOESY peak. In the 
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absence of experimental errors, at least one of these 1H-1H pairs should correspond to a 

short-distance interproton interaction that is consistent with the native protein structure. 

However, NOESY peaks that arise from unassigned resonances, as well as random noise 

peaks, will provide a set of ambiguous contacts, or possibly even a unique assignment, none 

of which are consistent with the native structure. We calibrated the number of added noise 

peaks so that number of FP contacts due to these random noise peaks did not exceed 10% 

(except for real data set N1008) of the final ambiguous restraint list. The resulting 

Ambiguous Contact Lists (Supplementary Figure S2) were provided to CASP predictors.

Backbone Dihedral Angle Restraints

For relatively static protein conformations, backbone chemical shift data can be used to 

make reliable predictions of backbone dihedral angle values based on statistical assessment 

against the database of protein chemical shifts and local structures [53]. In this work, we 

observed that dihedral angle restraints computed using the program Talos_N [55], from 

chemical shifts predicted from the atomic coordinates with the program SHIFTX2, were not 

always consistent with the X-ray crystal structure used to predict the chemical shifts. This 

probably reflects shortcomings in the accuracy of these chemical shift predictions. In order 

to provide the kind of restraint data based on backbone chemical shifts that would be 

available using real NMR data, the backbone dihedral angle restraints for residues with 

“observed” and “assigned” backbone chemical shifts (i.e. for residues that were not deleted 

from the chemical shift list) were also provided to CASP predictors. These dihedral 

restraints were provided as ranges, in which two random numbers between 5 and 30 degrees 

were added and subtracted from the dihedral angle value observed in the reference X-ray 

structure.

Simulation of 15N-1H Residual Dipolar Coupling (RDC) Data

RDCs arise from the interaction of two magnetically active nuclei in the presence of the 

external magnetic field of an NMR instrument. In solution NMR studies, this interaction is 

normally reduced to zero due to the isotropic tumbling of molecules in their aqueous 

environment. The introduction of partial order to the molecular alignment reintroduces 

dipolar interactions by minutely limiting isotropic tumbling. This partial order can be 

introduced in numerous ways, including inherent magnetic anisotropy susceptibility of 

molecules, incorporation of artificial tags (such as lanthanides) that exhibit magnetic 

anisotropy, or using a liquid crystal or otherwise partially-ordered aqueous solution.

The RDC interaction phenomenon has been formulated in different ways. To harness the 

computational synergy of RDC data, in this study we have utilized the matrix formulation of 

this interaction as shown in Eqn (2). The matrix S shown in Eq (2) and (3) represents the 

Saupe order tensor matrix (the ‘order tensor’) that can be described as a 3×3 symmetric and 

traceless matrix. Dmax in Eqn (2) is a nucleus-specific collection of constants, rij is the 

separation distance between the two interacting nuclei (in units of Å), and vij is the 

corresponding normalized internuclear vector
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Dij = Dmax
rij3

vij ∗ S ∗ vijT Eqn (2)

S =
Sxx Sxy Sxz
Sxy Syy Syz
Sxz Syz Szz

Eqn (3)

vij =
cos θx
cos θy
cos (z)

Eqn (4)

The software package REDCAT [56, 57] used this formalism to simulate 15N-1HN RDCs for 

the target proteins. REDCAT uses the protein structure and an order tensor S to calculate 

RDCs using Eqns. 2–4. For each of the target protein structures, two different order tensors 

were calculated using the software package PALES [58]. PALES utilizes a steric collision 

model to calculate order tensors in different simulated alignment media. In this work, two 

different simulated alignment media were utilized: bicelle (wall-like structures) and phage 

(rod-like structures). The concentration used for both simulations was 0.05 units. The 

resulting 15N-1H RDC for the “observed” and “assigned” residues of each target were 

provided to CASP13 predictors.

Summary of NMR Data

Table 1 also summarizes the numbers of RDCs, dihedral restraints, and ambiguous contacts 

(NOESY peaks) provided to predictors for each target. The number of all possible atom pair 

assignments for all NOESY peaks provide by ASDP Cycle 0 ranged from 504 (for target 

data set N0981-D2) to 49,887 (for target data set N1005). These NOE-based contacts, 

provided to CASP predictors. had an average of 2 to 11 possible atom pair assignments per 

contact, with maximum ambiguity of 92 possible assignments per contact.

Assessment of Baseline NMR Assisted Modeling with ASPD

Baseline modeling was carried out for each target using the ASDP software program for 

NOESY peak assignment and restraint generation. These “baseline structures” were 

modeled in “blinded fashion”, in which simulated NOESY and RDC data were provided to 

one of the authors (JH) without her knowledge of the reference structures, and structures 

were generated from these data using the conventional automated NOESY assignment and 

modeling algorithms of the ASDP software. ASDP takes as input the NOESY peak and 

resonance assignment lists, from which the Ambiguous Contact Lists were derived. For this 

reason, the ASDP baseline calculations used these NOESY peak lists, rather than the 

Ambiguous Contact Lists, as input. Peaks in these unassigned NOESY peak lists were 

labeled only by the corresponding resonance frequencies, and did not include any link to the 

table of chemical shift assignments. NOESY peaks were assigned and disambiguated using 

ASDP, these data were interpreted as calibrated distance restraints, and the resulting 
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assigned distance restraints were used to generate structural models with the software 

CYANA [59]. The resulting structures were further refined using restrained Rosetta 

refinement [60], as outlined in the Methods section.

