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SHORT COMMUNICATION

Links between plant and fungal communities across
a deforestation chronosequence in the Amazon
rainforest
This article has been corrected since Advance Online Publication and a corrigendum is also printed in this issue

Rebecca C Mueller1,5, Fabiana S Paula2, Babur S Mirza3, Jorge LM Rodrigues3,
Klaus Nüsslein4 and Brendan JM Bohannan1

1Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA; 2Institute of Oceanography,
University of Sao Paulo, Sao Paulo, Brazil; 3Department of Biology, University of Texas, Arlington, TX,
USA and 4Department of Microbiology, University of Massachusetts, Amherst, MA, USA

Understanding the interactions among microbial communities, plant communities and soil
properties following deforestation could provide insights into the long-term effects of land-use
change on ecosystem functions, and may help identify approaches that promote the recovery of
degraded sites. We combined high-throughput sequencing of fungal rDNA and molecular barcoding
of plant roots to estimate fungal and plant community composition in soil sampled across a
chronosequence of deforestation. We found significant effects of land-use change on fungal
community composition, which was more closely correlated to plant community composition than
to changes in soil properties or geographic distance, providing evidence for strong links between
above- and below-ground communities in tropical forests.
The ISME Journal (2014) 8, 1548–1550; doi:10.1038/ismej.2013.253; published online 23 January 2014
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Land-use change, such as deforestation, is one of the
greatest threats to biodiversity worldwide (Thomas
et al., 2004), particularly within tropical ecosystems
(Sala et al., 2000; Gibson et al., 2011). In tropical
ecosystems, the responses of soil fungal biodiversity
to land-use change are only beginning to be
explored, and responsiveness has been shown in
some cases (for example, Fracetto et al., 2013) but
not in others (for example, Leal et al., 2009). Fungal
communities can be structured by nutrient avail-
ability (Rousk et al., 2010) and plant community
composition (Carney and Matson, 2006; Peay et al.,
2013), suggesting that shifts in soil fungal commu-
nities in response to land-use change (Castro et al.,
2008; Fracetto et al., 2013) could result from
alterations in soil properties and/or plant commu-
nities. However, the relative strength of these factors
in determining fungal community composition in
tropical systems has not been examined.

We used an established chronosequence of land
use in the Brazilian Amazon rainforest (Rodrigues
et al., 2013) that included a primary forest, secondary
forest and pasture. We sampled soil using a spatially
explicit design within single hectare plots for a total
of nine samples per site. To examine changes in
fungal community composition we targeted the ITS1
region of the rRNA gene using the fungal-specific
primer pair ITS1F-ITS2 with a two-stage PCR
designed for paired-end Illumina sequencing.
Amplicons were sequenced on an Illumina HiSeq
2000 (Illumina, San Diego, CA, USA) at the
University of Oregon, quality-filtered to remove
low-quality bases and putative chimeras, and
clustered into operational taxonomic units at 97%
sequence similarity using the program UCHIME
(Edgar, 2010) in the QIIME platform (Caporaso
et al., 2010). Plant community composition was
determined by direct PCR (Phire Direct PCR,
ThermoScientific, Waltham, MA, USA) and Sanger
sequencing of the chloroplast trnL intron region
(Taberlet et al., 1991, 2007) of roots from the same
soil cores collected for microbial community analysis.
Root sequences were grouped by plant genera on
the basis of top BLAST matches to the GenBank
database (Supplementary Table 1). Unique root
sequences were deposited in GenBank under
accession numbers KF661456–KF661514, and ITS1
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sequences were deposited in MG-RAST under ID
4536676.3. Soil properties were determined by
quantifying micro- and macronutrients with protocols
modified for tropical soil (van Raij et al., 2001;
Supplementary Table 2). Analyses were undertaken
on matched samples that had sufficient data for
fungi, roots and soil properties for a total of 20
samples across the three land uses. A more detailed
description of the methods can be found in the
Supplementary Material.

Using an operational taxonomic unit community
matrix rarefied to 10 000 sequences per sample,
fungal community composition (Bray–Curtis) was
compared among the sites using PERMANOVA
(Anderson, 2001) and visualized using nonmetric
multidimensional scaling. The fungal community
composition was significantly different among
the three land uses (that is, primary forest,
secondary forest and pasture; R2¼ 0.32, F2,17¼ 4.14,
P¼ 0.001; Figure 1a), driven mostly by decreased
relative abundance of Basidiomycota in the pasture
and secondary forest (Supplementary Figure 1).
PERMANOVA analysis also showed significant
differences in plant community composition
(R2¼ 0.41, F2,17¼ 5.92, P¼ 0.001) and measures of
soil properties (F2,17¼ 25.6, R2¼ 0.75, P¼ 0.001;
Figures 1b and c).

The relative contribution of variation in pairwise
geographic distance, environmental distance
(Hellinger-transformed Euclidean distance) and
plant community dissimilarity (Bray–Curtis) to
variation in fungal community composition was
determined using multiple regression on distance
matrices (Lichstein, 2006). We found that plant
community composition was the strongest driver of
differences in fungal community composition
(Table 1). Although we found significant differences
among the sites (Supplementary Table 2), fungal
richness was not significantly correlated with plant
richness (F¼ 1.68, P¼ 0.21).

Plant identification through targeting of roots
within soil cores provides the means to isolate the
plant species most likely to interact with the fungal

community in a given sampling location. We used
this novel approach to characterize plant composition
among plots and found that the plant community
was a stronger predictor of the fungal community
than were soil properties or geographic distance.
These results are consistent with those of
Mitchell et al. (2010), who showed that plant
community composition was a better predictor of
microbial community composition than was soil
chemistry across a plant successional gradient in a
boreal ecosystem. Our findings support those of
Peay et al. (2013), who found a significant correla-
tion between plant community composition and
fungal community composition in three tropical
forests, and further show that fungal community
composition is more closely linked to plant com-
munity composition than to either environmental
variability or geographic distance.

Our results also provide evidence that effects of
deforestation on fungal communities are likely
mediated in large part by changes in plant commu-
nities. Fungal communities in secondary forests
were more similar to primary forests than were
pasture communities (Figure 1), suggesting that the
recovery of fungal communities following pasture
abandonment is closely tied to that of plants. A
clearer understanding of interactions between plant
and fungal communities could prove useful to

Figure 1 Nonmetric multidimensional scaling ordinations of (a) fungal communities, (b) plant communities and (c) soil properties in
matched soil cores. Land-use types are as follows: primary forest (black circles), pasture (triangles) and secondary forest (gray circles).

Table 1 Multiple regression on distance matrices comparing
the relationship between fungal community similarity and
geographic distance, plant community similarity and
environmental similarity on the basis of soil properties
(Model: F¼57.02, R2¼ 0.48, P¼ 0.001)

Coefficient P-value

Plant community 0.169 0.002
Geographic 0.006 0.027
Environmental 0.005 0.078

Coefficient values are partial regression coefficients, which indicate
the rate of change in community similarity determined by a given
independent variable while other independent variables are held
constant. Bolded values indicate significance at alpha¼ 0.05.
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conservation and restoration biology, as it could
identify management strategies that better promote
both reforestation and the recovery of microbially
mediated ecosystem functions in degraded areas
(van der Heijden et al., 2008).
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