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Design of a triple-bend isochronous achromat with minimum
coherent-synchrotron-radiation-induced emittance growth

M. Venturini
Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA

(Received 8 April 2015; revised manuscript received 15 April 2016; published 9 June 2016)

Using a 1D steady-state free-space coherent synchrotron radiation (CSR) model, we identify a special
design setting for a triple-bend isochronous achromat that yields vanishing emittance growth from CSR.
When a more refined CSR model with transient effects is included in the analysis, numerical simulations
show that the main effect of the transients is to shift the emittance growth minimum slightly, with the
minimum changing only modestly.

DOI: 10.1103/PhysRevAccelBeams.19.064401

I. INTRODUCTION

It is desirable for acceleration and transport of high-
brightness electron bunches to occur without degradation of
the beam quality. Unfortunately, a number of processes can
spoil the beam transverse emittance and among these one of
the most prevalent is coherent synchrotron radiation (CSR).
As the electrons in a bunch travel through a bend, synchro-
tron radiation at the low end of the frequency spectrum is
emitted coherently, perturbing the particle energy, inducing
transverse offsets both in the spacial and angular coordi-
nates, and therefore causing projected emittance growth.
One way to contain the adverse effects of CSR is to

reduce overall bending; however, to eliminate bending
altogether is usually not an option. For instance, in
single-pass systems for free electron lasers (FELs) dipole
magnets are required for bunch compression and often to
distribute the electrons to off-axis beamlines. In multipass
systems, such as energy recovery linacs, bending is integral
to the machine topology.
Here we consider the problem of minimizing CSR

effects on the transverse emittance in a triple-bend isoch-
ronous achromat, a lattice unit widely used in accelerator
design. We adopt a 1D steady-state free-space model of
CSR [1] and a method of analysis first introduced in [2] for
the study of CSR in bunch compressors. We show that
within the approximation of the model it is possible to
specify a lattice design that yields vanishing CSR-induced
emittance growth.
Our approach has some similarities with [3,4] and in

particular [5]. We refer to the Introduction in [5] for a
review of various approaches to the problem of minimizing
CSR-effects on the emittance. For additional related work
see also [6–12].

II. FORMALISM

Consider a dispersive beam line from s ¼ si to s ¼ sf
with bending occurring in the horizontal plane and no
acceleration. In a 1D approximation, the effect of CSR
on a particle of the bunch at location s along the beam line
is to induce a relative-energy change δsðzÞ depending
on the arclength coordinate s and particle longitudinal
coordinate z.
In the linear approximation, the particle orbit in the

horizontal plane following the energy kick evolves
according to

x ¼ R
si→sf
11 xi þ R

si→sf
12 x0i þ R

s→sf
16 δsðzÞ; ð1Þ

x0 ¼ R
si→sf
21 xi þ R

si→sf
22 x0i þ R

s→sf
26 δsðzÞ; ð2Þ

where Rij are the entries of the linear transport matrix while
xi, xi0 and x, x0 are the particle coordinates at the entrance
and exit of the beam line respectively. Notice that the
entries R11, R12, R21, and R22 are for the transport matrix
from si to sf, whereas the entries R16 an R26 are for
transport starting from si ≤ s ≤ sf, where the CSR energy
kick occurs.
Integrating the effect of CSR through the whole dis-

persive section, the particle coordinates at the exit of the
beam line become x ¼ xβ þ x̂ðzÞ and x0 ¼ xβ 0 þ x̂0ðzÞ with
xβ ¼ R

si→sf
11 xi þ R

si→sf
12 x0i and x0β ¼ R

si→sf
21 xi þ R

si→sf
22 x0i,

and

x̂ðzÞ≡
Z

sf

si

dδsðzÞ
ds

R
s→sf
16 ds; ð3Þ

x̂0ðzÞ≡
Z

sf

si

dδsðzÞ
ds

R
s→sf
26 ds: ð4Þ

If the beam is initially centered, hxii ¼ hxi0i ¼ 0, where
h·i represents averaging over the bunch population in
phase-space, we can think of (x̂ðzÞ, x̂0ðzÞ) as the centroid
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coordinates of the beam thin slice centered at z. If the initial
beam has vanishing transverse emittance (xβ ¼ xβ 0 ¼ 0) at
the exit of the beam line the beam is represented by a one-
dimensional curve in the horizontal phase space described
parametrically by the (x̂ðzÞ, x̂0ðzÞ) pair.
Assuming that the beam at si is centered, we average

