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We present a search for a light sterile neutrino using three years of atmospheric neutrino data
from the DeepCore detector in the energy range of approximately 10–60 GeV. DeepCore is the
low-energy subarray of the IceCube Neutrino Observatory. The standard three-neutrino paradigm
can be probed by adding an additional light (∆m2

41 ∼ 1 eV2) sterile neutrino. Sterile neutrinos
do not interact through the standard weak interaction and, therefore, cannot be directly detected.
However, their mixing with the three active neutrino states leaves an imprint on the standard
atmospheric neutrino oscillations for energies below 100 GeV. A search for such mixing via muon
neutrino disappearance is presented here. The data are found to be consistent with the standard
three-neutrino hypothesis. Therefore we derive limits on the mixing matrix elements at the level of
|Uµ4|2 < 0.11 and |Uτ4|2 < 0.15 (90% C.L.) for the sterile neutrino mass splitting ∆m2

41 = 1.0 eV2.

∗ Earthquake Research Institute, University of Tokyo, Bunkyo,
Tokyo 113-0032, Japan
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I. INTRODUCTION

Neutrino oscillation is a phenomenon in which a neu-
trino can be detected as a different weak eigenstate than
initially produced after traveling some distance to its
detection point. It arises due to the mixing between
neutrino mass and flavor eigenstates and existence of
nonzero mass differences between the mass states. The
effect is confirmed by a variety of measurements of neu-
trinos produced in the Sun [1–6], in the atmosphere [7–
9], at nuclear reactors [10–13], and at particle accelera-
tors [14–17]. The data from these experiments are of-
ten interpreted within the framework of three weakly
interacting neutrino flavors, where each is a superposi-
tion of three neutrino mass states. However, not all data
from neutrino experiments are consistent with this pic-
ture. An excess of electron neutrinos in a muon neu-
trino beam was found at the Liquid Scintillator Neutrino
Detector (LSND) [18] and MiniBooNE experiments [19].
In addition, the rates of some reactor [20] and radio-
chemical [21] experiments are in tension with predictions
involving three neutrino mass states. The tension be-
tween data and theory can be resolved by adding new
families of neutrinos with mass differences ∆m2 ∼ 1 eV2.
However, the measurement of the Z0 boson decay width
at the Large Electron-Positron (LEP) collider limits the
number of the weakly interacting light neutrino states to
three [22]. This implies that new neutrino species must
be “sterile” and not take part in the standard weak inter-
action. The simplest sterile neutrino model is a “3+1”
model, which includes three standard weakly interact-
ing (active) neutrino flavors and one heavier1 sterile neu-
trino. The addition of this fourth neutrino mass state
modifies the active neutrino oscillation patterns.

The IceCube Neutrino Observatory [23] is a cubic kilo-
meter Cherenkov neutrino detector located at the geo-
graphic South Pole. It is designed to detect high-energy
atmospheric and astrophysical neutrinos with an energy
threshold of about 100 GeV [24–28]. DeepCore [29] is
a more densely instrumented subdetector located in the
bottom part of the main IceCube array. The denser
instrumentation lowers the energy detection threshold
to ∼ 10 GeV, allowing precision measurements of neu-
trino oscillation parameters affecting atmospheric muon
neutrinos as reported in [30], where the standard three-
neutrino hypothesis is used. This work presents a search
for sterile neutrinos within the “3+1” model framework
using three years of the IceCube DeepCore data taken
between May 2011 and April 2014.

An overview of sterile neutrino mixing and its im-
pact on atmospheric neutrino oscillations is presented in
Sec. II of this article. Section III describes the IceCube

1 The effects of the sterile neutrino mixing in the energy range of
this study are independent of the sign of ∆m2

41. Therefore the
results presented here are also valid for “1+3”, where the sterile
state is the lightest.

Neutrino observatory and the DeepCore sub-array used
to detect the low energy neutrinos of interest. The selec-
tion and reconstruction of atmospheric neutrino events
are presented in Sec. IV. A description of the simulation
chain, fitting procedure and treatment of systematic un-
certainties considered is provided in Sec. V. Section VI
presents the results of the search for sterile neutrino mix-
ing. Finally, Sec. VII addresses the impact of various as-
sumptions made in the analysis of the data, and places
the results of this search into the global picture of sterile
neutrino physics.

II. STERILE NEUTRINO MIXING

The neutrino flavor eigenstates of the weak interaction
do not coincide with the mass states, which describe the
propagation of neutrinos through space [31]. The con-
nection between the bases can be expressed as

|να〉 =
∑

U∗αk |νk〉 , (1)

where |να〉 are the weak states, |νk〉 are the mass states
with mass mk and Uαk are the elements of Pontecorvo–
Maki–Nakagawa–Sakata (PMNS) mixing matrix [31, 32]
in the standard three-neutrino scenario. For Dirac neu-
trinos the mixing matrix is parametrized with three mix-
ing angles (θ12, θ13, θ23) and one CP-violating phase.
Two additional phases are present if neutrinos are Majo-
rana particles, however they play no role in neutrino os-
cillations. Muon neutrinos are the main detection chan-
nel for DeepCore and are the focus of this study. For
the standard three-neutrino model in the energy range
of interest for this analysis the muon neutrino survival
probability can be approximated as

P (νµ → νµ) ≈ 1− sin2 (2θ23) sin2

(
∆m2

32

L

4Eν

)
, (2)

where ∆m2
32 ≡ m2

3 − m2
2 is the mass splitting between

states 3 and 2, θ23 is the atmospheric mixing angle, L
is the distance traveled from the production point in the
atmosphere and Eν is the neutrino energy. The diam-
eter of the Earth and size of the atmosphere define the
baselines that range between 20 and 12700 km.