Baseline models were generated using three protocols. Baseline_Group 321 provided 5 

models generated using the simulated (or real) sparse NOESY, dihedral, and RDC data, 

without EC contact predictions. Baseline_Group 459 provided 5 models generated using 

these same data, plus EC contact predictions from the Meta PSI COV server [14], which 

were also provided to all predictors. A third set of models was generated for each target 

using ECs from the EVFold contact prediction pipeline [61], run locally for this study. 

Alignments were generated using five jackhmmer [62] iterations against the Uniref100 

sequence database (February 2018 release), with multiple normalized bitscore thresholds 

ranging from 0.1 to 0.9 (with T0981 subsequently run at 0.03). Alignments were chosen 

based on maximizing both the effective number of sequences and the non-gap coverage of 

each position. Pseudolikelihood maximization was then used to compute evolutionary 

couplings using the alignments, with the default settings found at the evcouplings.org 

webserver. These ECs were then combined with NMR data to generate EC-NMR structures, 

and the top 5 scoring models were selected. The resulting 15 models for each target (5 from 

NMR alone, 5 from EC-NMR using Meta PSI COV, and 5 from EC-NMR using EVFold 

ECs) were then assessed using the DP score “NMR R-factor” metric, which compares the 

contact map for the NMR-derived model against the NOESY peak list [37, 38]. The five 

models with highest DP score were then submitted as Baseline Group 313.

These baseline models were then assessed by the CASP Prediction Center. All three baseline 

groups (ASDP Baseline_Groups 313, 321, and 459) had similar overall accuracy 

performance based on GDT-TS, GDT_HA, GDT_ALL, GDC_SC, SphereGrinder, and RPF 

assessment metrics (these metrics are described in [45] and [44]). In general, modeling 

accuracy was highest for ASDP Baseline_Group 313 (best DP score), followed by ASDP 

Baseline_Group 459 (with Meta PSI COV ECs), and then ASDP Baseline_Group 321 

(without ECs). Interestingly, using the knowledge-based MolProbity assessment score, the 

highest quality structures were those generated by protocol ASDP Baseline_Group 321 

(without ECs), while ASDP Baseline_Group 459 (with PSI COV ECs) had significantly 

poorer MolProbity scores, suggesting that inclusion of contact predictions in these protocols 

can distort models from their best atomic packing conformations. For the sake of simplicity, 

in the remaining analysis we utilize only the ASDP Baseline_Group 321 (without ECs) and 

ASDP Baseline_Group 459 (with PSI COV ECs) as the baseline comparison results.

Initial Assessment of NMR Assisted Predictions

Six CASP13 predictor groups participated in this NMR-guided prediction experiment; 

Forbidden (122), KIAS-Gdansk (208), Meilerlab (250), UNRES (288), Laufer (431), and 

wf-Baker-UNRES (492). An initial ranking of the six NMR-guided prediction groups, along 

with two baseline groups, was done using summed GDT-TS Z scores for the first-ranked 

model submitted for each predictor group (Figure 3A), as described elsewhere [43, 63, 64]. 

For the calculation of the summed GDT-TS Z scores we used the common convention of 

setting the Z score = −2 for any model with Z score ≤ −2 [43, 63, 64]. This is done so as not 
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to heavily penalize the worst models, and to encourage the exploration of new (perhaps less 

successful) methods in CASP.

Figure 3A demonstrates that two prediction groups (Laufer and Meilerlab) generally 

provided more accurate models than the baseline groups. The same conclusion was drawn 

by considering the ‘best of 5’ models from each group, and also for the individual 

assessment measures GDT_HA, GDT_All, GDC_SC, Sphere Grinder, and RPF. However, in 

ranking using only MolProbity scores, groups Laufer and Meilerlab are reversed in their 

relative order; apparently group Meilerlab, using the Rosetta force field and fragment 

libraries, does a better job of generating better packed and more physically plausible 

conformations, with better MolProbity scores.

Principal Component Analysis (PCA) on Assessment Metrics

A good CASP prediction should be both similar to its corresponding experimentally derived 

target structure and physically reasonable. Therefore, the ranking of predicted structures for 

a given CASP target should incorporate statistics, such as the GDT-TS [65], quantifying how 

accurately a structure models a target, as well as measures of biophysical structure quality 

such as the MolProbity score [66]. Incorporation of multiple measures of structure accuracy 

and quality into a single ranking involves either folding multiple statistics into a single 

composite score or using consensus methods to combine rankings based on multiple 

measures of structure quality and accuracy into a single composite ranking. As in previous 

template-based modeling CASP experiments [43, 63, 64], our final ranking of NMR data 

assisted predictions in CASP13 combines multiple structure evaluation statistics using a 

weighted sum. Thus, the question of how to rank predictions of a given target reduces to a 

question of finding appropriate weights to use in adding together a selection of 

measurements of structure quality and accuracy.