over the full 6D phase-space at sf to obtain the 2nd-
moment of the beam distribution in the horizonal spacial
coordinate:

hðx − hxiÞ2i ¼ hðxβ − hxβi þ x̂ − hx̂iÞ2i
¼ hðxβ þ ΔxÞ2i ¼ hx2βi þ hðΔxÞ2i; ð5Þ

having introduced the notationΔx≡ x̂ − hx̂i, and exploited
the lack of correlation (justified in a 1D model) between the
CSR-induced energy kick and the transverse coordi-
nate, hxβΔxi ¼ 0.
We have

hðΔxÞ2i ¼ hx̂2i − hx̂i2

¼
Z

dzλðzÞ
�Z

dδsðzÞ
ds

R
s→sf
16 ds

�
2

−
�Z

dzλðzÞ
Z

dδsðzÞ
ds

R
s→sf
16 ds

�
2

; ð6Þ

where λðzÞ is the beam longitudinal density normalized to
unity. Similar expressions hold for hðΔx0Þ2i and hΔxΔx0i.
From now on, to avoid notational clutter we will drop the
parentheses and write hΔx2i instead of hðΔxÞ2i, etc.
We now specialize these expressions to the case of

interest here and assume that (i) the longitudinal density of
the bunch is stationary or close to stationary, (ii) CSR is
represented by a steady-state model neglecting transient
effects through entrance and exit of the bends, and (iii) all
bends (modeled in the hard-edge approximation) have the
same nominal magnetic field. Under these assumptions

the z dependence is factored out and we have dδsðzÞ
ds ≡

hBðsÞδ̂0ðzÞ where hBðsÞ ¼ 1 for s in a bend and
hBðsÞ ¼ 0 elsewhere, and

δ̂0ðzÞ ¼ 2rcNb

31=3R2=3γ

Z
∞

z

dλðz0Þ
dz0

dz0

ðz0 − zÞ1=3 : ð7Þ

In the above expression R is the dipole radius of curvature,
Nb the bunch population, m the electron mass, rc the
electron classical radius, and γ the relativistic factor. Notice
that we are adopting the convention that a particle in the
bunch head has z < 0; δ0ðzÞ > 0 denotes energy gain. The
above expression (6) simplifies to

hΔx2i ¼
�Z

B
R
s→sf
16 ds

�
2

hΔδ̂02i; ð8Þ

where hΔδ̂02i ¼ hδ̂02i − hδ̂0i2 ≡ ðdσδ=dsÞ2 is the square of
the rms relative-energy spread per unit arc length induced
by CSR along a dipole. Similarly

hΔx02i ¼
�Z

B
R
s→sf
26 ds

�
2

hΔδ̂02i; ð9Þ

hΔxΔx̂0i ¼
�Z

B
R
s→sf
16 ds

��Z
B
R
s→sf
26 ds

�
hΔδ̂02i: ð10Þ

The subscript “B” on the integral signs emphasizes that the
integrals extend only over the bending magnets.
The rms projected (geometric) emittance is defined as the

determinant of the covariance matrix

σ ¼
� hðxþ ΔxÞ2i hðxþ ΔxÞðx0 þ Δx0Þi
hðxþ ΔxÞðx0 þ Δx0Þi hðx0 þ Δx0Þ2i

�
:

ð11Þ

Observed at the exit sf of the beam line the emittance
reads

ε2x ¼ ε2x0 þ εx0ðβxhΔx02i
þ 2αxhΔxΔx0i þ γxhΔx2iÞ þ Δε2x; ð12Þ

where ε2x0 is the beam unperturbed emittance, αx, βx, γx are
the Twiss functions at sf, and

Δε2x ¼ hΔx2ihΔx02i − hΔxΔx0i2: ð13Þ

Notice that from (8), (9), and (10), it follows that
hΔxΔx0i2 ¼ hΔx2ihΔx02i and therefore Δε2x ¼ 0. We
should point out that this is not a general result: it strictly
depends on the assumption that the longitudinal beam
density remains stationary, in which case the set (x̂ðzÞ,
x̂0ðzÞ) describes a zero-area straight segment in the hori-
zontal phase space (see Fig. 5). In contrast, downstream of
a magnetic chicane compressor Δε2x can be significant.
We can reduce emittance growth by either choosing αx,