The addition of a single sterile neutrino, νs, with cor-
responding mass eigenstate denoted as ν4, modifies the
mixing matrix in Eq. (1) as

U ≡



Ue1 Ue2 Ue3 Ue4
Uµ1 Uµ2 Uµ3 Uµ4
Uτ1 Uτ2 Uτ3 Uτ4
Us1 Us2 Us3 Us4


 . (3)

A single sterile neutrino family adds six new parame-
ters [33]: three mixing angles θ14, θ24, θ34, two CP-
violating phases δ14, δ34 and one mass difference ∆m2

41.
IceCube has no sensitivity to CP-violating phases and,
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FIG. 1. The muon neutrino survival probability for (top) the
standard three-neutrino oscillations and (bottom) “3+1” ster-
ile neutrino model as function of true muon neutrino energy
and the cosine of the true neutrino zenith angle θz. Values
∆m2

32 = 2.51 · 10−3 eV2, sin2 θ23 = 0.51 are assumed for the
standard atmospheric mixing parameters.

therefore, they are assumed absent in this study. In this
case the 4×4 mixing matrix can be parametrized [33] as

U = U34U24U23U14U13U12, (4)

where Uij is a rotation matrix by an angle θij in the
ij-plane.

The mixing angle θ14 affects mainly electron neutrinos,
which have only a minor impact on this study. Therefore
the mixing matrix can be simplified further by setting
θ14 to zero. These assumptions simplify the elements of
U describing the mixing of the active states to the sterile
neutrino state [34]:

|Ue4|2 = 0,

|Uµ4|2 = sin2 θ24,

|Uτ4|2 = cos2 θ24 · sin2 θ34.

(5)

This additional sterile neutrino state modifies the muon
neutrino oscillation pattern [35, 36].

The propagation of neutrinos is described by the

Schrödinger equation

i
d

dx
Ψα = ĤFΨα, (6)

where x is a position along the neutrino trajectory, Ψα =
(νe, νµ, ντ , νs)

T , and ĤF is an effective Hamiltonian

ĤF =
1

2Eν
UM̂2U† + V̂int, (7)

where U is the mixing matrix described in Eq. (4), M̂2

is the neutrino mass matrix, and V̂int is an interaction
potential. For neutrinos passing though neutral matter,
the interaction part of the Hamiltonian in Eq. (7) can
be expressed as

V̂int ≡ ±
GF√

2
diag(2Ne, 0, 0, Nn), (8)

where the sign +(−) corresponds to neutrinos (antineu-
trinos), GF is Fermi’s constant, and Ne and Nn are the
densities of the electrons and the neutrons in matter, re-
spectively.

All active neutrinos have a matter potential due to
weak neutral current (NC) interaction while sterile neu-
trinos do not interact with matter at all. This can be
expressed as an effective matter potential for the ster-
ile neutrino states equal to the matter potential of NC
interactions for active neutrinos with an opposite sign.

The probability of a να to νβ transition is calculated
as

Pαβ = P (να → νβ) = |〈νβ |να(x)〉|2 , (9)

where να(x) is a solution of Eq. (6). It is nontriv-
ial to solve Eq. (6) analytically for atmospheric neu-
trinos crossing the Earth. Therefore, the probabilities
are calculated numerically including all mixing parame-
ters in a “3+1” model using the 12-layer approximation
of the Preliminary Reference Earth Model (PREM) [37]
and the General Long Baseline Experiment Simulator
(GLoBES) [38, 39].

The upper panel of Fig. 1 shows the survival proba-
bility for atmospheric muon neutrinos as a function of
true energy and zenith angle, θz, in the case of the stan-
dard three-neutrino oscillations. For the neutrinos cross-
ing the Earth by the diametral trajectory (cos θz = −1)
the minimum survival probability is at approximately 25
GeV. The atmospheric neutrino mixing is close to max-
imal (θ23 ∼ 45◦), which leads to almost complete disap-
pearance of muon neutrinos. The minimum of the oscil-
lation pattern follows Eq. (2) and does not change its
depth or show discontinuities between different arrival
directions.

The addition of a sterile neutrino state modifies the
neutrino oscillations in two ways that are relevant for this
analysis. The first is connected to vacuum oscillations
into the sterile neutrino state. These fast oscillations
cannot be resolved at the final analysis level and instead
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IceCube string

DeepCore string

Corridor

DeepCore

1000 m

1
0

0
0

 m

FIG. 2. The top view of IceCube. Green circles indicate po-
sitions of the ordinary IceCube strings. Red circles show the
configuration of the DeepCore strings with denser instrumen-
tation and high quantum efficiency DOMs. The dashed line
encompasses the DeepCore area of the detector. The purple
arrow shows an example of the corridor direction formed by
the detector geometry.

result in a change of the overall flux normalization. The
second effect is caused by the different effective matter
potential experienced by the sterile neutrino state when
crossing the Earth. This modifies the amplitude and en-
ergy of the muon neutrino oscillation minimum. The
strength of the change is proportional to the amount of
matter along the neutrino trajectory, and is, therefore,
more pronounced for neutrinos crossing the Earth’s core.
This is demonstrated in the bottom panel of Fig. 1, where
the largest change in the muon neutrino survival proba-
bility is seen for trajectories with cos θz < −0.8.

The value of the sterile mass splitting ∆m2
41 changes

only the period of oscillations between muon and ster-
ile states. Such oscillations are averaged by the detector
energy and zenith resolutions and cannot be resolved for
neutrinos with energies considered in this study. There-
fore, throughout this analysis ∆m2

41 is fixed to 1 eV2.
The impact of these assumptions is discussed in Sec. VII.

The light (standard) neutrino mass ordering influences
the effects of the sterile neutrino mixing. Switching from
one assumed mass ordering to the other interchanges
the oscillation probabilities for neutrinos and antineutri-
nos [36]. This effectively leads to some sensitivity to the
standard neutrino mass ordering if both mixing elements
|Uµ4|2 and |Uτ4|2 are significantly nonzero [35].