We chose to use for evaluation of NMR-data assisted structure predictions superposition-

dependent global measures of structure accuracy (GDT-HA and GDT-SC), a local 

superimposition dependent local measure of structure accuracy (SphereGrinder), 

measurements of the accuracy of interatomic contact areas (CAD-AA) and contact distances 

(RPF), and a measurement of the physical reasonableness of the structure (MolProbity 

score).

A recent analysis [44] of protein structure evaluation scores indicates that most methods for 

structure evaluation are highly correlated. We observed this also for the set of metrics we 

used for assessing NMR-assisted structure predictions (Supplementary Table S2). The 

MolProbity score, however, is less correlated to the other scores, and provides 

complementary information. While the MolProbity score was distinct, none of the scores 

was inconsistent with each other according to Friedman’s test. In general, models with 

reasonable accuracy were (as judged by MolProbity score) physically reasonable structures, 

although some models with good Molprobity scores were not particularly accurate. 

Inaccurate models with good MolProbity scores have also been observed in assessments of 

incorrect homology models [67] and of inaccurate CASD-NMR experimental NMR 

structures [18, 19].
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The high correlation between structure evaluation statistics suggests that Principal 

Component Analysis (PCA) may be a useful ad hoc method to calculate weights for 

summing multiple measurements of structure quality and accuracy. PCA identified that a 

composite score of 0.442*Z_GDT_HA + 0.449*Z_GDT_SC + 0.425*Z_RPF + 

0.428*Z_SphGrdr + 0.433*Z_CAD_AA + 0.227*Z_MolProbity (where Z_[X] indicates the 

z-score calculated on a per target basis, using the first model provided by each predictor, 

from quality measure [X]) explains approximately 87% of the variance in structure 

evaluation scores (Supplementary Table S3). Setting all Z-scores below a certain threshold 

yields a similar composite statistic via PCA. We rounded the coefficients of the PCA score 

explaining the highest amount of variance down to the nearest tenths to create the following 

linear regression: 0.40 for GDT-HA, GDC-SC, RPF, SphereGrinder and CAD-AA and 0.20 

for MolProbity. Note that while PCA is a useful tool for constructing a composite metric for 

assessing structure prediction quality, we do not necessarily expect PCA-derived weights 

will be similar from one CASP dataset to the next.

Overall Ranking Based on PCA-defined Combination of Scores

The final ranking of NMR-assisted predictions, using the combined weighted Z sores of 

GDT-HA (0.4), GDT-SC (0.4), RPF(0.4), SphereGrinder (0.4), CAD-AA (0.4) and 

MolProbity (0.2) is illustrated in Figure 3B for the predictor-designated “first” models. 

Again, in this analysis Z score is set to −2 for any model with Z score ≤ −2. Similar results 

were obtained by selecting the best-scoring model out of the 5 submitted. These rankings are 

essentially the same as those obtained using the GDT-TS (or other individual metrics) alone. 

Relative to the baseline groups, two prediction groups (Laufer and Meilerlab) generally 

provided more accurate models, while the remaining four groups had somewhat poorer 

accuracy performance. For the 14 assessment units (AUs, listed in column 3 of Table 1), the 

top prediction groups were Laufer 431 for 7 AUs, Meilerlab 250 for 3 AUs, ASDP 

Baseline_Group 321 (without ECs) for 2 AUs, and ASDP Baseline_Group 459 (with PSI 

COV ECs) for 2 AUs, respectively. Groups wf-Baker-UNRES and KIAS-Gdansk also 

outperformed the ASDP Baseline_Groups on 3 and 1 AU, respectively. These results 

demonstrate that for 10 of 14 AUs, two CASP13 predictor groups - Laufer and Meilerlab – 

submitted first-ranked models for many targets that are more accurate than those generated 

using our conventional automated ASDP modeling protocol.

Target N1008 – Real NMR Data with Backbone Assignments Only

Two real NMR data sets (N1008 and n1008) were provided for the data-guided prediction 

program of CASP13. Both data sets were for the CASP COMMONS target T1008 (foldit3), 

proposed by Brian Koepnick and David Baker as part of their project assessing de novo 
protein design by citizen scientists in the online protein-folding game Foldit (Koepnick et al, 

2019). Foldit players were provided a set of general principles for protein design in the form 

of Foldit rules, and the resulting designs were assessed by Rosetta stability calculations. One 

hundred and fifty-six designs were encoded in synthetic genes, which were expressed, 

screened for stability, and (in 4 cases) experimental structures were determined (Koepnick et 

al, 2019). One of the protein designs, the 80-residue foldit3 protein, was produced for 

CASP13 with uniform 15N,13C-enrichment, and its structure was determined by 

conventional triple-resonance NMR in the context of this project. The structural statistics 
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and global structure quality factors including Verify3D ([68]), ProsaII [69], PROCHECK 

([70]), and MolProbity [66] raw and statistical Z-scores were computed using the Protein 

Structure Validation Suite Software PSVS 1.5 [67] and PDBStat [42] software packages. 