βx, γx appropriately (see Appendix A) or minimizing the
second moments hΔx̂2i, hΔx̂02i and hΔx̂Δx̂0i. Equation (12)
indicates no emittance growth if hΔx̂2i and hΔx̂02i can be
set to zero simultaneously, i.e.,

Z
B
R
s→sf
16 ds ¼ 0; ð14Þ

Z
B
R
s→sf
26 ds ¼ 0: ð15Þ

As shown in the next section, in a three-bend isochronous
achromat these integrals can indeed be made vanish
simultaneously through second order in the bend angle.
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III. APPLICATION TO 3-BEND ISOCHRONOUS
ACHROMATS

Our midpoint symmetric beam line consists of three
identical bending magnets equally spaced, see schematic in
Fig. 1. We adopt a small bend-angle approximation for the
transfer matrix of the three dipoles obtained from the
analytical expressions in the hard-edge approximation [13]
by Taylor expanding with respect to the dipole bending
angle θ (while keeping LB ¼ R=θ constant). To lowest
order and in the ultrarelativistic approximation the transfer
matrix for motion in the horizontal and longitudinal planes
reads

RB ¼

0
BBB@

1 LB 0 LBθ=2

0 1 0 θ

θ LBθ=2 1 LBθ
2=6

0 0 0 1

1
CCCA: ð16Þ

To this order RB can be thought of as describing the action
of either a rectangular or sector-bend magnet. Incidentally,
notice that the entry for the momentum compaction is
positive ðRBÞ16 ¼ LBθ

2=6 > 0, consistent with the con-
vention that a particle in the bunch head has z < 0.
Of interest is also the transfer matrix through half of the

dipole RB=2, obtained from (16) by replacing LB → LB=2
and θ → θ=2.
In the most general terms we write the transfer matrixM

from the exit of the first dipole to the entrance of the
second as

M ¼

0
BBB@

m11 m12 0 0

m21 m22 0 0

0 0 1 0

0 0 0 1

1
CCCA: ð17Þ

The transfer map for the whole achromat line can then be
written as Rsi→sf ¼ AIIAI where AI and AII are the transfer

matrices through the first and second half of the beam line.
We have in particular

AI ¼ RB=2MRB; ð18Þ

and similarly AII ¼ RBM̂RB=2, where M̂ has the same
entries as M, but with m11 and m22 exchanged.
The four entries of the M matrix are the variables

available for minimizing the emittance growth, whereas
the dipole magnet length LB and bending angle θ are set by
the lattice designer by considerations unrelated to CSR.
One degree of freedom is taken by imposition of the
achromatic condition AI

26 ¼ 0 (i.e. vanishing derivative of
the dispersion function at the midpoint. Because the
dispersion function and its derivative are zero at the
entrance of the beam line, midpoint symmetry and
AI
26 ¼ 0 imply that they will vanish at the exit of the beam

line as well). A second degree of freedom is needed to
enforce isochronicity (AI

56 ¼ 0), and a third is taken by the
symplectic condition. Remarkably, the one degree of free-
dom left is sufficient to satisfy both Eqs. (14) and (15).
In more detail, through second order in θ the achromatic,

isochronous, and symplectic conditions imposed upon
Eq. (18) translate into

m12 ¼ LBð3 −m21LBÞ=4; ð19Þ

m11 ¼ −ðLB þ 4m12Þ=2LB; ð20Þ

m22 ¼ −ð1þm21LBÞ=2 ð21Þ

leaving one free parameter, e.g., m21. The next step is to
work out the expressions for R

s→sf
16 and R

s→sf
26 and their

integrals over the three bending magnets, see Appendix B.
The final result for the integrals, valid through second order
in θ, is