At higher energies, muon anti-neutrinos can undergo
resonantlike transitions [41] to the sterile state. This hap-
pens when the neutrino energy, sterile mixing and mass
splitting meet the criteria for the mantle–core paramet-
ric enhancement [42, 43] due to matter effects [44, 45]
in Earth. The resonant transition results in a deficit of
muon antineutrinos compared to the expectation from

Dust layer
bad optical properties

Veto cap
10 DOMs 
10 m vertical spacing 

DeepCore 
50 HQE DOMs 
7 m vertical spacing 

0.010.020.030.04

Absorption [ 1 / m ]

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

Depth [ m ]

FIG. 3. The side view of the IceCube experiment. Green and
red circles represent the standard IceCube DOMs and high
quantum efficiency DeepCore DOMs, respectively. The dust
layer, a region with short optical absorption length, is high-
lighted gray. The green region shows the DeepCore fiducial
volume, and the red region is used to improve the veto effi-
ciency against down-going atmospheric muons. The red line
on the left axis shows the optical absorption length as function
of depth for the optical ice model used in the study [40].

the standard neutrino mixing for neutrinos with energies
above 1 TeV that cross the Earth’s core. A search for
such a transition has been published by IceCube [46].
Since this effect is pronounced at energies above 1 TeV
it has no impact on this study.

III. ICECUBE DEEPCORE DETECTOR

The IceCube neutrino detector uses the antarctic ice
as a natural optical medium to detect the Cherenkov
light from secondary particles produced in neutrino in-
teractions in or near the detector. The detector instru-
ments about 1 km3 of ice with digital optical modules
(DOMs) arranged in an array of 86 strings with 60 mod-
ules each [47, 48]. The strings are arranged in a hexago-
nal grid with typical inter-string separation of 125 m, ex-
cept for the 8 DeepCore strings, which are placed closer
together in the center of the array at a typical distance
of 50 m. The vertical DOM separation is 17 m, except
in the DeepCore strings, where it is 7 m. Each DOM
contains a downward-looking 10” photomultiplier tube
and digitizing electronics enclosed in a pressure resistant
glass sphere. The DOMs are located at depths between
1450 m and 2450 m below the ice surface.

The DOMs composing the DeepCore strings are
equipped with 35% higher quantum efficiency photomul-
tiplier tubes to increase light collection. The reduced
spacing between DeepCore modules lowers the energy
threshold of the detector to about 10 GeV. A top and
side view of the DeepCore position inside IceCube are
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shown in Fig. 2 and 3, respectively. This study uses the
8 DeepCore strings along with the surrounding IceCube
strings as a definition of the DeepCore detector as de-
noted in Fig. 2.

The remaining outer layers of the IceCube array are
used as a veto-detector against the prevailing background
from atmospheric muons. IceCube DeepCore has a base-
line of up to 12700 km, depending on the neutrino arrival
direction. This, together with the low energy threshold
and a large instrumented volume, makes the DeepCore
detector a unique tool in the study of atmospheric neu-
trino oscillations.

IV. EVENT SELECTION AND
RECONSTRUCTION

The event selection in this analysis aims to identify
charged current (CC) muon (anti)neutrino events with
interaction vertices contained within the DeepCore de-
tector volume. A muon track and a hadronic shower are
produced in CC interactions. The selection is also de-
signed to reduce the large background contribution from
atmospheric muons produced in cosmic ray interactions.
Details of the event selection are outlined in [30] and [49].
Here we review the key components of the selection.

A. Background rejection

The first step in the event selection involves a dedi-
cated DeepCore trigger and data filter that is designed
to select neutrino-induced events and reject atmospheric
muon events [29]. The events reconstructed as down-
going (cos θz > 0) by a fast track reconstruction algo-
rithm [50] or a maximum likelihood reconstruction [51]
are rejected. A small fraction of down-going atmospheric
muons can be misreconstructed as up-going. However,
due to the large atmospheric muon flux, this small frac-
tion can still lead to a large contamination in the final
data sample.

Additional algorithms are used to identify and reject
the remaining atmospheric muon background. The po-
sition of the earliest DOM triggering the detector is re-
quired to be inside the DeepCore volume. This require-
ment selects up-going events starting inside the Deep-
Core volume, but rejects down-going atmospheric muons,
which have to pass through the outer IceCube strings
and, therefore, leave the first signals there. In addi-
tion, background events are identified using the observed
charge in the upper part of IceCube, accumulated charge
as a function of time (dQ/dt) and charge observed before
the trigger [49].

The most powerful veto criterion against remaining
atmospheric muons is the corridor cut. This algorithm
identifies muons that penetrate the detector through the
corridors formed by the geometry of the detector configu-
ration. This cut rejects events if two or more DOMs regis-

0 50 100 150
2460

2450

2440

2430

2420

2410

Direct photons

Late photons

MC muon

Track fit

Track fit + 25°

FIG. 4. A hyperbolic light pattern in time and DOMs depth
created by the direct photons from a muon track passing next
to a string. Magenta and red markers depict direct and scat-
tered (late) photons, respectively. The solid green line shows
the expectation from the true muon. The dashed blue curve
depicts the fitted hyperbola of the reconstructed muon track
and dot-dashed black curve shows the expectation if the di-
rection is changed by 25◦ [9].

ter a signal within a narrow time window [–150 ns, +250
ns] from the expected arrival time of Cherenkov light
coming from an atmospheric muon traveling through a
corridor. An example of such a direction is depicted in
Fig. 2. A requirement of more than two hits in the corri-
dor veto region is used to select a data driven sample of
atmospheric muons and to construct a background tem-
plate.

The criterion on the position of the first DOM trig-
gered in the event is strengthened as compared to [49].
In this study it is required to be in the bottom 250 m of
the detector. This provides a buffer zone between the ac-
ceptable DeepCore fiducial volume and the “dust layer”
shown as gray in Fig. 3. This region, characterized by
a short optical absorption length, is present due to dust
accumulation during a geological period about 60 to 70
thousand years ago [52]. Atmospheric muons that en-
ter the detector through the dust layer leave few traces
to satisfy veto criteria and can mimic up-going neutrinos.
The addition of a buffer layer reduces contamination from
such events.