The global goodness-of-fit of the final structure ensembles with the NOESY peak list data, 

the NMR DP score, was determined using the RPF analysis program. The resulting 

reference 3D structure of foldit3, CASP target 1008, exhibits excellent convergence and 

structure quality statistics (Supplementary Table S4). This structure and the associated data 

have been deposited in the Protein Data Bank (PDB id 6msp) and chemical shifts have been 

deposited in the BioMagResDataBase (BMRB id 30527).

Ambiguous Contact Lists for target 1008 were provided to CASP13 predictors as two 

distinct NMR-assisted targets. In the first cycle, NMR-assisted target N1008, backbone 

resonance assignments (only) were combined with complete 15N- and 13C edited NOESY 

spectra and Talos_N backbone dihedral restraints (derived from backbone chemical shift 

data) as input to the program ASDP. Following one cycle of analysis with ASDP, the 

structure-independent NOESY peak assignments (most of which are assigned to multiple 

possible 1H-1H interactions) were used to generate the Ambiguous Contact List for target 

N1008. This CASP13 target explores a novel approach to NMR structure determination, in 

that 1H-1H NOE interactions due to backbone-sidechain and sidechain-sidechain contacts 

are present in the NOESY peak list, but cannot be correctly assigned as the sidechain 

resonances are not present in the chemical shift list. For the second target data set, NMR-

assisted target n1008, the nearly complete backbone and sidechain resonance assignments 

were combined with complete 15N- and 13C-edited NOESY data and Talos_N backbone 

dihedral restraints, as input to ASDP. Following one cycle of analysis with ASDP, the 

structure-independent NOESY peak assignments (most of which, again, are assigned to 

multiple possible 1H-1H interactions) were used to generate Ambiguous Contact List n1008. 

In this case backbone-sidechain and sidechain-sidechain NOEs could generally be reliably 

assigned. Note that no RDC or EC data are available for target 1008. CASP13 predictor 

models provided using Ambiguous Contact Lists N1008 and n1008 were all assessed against 

the final manually-refined NMR structure.

Data set N1008 was designed to test the ability to combine backbone-only assignments with 

advanced structure prediction methods. Several studies have previously explored the 

combination of sparse NMR data obtained on perdeuterated protein samples with advanced 

molecular modeling methods [7, 8, 71–78]. For such data sets, the NOESY cross peak 

assignments are not complicated by the presence of unassigned sidechain resonances. 

However, in the case of N1008, the backbone resonances were assigned in a fully protonated 
13C,15N-enriched protein sample; hence the NOEs may arise from backbone/backbone, 

backbone/sidechain, or sidechain/sidechain interactions. Since the sidechain resonances are 

not in the chemical shift list, many backbone/sidechain NOEs may be incorrectly assigned 

as unique backbone/backbone interactions; this is particularly problematic for NOEs 

involving resonances which are degenerate with assigned backbone HN and Hα protons. The 

resulting falsely assigned backbone – backbone contacts might be expected to corrupt the 

structure. The goal of this experiment is to assess if data-guided predictions could overcome 

such corruption and provide an accurate 3D structure without sidechain assignments. In 

practice, the complicating effects of NOEs involving sidechain protons can be overcome 
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using protein samples with perdeuterated Hα and sidechain resonances. However, here we 

explored the potential of avoiding perdeuteration, completing backbone assignments, and 

using such noisy NOESY data for accurate structure determination.

CASP13 results for target N1008 are illustrated in Figure 4. While these NOESY peak lists 

contain large numbers of NOE peaks which cannot be correctly assigned using the backbone 

chemical shift list, three prediction groups did very well with these data: Meilerlab 250 

(GDT-TS 0.75), KIAS-Gdansk 208 (GDT-TS 0.73), and Laufer 431 (GDT-TS 0.68). The 

results of the ASDP baseline group 321 (GDT-TS 0.53) was significantly less accurate (note 

that Baseline group 459 did not contribute a distinct structure because no ECs are available 

for this de novo designed protein). For this N1008 data set, the first selected model of 

predictor groups were 15 to 22 GDT-TS points higher than the best models provided by the 

significant value of these modeling methods in obtaining accurate structures from sparse, 

noisy NOESY data.

Although target N1008 was a NMR-data assisted CASP target, some of the “regular 

predictions”, which did not use any NMR data, were also quite good. In particular, 

SHORTLE 281 (GDT-TS 0.91) (Figure 4), A7D-DeepMind 043 (GDT-TS 0.81), and other 

regular predictor groups did remarkably well with this target, and significantly better than 

any group could do using these sparse NMR data. It should be noted that target 1008 is a de 
novo designed protein, and may be more amenable to accurate structure prediction 

compared to natural proteins. None the less, these results suggest hybrid methods in which 

models generated with regular methods are simply validated or refined against NMR data 

could be used for data sets like that provided for N1008.

Target n1008 – Real NMR Data with Extensive Backbone and Sidechain Assignments

Data set n1008 was provided as a control for performance with essentially complete NMR 

assignments. A reliable NMR-assisted prediction method should do well with these data. 