Z
B
R
s→sf
16 ds ¼ −

L2
Bθ

24
ð15 − 2m21LBÞð1 −m21LBÞ; ð22Þ

Z
B
R
s→sf
26 ds ¼ m21L2

Bθ

12
ð15 − 2m21LBÞ: ð23Þ

We observe that choosing m21 ¼ 15=2LB makes both
(22) and (23) vanish. We should emphasize that in this case
the model predicts no emittance growth regardless of the
values set for the Twiss functions at the beam line ends.
The result can be generalized to triple bend achromats

with midpoint symmetry but with the middle dipole having
different length and bend angle from those of the other two
dipoles. This relaxes the assumption that the radius of
curvature be identical for all dipoles. The expression for
m21 that makes the two above integral vanish is

FIG. 1. Schematic of a 3-bend achromat with midpoint sym-
metry consisting of three identical dipoles with LB length and θ
bending angle. Indicated is our notation for the transfer matrices
through specified beam line sections. The quadrupoles providing
the necessary focusing between the dipoles are not shown.
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m21 ¼
3tð2þ l1=3t2=3Þð4þ lt2Þ

2ð2þ lt2ÞLB
; ð24Þ

where lLB and tθ are the middle dipole length and bend
angle (LB and θ being length and bend angle of the two
outer dipoles).
The relevant entries of the transfer matrix for the whole

achromat are then

R
si→sf
11 ¼ ½3t2 þm2

21L
2
Bð2þ lt2Þ −m21LBtð8þ lt2Þ�=3t2;

ð25Þ

R
si→sf
21 ¼ 2m21½ð2þ lt2Þm21LB − 6�=3t2; ð26Þ

R
si→sf
22 ¼ R

si→sf
11 ; ð27Þ

and R12 ¼ ðR11R22 − 1Þ=R21 can be derived by the sym-
plectic condition.

IV. NUMERICAL EXAMPLE

For illustration we discuss a numerical example loosely
inspired by the lattice in the spreader design for the Next
Generation Light Source [14], which motivated this study,
see Table I.
We consider a beam with Gaussian density profile λðzÞ,

rms length σz, and specialize the calculation to the case of
symmetric beta function through the beam line: βxðsfÞ ¼
βxðsiÞ and αxðxfÞ ¼ −αxðxiÞ.
To this end, we first write the transfer matrix through the

whole beam line Rsi→sf :

R
si→sf
11 ¼ m2

21L
2
B − 3m21LB þ 1; ð28Þ

R
si→sf
12 ¼ ðm2

21L
3
B − 4m21L2

B þ 3LBÞ=2; ð29Þ

R
si→sf
21 ¼ 2m2

21LB − 4m21; ð30Þ

R
si→sf
22 ¼ R

si→sf
11 : ð31Þ

Using the general parametrization for symplectic trans-
port matrices in terms of Twiss functions [13] at the two
beam line ends [see also Eq. (A3) in Appendix A], we write
βxðsfÞ ¼ R

si→sf
12 = sinψ and αxðsfÞ ¼ −½Rsi→sf

11 − cosψ �=
sinψ . Having the freedom to set the phase we write

ψ ¼ π=2, which minimizes jαxðsfÞj, yielding βxðsfÞ ¼
Lbð3 − 4Lbm21 þ L2

bm
2
21Þ=2, and αxðsfÞ ¼ −L2

Bm
2
21 þ

3LBm21 − 1.
We can now write an analytical expression for the

emittance (12) as a function of the matrix entry
m21 ≡ ð1þ μÞ15=2LB, with μ ¼ 0 corresponding to van-
ishing emittance growth:

ε2x ¼ ε2x0 þ εx0
25μ2ð15μþ 13Þ
48ð5μþ 3Þ θ2L3

B

�
dσδ
ds

�
2

: ð32Þ

In the above expression

dσδ
ds

≃ 0.246 × Nb
rcθ2=3

γσ4=3z L2=3
B

; ð33Þ

is the rms energy spread per unit arc length induced by CSR
in a bend on a Gaussian bunch [5,15]. We employed the
macroparticle code ELEGANT [16] to simulate transport
through a three-bend isochronous achromat invoking the
same steady-state free-space 1D model of CSR adopted
here. See Fig. 2 for the horizontal dispersion and beta
function and Fig. 3 for a plot of R

s→sf
16 and R

s→sf
26 .