B. Reconstruction of νµ interactions

Near the detector energy threshold, neutrino interac-
tions are likely to be detected only if they happen near
a detector string. These events will leave signals in only
a few DOMs. Most of the Cherenkov photons undergo
scattering, but using direct (i.e. nonscattered) photons
minimizes the impact of uncertainties of the optical prop-
erties of the ice.
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The selection of direct photons uses the fact that the
Cherenkov light is emitted at a characteristic angle rel-
ative to the direction of the muon produced in the νµ
CC interaction. Therefore, the depth at which nonscat-
tered photons arrive at DOMs on a string is a hyperbolic
function of time [53] as shown in Fig. 4. Scattered or
late photons have an additional time delay and do not
match the hyperbolic pattern. A time window for ac-
cepting direct photons is defined based on the vertical
distance between two DOMs and the time it would take
nonscattered photons to travel such a distance in ice. A
time delay up to 20 ns is allowed in this analysis. Signals
from at least three triggered DOMs are required to meet
this direct photon selection criteria.

The direct photons of an event are used to fit track-
like (muon) and pointlike (hadronic or electromagnetic
shower) emission patterns of Cherenkov light using a χ2

optimization. The ratio of the χ2 values for the two hy-
potheses is used to select tracklike events, which are likely
to be caused by νµ CC interactions. This selection re-
jects about 35% of all νµ CC interactions. Rejected νµ
CC events typically have higher inelasticity and dimmer
muon tracks, which reduce the track fit quality. Approx-
imately 65% of all other interactions (i.e. νe,τ CC and all
NC) are rejected, leading to approximately 70% purity of
νµ CC interactions at the final level2. The reconstructed
muon direction θz,reco is used as an estimate for the ar-
rival direction of the interacting neutrino. The zenith
angle of the muon is calculated from the fitted tracklike
hyperbolic pattern. The median neutrino zenith resolu-
tion is approximately 12◦ at 10 GeV and improves to 6◦

at 40 GeV.

The neutrino energy reconstruction assumes the ex-
istence of a muon track and a hadronic shower at the
neutrino interaction point. Muons selected for this anal-
ysis are in the minimum ionizing regime [54]. The energy
of these muons is, therefore, determined by their range
Rµ. The total neutrino energy is then calculated as the
sum of the energies attributed to the hadronic shower
(Eshower) and the muon track,

Ereco ≈ Eshower + aRµ, (10)

where a ≈ 0.23 GeV/m is the constant3 energy loss of
muons in ice. The muon range is calculated by identifying
the starting and stopping points of a muon along the
reconstructed track direction. The energy reconstruction
is described in more detail in [9]. The median energy
resolution is about 30% at 8 GeV and improves to 20%
at 20 GeV.

2 The signal purity is estimated at the best-fit point of the analysis
3 An additional term is used in the energy reconstruction to ac-

count for the rising muon losses at higher energies. However, its
impact is small and therefore is not shown in Eq. (10)
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FIG. 5. The ratio of the expected event counts for a
sterile neutrino hypothesis and the case of no sterile neu-
trino. Sterile neutrino mixing parameters sin2 θ24 = 0.02 and
sin2 θ34 = 0.17 are assumed. The values ∆m2

32 = 2.52 · 10−3

eV2 and sin2 θ23 = 0.51 are assumed for the standard atmo-
spheric mixing parameters. Both expectations are normalized
to the same total number of events.

V. DATA ANALYSIS TECHNIQUES

Three years of DeepCore data [55], comprising 5118
events at the final level, are used in this study. They are
compared to predictions from simulations as described in
the following subsections.

A. Monte Carlo simulation

Neutrino interactions and hadronization processes are
simulated using GENIE [56]. Produced muons are propa-
gated with PROPOSAL [57]. GEANT4 is used to prop-
agate hadrons and particles producing electromagnetic
showers with energies less than 30 GeV and 100 MeV,
respectively. Light output templates [58] are used for
particles with higher energies. Clsim [59] is used to prop-
agate the resulting photons. The equivalent of 30 years
of detector operation is simulated for each neutrino fla-
vor. This ensures that the Poisson fluctuations due to
Monte Carlo statistics are much smaller than statistical
uncertainties in the data and, therefore, can be neglected
throughout the analysis.

B. Signal signature

The impact of a sterile neutrino on the event rate as a
function of reconstructed energy and zenith in this study
is shown in Fig. 5. The most dramatic changes are ex-
pected at reconstructed energies between 20 and 30 GeV
for neutrinos crossing the Earth’s core (cos θz . −0.85).
In addition, the presence of a sterile neutrino changes
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TABLE I. The physics parameters of interest and their best-fit points obtained in the analysis for normal (NO) and inverted
(IO) neutrino mass orderings are shown. The nuisance parameters used to account for systematic uncertainties, their priors (if
used) and their best-fit values are also given.

Parameter Priors Best fit (NO) Best fit (IO)
Sterile mixing parameters

|Uµ4|2 no prior 0.00 0.00
|Uτ4|2 no prior 0.08 0.06

Standard mixing parameters
∆m2

32 [ 10−3eV2 ] no prior 2.52 −2.61
sin2 θ23 no prior 0.541 0.473

Flux parameters
γ no prior –2.55 –2.55
νe normalization 1± 0.05 0.996 0.997
∆(ν/ν̄), energy dependent 0± 1σ 0.19σ 0.21σ
∆(ν/ν̄), zenith dependent 0± 1σ 0.19σ 0.16σ

Cross section parameters
MA (resonance) [ GeV ] 1.12± 0.22 1.16 1.14
MA (quasielastic) [ GeV ] 0.99+0.25

−0.15 1.03 1.03
Detector parameters

Hole ice scattering [ cm−1 ] 0.02± 0.01 0.021 0.021
DOM efficiency [ % ] 100± 10 101 101

Background
Atm. µ contamination [ % ] no prior 0.01 0.4

the normalization as described in Sec. II. This gives an
approximately uniform deficit of events seen in other re-
gions of reconstructed energy and zenith.