Because n1008 was among the very last data sets released for CASP13, only four predictor 

groups, plus Baseline_Group 321, ASDP without ECs, submitted models for n1008. For this 

data set, Baseline Group 321 provided the most accurate top ranked model, with GDT-TS 

0.83. Laufer-431 also submitted a good first-ranked model (GDT-TS 0.57), followed by 

UNRES 288 (GDT-TS 0.41), Forbidden 122 (GDT-TS 0.40), and wf-Baker-UNRES 492 

(GDT-TS 0.27). These results highlight the value of such control data in testing and 

developing NMR-assisted prediction methods, as the n1008 control data set is an important 

benchmark for testing various methods.

Overall Performance Per Target Per Group

Table 2 provides a summary of overall performance for the six predictor groups and two 

Baseline groups (321No EC or 459 Meta-PSI-COV EC), based on GDT-TS score of the top-

ranked submission, per group, and per target. The table is color coded so that GDT-TS 

scores > 0.50 (correct fold) are colored in shades of green, and scores < 0.50 in shades of 

red. Certain targets (e.g. N0981-D4) appear to be relatively easy, as most groups submitted 

good models with GDT-TS > 0.50 while other targets (e.g. N0989, N0981-D2, N0981-D3, 

and N1005) were more difficult. Not surprisingly, the largest targets (> 200 residues) were 
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all among the most difficult targets. These results suggest that more efforts are needed even 

by the best NMR-assisted prediction methods, for addressing larger perdeuterated proteins 

where only sparse NMR data can be collected.

Sidechain Rotamer Metrics

Another valuable structure quality metric involves comparing the sidechain conformations of 

buried residues in predictor models versus the reference structure [49]. Both χ1 and χ2 

sidechain rotamer states for residues with buried side chains were compared between the 

first-ranked predicted models and the corresponding reference structure using the PDBStat 
program [42], as described elsewhere [49]. Groups Laufer 431, Meilerab 250, and KIAS-

Gdansk 208, well as ASDP Baseline_Groups 321 and 459, provided models with 

significantly better than average χ1 and χ2 sidechain rotamer agreement with reference 

structures, compared with the other predictor groups (Figure 5). However, all of the 

predictor groups have average χ1 and χ2 rotamer agreement of only 30 to 60%, indicating 

that this is a valuable metric which should be focused on in future CASP experiments.

RDC Q-Scores for NMR-Assisted Prediction Models

The RDC Q-score is a measure of the agreement between RDC values calculated from the 

model, and the RDC data. The Q-score ranges from 1 to 0, with lower values indicating 

better agreement between calculated and observed RDCs. The average 15N-1H RDC Q-

scores for each of the six predictor groups ranged from 0.49 to 0.83 (Supplementary Figure 

S3). These scores are significantly poorer than those of the baseline groups, which range 

from 0.19 to 0.21. Among the predictor groups, the best average RDC Q-scores were for 

models submitted by Meilerlab (average RDC Q-score 0.49) and Laufer (average RDC Q-

score 0.63). The submitted models of the remaining four predictor groups have poor RDC 

Q-scores. These results demonstrate that all of the data-guided predictor groups could 

improve model accuracy by better consideration of RDC data in their prediction algorithms.

DP Scores for NMR-Assisted Prediction Models

The NMR DP score [37, 38] is a “NMR R factor”, comparing the short 1H-1H distances in a 

protein structure model with all possible assignments of peaks in the NOESY peak list, 

considering the available chemical shift data. The NMR DP score ranges from 0 to 1, and is 

correlated with structural accuracy. Correct structures generally have DP scores > 0.6 [37, 

38, 54]. The DP scores for each of the six predictor groups ranged from 0.47 to 0.69 

(Supplementary Figure S4). These scores are generally lower than those of the baseline 

groups, which range from 0.73 to 0.75. However, ASDP uses the DP score to guide the 

automated NOESY peak analysis process. Among the predictor groups, the best average DP 

scores were for NMR-assisted models submitted by Laufer (average DP score 0.69) and 

Meilerlab (average DP score 0.63). DP scores for each reference X-ray crystal and NMR 

structure, and for the best regular and NMR-assisted models submitted for each target are 

summarized in Supplementary Figure S5. These are generally consistent with the 

corresponding GDT-TS scores. Overall, the NMR-assisted predictor rankings based on DP 

scores are consistent with the rankings based on GDT-TS and other conventional CASP 

metrics, placing Laufer and Meilerlab as the best performing NMR-assisted prediction 

groups in CASP13.
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DISCUSSION

Simulations of NOESY Data for CASP Targets

Simulated data provide an important tool for computational methods development. Although 

it is challenging to accurately simulate something as complex as a protein NOESY peak list, 

the powerful advantage of such simulated data is that the ground truth structure is known. 

Using real data has the advantage of including effects which are not captured in simulated 

data. For example, protein dynamics and signal overlap are primary causes of errors in the 

conversion of NMR observables into structural restraints, and may be difficult to account for 

in simulating NOESY data. However, with real data the “true” structural distribution from 

which these data arise is generally not known.