For simplicity, we built the beam lines for each of the two
sections between the dipoles using only 2 (focusing)
quadrupoles. (In doing so we lose control of the matching
in the vertical plane. Vertical motion, however, is irrelevant
here and in the simulations we set the vertical emittance
to zero).
The result from the ELEGANT simulations (red dots) and

the expected emittance growth based on Eq. (32), red line,
are shown in Fig. 4. As predicted by the model, essentially
no emitttance growth is observed for μ ¼ 0. We should note
that the various data points in the figure correspond to

TABLE I. Selected parameters for the ELEGANT simulation.

Dipole length, LB 0.9 m
Bending angle, θ 0.176 rad
Beam energy 2.4 GeV
Unperturbed norm. emittance, γεx0 0.6 μm
Bunch charge 300 pC
Bunch length, σz 0.04 mm FIG. 2. Beam line layout and Twiss functions for the optimum

value m21 ¼ 15=2LB. ELEGANT simulations.
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slightly different beam line lengths and different
quadrupole settings, as needed to enforce the desired value
of m21, while the dipole lengths and bend angles are
kept fixed.

For comparison, we report the simulation results
obtained using a more accurate 1D model of CSR account-
ing for transient effects (black dots) [17]; CSR was
included for 4 m in the drift downstream of the dipoles.
We observe that the main effect of the transients is to shift
the minimum of the emittance growth slightly, with the
minimum changing only modestly.

V. CONCLUSIONS

The main result of this paper is a demonstration of the
existence of a triple-bend isochronous achromat design that
displays virtually no projected emittance growth under the
assumption of a 1D stead-state free-space model of CSR.
The existence of this design setting is somewhat surprising
as the problem is overconstrained; nonetheless, tuning of
one independent variable turns out to suffice to satisfy both
Eq. (14) and (15).
In a sense, this is the CSR equivalent of the theoreti-

cally minimum emittance (TME) lattice [13] mini-
mizing emittance growth from incoherent synchrotron
radiation.
We caution that the special design we discussed comes

with somewhat extreme conditions on the lattice functions
[αxðsiÞ ¼ −αxðsfÞ≃ 35], which may be difficult to accom-
modate in practice, but we should add that use of unequal
dipoles in the triple-bend achromat, see Eq. (24) would
alleviate this difficulty.
We hope that our results may be helpful as a starting

point in the search for lattice optimum designs and provide
guidance on gauging the trade-off between tolerable
emittance growth and desired settings of the lattice
functions.
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APPENDIX A: ALTERNATE METHOD TO
MINIMIZE CSR-INDUCED EMITTANCE

GROWTH

Suppose that at least one between hΔx02i and hΔx2i is
nonvanishing, say hΔx2i ≠ 0. If we choose (see sketch in
Fig. 5)

αx ¼ −βxhΔx02i1=2=hΔx2i1=2; ðA1Þ

we can write the second term in the right-hand side of (12)
representing the CSR-induced emittance growth as

εx0½βxhΔx02i þ 2αxhΔx02i1=2hΔx2i1=2 þ γxhΔx2i�
¼ εx0hΔx2i=βx: ðA2Þ

FIG. 3. Functions R
s→sf
16 and R

s→sf
26 for the optimum value

m21 ¼ 15=2LB. The shaded areas highlight the dipoles. For better
illustration, we shortened the length of the sections between the
dipoles (where these functions are constant) to 1 m compared to
Fig. 3. The sum of the integrals of the two curves within the
shaded area vanish [see Eq. (14) and (15)] resulting into no
projected emittance growth from CSR.

FIG. 4. Normalized projected rms emittance observed at the
exit of the achromat as predicted by Eq. (32), red line, and
determined by ELEGANT simulations (red dots) vs. μ, parametriz-
ing the entrym12 ¼ 15ð1þ μÞLB=2 of the transfer matrixM from
the exit of the first to the entrance of the second bend, see Fig. 1.
The black dots are from ELEGANT simulations carried out with the
more accurate model of CSR including transient effects through
entrance and exit of the dipoles. The black line is a quadratic fit,
helping the eye to locate the minimum.
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Again, we remind the reader that αx, βx and γx are the lattice
functions at the exit of the achromat. The above equation
predicts vanishing emittance growth in the limit βx → ∞.
Depending on the specifics of the lattice this may be a
practical way to minimize the emittance growth, but large
values of the beta functions for a number reasons are often
not desirable.
Observe, though, that unlike the method of Sec. III the