C. Fitting procedure

A binned maximum log-likelihood algorithm with nui-
sance parameters [60] to account for systematic uncer-
tainties is used to determine the sterile neutrino mixing
parameters. The data are binned in an 8×8 histogram
in cos θz,reco and logEreco. Only tracklike events with
cos θz,reco ∈ [−1, 0] and Ereco ∈ [100.8, 101.75] GeV are
used in the analysis. The log-likelihood is defined as

− lnL =
∑

i

(µi − ni lnµi) +

npriors∑

k

(φk − φ0k)2

2σ2
φk

, (11)

where ni is the number of events in the ith bin of a data
histogram, and µi = µi(θ̄, φ̄) is the expected number of
events from the physics parameters θ̄ and nuisance pa-
rameters φ̄. The second term of Eq. (11) accounts for
the prior knowledge of the nuisance parameters, where
φ0k and σφk

are the estimated value and uncertainty, re-
spectively, on the parameter φk. The priors come from
independent measurements or uncertainties in model pre-
dictions. As stated in Sec. II, the physics parameters of
interest for this study are the mixing angles θ24 and θ34.
Confidence levels are estimated using Wilks’s theorem
[61] for the difference −2∆ lnL between the profile log-
likelihood and the log-likelihood at the best-fit point.

The expected histogram bin content is obtained by
event-by-event re-weighting of events in Monte Carlo sim-

ulations. In addition, the impact of the detector system-
atic uncertainties is estimated at the histogram level.

D. Treatment of systematic uncertainties

Eleven nuisance parameters, listed in Table I, are used
in the analysis to account for the impact of systematic
uncertainties in this study. These systematic uncertain-
ties are grouped in five classes and are explained in the
following sections.

1. Neutrino mixing

The values of the standard atmospheric mixing param-
eters determine the neutrino oscillations pattern. The
value of the mass splitting ∆m2

32 defines the position of
the minimum and θ23 is related to its amplitude. Simi-
lar modifications of the oscillations pattern, but limited
to the neutrinos crossing the Earth’s core, are caused by
the addition of a sterile neutrino. This makes standard
mixing parameters the most important uncertainties for
this study.

Simulations show that prior values for the standard
mixing parameters can lead to a fake nonzero best-fit
point with significance on the order of 1 σ. Also, the
global values of ∆m2

32 and θ23 do not include sterile neu-
trinos in the model. Therefore, no priors on the standard
mixing parameters are used in this study. Values of other
mixing parameters such as θ12, θ13, and ∆m2

21 are found
to have no impact on the analysis and are fixed to the
global best-fit values from [60]. Both normal (m1 < m2 <
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FIG. 6. The comparison of the data (black dots) and the expectation at the best-fit point for the bins used in the analysis. The
expectation at the best fit includes a full calculation of the oscillation probabilities for the “3+1” model, impact of systematic
uncertainties and background.

m3 < m4) and inverted (m2 < m3 < m1 < m4) neutrino
mass orderings are considered in the analysis.

2. Flux systematics

The neutrino flux model from [62], which assumes a
nominal value of γ = −2.66 for the cosmic ray spectral
index, is used in the analysis. The effects of several sys-
tematic uncertainties, such as the properties of the global
ice model and deep inelastic scattering cross section, are
degenerate with a change in the spectral index. There-
fore, this nuisance parameter is left unconstrained in the

fit to account for these subdominant uncertainties.

The normalization of the νe flux is assigned a 5% Gaus-
sian prior. The uncertainties of the neutrino and antineu-
trinos fractions of the neutrino flux from [63] are used.
Their deviations from the flux model are parametrized
as two independent parameters describing energy depen-
dent ∆(ν/ν̄)energy and zenith dependent ∆(ν/ν̄)zenith
uncertainties. The overall normalization of the flux is
left unconstrained to account for large uncertainties on
the absolute flux of atmospheric neutrinos.
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FIG. 7. Statistical pulls between data and expectation for
the best-fit point.

3. Cross section systematics

The main interaction process for neutrinos in the en-
ergy range of this analysis is deep inelastic scattering
(DIS). Uncertainties of the DIS cross sections are taken
into account as modifications of an effective spectral in-
dex and the overall normalization of the flux. Uncertain-
ties of non-DIS processes, such as resonant and quasielas-
tic scattering, are estimated by GENIE as a correction
to the weights of the generated interactions. This is done
by varying the axial mass form factors MA as described
in [64].

4. Detector systematics

Uncertainties on the detector properties, like the effi-
ciency of the optical modules and their angular accep-
tance, have a large impact in this analysis.

To estimate the impact of the DOM efficiency, seven
discrete Monte Carlo sets are used. They span the range
of 85–115% of the nominal efficiency in steps of 5%. Each
set is processed using the event selection described in
Sec. IV and the final events are binned in reconstructed
energy and cos θz,reco to produce expectation histograms
analogous to Fig. 5. The impact of varying the efficiency
continuously is then estimated by fitting a second degree
polynomial to the changing event rate obtained from the
discrete sets in each analysis bin. A Gaussian prior cen-
tered at the nominal efficiency (100%) with a σ of 10 %
is applied.