Normally, one cannot assign the frequencies of resonance of all nuclei in a protein. In 

practice, two scenarios may occur: either there are no observable peaks involving a given 

nucleus, because of local dynamics preventing their detection, or the resonance cannot be 

assigned to a unique atom with confidence, e.g. due to accidental degeneracies. In the latter 

case, peaks are observable but cannot be converted into the appropriate structural restraints. 

For this work, we introduced both types of problems in our simulations, by manually 

selecting for each target regions of protein sequence from which resonance assignment were 

deleted. To simulate missing NOESY data for assigned resonances, removed some 

resonance assignments before simulating the NOESY peak list. To simulate missing 

assignments of resonances which do provide NOESY peaks, we removed resonance 

assignments for some residues after simulating the NOESY spectrum, while retaining the 

NOESY peaks. This second situation is actually common in sparse NMR data sets, and can 

lead to restraints that are incorrect. For example, mis-assignments of NOESY peaks due to 

missing resonance assignments are particularly extensive for the real NMR data set N1008, 

in which only backbone resonance assignments were provided while the NOESY peak list 

includes NOEs with unassigned sidechain resonances. Importantly, some of the modeling 

methods used in this data assisted CASP13 experiment were able to overcome the challenges 

of these real data provided for target N1008, to provide accurate structures without the need 

for sidechain resonance assignments or perdeuteration of the protein sample. This represents 

a novel approach to small protein structure determination by NMR.

In CASP11, one successful strategy used by the Baker lab was to focus their initial NMR-

guided predictions on the uniquely assigned NOE-based contacts provided in the 

Ambiguous Contact Lists (7). Supplementary Table S5 provides an analysis of the unique 

long-range, and unique HN-HN long-range, contacts in the Ambiguous Contact Lists 

provided to CASP13 predictors. These ranged from 0.8 to 1.6 uniquely-assigned long-range 

contacts per residue, and from 0.24 to 0.58 HN-HN long-range contacts per residue, similar 

to the distributions provided in the CASP11 Ambiguous Contact Lists, which were also 

based on simulated NOESY peak lists. For the real sparse NMR data set, target N1008, the 

Ambiguous Contact List has 0.54 and 0.28 unique long-range and unique HN-HN long-range 

contacts, respectively. These densities of long-range contacts in this real NMR data set are 

similar to, but at the lower-end, of the ranges provided in the simulated Ambiguous Contact 

Lists.
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Impact of NMR Data in Improving Regular Predictions

An important question to be addressed in this NMR data guided prediction component of 

CASP13 is whether incorporation of sparse experimental data can improve the accuracy of 

prediction. To assess this, we compared the best “regular prediction” model with the best 

“NMR data assisted” model, where both the regular and assisted models were provided by 

the same predictor group; i,e, for Forbidden, KIAS-Gdansk, UNRES, Laufer, and wf-Baker-

UNRES. Meilerlab did not provide a “regular prediction”, precluding this analysis. The 

CASP organizers recognize that predictor groups may have utilized different modeling 

methods for their regular and “NMR assisted” predictions, or even used models submitted 

by other predictor groups, which became available between the release of “regular” and 

“data assisted” targets, making these comparisons not as rigorous as we might like.

Our results show that, in most cases, incorporation of NMR data results in models with 

much higher accuracy predictions. NMR-assisted prediction models are, on average, more 

accurate than the corresponding regular prediction by the same group (Figure 6A). Modeling 

methods that used NMR data generally improved accuracy of prediction over modeling 

methods used by the same groups without NMR data. In some cases, the improvement for 

particular targets was as much as 40 GDT-TS points (Figure 6B). The improvement was 

particularly dramatic for groups Laufer (average improvement across all targets of 25 GDT-

TS points; maximum improvement on a specific target of 42 GDT-TS points) and wf-Baker-

UNRES (average improvement across all targets of 5 GDT-TS points; maximum 

improvement on a specific target of 39 GDT-TS points). Hence, we conclude that sparse, 

noisy NMR data can generally improve model prediction accuracy. In some cases, however, 

incorporating these simulated or real NMR data resulted in reduced model accuracy for 

some targets; e.g. most of the predictor groups submitted first-ranked “data assisted” targets 

which are less accurate than their corresponding “regular” predictions (Figure 6B). For 

group KIAS-Gdansk 208, this results in an average reduction in GDT-TS score across all 

targets of - 5 GDT-TS points (Figure 6A). These results suggest that more efforts are needed 

by predictor in implementing sparse NMR data in their data-guided prediction algorithms.

NMR-Assisted Predictions of Larger Proteins

None of the NMR-assisted groups did particularly well with the three larger (> 200 residue) 

targets (Table 2). For these targets, most NMR-assisted models have GDT-TS < 0.50. The 

most accurate predictions were those of the Laufer (2 of 3 targets) and ASDP baseline (1 of 

3 targets) groups. This contrasts the results in CASP11, where two predictor groups, Lee and 

Baker, were particularly outstanding in modeling larger (>200 residues) proteins more 

accurately than baseline methods using sparse NMR data. Regrettably, neither these Lee or 

Baker groups of CASP11 participated in the NMR-assisted prediction component of 

CASP13.