quantities hΔx02i and hΔx2i representing the rms spread of
the beam slices spacial and angular centroids remain finite,
while for certain applications (e.g., FELs) it is important
that the centroids of individual beam slices stay close to the
axis in order to preserve good overall beam matching and
therefore favoring hΔx02i ¼ hΔx2i ¼ 0. Setting aside the
drawback posed by an outsized beta function [and possibly
the difficulty to set αx appropriately, Eq. (A1)], could we
then argue that this emittance minimization method is less
preferable than the one discussed in Sec. III? Not neces-
sarily, because as shown below, a large βx at the exit of the
achromat will have the effect of reducing the spreads hΔx02i
and hΔx2i as observed at the end of a transport line further
downstream.
Consider the most general transfer matrix for transport in

the horizontal plane from the exit of the achromat to, e.g.,
the entrance of an FEL undulator, parametrized in terms of
Twiss functions at the exit of the achromat ðαx; βxÞ and
entrance of the FEL ðαFx ; βFx Þ:

0
BB@

ffiffiffiffi
βFx
βx

q
ðcosψ þ αx sinψÞ

ffiffiffiffiffiffiffiffiffiffi
βFx βx

p
sinψ

− 1þαxα
F
xffiffiffiffiffiffiffi

βFx βx
p sinψ þ αx−αFxffiffiffiffiffiffiffi

βFx βx
p cosψ

ffiffiffiffi
βx
βFx

q
ðcosψ − αFx sinψÞ

1
CCA:

ðA3Þ

We use this matrix to propagate the rms spread of the slice
centroids to the FEL:

hΔx2Fi ¼ hΔx2i β
F
x

βx
cos2ψ ; ðA4Þ

hΔx02F i ¼ hΔx2i ðsinψ þ αFx cosψÞ2
βxβ

F
x

: ðA5Þ

Indeed, these two expressions show that for finite αFx and βFx ,
taking the limit βx → ∞ has the effect of reducing to zero the
spreads hΔx2Fi and hΔx02Fi of the slices centroids as observed
at the FEL. Another way to state this is to say that one can
always find a symplectic transfer matrix that maps all points
in the grey segment in Fig. 5 into a small region arbitrarily
close to the origin of the phase space. No area-preservation
theorem is violated since the segment has zero area.

APPENDIX B: SELECT ENTRIES OF R-MATRIX

For completeness we report the explicit expressions valid
through 1st order for the entries R

s→sf
16 and R

s→sf
26 for an

isochronous, triple bend achromat (design with three equal
dipoles).
For s within the first bend:

R
s→sf
16 ¼ LBθ

2
sðm2

21L
2
B − 3m21LB þ 1Þ=2θ

− LBθsðm2
21L

2
B − 4m21LB þ 3Þ=2;

R
s→sf
26 ¼ LBθ

2
sm21ðm21LB − 2Þ=θ

− θsðm2
21L

2
B − 3m21LB þ 1Þ;

where θs ¼ ðs1 − sÞ=R, and si ≤ s ≤ s1. For s within the
second bend:

R
s→sf
16 ¼ LBθ

2
sðm21LB − 1Þ=4θ

þ LBθsðm21LB − 5Þ=4þ θLB=2;

R
s→sf
26 ¼ m21LBθ

2
s=2θ þ θsðm21LB − 4Þ=2þ θ;

where θs ¼ ðs3 − sÞ=R, and s2 ≤ s ≤ s3. Finally, for s
within the third bend: R

s→sf
16 ¼ LBθ

2
s=2θ, and

R
s→sf
26 ¼ θs, where θs ¼ ðsf − sÞ=R, and s4 ≤ s ≤ sf. For

s in between the bend magnets the entries R
s→sf
16 and R

s→sf
26

are constant (see Fig. 4).

FIG. 5. The gray thick segment along the diagonal is the set of
points representing the centroids of the beam slices as observed at
the exit of the achromat. One can minimize the projected
emittance by choosing the design Twiss functions according to
Eq. (A1) to make the unperturbed beam ellipse at the exit of the
beam line (red curve) align with this set. In contrast, an
unperturbed beam represented by the green ellipse would
maximize the projected emittance.
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