One of the most important systematic uncertainties is
the DOM angular acceptance. During the deployment of
IceCube strings holes were drilled into the ice with a hot
water drill. After the refreezing process, the ice along
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FIG. 8. Event rates shown as a function of (top) Ereco and
(bottom) cos θz,reco. The various different neutrino compo-
nents from Monte Carlo simulation used in the fit are shown as
stacked histograms. The total expected event rate is in good
agreement with the observed data, shown as black points.

the strings has different optical properties in comparison
to other part of the detector. This process effectively
changes the angular acceptance of DOMs. Its impact
is especially important for the low energy neutrinos in
DeepCore, because such events leave only a small signal
in the detector. The properties of the refrozen ice, such
as effective scattering length, change the angular profile
of reconstructed events. This systematic uncertainty is
treated in a similar way to the DOM efficiency. Ten dis-
crete systematic sets with different effective scattering
coefficients between 0.01 cm−1 and 0.033 cm−1 are used
to determine a bin-by-bin effect of the refrozen ice prop-
erties on the event rate. The effect for the intermediate
values is estimated using third degree polynomials. A
Gaussian prior of 0.02± 0.01 cm−1 is applied.
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5. Background

It is also important to estimate the impact of the
background due to atmospheric muons reaching Deep-
Core. The rejection algorithms for atmospheric muons
are developed using Monte Carlo simulations produced
with CORSIKA [65]. However, producing enough muon
statistics at the final analysis level is computationally
intensive and cannot be performed with currently avail-
able resources. Therefore, the impact of the muon back-
ground is addressed using the data-driven template ex-
plained in Sec. IV. The muon template is then added to
the expected event rate from neutrino events to form a
total expectation. Its normalization is left unconstrained
to assess the impact from the atmospheric muon back-
ground. The selection of direct photons successfully re-
moves events from pure electronic noise, and, therefore,
such noise is not considered in this study.

VI. RESULTS

The data are found to be consistent with the stan-
dard three-neutrino hypothesis. Predictions from neu-
trino simulations and the atmospheric muon template fit
the experimental data well with a χ2 of 54.9. There are
64 data bins in total fitted with 13 parameters. Some
of the parameters effectively contribute less than one de-
gree of freedom (d.o.f) due to priors and correlations.
The number of d.o.f. is estimated by fitting 2000 statis-
tical trials obtained by fluctuating the expectation from
the detector simulations and background. This exercise
provides a goodness of fit distribution that is then fit
with a χ2 distribution to extract the effective number of
d.o.f. The resulting number of d.o.f. is estimated to be
56.3± 0.3 and the probability to obtain the observed χ2

is, therefore, 53%.
The agreement between the data and the expectation

at the best-fit point is shown in Fig. 6 for the bins used in
the fit. The bin-by-bin pulls of the data compared to the
expectation at the best-fit point are shown in Fig. 7. The
pulls are distributed in the way expected from statisti-
cal fluctuations without large deviations or clustering in
specific energy or zenith ranges.

The upper and lower parts of Fig. 8 depict distributions
of Ereco and cos θz,reco, respectively. It also shows the
expectation from the different components of the simula-
tions used in the fit. The dominant contribution comes
from νµ CC interactions with some contamination from
νe, ντ and NC interactions of all flavors. The atmospheric
muon contamination is fit to about 0.4 % and, therefore,
not shown in Fig. 8.

All nuisance parameters are fit near the nominal val-
ues; their values can be found in Table I. Inverted mass
ordering is marginally preferred in the fit. The best es-
timates of the sterile mixing parameters are given in Ta-
ble I. The difference between the best fit and the stan-
dard three-neutrino hypothesis is −2∆ lnL = 0.8. Such a
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FIG. 9. The results of the likelihood scan performed in
the analysis. The solid lines in the larger panel show the
exclusion limits set in this study at 90-% (dark blue) and 99-
% C.L. (light blue) assuming the normal neutrino (NO) mass
ordering and using critical values from χ2 with 2 d.o.f. The
dark (light) red dash-dotted lines represent the 90-% (99-%)
C.L. exclusions assuming an inverted mass ordering (IO). The
dashed lines show the exclusion from the Super-Kamiokande
experiment [66]. The top and right panels show the projection
of the likelihood on the mixing matrix elements |Uµ4|2 and
|Uτ4|2, respectively.

value is expected from statistical fluctuations of the data
with 30% probability estimated from the aforementioned
2000 trials.

Exclusion contours are obtained by scanning the likeli-
hood space in |Uµ4|2 vs |Uτ4|2 and are presented in Fig. 9.
The corresponding limits on the elements of the mixing
matrix are

|Uµ4|2 < 0.11 (90% C.L.),

|Uτ4|2 < 0.15 (90% C.L.),
(12)

where the confidence levels are obtained using Wilks’s
theorem.

The best-fit values for the standard neutrino mixing
parameters are ∆m2

32 = 2.52 · 10−3 eV2 and sin2 θ23 =
0.541 (assuming normal neutrino mass ordering), which
are different from the results of [30]. The best-fit point
for ∆m2

32 is now 1 σ lower compared to the previous
measurement. Although the data set and analysis meth-
ods used in the two analyses are similar, there are a few
differences responsible for the change. Since the publi-
cation of [30] the Monte Carlo simulation and event re-
construction have been improved. In particular, there is
a new charge calibration used for the PMTs in simula-
tion that leads to an update of the effective energy scale
in the detector reconstruction. This leads to a change
in the reconstructed position of the muon disappearance
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minimum, which is proportional to ∆m2
32. A more strin-

gent event selection is also implemented to improve atmo-
spheric muon background rejection; however, the impact
on the measurement of the atmospheric mixing angle is
small (<0.3 σ).

VII. CONCLUSIONS AND OUTLOOK

Figure 9 shows the exclusion contours obtained in this
study compared to a search performed by the Super-
Kamiokande experiment [66], where the limit |Uτ4|2 <
0.18 (90 % C.L.) is obtained. Using three years of Ice-
Cube DeepCore data improves the world best limit on
the |Uτ4|2 element by approximately 20 % at 90 % C.L.
The MINOS experiment also derives a constraint on
|Uτ4|2 < 0.20 (90 % C.L.) [67], however this limit is only
provided for a single mass splitting of ∆m2

41 = 0.5 eV2.
As there is no explanation of how that result scales with
∆m2

41, it is difficult to compare with the results obtained
with IceCube DeepCore.