The Best “Regular” Prediction for a Target was Often More Accurate than the Best “Data 
Assisted” Prediction

A second key question we wanted to address involves comparing the accuracy of all regular 

prediction methods with NMR data assisted predictions. For 6 of the 13 targets, the best 

NMR-assisted models were more accurate than any regular prediction (solid yellow 
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histogram bars in Figure 7A). This improvement using the NMR data was particularly 

dramatic for target N0981-D2 (Figure 8). For this target, the best NMR-assisted model 

(Baseline_Group 313 ASDP No EC, GDT-TS 0.68) is significantly more accurate than the 

best unassisted regular model (Venclovas 366; GDT-TS 0.35). Interestingly, all 15 of the top-

ranked assisted models for target N0981-D2 were from the Baseline groups 321, 459, and 

313. This may reflect the nature of this fold, since the ASDP program uses algorithms 

designed to address the unique features of beta sheets [24]. The best NMR-assisted models 

submitted by predictor groups Laufer (GDT-TS 0.46) and Meilerlab (GDT-TS 0.36) were 

also more accurate than the best model from regular prediction groups. These results 

confirm the expectation that, generally speaking, inclusion of sparse NMR data improves the 

accuracy of predictions. Detailed descriptions of the methods used by Laufer [79] and 

Meilerlab [80] are presented in their own papers on NMR-assisted prediction in CASP13.

Although NMR-assisted modeling provide the best models generated by any methods for 

several targets, for 7 out of 13 targets used in the NMR-data assisted component of CASP13, 

the most accurate (best) model provided by a regular prediction group was actually more 

accurate than the most accurate model provided by any NMR-data assisted prediction group 

(hashed yellow histogram bars in Figure 7A). This is also evident by plotting the GDT-TS 

score for best model submitted by the NMR-assisted groups against the GDT-TS score for 

the best model of the corresponding target by any regular prediction group (Figure 7B); 

many of these comparisons fall below the diagonal indicating that at least one regular 

prediction group provided a more accurate model than the corresponding NMR-assisted 

model. Although in these cases, the improved accuracy of the non-assisted group is only 

marginal, they are non-the-less impressive because no sample-specific experimental data 

was used. The regular prediction groups providing these highly accurate “regular 

predictions” include groups A7D 043 (Deep Mind), Zhang 322, Venclovas 366, slbio_serve 

266s, SHORTLE 281 and MULTICOM 083. Several of these regular prediction groups 

utilize novel machine learning methods to guide structural modeling. For the NMR-guided 

targets, group A7D 043 (Deep Mind) provided the most accurate models for 6 of 13 targets, 

and 10 of 16 assessment units; they also contributed 27 of 48 (i.e., 3 × 16 = 48) top three 

most accurate models. These remarkable results suggest a novel approach for structure 

determination using sparse NMR data, in which pure prediction methods, like the machine 

leaning methods being developed by Deep Mind, Zhang, MULTICOM, and other groups, 

are first used to generate structural models, and the sparse NMR data is then used validate 

and/or refine these models.
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Fig. 1. Schematic Depiction of Process for Simulating Missing NOESY Peak and Resonance 
Assignment Data for CASP-NMR Target N0968s1.
(A) Ribbon representation of the backbone structure of T0968s1 showing the locations (in 

yellow) of candidate regions for NOESY peak and/or resonance assignment deletion. (B) 

Residues (red) for which all resonance assignments are deleted prior to generating the 

NOESY peak list. This results in the elimination of potential NOESY peaks from the 

simulated spectra due to, for example, conformational exchange broadening. (C) Residues 

(blue) for which, after the NOESY cross peaks are generated, all resonance assignments are 

deleted. These data simulate the case where NOESY peaks are observed, but one or more of 

the corresponding 1H resonances are not assigned. These NOESY cross peaks are present in 

the NOESY peak list, but cannot be correctly assigned, and often result in incorrect NOESY 

cross peak assignments due to accidental degeneracies with observable resonances.
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Fig. 2. 
Process Flow Chart for Generating Ambiguous Contact Lists for NMR-Assisted CASP13.
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Fig. 3. Summed Z Score Ranking of CASP13 NMR-Assisted Predictions.
(A) Summed GDT-TS Z scores. (B) Weighted summed Z scores for multiple metrics, as 

described in text.
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Fig. 4. NMR-guided predictions for real NMR data target N1008.
Target N1008 was produced with uniform 15N-,13C-enrichment (without perdeuteration). 

The backbone chemical shift assignments were used together with 3D 15N-NOESY data to 

generate Ambiguous Contact List, which include many NOESY peaks involving sidechain 

resonances for which no assignment in list of possible assignments is correct. Blue – 

experimental solution NMR structure. Magenta – best non-assisted regular prediction. Lt 

blue – ASDP Baseline model. Green – NMR-assisted prediction results.

Sala et al. Page 28

Proteins. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. Sidechain χ1 and χ2 Rotamer States.
Percent of (A) χ1 or (B) χ2 rotamer states for buried residues in each assessment unit that 

match the corresponding dihedral angle of the reference structure in the best prediction 

models submitted by each prediction group.
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Fig. 6. Impact of Sparse NMR Data on Modeling Accuracy.
Where a NMR-assisted prediction group also submitted regular prediction models, the 

corresponding best regular and best NMR-assisted predictions were compared. (A) Stacked 

column plot showing the average GDT-TS scores for best models submitted for each 

assessment unit as a regular prediction (blue) or NMR-assisted prediction (yellow). (B) Δ 

GDT-TS = GDT-TSassisted – GDT-TSregular for the best NMR-assisted and best regular 

model submitted for each target by each group providing both regular and assisted 

predictions.
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Fig. 7. Best NMR Assisted vs Best Regular Predictions.
(A) GDT-TS scores for the best model submitted by any NMR-assisted prediction group 

(blue bars) compared with the best model submitted by any regular prediction group (yellow 

bars). The solid yellow bars indicate targets for which the best model submitted by any 

regular prediction was more accurate than the best model submitted by any NMR-assisted 

prediction group. The hashed-yellow bars indicate targets for which the best model 

submitted by any regular prediction was less accurate than the best model submitted by any 

NMR-assisted prediction group. (B) Scatter plot comparing the GDT-TS scores for the best 

model submitted by any regular prediction versus the best model submitted by any NMR-

assisted prediction.
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Fig. 8. Comparison of Best Assisted and Best Regular Prediction Models Submitted for Target 
N0981-D2.
The best NMR-assisted models of the baseline ASDP (with EC) and Laufer groups are more 

accurate than the best models provided by any regular prediction group (Venclovas).
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Table 1.

CASP13 NMR-Assisted Prediction Targets, Assessment Units and NMR Data

No. of 
Residues

CASP 
Assessment Unit 

(AU)

No. of 
RDCs

No. of 
Dihedral 

Restraints

No. of 
Possible 
Contacts

Average 
Ambiguity per 

Contact

Maximum 
Ambiguity per 

Contact

Simulated 
NMR Data

N0957s1 163 N0957s1-D1 95 202 5582 5 50

N0957s1-D2

N0968s1 123 N0968s1 62 128 1506 2 16

N0968s2 115 N0968s2 59 118 2088 4 32

N0980s1 105 N0980s1 43 87 1489 3 18

N0981-D1 86 N0981-D1 32 66 538 2 10

N0981-D2 80 N0981-D2 26 54 504 2 8

N0981-D3 203 N0981-D3 64 130 4701 4 32

N0981-D4 111 N0981-D4 42 90 1093 2 10

N0981-D5 127 N0981-D5 58 122 1983 3 21

N0989 246 N0989-D1 100 194

N0989-D2 7095 5 90

N1005 326 N1005 154 320 49,887 11 92

Real NMR Data

N1008 80 N1008 N/A 148 2,273 5 54

n1008 80 a N/A 148 29,205 9 169

a
Target n1008 is a control real NMR data set with essentially complete backbone and sidechain resonance assignments, and was not included in the 

calculations of summed Z score metrics.
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Table 2.

GDT-TS Scores for First Ranked Models for Each Target and Each NMR-Assisted Predictor Group

Target Nres

Best 
Regular 

Prediction

492 
wfBaker 
UNRES

431 
Laufer

288 
UNRES

250 
Meilerlab

208 
KIAS-

Gdansk
122 

Forbidden

ASDP 
Baseline 
No EC

ASDP 
Baseline 
With EC

N0957s1 162
45.2
A7D 31.9 52.9 28.8 56.0 NA 20.5 32.2 30.2

N0989 246
31.3

Zhang 12.7 23.5 13.9 17.5 NA 10.7 15.4 16.6

N0968s1 123
71.4

Elofsson 64.6 59.5 45.3 69.0 NA 31.5 59.7 54.6

N0968s2 115
78.7
A7D 60.0 73.7 55.4 43.2 NA 30.4 33.7 49.5

N0980s1 105
54.8

Multicom 29.8 67.7 25.0 59.8 NA 28.6 62.0 72.1

N0981-
D1 86

66.2
slbio_server 49.4 58.4 53.7 55.5 61.0 NA 70.3 69.7

N0981-
D2 80

34.0
Venclovas NA 40.0 33.7 34.0 42.1 NA 64.3 67.5

N0981-
D3 203

55.1
A7D 37.9 41.0 39.0 17.4 49.3 NA 55.7 55.1

N0981-
D4 111

65.9
Multicom 50.6 65.7 47.7 61.7 59.6 NA 60.1 58.1

N0981-
D5 127

72.8
A7D 53.1 76.5 39.7 59.8 40.9 NA 38.9 25.9

N1005 326
56.3
A7D 28.9 49.8 26.4 36.2 29.2 NA 33.9 29.4

N1008 97
91.2

SHORTLE 40.5 68.1 40.2 75.0 73.0 42.8 52.9 NA

n1008 97
91.2

SHORTLE 27.2 57.4 41.5 NA NA 40.2 82.7 NA
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