The best constraints on |Uµ4|2 come from the IceCube
study using TeV neutrinos [46] and the MINOS experi-
ment [67]. The sensitity of this study to |Uµ4|2 is lim-
ited by a number of factors, including flux uncertainties
and detector resolutions, that result in a degeneracy with
other parameters of the analysis.

Current global fits of the neutrino oscillations exper-
imental data suggest |Ue4|2 = 0.023 − 0.028, where the
range covers values presented in [33, 68–70]. In this study

|Ue4|2 is assumed to be zero. The impact of a possible
nonzero value is estimated by fitting θ14 as a nuisance
parameter with prior approximately 4 times larger than
the current global fit estimate. This prior accounts for
both zero and nonzero values of θ14. Because of the rel-
atively small νe contamination of the data sample, the
value of |Ue4|2 allowed by the current global fits has no
impact on the analysis.

The value of ∆m2
41 was fixed at 1.0 eV2 throughout

this analysis. Changing the value of ∆m2
41 in the range

between 0.1 and 10.0 eV2 has no impact on the limit
on |Uτ4|2. The limit on |Uµ4|2 depends only weakly on
∆m2

41. At 0.1 eV2 it degrades to 0.12, representing an 8 %
relative change in the exclusion limit, while at 10 eV2 we

observe a relative improvement in the limit by 9 %.

Monte Carlo studies show that the current limits on
the sterile neutrino mixing are statistically limited and
can be improved using more data collected by IceCube
DeepCore. Extending the energy range may yield more
information about the flux and its normalization and thus
better constrain systematic uncertainties. Furthermore,
inclusion of cascadelike events may open a possibility to
use the νe and ντ components of the flux and NC inter-
actions to improve the sensitivity to the sterile neutrino
mixing.

ACKNOWLEDGMENTS

We acknowledge the support from the following
agencies: U.S. National Science Foundation-Office of
Polar Programs, U.S. National Science Foundation-
Physics Division, University of Wisconsin Alumni Re-
search Foundation, the Grid Laboratory Of Wisconsin
(GLOW) grid infrastructure at the University of Wis-
consin - Madison, the Open Science Grid (OSG) grid
infrastructure; U.S. Department of Energy, and Na-
tional Energy Research Scientific Computing Center,
the Louisiana Optical Network Initiative (LONI) grid
computing resources; Natural Sciences and Engineer-
ing Research Council of Canada, WestGrid and Com-
pute/Calcul Canada; Swedish Research Council, Swedish
Polar Research Secretariat, Swedish National Infrastruc-
ture for Computing (SNIC), and Knut and Alice Wal-
lenberg Foundation, Sweden; German Ministry for Ed-
ucation and Research (BMBF), Deutsche Forschungsge-
meinschaft (DFG), Helmholtz Alliance for Astroparticle
Physics (HAP), Research Department of Plasmas with
Complex Interactions (Bochum), Germany; Fund for
Scientific Research (FNRS-FWO), FWO Odysseus pro-
gramme, Flanders Institute to encourage scientific and
technological research in industry (IWT), Belgian Fed-
eral Science Policy Office (Belspo); University of Oxford,
United Kingdom; Marsden Fund, New Zealand; Aus-
tralian Research Council; Japan Society for Promotion of
Science (JSPS); the Swiss National Science Foundation
(SNSF), Switzerland; National Research Foundation of
Korea (NRF); Villum Fonden, Danish National Research
Foundation (DNRF), Denmark

[1] B. T. Cleveland et al., Astrophys. J. 496, 505 (1998).
[2] B. Aharmim et al. (SNO Collaboration), Phys. Rev. C

88, 025501 (2013).
[3] J. N. Abdurashitov et al. (SAGE Collaboration), Phys.

Rev. C 80, 015807 (2009).
[4] W. Hampel et al. (GALLEX Collaboration), Phys. Lett.

B 447, 127 (1999).
[5] M. Altmann et al. (GNO Collaboration), Phys. Lett. B

616, 174 (2005).
[6] K. Abe et al. (Super-Kamiokande Collaboration), Phys.

Rev. D83, 052010 (2011).

[7] Y. Fukuda et al. (Super-Kamiokande Collaboration),
Phys. Rev. Lett. 81, 1562 (1998).

[8] Y. Ashie et al. (Super-Kamiokande Collaboration), Phys.
Rev. Lett. 93, 101801 (2004).

[9] M. G. Aartsen et al. (IceCube Collaboration), Phys. Rev.
D91, 072004 (2015).

[10] S. Abe et al. (KamLAND Collaboration), Phys. Rev.
Lett. 100, 221803 (2008).

[11] F. P. An et al. (Daya Bay Collaboration), Phys. Rev.
Lett. 115, 111802 (2015).

http://stacks.iop.org/0004-637X/496/i=1/a=505
http://dx.doi.org/10.1103/PhysRevC.88.025501
http://dx.doi.org/10.1103/PhysRevC.88.025501
http://dx.doi.org/10.1103/PhysRevC.80.015807
http://dx.doi.org/10.1103/PhysRevC.80.015807
http://dx.doi.org/10.1016/S0370-2693(98)01579-2
http://dx.doi.org/10.1016/S0370-2693(98)01579-2
http://dx.doi.org/10.1016/j.physletb.2005.04.068
http://dx.doi.org/10.1016/j.physletb.2005.04.068
http://dx.doi.org/10.1103/PhysRevD.83.052010
http://dx.doi.org/10.1103/PhysRevD.83.052010
http://dx.doi.org/10.1103/PhysRevLett.81.1562
http://dx.doi.org/10.1103/PhysRevLett.93.101801
http://dx.doi.org/10.1103/PhysRevLett.93.101801
http://dx.doi.org/10.1103/PhysRevD.91.072004
http://dx.doi.org/10.1103/PhysRevD.91.072004
http://dx.doi.org/10.1103/PhysRevLett.100.221803
http://dx.doi.org/10.1103/PhysRevLett.100.221803
http://dx.doi.org/10.1103/PhysRevLett.115.111802
http://dx.doi.org/10.1103/PhysRevLett.115.111802


13

[12] Y. Abe et al. (Double Chooz collaboration), JHEP 2014,
86 (2014).

[13] J. K. Ahn et al. (RENO Collaboration), Phys. Rev. Lett.
108, 191802 (2012).

[14] P. Adamson et al. (MINOS collaboration), Phys. Rev.
Lett. 112, 191801 (2014).

[15] K. Abe et al. (T2K Collaboration), Phys. Rev. Lett. 112,
181801 (2014).

[16] N. Agafonova et al. (OPERA Collaboration), Phys. Rev.
D89, 051102 (2014).

[17] P. Adamson et al. (NOvA Collaboration), Phys. Rev.
D93, 051104 (2016).

[18] A. Aguilar et al. (LSND Collaboration), Phys. Rev. D64,
112007 (2001).

[19] A. A. Aguilar-Arevalo et al. (MiniBooNE Collaboration),
Phys. Rev. Lett. 110, 161801 (2013).

[20] G. Mention, M. Fechner, T. Lasserre, T. A. Mueller,
D. Lhuillier, M. Cribier, and A. Letourneau, Phys. Rev.
D83, 073006 (2011).

[21] J. N. Abdurashitov et al., Phys. Rev. C 73, 045805
(2006).

[22] S. Schael et al. (ALEPH Collaboration, DELPHI Col-
laboration, L3 Collaboration, OPAL Collaboration, SLD
Collaboration, LEP Electroweak Working Group, SLD
Electroweak Group, SLD Heavy Flavour Group), Phys.
Rep. 427, 257 (2006), arXiv:hep-ex/0509008 [hep-ex].

[23] M. Aartsen et al. (IceCube Collaboration), JINST 12,
P03012 (2017), arXiv:1612.05093 [astro-ph.IM].

[24] M. G. Aartsen et al. (IceCube Collaboration), Phys. Rev.
Lett. 111, 021103 (2013), arXiv:1304.5356 [astro-ph.HE].

[25] M. Aartsen et al. (IceCube Collaboration), Science 342,
6161 (2013), arXiv:1311.5238 [astro-ph.HE].

[26] M. G. Aartsen et al. (IceCube Collaboration), Phys. Rev.
Lett. 113, 101101 (2014), arXiv:1405.5303 [astro-ph.HE].

[27] M. G. Aartsen et al. (IceCube Collaboration), Phys. Rev.
D91, 022001 (2015), arXiv:1410.1749 [astro-ph.HE].

[28] M. G. Aartsen et al. (IceCube Collaboration), Astrophys.
J. 809, 98 (2015).

[29] R. Abbasi et al. (IceCube Collaboration), Astropart.
Phys. 35, 615 (2012), arXiv:1109.6096 [astro-ph.IM].

[30] M. G. Aartsen et al. (IceCube Collaboration), Phys. Rev.
D91, 072004 (2015), arXiv:1410.7227 [hep-ex].

[31] S. Bilenky and B. Pontecorvo, Phys. Rep. 41, 225 (1978).
[32] Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor.

Phys. 28, 870 (1962).
[33] J. Kopp, P. A. N. Machado, M. Maltoni, and T. Schwetz,

JHEP 2013, 1 (2013), arXiv:1303.3011 [hep-ph].
[34] S. Razzaque and A. Y. Smirnov, JHEP 2011, 84 (2011),

arXiv:1104.1390 [hep-ph].
[35] S. Razzaque and A. Y. Smirnov, Phys. Rev. D 85, 093010

(2012), arXiv:1203.5406 [hep-ph].
[36] H. Nunokawa, O. Peres, and R. Zukanovich Funchal,

Phys. Lett. B 562, 279 (2003), arXiv:hep-ph/0302039.
[37] A. M. Dziewonski and D. L. Anderson, Phys. Earth

Planet. In. 25, 297 (1981).
[38] P. Huber, M. Lindner, and W. Winter, Comput. Phys.

Commun. 167, 195 (2005), arXiv:hep-ph/0407333 [hep-
ph].

[39] P. Huber, J. Kopp, M. Lindner, M. Rolinec, and
W. Winter, Comput. Phys. Commun. 177, 432 (2007),
arXiv:hep-ph/0701187 [hep-ph].

[40] D. Chirkin (IceCube Collaboration), in Proc 33rd Inter-
national Cosmic Ray Conference (ICRC2013): Rio de
Janeiro, Brazil, July 2-9, 2013 , p. 0580.

[41] S. T. Petcov, (2016), arXiv:1611.09247 [hep-ph].
[42] M. Chizhov, M. Maris, and S. T. Petcov, (1998),

arXiv:hep-ph/9810501 [hep-ph].
[43] M. V. Chizhov and S. T. Petcov, Phys. Rev. D 63, 073003

(2001), arXiv:hep-ph/9903424.
[44] L. Wolfenstein, Phys. Rev. D17, 2369 (1978).
[45] S. P. Mikheev and A. Yu. Smirnov, Sov. J. Nucl. Phys.

42, 913 (1985), [Yad. Fiz.42,1441(1985)].
[46] M. G. Aartsen et al. (IceCube Collaboration), Phys. Rev.

Lett. 117, 071801 (2016).
[47] R. Abbasi et al. (IceCube Collaboration), Nucl. Instrum.

Meth. A601, 294 (2009).
[48] R. Abbasi et al. (IceCube Collaboration), Nucl. Instrum.

Meth. A618, 139 (2010).
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